CN116377407A - 一种低应力NbN超导薄膜及其制备方法和应用 - Google Patents

一种低应力NbN超导薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN116377407A
CN116377407A CN202310369719.1A CN202310369719A CN116377407A CN 116377407 A CN116377407 A CN 116377407A CN 202310369719 A CN202310369719 A CN 202310369719A CN 116377407 A CN116377407 A CN 116377407A
Authority
CN
China
Prior art keywords
stress
film
nbn
mtorr
based substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310369719.1A
Other languages
English (en)
Other versions
CN116377407B (zh
Inventor
杨丽慧
张晓航
宋艳汝
段然
赵志峰
李菂
余诗玲
冯毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lab
Original Assignee
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lab filed Critical Zhejiang Lab
Priority to CN202310369719.1A priority Critical patent/CN116377407B/zh
Publication of CN116377407A publication Critical patent/CN116377407A/zh
Application granted granted Critical
Publication of CN116377407B publication Critical patent/CN116377407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/006Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using superconductive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明公开了一种低应力NbN超导薄膜及其制备方法和应用,包括以下步骤:提供金属Nb靶材和Si基衬底,固定Si基衬底温度为室温,并在室温条件下,调节N2和Ar质量流量比为20%~50%,溅射功率为50W~400W,沉积气压为3.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为‑500MPa~500MPa、厚度为70~150nm的NbN超导薄膜。通过对N2和Ar质量流量比、溅射功率以及沉积气压这三个参数的协同控制,即可以简单高效制备得到低应力NbN超导薄膜,制备得到的NbN超导薄膜应力范围满足超导动态电感探测器的制备需求,可批量工业化生产。

Description

一种低应力NbN超导薄膜及其制备方法和应用
技术领域
本发明属于超导氮化铌薄膜技术领域,具体涉及一种低应力NbN超导薄膜及其制备方法和应用。
背景技术
氮化铌(Niobium Nitride,NbN)超导薄膜具有相对较高超导转变温度(Tc~17K),与工作温度约为2K的超导硅化物对应物(如MoSi和WSi)相比,基于NbN薄膜的超导器件工作温度可以在成本较低的4.2K液态氦低温冷却器中实现。此外,NbN薄膜还具有高动态电感、转变宽度窄、超导能隙小(Δ(0)~2.5meV)、材料稳定性良好以及制备工艺相对简单等特性,与此同时其工作频率可以到1400GHz,落在太赫兹频段内,因此一直被广泛地应用于多种超导电子器件中,如太赫兹超导动态电感热探测器、以超导约瑟夫森结为基础的超导电子器件和超导纳米线单光子探测器等。
NbN超导薄膜的应力问题直接关系到超导电子器件的成品率、稳定性和可靠性。近几年来,材料应力的作用已成为国际上器件可靠性物理研究的重要领域,国内也已有应力引起器件失效的报道。在薄膜生长过程中,薄膜中的缺陷区(晶界、位错、空位、杂质等)、界面区(薄膜与衬底、薄膜与真空)及动力学过程(再结晶、扩散)等因素导致了内应力的产生。内应力对薄膜的质量、晶体结构以及超导性能都有直接的影响,而且过大的内应力会造成薄膜和衬底裂成碎片,因而无法应用。
目前,NbN薄膜通常采用真空磁控溅射技术,且通常需要在450℃~850℃衬底温度下生长,一方面,高沉积温度限制了超导探测器制备过程,无法与后续器件工艺(如lift-off)兼容;另一方面,沉积温度高,晶核生长快,反而影响薄膜的致密性,并且会在镀膜后由高温降至室温过程中,由于薄膜和衬底之间热膨胀系数的不同额外引入了热应力,薄膜残余应力难以控制,通常为上千MPa甚至超过1GPa,会影响超导探测器的稳定性与可靠性,甚至会造成器件失效。
现有NbN薄膜制备一般采用选择与氮化铌晶格失配较小的单晶衬底如MgO,或者在高阻Si衬底上采用GaN、TiN或六氮五铌缓冲层结构,不但工艺复杂、成本较高(MgO等单晶衬底价格较高、后续器件的微纳加工工艺不成熟,并且器件工作在高频时损耗很高),为了满足太赫兹超导动态电感热探测器的研制需求,在Si基衬底上提出一种低应力NbN超导薄膜的室温生长方法具有重要意义。
发明内容
鉴于上述,本发明的目的是提供一种低应力NbN超导薄膜及其制备方法和应用,实现低应力NbN超导薄膜的简单制备。
为实现上述发明目的,实施例提供的一种低应力NbN超导薄膜的制备方法,包括以下步骤:
提供金属Nb靶材和Si基衬底,固定Si基衬底温度为室温,并在室温条件下,调节N2和Ar质量流量比为5%~50%,溅射功率为50W~800W,沉积气压为1.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为-500MPa~500MPa、厚度为70~150nm的NbN超导薄膜。
在反应溅射制备过程中,固定Si基衬底温度为室温,避免了镀膜后由高温降至室温过程中,由于薄膜与衬底之间热膨胀系数不同额外引入的热应力,同时通过对N2和Ar质量流量比、溅射功率以及沉积气压这三个参数的协同控制,调控溅射离子到达Si基衬底时的速率和能量,从而改变NbN超导薄膜生长过程中物相形成模式和晶体成核模式,有效改变晶体生长过程产生的缺陷区、界面区、以及动力学过程等状态,最终实现NbN超导薄膜内应力状态和大小的调控。在室温条件下,通过控制N2和Ar质量流量比为5%~50%,溅射功率为50W~500W,沉积气压为1.0mTorr~10.0mTorr,可以将NbN薄膜的应力调整到-500MPa~500MPa,即调整到绝对值小于500MPa的低应力范围内,其中负数压应力,正数表示张应力,且NbN薄膜的致密度和表面粗糙度基本保持不变。
所述N2和Ar质量流量比为20%~40%,溅射功率为100W~300W,沉积气压为3.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为-300MPa~300MPa、厚度为70~150nm的NbN超导薄膜。
所述N2和Ar质量流量比为20%~25%,溅射功率为150W~300W,沉积气压为3.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为-200MPa~200MPa、厚度为50~150nm的NbN超导薄膜。
所述N2和Ar质量流量比为20%~25%,溅射功率为200W~300W,沉积气压为3.0mTorr~8mTorr,在Si基衬底上沉积得到应力范围为-100MPa~100MPa、厚度为70~150nm的NbN超导薄膜。
同一条件下,在薄膜厚度很小时,构成薄膜的小岛互不相连,即使相连也呈网状结构,此时的内应力较小。随着膜厚的增加,小岛互相连接,由于小岛之间晶格排列的差异以及小孔洞的存在,使内应力迅速增大,并出现临界值。膜厚进一步增加,并形成连续薄膜时,膜中不再有小孔洞存在,此时应力减小并趋于一稳定值。
所述金属Nb靶材为高纯金属铌靶材,其纯度为99.99%。
所述Si基衬底为镀有SiNx薄膜的高阻Si基衬底(Si/SiNx)。
所述金属Nb靶材和Si基衬底被置入镀膜腔后,需要将镀膜腔抽真空到超高真空,其中,超高真空的本底真空度为<5.0×10-8Torr。在这个超高真空范围内,可以减少残余气体分子(氧、氮、水及碳氢化合物)的污染,避免残余气体参与反应溅射NbN薄膜,是获得均一性、稳定性、低应力高质量NbN超导薄膜的前提条件。
所述Si基衬底在镀膜腔内被应用之前需要经过清洗,具体对Si基衬底进行1-3分钟离子清洗去除衬底表面的杂质离子,其中,离子清洗的离子束为氩离子束,离子清洗真空环境<5.0×10-8Torr,氩气流量为20~100sccm,离子源功率为30-100W,工作气压为1.0mTorr~10.0mTorr,离子清洗时间控制在60s~300s。
在Si基衬底上沉积NbN超导薄膜之前,还包括预溅射,预溅射参数为:N2和Ar质量流量比为5%~50%,溅射功率为50W~800W,沉积气压为1.0mTorr~10.0mTorr,溅射时间为60s~300s。
实施例还提供了一种低应力NbN超导薄膜,所述低应力NbN超导薄膜通过上述制备方法制备得到,厚度为70~150nm。
实施例还提供了一种低应力NbN超导薄膜在太赫兹超导动态电感热探测器的应用,其中,所述低应力NbN超导薄膜通过上述制备方法制备得到,在太赫兹超导动态电感热探测器中,所述低应力NbN超导薄膜弯曲的动态电感作为温度传感器。
与现有技术相比,本发明具有的有益效果至少包括:
以磁控溅射技术为基础,通过选择与成熟的半导体工艺相兼容的Si基衬底,并在室温下,通过对N2和Ar质量流量比、溅射功率以及沉积气压这三个参数的协同控制,即可以简单高效制备得到低应力NbN超导薄膜,制备得到的NbN超导薄膜应力范围满足超导动态电感探测器的制备需求,可批量工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动前提下,还可以根据这些附图获得其他附图。
图1为实施例中在氮气氩气流量比为20%、沉积气压3.1mTorr的条件下,溅射功率分别为100、150、300、400、500W的情况下NbN超导薄膜的XRD衍射图样;
图2为实施例中在溅射功率为300W、沉积气压为3.1mTorr的条件下,氮气氩气流量比分别为10%、20%、30%、40%和50%条件下NbN超导薄膜的XRD衍射图样;
图3为实施例中在氮气氩气流量比为20%、溅射功率为300W条件下,沉积气压分别为2.0、3.1、5、10mTorr条件下NbN超导薄膜的XRD衍射图样;
图4为实施例中在溅射功率为300W、沉积气压为3.1mTorr的条件下,NbN超导薄膜的内应力随氮气氩气流量比的变化曲线;
图5为实施例中在氮气氩气流量比为20%、沉积气压为3.1mTorr的条件下,NbN超导薄膜的内应力随溅射功率的变化曲线;
图6为实施例中在氮气氩气流量比为20%、沉积气压为3.1mTorr的条件下,NbN超导薄膜的内应力随沉积气压的变化曲线。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
实施例提供了一种应力可调控的NbN超导薄膜反应溅射制备方法,包括以下步骤:
步骤1,靶材准备及处理:
准备纯度为99.99%的金属Nb靶材,并将该金属Nb靶材装入高真空磁控溅射系统镀膜腔体中并抽真空到超高真空,真空度不足时,可能会影响等离子体的运动,使得薄膜沉积过程可控性及重复性下降,因此,等待镀膜腔体的本底真空度<5.0×10-8Torr。
步骤2,衬底的选择及处理:
衬底选用Si基衬底,进一步地选择镀有SiNx薄膜的高阻Si基衬底(Si/SiNx),Si基衬底与成熟的半导体工艺相兼容性,在Si基衬底上生长高质量薄膜,有助于促进材料在超导探测器测制备与应用。
关于Si基衬底的处理,依次用丙酮、酒精、去离子水进行超声清洗,从而去除表面的油性杂质,然后用N2吹干并放入磁控溅射设备的传样腔并抽真空,待达到真空度<5.0×10-6Torr,将衬底放入磁控溅射设备的镀膜腔,在预溅射之前,还需要对衬底进行1-3分钟离子清洗去除衬底表面的杂质离子,其中,离子清洗的离子束可以为氩离子束,离子清洗真空环境<5.0×10-8Torr,氩气流量为20~100sccm,离子源功率为30~100W,工作气压为1.0mTorr~10.0mTorr,离子清洗时间控制在60s~300s。
步骤3,NbN薄膜预溅射:
预溅射的主要原因是靶材存放在外界时容易附着杂质,而且许多靶材的表面接触空气后容易产生氧化,如果直接进行溅射容易导致薄膜的成分不纯,质量较差,一定的预溅射时间才能保证靶材溅射的纯净。预溅射时首先设置反应气体N2和工作气体Ar的流质量量比为5%~50%,然后打开功率源的电源设置溅射功率为50W~800W,调节腔室的工作压强为1.0mTorr~10.0mTorr,打开功率源进行起辉,起辉成功后从观察窗可以看到靶材表面有一层辉光,这时可以将工作压强调低,进行预溅射,溅射时间为60s~300s。
步骤4,NbN超导薄膜沉积:
预溅射完成后,靶材表面的氧化层杂质都被溅射掉,保持靶材表面的纯净。固定Si基衬底为室温,此时再检查并调节反应气体N2和工作气体Ar的气体质量流量比为5%~50%,溅射功率为50W~800W和沉积气压为1.0mTorr~10.0mTorr,根据预期的溅射速率设置溅射时间为300s~1800s,打开靶材下方的挡板,进行正式溅射。
步骤5,取样:
在设定的溅射时间达到后,溅射结束。仪器计时为0时会自动关闭功率源,然后关闭挡板,关闭插板阀,将衬底传送到传样腔体内,打开传样腔的进气阀通气,直到传样腔内气压恢复大气压强后打开腔门并取出样品。
基于上述步骤1-5制备具体以下具体实施例和对比例的NbN超导薄膜,如表示1和表2所示:
表1
Figure BDA0004172279850000071
Figure BDA0004172279850000081
表2
Figure BDA0004172279850000082
图1为上述实施例1-4和对比例1制备得到的NbN超导薄膜的XRD衍射图样,分析XRD衍射图样可得,随着溅射功率的增加,出现了NbN(111)、NbN(200)、NbN(220)的衍射峰先增加后减弱,500W溅射功率下的XRD衍射峰是较弱的,这是因为当溅射功率较大时,薄膜的溅射速率加快,溅射原子到达衬底的能量高,但是很多溅射下来的原子根本来不及运动到能量最小的位置,薄膜在成核和结晶过程中很容易产生较多的孔洞、缺陷和位错,薄膜质量大大降低,进而应力增加,为968MPa,超过了低应力范围。其中,当溅射功率为300W时,NbN(111)、NbN(200)和NbN(220)的衍射峰最强,说明薄膜的结晶质量最高,对应的应力为32,属于低应力范围。
图2为上述实施例3,5,6,7,和对比例2制备得到的NbN超导薄膜的XRD衍射图样,分析XRD衍射图样可得,随着N2流量的增大,出现了NbN(111)、NbN(200)和NbN(220)的衍射峰先增加后减弱,10%和50%的N2/Ar质量流量比例下的XRD衍射峰是较弱的。这主要是因为,当通入氮气较少时,此时的反应物以金属为主,溅射模式由金属模式占主导,薄膜的沉积速率较大,会导致晶体成核和生长过程中容易产生较多的缺陷、孔洞和位错等,最终导致薄膜的质量变差,进而对应增大,为939.5,超过了低应力范围。当N2/Ar质量流量比为20%时,NbN(111)、NbN(200)和NbN(220)的衍射峰均最强,沉积速率适中,反应溅射模式变为理想的化合物模式,此时NbN薄膜质量最好,对应的应力最小为-214MPa,属于低应力范围。
图3为上述实施例3,8,9,对比例3制备得到的NbN超导薄膜的XRD衍射图样,分析XRD衍射图样可得,随着沉积气压的增大,出现了NbN(111)、NbN(200)和NbN(220)的衍射峰先增加后减弱,2.0mTorr和10.0mTorr沉积气压下的XRD衍射峰是较弱的。这主要是因为,当沉积气压较低时,气体的散射作用相对更低,薄膜的沉积速率较高,因此2.0mTorr下对应的应力为908.75MPa,不属于低应力范围;随着整体气压增大时,制备环境中N2分子的浓度增加,同时Nb离子在到达基体表面过程中与N离子相互碰撞的机率增加,导致其动能损失较大,从而导致薄膜结晶性变差。当溅射气压在适当的时候,在保证能够形成稳定辉光的前提下,溅射粒子在电压作用下可以获得更合适的动能,找到合适的晶格位置进行成膜,从而有利于溅射原子到基底表面时获得成核和结晶,从而减小薄膜内部的缺陷,提高薄膜的结晶质量。
图4示意了在溅射功率为300W、沉积气压为3.1mTorr的条件下,NbN超导薄膜的内应力随氮气和氩气流量比的变化曲线,分析可得,在系统研究溅射功率、N2流量、沉积气压对NbN薄膜结晶性能的基础上,获得了溅射功率为300W、N2:Ar质量流量比为20%以及沉积气压3.1mTorr的最佳工艺参数。在调节NbN薄膜内应力过程中,将通过固定其中两个参数,研究另一变量对薄膜内应力的调节作用,以期获得溅射功率、N2:Ar质量流量比、沉积气压甚至以此带来的沉积速率、薄膜厚度改变等的协同作用对薄膜应力的影响。
当通入氮气较少时,Nb离子在到达基体表面过程中与N离子相互碰撞的机率较小,晶体成核过程受衬底约束较大,表现为张应力,此时的反应物以金属为主,溅射模式由金属模式占主导,薄膜的沉积速率较大;且薄膜内部的缺陷较多,内应力较大。当环境中N2浓度适量的时候,沉积速率适中,反应溅射模式变为理想的化合物模式,溅射粒子在电压作用下可以获得更合适的动能,找到合适的晶格位置进行成膜,从而有利于溅射原子到基底表面时获得成核和结晶,从而减小薄膜内部的缺陷,薄膜的内应力得到释放,内应力减小。当N2浓度进一步增加时,溅射离子与气体分子的碰撞机会增加而导致其动能损失较大,从而导致薄膜致密性减弱,薄膜内应力增大。
图5示意了实施例中在氮气氩气流量比为20%、沉积气压为3.1mTorr的条件下,NbN超导薄膜的内应力随溅射功率的变化曲线,分析可得:随着溅射功率的增加,薄膜的内应力由压应力向张应力转变,数值上则先减小后增大,这主要是因为:当溅射功率较小时,溅射原子的能量较低,溅射速率也缓慢,导致薄膜受衬底的作用变小,SiNx薄膜的晶格常数a约为0.77nm,NbN薄膜的晶格常数(0.43nm),表现为压应力。当溅射功率进增大后,Ar离子能量和Nb粒子能量更强,且该能量足以使Nb和N原子在基片表面作较大范围的横向迁移运动,造成成膜过程中薄膜的结构得以调整,内应力进一步释放,应力变小。当溅射功率进一步增大后,薄膜的溅射速率加快,溅射原子到达衬底的能量高,相同时间内薄膜的厚度增大,薄膜在成核和结晶过程中产生的孔洞、缺陷和位错几率增加,导致薄膜内应力再次增大,300W溅射功率下的NbN薄膜的内应力最小,为32MPa。
图6示意了实施例中在氮气氩气流量比为20%、沉积气压为3.1mTorr的条件下,NbN超导薄膜的内应力随沉积气压的变化曲线,分析可得,随着沉积气压的增大,NbN薄膜的内应力从气压为2.0mTorr时908.75MPa大幅下降到3.1mTorr时的32MPa,随后随着气压的增大,张应力变为压应力,数值在缓慢增加。这主要是因为,当沉积气压较低时,气体分子较少,Nb离子在到达基体表面过程中与N离子相互碰撞的机率较小,晶体成核过程受衬底约束较大,表现为张应力,且薄膜内部的缺陷较多,内应力较大。随着沉积气压的增大,制备环境中N2分子的浓度增加,同时Nb离子在到达基体表面过程中与N离子相互碰撞的机率增加,造成成膜过程中薄膜的结构得以调整,内应力进一步释放,应力变小。随着反应气压的继续增加,真空室内气体分子密度逐渐增加,溅射离子在飞向基底沉积路径上,由于与气体分子的碰撞机会增加而导致其动能损失较大,从而导致薄膜致密性减弱,薄膜内应力增大。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种低应力NbN超导薄膜的制备方法,其特征在于,包括以下步骤:
提供金属Nb靶材和Si基衬底,固定Si基衬底温度为室温,并在室温条件下,调节N2和Ar质量流量比为20%~50%,溅射功率为50W~400W,沉积气压为3.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为-500MPa~500MPa、厚度为70~150nm的NbN超导薄膜。
2.根据权利要求1所述的低应力NbN超导薄膜的制备方法,其特征在于,所述N2和Ar质量流量比为20%~40%,溅射功率为100W~300W,沉积气压为3.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为-300MPa~300MPa、厚度为70~150nm的NbN超导薄膜。
3.根据权利要求1所述的低应力NbN超导薄膜的制备方法,其特征在于,所述N2和Ar质量流量比为20%~25%,溅射功率为150W~300W,沉积气压为3.0mTorr~10.0mTorr,在Si基衬底上沉积得到应力范围为-200MPa~200MPa、厚度为70~150nm的NbN超导薄膜。
4.根据权利要求1所述的低应力NbN超导薄膜的制备方法,其特征在于,所述N2和Ar质量流量比为20%~25%,溅射功率为200W~300W,沉积气压为3.0mTorr~8mTorr,在Si基衬底上沉积得到应力范围为-100MPa~100MPa、厚度为70~150nm的NbN超导薄膜。
5.根据权利要求1所述的应力可调控的NbN超导薄膜反应溅射制备方法,其特征在于,所述Si基衬底为镀有SiNx薄膜的高阻Si基衬底。
6.根据权利要求1所述的应力可调控的NbN超导薄膜反应溅射制备方法,其特征在于,所述金属Nb靶材和Si基衬底被镀膜腔后,需要将镀膜腔抽真空到超高真空,其中,超高真空的本底真空度<5.0×10-8Torr。
7.根据权利要求1所述的应力可调控的NbN超导薄膜反应溅射制备方法,其特征在于,所述Si基衬底在镀膜腔内被应用之前需要经过清洗,具体对Si基衬底进行1-3分钟离子清洗去除衬底表面的杂质离子,其中,离子清洗的离子束为氩离子束,离子清洗真空环境<5.0×10-8Torr,氩气流量为20~100sccm,离子源功率为30-100W,工作气压为1.0mTorr~10.0mTorr,离子清洗时间控制在60s~300s。
8.根据权利要求1所述的应力可调控的NbN超导薄膜反应溅射制备方法,其特征在于,在Si基衬底上沉积NbN超导薄膜之前,还包括预溅射,预溅射参数为:N2和Ar质量流量比为5%~50%,溅射功率为50W~800W,沉积气压为1.0mTorr~10.0mTorr,溅射时间为60s~300s。
9.一种低应力NbN超导薄膜,其特征在于,所述低应力NbN超导薄膜通过权利要求1-8任一项所述制备方法制备得到,厚度为70~150nm。
10.一种低应力NbN超导薄膜在太赫兹超导动态电感热探测器的应用,其特征在于,所述低应力NbN超导薄膜通过权利要求1-8任一项所述制备方法制备得到,在太赫兹超导动态电感热探测器中,所述低应力NbN超导薄膜弯曲的动态电感作为温度传感器。
CN202310369719.1A 2023-04-03 2023-04-03 一种低应力NbN超导薄膜及其制备方法和应用 Active CN116377407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310369719.1A CN116377407B (zh) 2023-04-03 2023-04-03 一种低应力NbN超导薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310369719.1A CN116377407B (zh) 2023-04-03 2023-04-03 一种低应力NbN超导薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116377407A true CN116377407A (zh) 2023-07-04
CN116377407B CN116377407B (zh) 2023-08-29

Family

ID=86968981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310369719.1A Active CN116377407B (zh) 2023-04-03 2023-04-03 一种低应力NbN超导薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116377407B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117070892A (zh) * 2023-08-10 2023-11-17 之江实验室 一种两步控制N2分压降低NbN薄膜内应力和提高超导转变温度的方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426268A (en) * 1983-07-12 1984-01-17 The United States Of America As Represented By The Secretary Of The Navy Method for forming high superconducting Tc niobium nitride film at ambient temperatures
US4726890A (en) * 1985-08-12 1988-02-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of producing high Tc superconducting NbN films
JPH06140231A (ja) * 1992-10-27 1994-05-20 Tdk Corp 電源用フェライトおよび電源用磁心
JPH08162531A (ja) * 1994-12-05 1996-06-21 Sony Corp 配線形成方法
CN1286238A (zh) * 1999-08-30 2001-03-07 Tdk株式会社 锰锌(Mn-Zn)基铁氧体
US20050267000A1 (en) * 1996-12-04 2005-12-01 Kerber George L Method for producing substantially planar films
JP2006210493A (ja) * 2005-01-26 2006-08-10 Tdk Corp アンテナコイル、トランスポンダ
CN101061080A (zh) * 2004-11-19 2007-10-24 日立金属株式会社 低损失Mn-Zn铁氧体及使用其的电子部件和开关电源
CN101158026A (zh) * 2007-09-13 2008-04-09 南京大学 一种在MgO或Si衬底上超薄NbN超导薄膜的生长方法
JP2012157938A (ja) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
CN103276365A (zh) * 2013-05-22 2013-09-04 南京大学 一种利用缓冲层优化硅衬底上氮化铌薄膜超导性能的方法
CN103898456A (zh) * 2014-03-19 2014-07-02 江苏科技大学 NbVN硬质纳米薄膜及制备方法
CN105449094A (zh) * 2015-12-29 2016-03-30 中国科学院上海微系统与信息技术研究所 氮化铌薄膜的制备方法、squid器件及其制备方法
US20200303616A1 (en) * 2019-03-22 2020-09-24 Applied Materials, Inc. Method and Apparatus for Deposition of Multilayer Device with Superconductive Film
CN113614275A (zh) * 2019-03-22 2021-11-05 应用材料公司 用于沉积金属氮化物的方法及装置
CN114774868A (zh) * 2022-03-31 2022-07-22 南京大学 一种基于离子抛光技术在金刚石上沉积氮化铌的方法
CN114914355A (zh) * 2022-05-23 2022-08-16 中国科学院物理研究所 一种三维封装超导量子比特器件、其制备方法和设备

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426268A (en) * 1983-07-12 1984-01-17 The United States Of America As Represented By The Secretary Of The Navy Method for forming high superconducting Tc niobium nitride film at ambient temperatures
US4726890A (en) * 1985-08-12 1988-02-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of producing high Tc superconducting NbN films
JPH06140231A (ja) * 1992-10-27 1994-05-20 Tdk Corp 電源用フェライトおよび電源用磁心
JPH08162531A (ja) * 1994-12-05 1996-06-21 Sony Corp 配線形成方法
US20050267000A1 (en) * 1996-12-04 2005-12-01 Kerber George L Method for producing substantially planar films
CN1286238A (zh) * 1999-08-30 2001-03-07 Tdk株式会社 锰锌(Mn-Zn)基铁氧体
CN101061080A (zh) * 2004-11-19 2007-10-24 日立金属株式会社 低损失Mn-Zn铁氧体及使用其的电子部件和开关电源
JP2006210493A (ja) * 2005-01-26 2006-08-10 Tdk Corp アンテナコイル、トランスポンダ
CN101158026A (zh) * 2007-09-13 2008-04-09 南京大学 一种在MgO或Si衬底上超薄NbN超导薄膜的生长方法
JP2012157938A (ja) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
CN103276365A (zh) * 2013-05-22 2013-09-04 南京大学 一种利用缓冲层优化硅衬底上氮化铌薄膜超导性能的方法
CN103898456A (zh) * 2014-03-19 2014-07-02 江苏科技大学 NbVN硬质纳米薄膜及制备方法
CN105449094A (zh) * 2015-12-29 2016-03-30 中国科学院上海微系统与信息技术研究所 氮化铌薄膜的制备方法、squid器件及其制备方法
US20200303616A1 (en) * 2019-03-22 2020-09-24 Applied Materials, Inc. Method and Apparatus for Deposition of Multilayer Device with Superconductive Film
CN113614275A (zh) * 2019-03-22 2021-11-05 应用材料公司 用于沉积金属氮化物的方法及装置
CN114774868A (zh) * 2022-03-31 2022-07-22 南京大学 一种基于离子抛光技术在金刚石上沉积氮化铌的方法
CN114914355A (zh) * 2022-05-23 2022-08-16 中国科学院物理研究所 一种三维封装超导量子比特器件、其制备方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAWSONELLI DF: "Insitu stress measurements on niobium nitride thin-films produced by hollow-cathode enhanced direct-curent reactive magnetron sputtering", JOURNAL OF VACCUM SCIENCE AND TECHNOLOGY A-VACUUM SUPFACES AND FILMS, vol. 9, no. 4 *
张宏森;丁明惠;张丽丽;蒋保江;: "溅射方式对NbN薄膜结构及热稳定性的影响", 材料科学与工程学报, no. 03 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117070892A (zh) * 2023-08-10 2023-11-17 之江实验室 一种两步控制N2分压降低NbN薄膜内应力和提高超导转变温度的方法

Also Published As

Publication number Publication date
CN116377407B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN116377407B (zh) 一种低应力NbN超导薄膜及其制备方法和应用
CN112831768B (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
JP7031181B2 (ja) 窒化ガリウム系膜ならびにその製造方法
TWI810071B (zh) 金屬化合物薄膜的製備方法
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
CN112831766B (zh) 一种利用磁控溅射在硅衬底上制备金属锆薄膜的方法及应用
WO2010140362A1 (ja) 被膜形成物および被膜形成物の製造方法
CN109763099B (zh) 一种二硫化钼薄膜的制备方法
CN108315705B (zh) 一种提高非晶金属薄膜材料抗晶化能力的结构及其制备方法
CN110896024B (zh) 碳化硅外延氧化镓薄膜方法及碳化硅外延氧化镓薄膜结构
Zhou et al. The deposition of Ir/YSZ double-layer thin films on silicon by PLD and magnetron sputtering: Growth kinetics and the effects of oxygen
CN109652770B (zh) 一种利用半导体基体来调控气相沉积金属薄膜织构的方法
CN113584446A (zh) 利用磁控溅射在硅衬底上制备的金属铪薄膜、方法和应用
CN110295348A (zh) 一种采用脉冲激光分子束外延制备HfO2薄膜的方法
CN112382718A (zh) 一种C轴垂直择优取向AlN压电薄膜及其制备方法
US20150004432A1 (en) Titanium-nickel alloy thin film, and preparation method of titanium-nickel alloy thin film using multiple sputtering method
CN110993505B (zh) 基于碳化硅衬底的半导体结构制备方法及半导体结构
Shakel et al. Nb₃Sn coating of a 2.6 GHz SRF cavity by sputter deposition technique
CN100400703C (zh) 一种制备金属铪薄膜材料的方法
JPH09256139A (ja) 酸化亜鉛膜の製造方法
CN117684125A (zh) 一种室温优化Si衬底上NbN薄膜超导转变温度的方法及其应用
JP2008021674A (ja) 半導体積層膜、及び半導体積層膜作製用装置
CN117070892A (zh) 一种两步控制N2分压降低NbN薄膜内应力和提高超导转变温度的方法
CN111778478B (zh) 薄膜沉积方法
Bunt et al. Initial Stages of Growth of Heteroepitaxial Yttria‐Stabilized Zirconia Films on Silicon Substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant