CN116393258B - 一种金红石的高效浮选方法 - Google Patents

一种金红石的高效浮选方法 Download PDF

Info

Publication number
CN116393258B
CN116393258B CN202310603981.8A CN202310603981A CN116393258B CN 116393258 B CN116393258 B CN 116393258B CN 202310603981 A CN202310603981 A CN 202310603981A CN 116393258 B CN116393258 B CN 116393258B
Authority
CN
China
Prior art keywords
rutile
flotation
collector
butanediol
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310603981.8A
Other languages
English (en)
Other versions
CN116393258A (zh
Inventor
梁艳
曹沁波
李炎君
张海钰
闫嫣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310603981.8A priority Critical patent/CN116393258B/zh
Publication of CN116393258A publication Critical patent/CN116393258A/zh
Application granted granted Critical
Publication of CN116393258B publication Critical patent/CN116393258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/018Mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/06Depressants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/025Precious metal ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开一种金红石的高效浮选方法,将金红石破碎磨矿至‑74+45μm,以氯化钡和氯化铵的混合物为活化剂来活化金红石,然后加入复合捕收剂,抑制剂,进行一粗一扫三精浮选流程;所述复合捕收剂由2.3‑丁二醇、二乙基二硫代氨基甲酸钠组成,抑制剂为水玻璃;其中,2.3‑丁二醇含量为20‑70%,二乙基二硫代氨基甲酸钠30‑80%;本发明以氯化钡和氯化铵的组合药剂对金红石的浮选回收具有明显的协同效应;氯化钡和氯化铵的组合药剂离子在金红石表面生成的缔合物可以提高金红石回收率。

Description

一种金红石的高效浮选方法
技术领域
本发明涉及一种金红石的高效浮选方法,属于选矿技术领域。
背景技术
金属钛广泛用于飞机、火车等工业产品;目前金属钛的主要来源为金红石,且其是含钛量最高的矿物;在我国的金红石矿石中,大多存在粒度细,成分复杂等特点;在实际矿物浮选中,矿物表面溶解、循环用水等因素会使浮选矿浆存有不同价态的金属离子,会对浮选分离效果产生影响。
现有的浮选技术主要采用铜、铅离子作为活化剂,但铜离子、铅离子在金红石表面吸附后,会影响后续的冶炼制造钛白粉的工艺;现有金红石的浮选捕收剂主要是苯乙烯磷酸、苯甲基砷酸这两种环境危害大的有一定毒性的捕收剂,而且药剂的售价很高。
发明内容
本发明的目的在于提供一种金红石的高效浮选方法,具体包括以下步骤:将金红石破碎磨矿至-74+45μm,以氯化钡和氯化铵的混合物为活化剂来活化金红石,然后加入复合捕收剂、抑制剂,进行一粗一扫三精浮选;所述复合捕收剂由2.3-丁二醇、二乙基二硫代氨基甲酸钠组成,抑制剂为水玻璃,其中,2.3-丁二醇含量为20-70%,二乙基二硫代氨基甲酸钠30-80%。
优选的,本发明所述将金红石破碎磨矿至-74+45μm。
优选的,本发明所述活化过程中pH值为4~7。
优选的,本发明所述活化剂中氯化钡和氯化铵的质量比为1:1~3:1。
优选的,本发明所述活化剂的加入量为30-100g/t,活化时间为2-5min。
优选的,本发明所述混合捕收剂用量50-200g/t,作用时间3分钟,温度23-25℃。
金红石是一种氧化物矿物,比较稳定,但是对捕收剂的特异性很弱,本发明在金红石矿物表面添加特定的金属离子使其容易和捕收剂进行强吸附,增加其表面的疏水性,便于浮选分离。
本发明采用钡离子、氯化铵复配活化剂,活化剂的用量比铜、铅离子单独作用的用量降低30%;钡离子在金红石表面吸附,形成多金属离子表面,为捕收剂的吸附提供了更多的吸附位点;氯化铵的铵离子可以和钛原子配位,给钛原子提供多余电子,强化了钛原子和捕收剂的化学键合,从而提高了捕收剂的作用强度;此外,钡离子在后续酸法制取钛白粉的过程中,很容易形成硫酸钡沉淀,从而从酸液中去除,不影响钛白粉的制造过程,所以本发明使用的活化剂有突出优势。
本发明对通过钡离子活化的金红石直接采用二乙基二硫代氨基甲酸钠作为捕收剂,该捕收剂没有毒性,而且售价低,可以在矿山推广使用,同时使用2.3-丁二醇可以和二乙基二硫代氨基甲酸钠共吸附在金红石表面,其中2.3-丁二醇可以形成侨联式吸附结构,提高金红石表面的疏水性,可以减少捕收剂二乙基二硫代氨基甲酸钠的用量。
本发明的有益效果
(1)氯化钡和氯化铵的组合药剂对金红石的浮选回收具有明显的协同效应;氯化钡和氯化铵的组合药剂离子在金红石表面生成的缔合物可以提高金红石回收率;氯化钡加入到矿浆后,钡离子和金红石作用后,和金红石表面负电荷的氧离子反应,形成O-Ba产物,由于捕收剂可以和Ba离子成键,所以钡离子的加入就增加了金红石表面捕收剂的吸附位点,有利于捕收剂作用;氯化铵在溶液中解离出铵离子,铵离子可以和金红石表面的钛原子反应,形成络合物,并给予钛离子电子,从而强化钛离子和捕收剂的作用,也有利于捕收剂的吸附,从而提高金红石的浮选效率。
(2)与单一捕收剂相比,混合表面捕收剂具有更高的浮选选择性和更高的精矿回收率,同时减少了药剂消耗,大大降低了浮选成本;混合捕收剂中二乙基二硫代氨基甲酸钠只可以和金红石表面的一个钛原子作用,而吸附在金红石表面,加入部分2、3-丁二醇后,2、3-丁二醇中的两个羟基可以和金红石表面相连的两个钛原子键合,并由于键合减弱,不影响钛原子和二乙基二硫代氨基甲酸钠的作用,所以可以共吸附在金红石表面,从而充分提高金红石表面的疏水性;相较于单一的2.3-丁二醇和二乙基二硫代氨基甲酸钠,回收率分别提高10%、12%。
(3)本发明可以在常温和短时间内就能实现金红石高效浮选,得到更高的精矿回收率,减少药剂用量,在提高资源利用率的同时提高指标,增加效益,保护环境。
具体实施方式
下面结合具体实施例本发明作进一步的详细说明,但本发明的保护范围并不限于所述内容。
本发明实施例中所用金红石为云南某地的风化金红石,主要脉石矿物为石英、硅酸盐等;筛取38~74μm粒级产品用于试验,具体包括以下步骤:
(1)浮选试验采用XFGII型浮选机和40ml浮选槽进行;量取20mL的自来水加入到槽体容积为35mL的浮选槽中,矿样采用-74μm金红石,矿浆质量浓度为10%;每次试验取2g金红石加入浮选槽,加适量去离子水至固定液面,调整浮选机转速为1992r/min,搅拌2min,然后加入pH调整剂调节矿浆pH至6.5,pH调整剂为NaOH和HCl,搅拌2min。
(2)先用氯化钡和氯化铵(混合比例3:1)对金红石矿浆进行预处理3min,再加入混合捕收剂,其中复合捕收剂由2.3-丁二醇、二乙基二硫代氨基甲酸钠组成,2.3-丁二醇含量为20-70%,二乙基二硫代氨基甲酸钠30-80%;2.3-丁二醇和二乙基二硫代氨基甲酸钠的加入方式为分别依次加入,调节时间分别为3min和1min,加入抑制剂水玻璃,进行一粗一扫三精的浮选流程,浮选时间控制在1min。
(3)分别对浮选泡沫产品和槽内产品进行烘干、称重,计算浮选回收率,每次试验进行3次,取平3次的均值,得TiO2品位88.74%,金红石回收率为91.21%。
表1
通过表1可以看出,不使用活化剂浮选效果减弱;如果只用氯化铵活化,浮选金红石回收率降低,主要是因为少了Ba离子与捕收剂成键,金红石表面捕收剂的吸附位点变少;如果只用氯化钡活化,浮选金红石回收率降低,原因是相比实施例1,少了氯化铵在溶液中溶解出的铵离子与金红石表面的钛原子反应,钛离子和捕收剂间的作用效果减弱;加入活化剂以后,如果只加2.3-丁二醇浮选效果减弱,原因是相比实施例1,捕收剂与金红石表面钛原子间的作用效果减弱。如果只加只加二乙基二硫代氨基甲酸钠浮选效果大幅减弱,原因相比实施例1,没有了2.3丁二醇中羟基与金红石表面钛原子的键合,不能实现实施例1中金红石表面疏水性提高的效果,从而降低了浮选效果。
通过上述实验可以看出,同时使用2.-3丁二醇可以和二乙基二硫代氨基甲酸钠共吸附在金红石表面,其中2.3-丁二醇可以形成侨联式吸附结构,提高金红石表面的疏水性,可以减少捕收剂二乙基二硫代氨基甲酸钠的用量;氯化钡和氯化铵可以与金红石表面发生有利于捕收剂吸附的反应,钡离子与金红石表面的负电荷氧离子反应,铵离子与金红石表面的钛离子反应,强化其与捕收剂的作用,加强浮选效果;氯化铵和氯化钡共同强化捕收剂的吸附作用,从而提高金红石浮选效率。
对比实施例6
山西某金红石矿中金属矿物组成简单,主要为金红石、钛铁矿、磁铁矿及少量黄铁矿、磁黄铁矿等;脉石矿物以闪石、滑石、绿泥石为主,其次为长石、石英、云母等。该试验的选矿原则工艺流程为两次浮选抛尾一金红石浮选(一次粗选、两次精选)一浮选精矿除杂(弱磁选一强磁选一重选)的选矿流程。此试验采用的金红石浮选捕收剂BK423为膦酸类捕收剂、硫酸为矿浆pH调整剂。硫酸的用量为1000g/t,矿浆pH为6;获得精矿1含TiO289.58%、TiO2回收率46.84%,精矿2含TiO280.53%、TiO2回收率22.41%,精矿1与精矿2合计TiO2回收率为69.25%,金红石回收率为86.42%。
采用本发明的方法对金红石进行浮选试验;具体方法为:浮选试验采用XFGII型浮选机和40ml浮选槽进行;每个实验使用2g金红石(-74+45μm);先用氯化钡和氯化铵(混合比例3:1,添加量为50g/t)对金红石矿浆进行预处理3min,再加入混合捕收剂(2.3-丁二醇含量30%,二乙基二硫代氨基甲酸钠50%,添加量为100g/t);2.3-丁二醇和二乙基二硫代氨基甲酸钠的的调节次数分别为3min和1min,加入抑制剂水玻璃,进行一粗一扫三精的浮选流程,浮选时间控制在1min;每次试验进行3次;得TiO2品位88.74%,金红石回收率91.25%。
对比实施例7
山东某金红石矿含TFe25.32%,TiO25.74%,脉石矿物主要有石英、长石、云母、绿泥石、黄铁矿等,金红石和脉石矿物的嵌镶关系复杂,粒度微细,主要呈半自形柱状、短柱状、层状不均冬嵌布在脉石矿物之间。原试验采用原矿直接浮选实验,矿石在-0.043mm粒级占65%的磨矿细度下,采用碳酸钠、硝酸铅、六偏磷酸钠作为调整剂,改性脂肪酸作为捕收剂,经1粗3精3扫闭路浮选,可获得Ti02品位为72.52%,TiO2回收率为87.22%的金红石精矿。
采用本发明的方法对金红石进行浮选试验;具体方法为:浮选试验采用XFGII型浮选机和40ml浮选槽进行;每个实验使用2g金红石(-74+45μm);先用氯化钡和氯化铵(混合比例3:1,添加量为50g/t)对金红石矿浆进行预处理3min,再加入混合捕收剂(2.3-丁二醇含量30%,二乙基二硫代氨基甲酸钠50%,添加量为100g/t);2.3-丁二醇和二乙基二硫代氨基甲酸钠的的调节次数分别为3min和1min,加入抑制剂水玻璃,进行一粗一扫三精的浮选流程,浮选时间控制在1min;每次试验进行3次;得TiO2品位88.74%,金红石回收率91.25%。
对比实施例8
原试验所采用原生金红石矿样取自湖北枣阳某金红石矿,矿样经过颚式破碎机和对辊破碎机破碎至2mm以下,作为试验用样,矿样中TiO2含量为3.08%,含有部分含铁矿物,硅酸盐矿物较多。用磁选一重选一浮选相结合的联合工艺流程进行分选。将金红石矿样磨至细度-74μm 95%,给入平板磁选设备进行磁选,磁场强度为0.7T,在磁场强度0.7T;用苯乙烯膦酸和正辛醇作组合捕收剂;磁选抛尾20%左右,脱泥产品进入浮选得到浮选精矿TiO2品位70.98%,作业回收率88.60%。浮选精矿经磁选—焙烧—酸洗,最终得TiO2品位89.53%,金红石回收率74.78%。
采用本发明的方法对金红石进行浮选试验;具体方法为:浮选试验采用XFGII型浮选机和40ml浮选槽进行;每个实验使用2g金红石(-74+45μm);先用氯化钡和氯化铵(混合比例3:1,添加量为50g/t)对金红石矿浆进行预处理3min,再加入混合捕收剂(2.3-丁二醇含量30%,二乙基二硫代氨基甲酸钠50%,添加量为100g/t);2.3-丁二醇和二乙基二硫代氨基甲酸钠的的调节次数分别为3min和1min,加入抑制剂水玻璃,进行一粗一扫三精的浮选流程,浮选时间控制在1min;每次试验进行3次;得TiO2品位88.74%,金红石回收率91.25%。

Claims (6)

1.一种金红石的高效浮选方法,其特征在于:将金红石破碎磨矿,以氯化钡和氯化铵的混合物为活化剂来活化金红石,然后加入复合捕收剂,抑制剂,进行一粗一扫三精浮选流程;所述复合捕收剂由2.3-丁二醇、二乙基二硫代氨基甲酸钠组成,抑制剂为水玻璃;其中,2.3-丁二醇含量为20-70%,二乙基二硫代氨基甲酸钠30-80%。
2.根据权利要求1所述金红石的高效浮选方法,其特征在于:磨矿至-74+45μm。
3.根据权利要求1所述金红石的高效浮选方法,其特征在于:活化过程中pH值为4~7。
4.根据权利要求1所述金红石的高效浮选方法,其特征在于:活化剂中氯化钡和氯化铵的质量比为1:1~3:1。
5.根据权利要求4所述金红石的高效浮选方法,其特征在于:活化剂的加入量为30-100g/t,活化时间为2-5min。
6.根据权利要求1所述金红石的高效浮选方法,其特征在于:混合捕收剂用量50-200g/t,作用时间3分钟,温度23-25℃。
CN202310603981.8A 2023-05-26 2023-05-26 一种金红石的高效浮选方法 Active CN116393258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310603981.8A CN116393258B (zh) 2023-05-26 2023-05-26 一种金红石的高效浮选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310603981.8A CN116393258B (zh) 2023-05-26 2023-05-26 一种金红石的高效浮选方法

Publications (2)

Publication Number Publication Date
CN116393258A CN116393258A (zh) 2023-07-07
CN116393258B true CN116393258B (zh) 2023-09-01

Family

ID=87020133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310603981.8A Active CN116393258B (zh) 2023-05-26 2023-05-26 一种金红石的高效浮选方法

Country Status (1)

Country Link
CN (1) CN116393258B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501658A (en) * 1982-08-25 1985-02-26 Freeport Kaolin Company Method of conditioning clay for flotation using in situ ferrous activator
CN1817468A (zh) * 2006-03-13 2006-08-16 昆明理工大学 一种铁闪锌矿与闪锌矿的选矿活化剂
CN105665146A (zh) * 2016-03-04 2016-06-15 中南大学 一种提高金红石浮选回收率的方法
CN107694762A (zh) * 2017-11-10 2018-02-16 中南大学 一种从矿石中浮选捕收金红石的组合物及浮选方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501658A (en) * 1982-08-25 1985-02-26 Freeport Kaolin Company Method of conditioning clay for flotation using in situ ferrous activator
CN1817468A (zh) * 2006-03-13 2006-08-16 昆明理工大学 一种铁闪锌矿与闪锌矿的选矿活化剂
CN105665146A (zh) * 2016-03-04 2016-06-15 中南大学 一种提高金红石浮选回收率的方法
CN107694762A (zh) * 2017-11-10 2018-02-16 中南大学 一种从矿石中浮选捕收金红石的组合物及浮选方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
难处理金矿石选冶技术研究;陈晓青等;矿产综合利用(第04期);第30-33页 *

Also Published As

Publication number Publication date
CN116393258A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
Han et al. A novel flotation scheme: selective flotation of tungsten minerals from calcium minerals using Pb–BHA complexes in Shizhuyuan
CN110404667B (zh) 一种从风化高泥碳酸盐型铌多金属矿中回收富钙烧绿石的方法
CN108672094B (zh) 一种从黑白钨矿浮选尾矿回收萤石的选矿方法
CN105665146B (zh) 一种提高金红石浮选回收率的方法
CN102896048B (zh) 一种氧化锑矿重浮联合分离工艺
Tang et al. Reverse flotation separation of talc from molybdenite without addition of depressant: Effect of surface oxidation by thermal pre-treatment
CN108456153B (zh) 苯丙烯基羟肟酸及其制备方法和在钨矿浮选中的应用
Yang et al. Flotation separation of smithsonite from calcite with guar gum as depressant
CN114247559A (zh) 一种锂矿石回收无尾化选矿方法
Yu et al. Separation behavior and mechanism of hematite and collophane in the presence of collector RFP-138
CN108970812B (zh) 海滨砂矿的选矿方法
CN110216020A (zh) 一种荷电磁性疏水材料及其制备方法和在微细粒矿物分离中的应用
CN116393258B (zh) 一种金红石的高效浮选方法
CN111871618B (zh) 一种去除高硫铝土矿中钛矿物的方法
CN111715409A (zh) 一种微细粒方铅矿的组合铅抑制剂及其应用
CN110976099B (zh) 锂矿石的浮选方法及捕收剂组合物
CN108503562A (zh) 尼泊金羟肟酸及其制备方法和在钨矿浮选中的应用
CN109482364B (zh) 一种烧绿石精矿获取方法
Wang et al. Efficient separation of smithsonite and cerussite via mechanical ball milling-triggered selective leaching in the aqueous solution containing Pb chloride or Pb nitrate
Qing et al. Improvement of flotation behavior of Mengzi lead-silver-zinc ore by pulp potential control flotation
Ren et al. Investigation of quartz flotation from decarburized vanadium bearing coal
CN105689108B (zh) 一种浮选金精矿氰化浸出过程中铅的综合回收方法
CN112657668A (zh) 一种从铁矿石选铁尾矿中回收黑、白云母的工艺
CN114807608B (zh) 一种从高硫选金尾矿中回收金的方法
ZHAO et al. Enhanced separation of scheelite and calcite by metal-inorganic complex depressant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant