CN116396531B - 一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料 - Google Patents
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料 Download PDFInfo
- Publication number
- CN116396531B CN116396531B CN202310353002.8A CN202310353002A CN116396531B CN 116396531 B CN116396531 B CN 116396531B CN 202310353002 A CN202310353002 A CN 202310353002A CN 116396531 B CN116396531 B CN 116396531B
- Authority
- CN
- China
- Prior art keywords
- aerogel
- biomass
- conductive
- solution
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004964 aerogel Substances 0.000 title claims abstract description 128
- 239000002028 Biomass Substances 0.000 title claims abstract description 93
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 55
- 239000004814 polyurethane Substances 0.000 title claims abstract description 55
- 239000002131 composite material Substances 0.000 title claims abstract description 50
- 239000011540 sensing material Substances 0.000 title claims abstract description 36
- 229920000767 polyaniline Polymers 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 239000011231 conductive filler Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000005266 casting Methods 0.000 claims abstract description 6
- 238000011065 in-situ storage Methods 0.000 claims abstract description 5
- 238000013329 compounding Methods 0.000 claims abstract 2
- 230000000379 polymerizing effect Effects 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 66
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 32
- 238000003756 stirring Methods 0.000 claims description 27
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 18
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 17
- 239000011259 mixed solution Substances 0.000 claims description 17
- 239000000661 sodium alginate Substances 0.000 claims description 17
- 235000010413 sodium alginate Nutrition 0.000 claims description 17
- 229940005550 sodium alginate Drugs 0.000 claims description 17
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000000839 emulsion Substances 0.000 claims description 16
- 238000004108 freeze drying Methods 0.000 claims description 16
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- YXRKNIZYMIXSAD-UHFFFAOYSA-N 1,6-diisocyanatohexane Chemical compound O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O YXRKNIZYMIXSAD-UHFFFAOYSA-N 0.000 claims description 9
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 4
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 4
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000002121 nanofiber Substances 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 230000001351 cycling effect Effects 0.000 abstract description 3
- 239000012776 electronic material Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000000741 silica gel Substances 0.000 description 13
- 229910002027 silica gel Inorganic materials 0.000 description 13
- 239000000843 powder Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000006229 carbon black Substances 0.000 description 7
- 239000003292 glue Substances 0.000 description 7
- 238000007710 freezing Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
- C08J9/42—Impregnation with macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
- C08J9/405—Impregnation with polymerisable compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/048—Elimination of a frozen liquid phase
- C08J2201/0484—Elimination of a frozen liquid phase the liquid phase being aqueous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/02—Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
- C08J2205/026—Aerogel, i.e. a supercritically dried gel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2479/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
- C08J2479/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2497/00—Characterised by the use of lignin-containing materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
本发明公开了一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料及其制备方法,属于柔性电子材料领域。以生物质材料为气凝胶基底,加入导电填料,并在气凝胶骨架上原位聚合聚苯胺获得生物质导电气凝胶,最后将环保材料水性聚氨酯通过浇铸的方式与该导电气凝胶复合,得到所述的复合柔性传感材料。本发明制备的复合柔性传感材料具有三维多通路网络结构,柔韧性优异,灵敏度高,循环稳定性好,而且制备工艺简单,成本低廉,安全环保,在柔性应变传感器等可穿戴电子设备领域具有广泛的应用潜力。
Description
技术领域
本发明属于柔性电子材料领域,涉及柔性应变传感器的制备,具体涉及一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料及其制备方法。
背景技术
随着可穿戴电子设备的发展以及人们对身体健康的重视,柔性应变传感器在人体运动监测领域的应用需求越来越大。传统的气凝胶传感器往往力学性能差,容易受环境变化等因素影响,无法满足人体运动监测的需求,并且倾向使用纳米线、石墨烯等昂贵且难处理的材料作为导电物质,这又进一步限制了其发展。因此,迫切需要开发出一种安全环保、廉价易得和环境可降解的柔性应变传感器。
发明内容
本发明的目的在于提供一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料及其制备方法,制得的复合柔性传感材料具有三维多通路网络结构,柔韧性优异,灵敏度高,循环稳定性好,而且制备工艺简单,成本低廉,安全环保,在柔性应变传感器等可穿戴电子设备领域具有广泛的应用潜力。
为实现上述目的,本发明采用如下技术方案:
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)通过冷冻干燥的方式制备含有导电填料的生物质气凝胶;
(2)在生物质气凝胶骨架上原位聚合聚苯胺,制备成聚苯胺基生物质导电气凝胶;
(3)将水性聚氨酯通过浇铸的方式与聚苯胺基生物质复合气凝胶,制备成生物质导电气凝胶/水性聚氨酯复合柔性传感材料,将所得的柔性电子材料应用于柔性传感领域。
步骤(1)中,在25mL去离子水中先后加入0.6g生物质材料,在55℃下搅拌至生物质材料完全溶解后,再加入0.1g导电填料,搅拌3h,-20℃预冷冻12h,冷冻干燥30h,制得生物质气凝胶。所述的导电填料为聚苯胺、导电炭黑、活性炭、石墨粉中的任一种或其组合。所用的生物质材料为海藻酸钠、木质素磺酸钠、羧甲基纤维素钠、纤维素纳米纤维中的任一种或其组合。
步骤(2)具体是将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
步骤(3)具体是将质量分数为2-8%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将水性聚氨酯乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
本发明将聚苯胺基生物质复合气凝胶与水性聚氨酯通过浇铸、热固化的方式进行复合,通过添加导电填料和骨架上原位聚合聚苯胺的方法来实现复合材料的导电性,同时导电填料的加入能加强气凝胶的骨架结构,再通过往水性聚氨酯中添加HDI三聚体固化剂的方式使水性聚氨酯与气凝胶骨架快速结合,从而赋予复合材料优异的柔韧性和稳定性。
本发明的有益效果在于:
(1)本发明采用海藻酸钠和木质素磺酸钠制备含有导电填料的生物质气凝胶,木质素磺酸钠可以通过氢键和范德华力与海藻酸钠结合形成网络结构,从而防止导电填料的沉降,增强气凝胶的稳定性。
(2)本发明添加的聚苯胺不仅作为导电填料,同时也为后续苯胺的原位聚合提供着位点,促进聚苯胺导电网络的形成。
(3)本发明添加的导电炭黑不仅自身可以在气凝胶内部形成导电通路,同时也能够与聚苯胺导电网络互联互通,形成更多的导电通路,降低了复合材料的渗流阈值,提高了导电性。
(4)本发明采用水性聚氨酯作为气凝胶的浇铸材料,水性聚氨酯不仅有着优异的柔韧性,而且具有安全环保、不污染环境等特点,同时其水性的性质使其能被生物质气凝胶充分吸收形成复合导电材料。
(5)本发明制备的复合柔性传感材料灵敏度高,稳定性好,制备工艺简单,成本低廉,安全环保,在柔性应变传感器等可穿戴电子设备领域具有广泛的应用潜力。
附图说明
图1为实施例1制得的聚苯胺基生物质导电气凝胶的扫描电子显微镜图;
图2为实施例1制得的生物质导电气凝胶/水性聚氨酯复合柔性传感材料的扫描电子显微镜图;
图3为实施例1与对比例2、3所制备的复合柔性传感材料的灵敏度对比图;
图4为实施例1所制备复合柔性传感材料在5%的压缩应变下经过300次压缩循环的电阻变化率;
图5为实施例1所制备复合柔性传感材料在不同的弯曲状态下的电阻变化率曲线。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)在25mL的去离子水中先后加入0.1g木质素磺酸钠和0.5g海藻酸钠,在55℃下搅拌至海藻酸钠完全溶解后,再加入0.04g聚苯胺粉末和0.06g导电炭黑粉末,搅拌3h后将混合液倒入硅胶模具中,转移至-20℃的冰箱中预冷冻12h,脱除模具后冷冻干燥30h,制得生物质气凝胶。
(2)将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
(3)将质量分数为5%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶,即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
从图1可以看出,本实施例的聚苯胺基生物质复合气凝胶为三维多通路网络结构,这种大孔结构为水性聚氨酯的浇铸提供了丰富的流动空间,同时也能看出骨架上有大量的褶皱和颗粒,这说明聚苯胺附着在气凝胶的骨架上;从图2中可以看出,在浇铸完水性聚氨酯后,材料的三维多通路网络结构仍然保留,并在气凝胶的骨架上形成一层较厚的聚氨酯胶层,该聚氨酯胶层不仅对气凝胶起到保护的作用,保证了该材料对环境的稳定性,而且赋予了该材料优异的柔韧性。
对比例1
(1)在木质素磺酸钠和海藻酸钠的混合液中加入0.1g聚苯胺粉末,制得生物质气凝胶。
(2)该步骤与实施例1步骤(2)相同,制得聚苯胺基生物质导电气凝胶。
(3)该步骤与实施例1步骤(3)相同,制得生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
对比例2
(1)在木质素磺酸钠和海藻酸钠的混合液中依次加入0.08g聚苯胺粉末和0.02g导电炭黑粉末,制得生物质气凝胶。
(2)该步骤与实施例1步骤(2)相同,制得聚苯胺基生物质导电气凝胶。
(3)该步骤与实施例1步骤(3)相同,制得生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
对比例3
(1)在木质素磺酸钠和海藻酸钠的混合液中加入0.1g导电炭黑粉末,制得生物质气凝胶。
(2)该步骤与实施例1步骤(2)相同,制得聚苯胺基生物质导电气凝胶。
(3)该步骤与实施例1步骤(3)相同,制得生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
实验表明导电炭黑的加入对复合导电材料的电学性能影响较大。对比例1只加入聚苯胺粉末,其电导率小于2.2×10-6S/m,几乎不导电,而对比例2炭黑的加入为0.02g时,其电导率为1.12×10-5S/m,实施例1炭黑添加至0.06g时,电导率跃升为9.9×10-4S/m,相比于对比例2增加了88.4倍,对比例3炭黑继续增加至0.1g时,电导率进一步提升为2.567×10- 3S/m,这说明导电炭黑的加入能大幅度提高复合材料的导电性。这是因为炭黑的加入能在气凝胶的内部形成连通的导电通路,大幅度降低了材料的渗流阈值。
图3为实施例1与对比例2、3所制备的复合导电材料的灵敏度对比图。实施例1的灵敏度最高,在3%的小压缩应变下,呈线性变化,GF可高达22.0;而对比例2的灵敏度整体都较低,在小应变下,其灵敏度为7.8,这是因为炭黑的含量较少时,在压缩的过程中,有些导电通路并没有顺利形成,导致电阻变化率较低;当炭黑进一步增加时,相比于实施例1,对比例3的灵敏度下降了,一方面是因为随炭黑量的增加复合导电材料的电阻不断降低,初始连通的导电通路增多,在压缩时新形成导电通路减少,因此灵敏度会有一定程度的下降,另一方面,根据灵敏度的计算公式,初始电阻越小其最后的灵敏度反而会越低,这不利于高灵敏度传感的出现。
图4为实施例1所制备的生物质导电气凝胶/水性聚氨酯复合柔性传感材料在5%的压缩应变下进行300次拉伸循环的电阻变化率图。由图中可见,该生物质导电气凝胶/水性聚氨酯复合柔性传感材料可在300次连续压缩循环中保持电信号的稳定性和重复性,说明循环稳定性好。
此外,图5为实施例1所制备的生物质导电气凝胶/水性聚氨酯复合柔性传感材料在不同的弯曲状态下的电阻变化率曲线,电阻响应随着弯曲角度的增加而变高,且每个状态下均有清晰的变化,说明其可应用于人体关节弯曲所带来的大形变和呼吸吞咽所引起的微小形变的检测。
以上都表明该生物质导电气凝胶/水性聚氨酯复合柔性传感材料具有灵敏度高、循环稳定性好的优点,适用于柔性应变传感器。
实施例2
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)在25mL的去离子水中先后加入0.1g木质素磺酸钠和0.5g海藻酸钠,在55℃下搅拌至海藻酸钠完全溶解后,再加入0.04g聚苯胺粉末和0.06g导电炭黑粉末,搅拌3h后将混合液倒入硅胶模具中,转移至-20℃的冰箱中预冷冻12h,脱除模具后冷冻干燥30h,制得生物质气凝胶。
(2)将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
(3)将质量分数为2%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶,即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
实施例3
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)在25mL的去离子水中先后加入0.1g木质素磺酸钠和0.5g海藻酸钠,在55℃下搅拌至海藻酸钠完全溶解后,再加入0.04g聚苯胺粉末和0.06g导电炭黑粉末,搅拌3h后将混合液倒入硅胶模具中,转移至-20℃的冰箱中预冷冻12h,脱除模具后冷冻干燥30h,制得生物质气凝胶。
(2)将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
(3)将质量分数为8%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶,即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
实施例4
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)在25mL的去离子水中先后加入0.1g木质素磺酸钠和0.5g海藻酸钠,在55℃下搅拌至海藻酸钠完全溶解后,再加入0.1g石墨粉,搅拌3h后将混合液倒入硅胶模具中,转移至-20℃的冰箱中预冷冻12h,脱除模具后冷冻干燥30h,制得生物质气凝胶。
(2)将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
(3)将质量分数为5%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶,即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
实施例5
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)在25mL的去离子水中先后加入0.1g木质素磺酸钠和0.5g海藻酸钠,在55℃下搅拌至海藻酸钠完全溶解后,再加入0.1g活性炭,搅拌3h后将混合液倒入硅胶模具中,转移至-20℃的冰箱中预冷冻12h,脱除模具后冷冻干燥30h,制得生物质气凝胶。
(2)将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
(3)将质量分数为5%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶,即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
实施例6
一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法包括以下步骤:
(1)在25mL的去离子水中先后加入0.1g木质素磺酸钠和0.5g羧甲基纤维素钠,在55℃下搅拌至羧甲基纤维素钠完全溶解后,再加入0.04g聚苯胺粉末和0.06g导电炭黑粉末,搅拌3h后将混合液倒入硅胶模具中,转移至-20℃的冰箱中预冷冻12h,脱除模具后冷冻干燥30h,制得生物质气凝胶。(2)将0.2813mL苯胺单体溶于20mL 1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密封,于0℃环境中反应12h;将反应后的气凝胶冷冻干燥,制得聚苯胺基生物质导电气凝胶。
(3)将质量分数为5%(w/v)的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)所述的聚苯胺基生物质导电气凝胶放入硅胶模具中,将乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,最后在常温下晾置3h,去除周围的溢胶,即得到生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (5)
1.一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料的制备方法,其特征在于:包括以下步骤:
(1)通过冷冻干燥的方式制备含有导电填料的生物质气凝胶;
(2)在步骤(1)制得的生物质气凝胶的骨架上原位聚合聚苯胺,制备成聚苯胺基生物质导电气凝胶;
(3)将水性聚氨酯通过浇铸的方式与步骤(2)制得的聚苯胺基生物质导电气凝胶进行复合,制备成生物质导电气凝胶/水性聚氨酯复合柔性传感材料;
步骤(1)中,在25mL去离子水中先后加入0.6g生物质材料,在55℃下搅拌至生物质材料完全溶解后,再加入0.1g导电填料,搅拌3h,-20℃预冷冻12h,冷冻干燥30h,制得生物质气凝胶;
步骤(3)中,将质量分数为2-8%的HDI三聚体加入到水性聚氨酯乳液中,搅拌均匀;将步骤(2)制得的聚苯胺基生物质导电气凝胶放入模具中,将水性聚氨酯乳液滴入气凝胶中直至充满;将浇铸好的气凝胶放置在80℃下固化3h后脱除模具,再固化2h,常温下晾置3h,制得生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
2.根据权利要求1所述的方法,其特征在于:所述的导电填料为聚苯胺、导电炭黑、活性炭、石墨粉中的任一种或其组合。
3.根据权利要求1所述的方法,其特征在于:所用的生物质材料为海藻酸钠、木质素磺酸钠、羧甲基纤维素钠、纤维素纳米纤维中的任一种或其组合。
4.根据权利要求1所述的方法,其特征在于:步骤(2)中,将0.2813mL苯胺单体溶于20mL1mol/L的盐酸溶液中,记为a溶液;将0.6825g过硫酸铵溶于10mL 1mol/L的盐酸溶液中,记为b溶液;将溶液a和b冷却至0℃,然后将溶液b倒入溶液a中并搅拌均匀,再迅速将步骤(1)制备的生物质气凝胶放入混合溶液中,稍微挤压后,密闭于0℃环境中反应12h;冷冻干燥,制得聚苯胺基生物质导电气凝胶。
5.一种如权利要求1-4任一项所述的方法制得的生物质导电气凝胶/水性聚氨酯复合柔性传感材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310353002.8A CN116396531B (zh) | 2023-04-04 | 2023-04-04 | 一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310353002.8A CN116396531B (zh) | 2023-04-04 | 2023-04-04 | 一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116396531A CN116396531A (zh) | 2023-07-07 |
CN116396531B true CN116396531B (zh) | 2024-04-30 |
Family
ID=87015539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310353002.8A Active CN116396531B (zh) | 2023-04-04 | 2023-04-04 | 一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116396531B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108467509A (zh) * | 2018-03-10 | 2018-08-31 | 浙江理工大学 | 一种兼具电容和传感功能的纤维素纳米晶/聚苯胺导电柔性气凝胶的制备方法 |
CN111518309A (zh) * | 2020-06-04 | 2020-08-11 | 东北林业大学 | 一种生物质纳米纤维素/聚吡咯复合气凝胶及其制备方法和应用 |
CN112852145A (zh) * | 2021-01-08 | 2021-05-28 | 天津科技大学 | 一种新型纳米纤维素基压力传感材料及其制备方法 |
CN114621497A (zh) * | 2022-04-22 | 2022-06-14 | 福州大学 | 用于柔性应变传感器的梯度大孔导电复合水凝胶的制备方法 |
CN115819969A (zh) * | 2022-11-29 | 2023-03-21 | 北京化工大学常州先进材料研究院 | 一种聚酰亚胺纳米纤维/碳纳米管复合导电气凝胶及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6848970B2 (en) * | 2002-09-16 | 2005-02-01 | Applied Materials, Inc. | Process control in electrochemically assisted planarization |
-
2023
- 2023-04-04 CN CN202310353002.8A patent/CN116396531B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108467509A (zh) * | 2018-03-10 | 2018-08-31 | 浙江理工大学 | 一种兼具电容和传感功能的纤维素纳米晶/聚苯胺导电柔性气凝胶的制备方法 |
CN111518309A (zh) * | 2020-06-04 | 2020-08-11 | 东北林业大学 | 一种生物质纳米纤维素/聚吡咯复合气凝胶及其制备方法和应用 |
CN112852145A (zh) * | 2021-01-08 | 2021-05-28 | 天津科技大学 | 一种新型纳米纤维素基压力传感材料及其制备方法 |
CN114621497A (zh) * | 2022-04-22 | 2022-06-14 | 福州大学 | 用于柔性应变传感器的梯度大孔导电复合水凝胶的制备方法 |
CN115819969A (zh) * | 2022-11-29 | 2023-03-21 | 北京化工大学常州先进材料研究院 | 一种聚酰亚胺纳米纤维/碳纳米管复合导电气凝胶及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116396531A (zh) | 2023-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Multifunctional conductive hydrogels and their applications as smart wearable devices | |
Zhang et al. | Flexible, stretchable and conductive PVA/PEDOT: PSS composite hydrogels prepared by SIPN strategy | |
Sun et al. | Nanocomposite hydrogel-based strain and pressure sensors: a review | |
CN112011067B (zh) | 一种可降解、自修复和自粘附导电水凝胶及制备方法 | |
Wang et al. | Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application | |
WO2018218930A1 (zh) | 一种高弹性石墨烯复合形变传感材料及其制备方法与应用 | |
Wu et al. | High stretchable, pH-sensitive and self-adhesive rGO/CMCNa/PAA composite conductive hydrogel with good strain-sensing performance | |
CN109893681B (zh) | 一种用于软骨修复/电子皮肤的导电水凝胶的制备方法 | |
Yue et al. | 3D reactive printing of polyaniline hybrid hydrogel microlattices with large stretchability and high fatigue resistance for wearable pressure sensors | |
US11915838B2 (en) | Self-healing and stretchable polymeric compositions | |
Tanusorn et al. | Influence of carrageenan molecular structures on electromechanical behaviours of poly (3-hexylthiophene)/carrageenan conductive hydrogels | |
Lin et al. | Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers | |
Wang et al. | Tough and extremely temperature-tolerance nanocomposite organohydrogels as ultrasensitive wearable sensors for wireless human motion monitoring | |
CN111171552A (zh) | 一种石墨烯柔性导电复合膜及其制备方法 | |
CN112229317A (zh) | 具有大变形性能及其监测功能的柔性传感膜及其制备方法 | |
Han et al. | Multifunctional enhanced energy density of flexible wide-temperature supercapacitors based on MXene/PANI conductive hydrogel | |
Wang et al. | Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors | |
CN105085907A (zh) | 一种聚苯胺接枝碳系材料的制备方法 | |
Cao et al. | Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives | |
Yin et al. | Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors | |
CN116396531B (zh) | 一种生物质导电气凝胶/水性聚氨酯复合柔性传感材料 | |
Huang et al. | Mussel-inspired lignin decorated cellulose nanocomposite tough organohydrogel sensor with conductive, transparent, strain-sensitive and durable properties | |
Liu et al. | A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection | |
Li et al. | Freezing-induced interfacial growth of polypyrrole layers on hierarchical carbon aerogels for robust ultrasensitive pressure sensors | |
Hosseini et al. | A sensitive and flexible interdigitated capacitive strain gauge based on carbon nanofiber/PANI/silicone rubber nanocomposite for body motion monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |