CN116393087A - 一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途 - Google Patents

一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途 Download PDF

Info

Publication number
CN116393087A
CN116393087A CN202310672055.6A CN202310672055A CN116393087A CN 116393087 A CN116393087 A CN 116393087A CN 202310672055 A CN202310672055 A CN 202310672055A CN 116393087 A CN116393087 A CN 116393087A
Authority
CN
China
Prior art keywords
ldhs
organophosphorus
solution
atp
removal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310672055.6A
Other languages
English (en)
Other versions
CN116393087B (zh
Inventor
王风
邱尚凯
张克强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agro Environmental Protection Institute Ministry of Agriculture
Original Assignee
Agro Environmental Protection Institute Ministry of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agro Environmental Protection Institute Ministry of Agriculture filed Critical Agro Environmental Protection Institute Ministry of Agriculture
Priority to CN202310672055.6A priority Critical patent/CN116393087B/zh
Publication of CN116393087A publication Critical patent/CN116393087A/zh
Application granted granted Critical
Publication of CN116393087B publication Critical patent/CN116393087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种Fe负载Ca‑Al‑LDHs有机磷脱除材料的制备方法及用途,用于活化过硫酸钾降解5‑ATP‑Na2,并吸附5‑ATP‑Na2降解后的磷酸盐,包括如下步骤:将CaCl2和AlCl3·6H2O溶解,滴加NaOH溶液至碱性;洗涤后过滤烘干,获得Ca‑Al‑LDHs材料;将Ca‑Al‑LDHs材料置于FeCl2·4H2O溶液中浸渍;洗涤后过滤烘干,获得FeX‑LDHs材料。本发明采用共沉淀法和浸渍法制备了负载铁的LDHs复合材料,将具有高效吸附磷酸盐功能LDHs结合PS构建高效降解‑同步吸附有机磷污染物的复合材料,使其具有催化吸附双功能,从而实现有机磷污染物的高效处理与磷资源同步回收。

Description

一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途
技术领域
本发明涉及污水磷净化技术领域,尤其涉及一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途。
背景技术
磷是引起水体富营养化的关键元素,其危害程度取决于水体中磷含量及其形态。已有的水体磷研究主要集中于无机磷酸盐,然而可溶性有机磷(DOP)通常占水体总磷26%-81%,作为多种藻类和细菌的首选磷源,是造成水体富营养化的主要原因。DOP包括核苷酸、磷酸酯和膦酸酯等,如核苷酸中的腺苷-5-三磷酸二钠(5-ATP-Na2)来自于生物医药工业,常作为皮肤调理剂应用于化妆品、护肤品,但过量会具有抑制生物活性的神经毒性。
迄今为止,固定或去除水体DOP的技术主要有吸附、催化氧化、膜分离和生物降解等。吸附和催化氧化方法具有操作简便、成本较低等优势应用较多。然而,吸附法对于有机磷去除效果通常都较差,催化氧化法通过使用过硫酸盐(PS)产生羟基自由基(OH)或硫酸根自由基(SO4 •−)分解DOP为磷酸盐。催化降解DOP能够实现有机磷的氧化和降解,但是正磷酸盐(PO3 4−)作为氧化产物被持续地产生,水体富营养化的风险依然存在甚至被加强,因此单独的催化氧化法降解水体有机磷被认为是一个不完整的过程,同步去除水体DOP催化降解的产物PO3 4−至关重要,因此,针对有机磷催化氧化同步无机磷吸附去除成为了本领域技术人员彻底解决有机磷污染风险的研发方向。
发明内容
本发明所要解决的技术问题是克服现有技术中存在的不足,提供一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途。
本发明是通过以下技术方案予以实现:
一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,包括如下步骤:
S1.将CaCl2和AlCl3·6H2O溶解,滴加NaOH溶液至碱性后静置;
S2.用去离子水洗涤后过滤,将剩余固体烘干,获得Ca-Al-LDHs材料;
S3.将所述Ca-Al-LDHs材料置于FeCl2·4H2O溶液中浸渍;
S4.用去离子水洗涤后过滤,将剩余固体烘干,获得FeX-LDHs材料。
根据上述技术方案,优选地,步骤S1包括:称取0.8mol CaCl2和0.2mol AlCl3·6H2O,分别溶解定容至500mL容量瓶内;滴加NaOH溶液至pH值为12后静置。
根据上述技术方案,优选地,步骤S1中,在室温下以25mL·min-1速度均匀滴加10mol·L-1NaOH溶液。
根据上述技术方案,优选地,步骤S2中,将剩余固体于80℃烘干并过100目筛,获得Ca-Al-LDHs材料。
根据上述技术方案,优选地,步骤S3中,将所述Ca-Al-LDHs材料置于0.1-0.5mol·L-1 FeCl2·4H2O溶液中,以固液比1:50(g:mL)超声30min浸渍。
根据上述技术方案,优选地,步骤S3中,将所述Ca-Al-LDHs材料置0.4mol·L-1FeCl2·4H2O溶液中。
本专利还公开了一种Fe负载Ca-Al-LDHs有机磷脱除材料的用途,基于上述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,所述FeX-LDHs材料能够用于活化过硫酸钾降解5-ATP-Na2,并吸附所述5-ATP-Na2降解后的磷酸盐。
根据上述技术方案,优选地,0.4mol·L-1 Fe浓度制备的FeX-LDHs在pH值为3.9、投机量为0.6g·L-1、过硫酸钾浓度为0.8mM的环境下,用于去除初始浓度为75 mg·L-1的所述5-ATP-Na2。
本发明的有益效果是:
本发明采用共沉淀法和浸渍法制备了负载铁的LDHs复合材料,将具有高效吸附磷酸盐功能LDHs结合PS构建高效降解-同步吸附有机磷污染物的复合材料,使其具有催化吸附双功能材料,通过活化PS降解5-ATP-Na2并去除水溶液中生成的磷酸盐,从而实现有机磷污染物的高效处理与磷资源同步回收,该双功能复合材料具有结构稳定性、优良的催化活性等优点,在有机磷催化降解和同时进行后续的磷酸盐产物吸附方面具有巨大的应用潜力。
附图说明
图1是本发明FeX-LDHs和Ca-Al-LDHs的形貌及微观结构特征SEM图。
图2是本发明FeX-LDHs和Ca-Al-LDHs的X射线衍射谱。
图3是无PS条件下FeX-LDHs复合材料对5-ATP-Na2脱除性能示意图。
图4是Fe-LDHs/PS活化-吸附体系对5-ATP-Na2脱除性能示意图。
图5是Fe0.4-LDHs和Ca-Al-LDHs在有无PS条件下去除5-ATP-Na2性能示意图。
图6是不同PS浓度对Fe0.4-LDHs/PS体系去除5-ATP-Na2的影响。
图7是不同污染物(5-ATP-Na2)初始浓度对Fe0.4-LDHs/PS体系去除5-ATP-Na2的影响。
图8是不同Fe0.4-LDHs投加量对Fe0.4-LDHs/PS体系去除5-ATP-Na2的影响。
图9是不同pH值对Fe0.4-LDHs/PS体系去除5-ATP-Na2的影响。
图10是Fe0.4-LDHs的重复使用性能示意图。
图11是甲醇对脱除5-ATP-Na2的抑制作用示意图。
图12是含有DMPO的Fe0.4-LDHs/PS体系的EPR光谱。
具体实施方式
为了使本技术领域的技术人员更好地理解本发明的技术方案,下面结合附图和最佳实施例对本发明作进一步的详细说明。基于发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于发明保护的范围。
实施例1:本发明包括如下步骤:
S1.将CaCl2和AlCl3·6H2O溶解,称取0.8mol CaCl2和0.2mol AlCl3·6H2O,分别溶解定容至500mL容量瓶内,混合溶液Ca-Al离子总浓度为0.5mol·L-1,在室温下优选以25mL·min-1速度均匀滴加10mol·L-1NaOH溶液至碱性(pH值为12)后静置30min。
S2.用去离子水洗涤3次后过滤,将剩余固体于80℃烘干并过100目筛,获得Ca-Al-LDHs材料。
S3.将所述Ca-Al-LDHs材料置于FeCl2·4H2O溶液中浸渍,具体地,将Ca-Al-LDHs材料置于0.1-0.5mol·L-1 FeCl2·4H2O溶液中,以固液比1:50(g:mL)超声30min浸渍,本例中优选分别置于0.1、0.2、0.3、0.4、0.5mol·L-1 FeCl2·4H2O溶液中。
S4.用去离子水洗涤3次后过滤,将剩余固体于80℃烘干并过100目筛,获得FeX-LDHs材料,具体地,浸渍于0.1mol·L-1 FeCl2·4H2O溶液中制备出Fe0.1-LDHs材料,浸渍于0.2mol·L-1 FeCl2·4H2O溶液中制备出Fe0.2-LDHs材料,浸渍于0.3mol·L-1 FeCl2·4H2O溶液中制备出Fe0.3-LDHs材料,浸渍于0.4mol·L-1 FeCl2·4H2O溶液中制备出Fe0.4-LDHs材料,浸渍于0.5mol·L-1 FeCl2·4H2O溶液中制备出Fe0.5-LDHs材料。
实施例2:本发明还公开了一种Fe负载Ca-Al-LDHs有机磷脱除材料的用途,基于上述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,所述FeX-LDHs材料能够用于活化过硫酸钾降解5-ATP-Na2,并吸附所述5-ATP-Na2降解后的磷酸盐。
FeX-LDHs和Ca-Al-LDHs的形貌及微观结构特征见图1中(a)-(f)。原始Ca-Al-LDHs片状颗粒堆叠,如图1中(a),明显表现出属于层状双金属氢氧化物本身的团聚现象。0.1mol·L-1Fe负载LDHs表面转变为团簇性絮状形貌,Fe负载浓度增加到0.2和0.3mol·L-1,絮状形貌开始夹杂细长针状物质,并逐渐增多,如图1中(b)-(d)。Fe0.4-LDHs形貌为皱折的片状,表面伴存缺陷孔洞,如图1中(e),可为PS提供更多的降解位点,利于在催化和吸附过程中促进磷酸盐的内部传质。Fe0.5-LDHs表面被密集的单晶棒状结构覆盖,如图1中(f),过量的Fe富集限制了复合材料与底物的接触。
FeX-LDHs和Ca-Al-LDHs的X射线衍射谱如图2,复合材料中仍保留Ca-Al-LDHs的特征衍射峰,FeX-LDHs复合材料中含有LDHs和Fe氧化物的晶相,并且存在FeCl3、Fe(OH)2和Fe2O3多种价态铁物种,促进了Fe(II)与Fe(III)循环转化,Fe(II)含量提升促进PS活化从而快速降解污染物。
实施例3:基于实施例2公开的Fe负载Ca-Al-LDHs有机磷脱除材料(FeX-LDHs)的用途,优选地,0.4mol·L-1 Fe浓度制备的FeX-LDHs在pH值为3.9、投机量为0.6g·L-1、过硫酸钾浓度为0.8mM的环境下,用于去除初始浓度为75 mg·L-1的5-ATP-Na2。
将不同投加量的催化剂加入含100mL不同初始浓度的腺苷-5-三磷酸二钠盐(5-ATP-Na2)溶液锥形瓶中,使用1.0 mol·L-1的H2SO4和NaOH调节不同溶液pH值,调节不同PS浓度。锥形瓶放置于转速为180 r·min-1恒温振荡培养箱中,每隔一段时间用移液枪取样2mL,使用注射器抽提过0.45μm滤膜。用酸性过硫酸钾消解-紫外分光光度法在700nm波长处测定溶液中磷浓度。试验均做3次重复,结果取平均值,去除率通过以下公式计算:
Figure SMS_1
其中,C0和Ct分别代表反应溶液的初始浓度和反应至t时刻时的浓度,mg·L-1
FeX-LDHs复合材料吸附体系和活化PS氧化/吸附体系去除5-ATP-Na2效果如图3、4。FeX-LDHs复合材料对5-ATP-Na2直接吸附去除能力有限,均不高于9.44%(图3),结合PS体系氧化/吸附性能明显提高(图4),随着铁负载量的增加5-ATP-Na2去除率增高,当FeX-LDHs中x=0.4时复合材料展现出最佳的氧化/吸附性能,5-ATP-Na2去除率高达93.89%,是由于复合材料中引入Fe活化PS使5-ATP-Na2氧化成无机磷,同时结合Ca-Al-LDHs的吸附效应协同脱除磷。Fe的负载比例继续增大去除效果降低,过量Fe负载会导致与LDHs产生团聚作用,堵塞LDHs的离子传输通道抑制吸附作用,同时降低FeX-LDHs催化剂的活性点位数量致使5-ATP-Na2的去除率降低。因此,在实际使用中优选采用Fe0.4-LDHs材料脱除水体中的5-ATP-Na2。
Fe0.4-LDHs和Ca-Al-LDHs在有无PS条件下去除5-ATP-Na2性能见图5。Ca-Al-LDHs单独应用对5-ATP-Na2的吸附能力极低,720min的去除率仅为9.45%。LDHs/PS体系中的去除率也仅为10.50%,表明PS在LDHs/PS体系中未能被催化剂活化发挥氧化作用,不能高效地降解5-ATP-Na2。Fe0.4-LDHs吸附能力增强去除率提高至17.78%,Fe0.4-LDHs/PS体系中5-ATP-Na2去除率达到了93.99%,说明Fe0.4-LDHs复合材料中的Fe是有效活化PS的主要物质,同时Fe0.4-LDHs复合材料中的LDHs可以稳定吸附降解氧化产生的磷酸盐。因此,Fe0.4-LDHs具有有机磷氧化和同步吸附去除磷酸盐的双重功能,从而能够活化PS实现5-ATP-Na2的高效降解和去除。
PS浓度、污染物(5-ATP-Na2)初始浓度、Fe0.4-LDHs投加量和pH值对Fe0.4-LDHs/PS体系去除5-ATP-Na2的影响见图6-9。5-ATP-Na2的去除率受到PS浓度的影响,在0.4-0.8mM的范围内与去除率呈正相关(图6),PS浓度为0.8mM时达到95.1%的最大去除率。随着5-ATP-Na2初始浓度增加,去除率降低(图7),5-ATP-Na2初始浓度20mg·L-1时,240min最大去除率为90.60%,初始浓度由20增加至75 mg·L-1,达到最大去除率的反应时间从240min延长到360min,是由于等量活性位点在相同条件下产生自由基,较低的初始浓度降解速率加快,缓慢的吸附平衡过程成为限制去除效果的关键因素。Fe0.4-LDHs投加量由0.2g·L-1增加到1.0g·L-1时,5-ATP-Na2去除率由30.56%升高至94.44%(图8),其投加量越大活性中心就越多,有机磷去除能力就越强,综合考虑去除率和成本,优选使用Fe0.4-LDHs投加量为0.6g·L-1。此外,Fe0.4-LDHs在较宽初始pH值范围内对5-ATP-Na2均有较好的去除效果(图9),pH值在5.0-11.0范围内5-ATP-Na2去除率在90.0%-94.5%,pH值在3.9±0.1时5-ATP-Na2去除率已高达93.89%,偏酸和中性条件下去除率略高,是因为SO4 •−在酸性条件下占主导地位,以及碱性条件下过量OH-会清除自由基。
Fe0.4-LDHs的重复使用性能见图10,每次氧化吸附结束后,使用1M NaOH溶液于25℃振荡器中再生催化剂24h,用去离子水冲洗后置于80℃干燥,将干燥后的催化剂重新研磨分散开展下一次循环试验。随循环使用次数的增加去除率略有下降,初始94.56%的去除率重复3次后5-ATP-Na2的去除效率达71.81%,表明Fe0.4-LDHs具有良好的重复使用性。
此外,自由基淬灭剂的使用可以确定Fe0.4-LDHs/PS体系降解5-ATP-Na2过程产生的活性自由基种类,以便更好地了解潜在的反应机理。其中,500mM的甲醇(MA)被用作SO4 ·−OH的清除剂。如图11所示,在猝灭剂存在下Fe0.4-LDHs氧化5-ATP-Na2的能力被彻底抑制,除本身微弱的吸附作用以外,几乎没有氧化降解效果。如图12所示,以DMPO为自旋捕捉剂,电子顺磁共振测定了SO4 •−OH。在Fe0.4-LDHs/PS催化体系中SO4 •−OH信号被捕获,直接证实了氧化功能是通过SO4 •−OH实现的,而Ca-Al-LDHs/PS没有检测到自由基信号,验证了Ca-Al-LDHs没有催化能力。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,包括如下步骤:
S1.将CaCl2和AlCl3·6H2O溶解,滴加NaOH溶液至碱性后静置;
S2.用去离子水洗涤后过滤,将剩余固体烘干,获得Ca-Al-LDHs材料;
S3.将所述Ca-Al-LDHs材料置于FeCl2·4H2O溶液中浸渍;
S4.用去离子水洗涤后过滤,将剩余固体烘干,获得FeX-LDHs材料。
2.根据权利要求1所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,步骤S1包括:称取0.8mol CaCl2和0.2mol AlCl3·6H2O,分别溶解定容至500mL容量瓶内;滴加NaOH溶液至pH值为12后静置。
3.根据权利要求2所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,步骤S1中,在室温下以25mL·min-1速度均匀滴加10mol·L-1NaOH溶液。
4.根据权利要求1所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,步骤S2中,将剩余固体于80℃烘干并过100目筛,获得Ca-Al-LDHs材料。
5.根据权利要求1所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,步骤S3中,将所述Ca-Al-LDHs材料置于0.1-0.5mol·L-1 FeCl2·4H2O溶液中,以固液比1:50(g:mL)超声30min浸渍。
6.根据权利要求5所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,步骤S3中,将所述Ca-Al-LDHs材料置0.4mol·L-1 FeCl2·4H2O溶液中。
7.一种Fe负载Ca-Al-LDHs有机磷脱除材料的用途,基于权利要求1-6中任意一项的所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法,其特征在于,所述FeX-LDHs材料能够用于活化过硫酸钾降解5-ATP-Na2,并吸附所述5-ATP-Na2降解后的磷酸盐。
8.根据权利要求7所述一种Fe负载Ca-Al-LDHs有机磷脱除材料的用途,其特征在于,0.4mol·L-1 Fe浓度制备的FeX-LDHs在pH值为3.9、投机量为0.6g·L-1、过硫酸钾浓度为0.8mM的环境下,用于去除初始浓度为75 mg·L-1的所述5-ATP-Na2。
CN202310672055.6A 2023-06-08 2023-06-08 一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途 Active CN116393087B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310672055.6A CN116393087B (zh) 2023-06-08 2023-06-08 一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310672055.6A CN116393087B (zh) 2023-06-08 2023-06-08 一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途

Publications (2)

Publication Number Publication Date
CN116393087A true CN116393087A (zh) 2023-07-07
CN116393087B CN116393087B (zh) 2023-08-22

Family

ID=87010888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310672055.6A Active CN116393087B (zh) 2023-06-08 2023-06-08 一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途

Country Status (1)

Country Link
CN (1) CN116393087B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261547A (zh) * 2014-10-10 2015-01-07 武汉工程大学 水滑石磁铁矿复合水处理材料
CN109248654A (zh) * 2018-10-15 2019-01-22 沈阳大学 一种铁基三维石墨烯自支撑材料及其活化过硫酸盐去除水中农药污染物的方法
WO2021230760A1 (en) * 2020-05-15 2021-11-18 Qatar Foundation For Education, Science And Community Development An adsorbent material, synthesis thereof, and use thereof
CN114768751A (zh) * 2022-03-30 2022-07-22 大连理工大学 一种基于粉煤灰的片层状双金属氢氧化物吸附材料、制备方法及应用
CN115007104A (zh) * 2022-08-10 2022-09-06 农业农村部环境保护科研监测所 一种La-Ca/Fe-LDH改性吸附材料的制备方法及用途
CN115814753A (zh) * 2022-11-30 2023-03-21 中国科学院东北地理与农业生态研究所 一种铁钙层状双金属氢氧化物除磷剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261547A (zh) * 2014-10-10 2015-01-07 武汉工程大学 水滑石磁铁矿复合水处理材料
CN109248654A (zh) * 2018-10-15 2019-01-22 沈阳大学 一种铁基三维石墨烯自支撑材料及其活化过硫酸盐去除水中农药污染物的方法
WO2021230760A1 (en) * 2020-05-15 2021-11-18 Qatar Foundation For Education, Science And Community Development An adsorbent material, synthesis thereof, and use thereof
CN114768751A (zh) * 2022-03-30 2022-07-22 大连理工大学 一种基于粉煤灰的片层状双金属氢氧化物吸附材料、制备方法及应用
CN115007104A (zh) * 2022-08-10 2022-09-06 农业农村部环境保护科研监测所 一种La-Ca/Fe-LDH改性吸附材料的制备方法及用途
CN115814753A (zh) * 2022-11-30 2023-03-21 中国科学院东北地理与农业生态研究所 一种铁钙层状双金属氢氧化物除磷剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU RIXIN ET AL.: "Mechanochemical synthesis of Ca–Al–Fe layereddouble hydroxide for efficient phosphate removalfrom aqueous solution", 《METERIALS EXPRESS》, vol. 11, no. 4, pages 524 - 532 *

Also Published As

Publication number Publication date
CN116393087B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
Ge et al. Cellulose/poly (ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions
Sun et al. Adsorption of hexavalent chromium on Arundo donax Linn activated carbon amine-crosslinked copolymer
CN106540686B (zh) 用于深度处理的活性炭负载二氧化锰-二氧化钛臭氧催化剂及制备方法
CN110813383B (zh) 一种木质纤维生物质负载纳米水合二氧化钛复合材料及其制备方法和应用
CN106076283A (zh) 一种纳米纤维素/聚多巴胺水凝胶吸附剂及其制备方法与应用
JP2008284520A (ja) 担持触媒型磁性吸着剤および過酸化物含有廃水の処理方法
Zhou et al. BiOCl0. 875Br0. 125/polydopamine functionalized PVDF membrane for highly efficient visible-light-driven photocatalytic degradation of roxarsone and simultaneous arsenic immobilization
CN106861642B (zh) 一种具有高吸附能力的生物质基水凝胶的制备与应用
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Shi et al. Effect of Na+ impregnated activated carbon on the adsorption of NH+ 4-N from aqueous solution
KR100610241B1 (ko) 카폭섬유를 이용한 중금속 흡착제, 그 제조 방법 및 그재생 방법
CN114394727A (zh) 基于市政污泥生物炭的处理剂的制备方法及应用
Wang et al. Enhanced heterogeneous fenton degradation of organic pollutants by CRC/Fe3O4 catalyst at neutral pH
WO2021042599A1 (zh) 一种低纳米零价铁和纳米银负载量净水炭复合材料的制备方法
Dong et al. Porous biochar derived from waste distiller's grains for hexavalent chromium removal: adsorption performance and mechanism
Liu et al. Simultaneous adsorption of phenol and Cu 2+ from aqueous solution by activated carbon/chitosan composite
CN116393087B (zh) 一种Fe负载Ca-Al-LDHs有机磷脱除材料的制备方法及用途
Shiraghaei Koutenaei et al. Ziziphus spina-christi leaves biochar decorated with Fe3O4 and SDS for sorption of chromium (III) from aqueous solution
Park et al. Adsorption of acid dyes using polyelectrolyte impregnated mesoporous silica
Zhang et al. Preparation and performance of FeCo bimetallic organic frameworks with super adsorption and excellent peroxymonosulfate activation for tetracycline removal
WO2018210410A1 (de) Entfernung von silanolen aus wasser
Udayasoorian et al. Carbon supported Zero Valent Iron nanoparticles for treating PCP in Pulp and Paper mill effluent
CN115920896A (zh) 一种降解环丙沙星的催化剂及其制备方法和应用
Çifçi Co–Fe Co-Doped Activated Carbon from Waste Cigarette Filters for Color and COD Removal from Textile Wastewater
Rani et al. Remediation of Chromium Heavy Metal Ion by Green Synthesized Nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant