CN116376033A - 一种活性氧响应的自激活骨架聚合物及其制备方法和应用 - Google Patents

一种活性氧响应的自激活骨架聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN116376033A
CN116376033A CN202310204211.6A CN202310204211A CN116376033A CN 116376033 A CN116376033 A CN 116376033A CN 202310204211 A CN202310204211 A CN 202310204211A CN 116376033 A CN116376033 A CN 116376033A
Authority
CN
China
Prior art keywords
active oxygen
compound
activated
self
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310204211.6A
Other languages
English (en)
Other versions
CN116376033B (zh
Inventor
江新青
王念花
赵忠一
袁友永
杨蕊梦
莫蕾
姚旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou First Peoples Hospital
Original Assignee
Guangzhou First Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou First Peoples Hospital filed Critical Guangzhou First Peoples Hospital
Priority to CN202310204211.6A priority Critical patent/CN116376033B/zh
Publication of CN116376033A publication Critical patent/CN116376033A/zh
Application granted granted Critical
Publication of CN116376033B publication Critical patent/CN116376033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种活性氧响应的自激活骨架及其制备方法和应用,涉及聚合物材料技术领域。活性氧响应的自激活骨架聚合物的化学结构式为:
Figure DDA0004110206440000011
其中,n为15‑30的自然数,m为40‑50的自然数。本申请活性氧响应的自激活骨架由硫缩键封端,键合的脱镁叶绿酸A在激光照射条件下产生肿瘤活性氧,激活聚合物,引起聚缩硫酮断裂,触发整个聚合物链快速降解,释放更多的脱镁叶绿酸A,产生更多高活性氧,在肿瘤细胞内可以放大光动力疗效杀伤肿瘤细胞,具有响应迅速,且快速降解,能显著提升光动力疗效,适合于需要精准、快速释放药物的应用,具有巨大的潜能。

Description

一种活性氧响应的自激活骨架聚合物及其制备方法和应用
技术领域
本发明涉及聚合物材料领域,尤其涉及一种活性氧响应的自激活骨架聚合物及其制备方法和应用。
背景技术
肿瘤是目前人类健康的重大威胁,光动力治疗是一种有潜力的治疗方式,具有选择性杀伤肿瘤细胞,非侵入性,可重复性,无耐药性等优势。光动力治疗过程中需要预先给光敏剂,而光敏剂的水溶差,选择性和生物相容性均较低,且容易引起光敏剂聚集诱导淬灭效应(ACQ),严重制约了光动力疗效。为了克服这些障碍,提高光敏剂递送效率,增强光动力治疗效果和最大限度地降低不良反应,人们在开发纳米系统递送光敏剂方面投入巨大。目前开发了脂质体、树枝状聚合物、无机纳米粒子、胶束等。一方面纳米系统可以提升光敏剂的水溶性和活性氧(reactive oxygen species,ROS)产率。另一方面,纳米系统还能保持其在血液循环中的隐身功能,提高光敏剂与肿瘤细胞的结合能力,增加细胞摄取。
目前这些纳米系统在递送和药物释放方面仍然存在一定的困难,例如,过早泄露、非选择性释放、π-π堆积引起的光敏剂聚集诱导淬灭效应等。为了解决这些问题,开发了许多基于肿瘤微环境特异性刺激响应的纳米药物运载系统用于光敏剂递送,如酸(pH)、谷胱甘肽(GSH)、ROS等。与溶酶体酸性pH值和细胞内谷胱甘肽高水平相比,细胞内的活性氧(ROS)包括过氧化氢(H2O2)、超氧化物阴离子(·O2-)和羟基自由基(·OH),在肿瘤细胞内的活性氧(50-100×10-6M)远高于正常细胞(约20×10-9M);因此,ROS响应特性的纳米系统在肿瘤细胞内特异性释放药物是一种有前景的方法,硫醚、硫酮、苯基硼酸酯、过草酸酯等多种ROS可触发断裂基团已被广泛应用于给药系统中。
发明内容
本发明提供了一种活性氧响应的自激活骨架聚合物及其制备方法和应用,该活性氧响应的自激活骨架在激光照射条件下可以引起活性氧响应聚合物的激活、降解并释放Ppa,在此过程中显著升高活性氧并产生强大的光动力疗效。
为了解决上述技术问题,本发明目的之一提供了一种活性氧响应的自激活骨架聚合物,其化学结构式为:
Figure BDA0004110206400000021
其中,n为15-30的自然数,m为40-50的自然数。
为了解决上述技术问题,本发明目的之二提供了一种活性氧响应的自激活骨架聚合物的制备方法,包括以下步骤:将溶解有化合物A、脱镁叶绿素A、催化剂A的溶剂和溶解有1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、甲氧基聚乙二醇-羧基的溶剂混合后,在氩气条件下避光进行酯化反应,获得活性氧响应的自激活骨架聚合物,所述化合物A的化学结构式为
Figure BDA0004110206400000022
n为15-30的自然数。
作为优选方案,所述化合物A和脱镁叶绿素A的摩尔比为1:(3-5)。
作为优选方案,所述催化剂A为4-二甲氨基吡啶,所述催化剂A与化合物A的摩尔比为1:(3-4)。
作为优选方案,所述甲氧基聚乙二醇-羧基和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐的摩尔比为1:(2-3),所述甲氧基聚乙二醇-羧基为化合物A质量的70%-99%。
作为优选方案,所述酯化反应在室温条件下反应时间为12h-36h。
作为优选方案,所述化合物A包括以下制备步骤:采用化合物B、2,2-二硫吡啶、催化剂B溶解于溶剂中,在氩气条件下进行封端反应,随后进行分离纯化,干燥后得到化合物A,所述化合物B的化学结构式为
Figure BDA0004110206400000031
n为15-30的自然数。
作为优选方案,所述化合物B和2,2-二硫吡啶的摩尔比为(3-4):10,所述催化剂B与化合物B的摩尔比为1:(1-2),所述催化剂B为乙酸、铁粉、BPO、FeBr3中的至少一种。
作为优选方案,所述封端反应的温度为25±5℃,时间为12h-36h。
作为优选方案,所述化合物B包括以下制备步骤:将1,3-二巯基丙醇、丙酮和催化剂C分散在溶剂中,进行聚合反应,再对产物进行分离纯化,干燥后得到化合物B。
作为优选方案,所述1,3-二巯基丙醇和丙酮的摩尔比为1:(1.1-1.2),所述催化剂C为盐酸。
作为优选方案,所述催化剂C为1,3-二巯基丙醇质量的10%-20%。
作为优选方案,所述聚合反应温度为0±5℃,时间为10-30mi n。
作为优选方案,所述溶剂为DMF或乙醚。
作为优选方案,所述1,3-二巯基丙醇包括以下制备步骤:将1,3-二氯-2-丙醇、硫化钠、二硫化碳分散在溶剂中,进行卤素取代反应,再对产物进行分离纯化,得到1,3-二巯基丙醇。
作为优选方案,所述溶剂为氯仿、乙醚、正己烷中的至少一种。
作为优选方案,所述1,3-二氯二丙醇、硫化钠、二硫化碳质量比为1:(4-5):(4-5)。
作为优选方案,所述卤素取代反应为40-60℃条件反应5-12h。
为了解决上述技术问题,本发明目的之三提供了一种活性氧响应的自激活骨架聚合物在药物递送或释放载体领域中的应用。
作为优选方案,所述药物为疏水性药物。
作为优选方案,所述药物为光敏剂Ppa。
作为优选方案,所述活性氧响应的自激活骨架聚合物作为药物递送或释放载体在激光照射条件下引起活性氧响应。
相比于现有技术,本发明实施例具有如下有益效果:
自激活聚合物在生理环境下是稳定的,主链上含有官能团可以与活性氧响应进行化学反应后裂解,直到聚合物链接键的反应单元被裂解,触发一系列沿着聚合物链进行的裂解反应。本申请活性氧响应的自激活骨架(PEG-TK-Ppa,缩写为PTKPA)由硫缩键封端,键合的脱镁叶绿酸A(Ppa)在激光照射条件下产生肿瘤活性氧,激活聚合物,引起聚缩硫酮断裂,触发整个聚合物链快速降解,释放更多的脱镁叶绿酸A,在光照条件下产生更多的活性氧,形成高活性氧,从而放大光动力疗效杀伤肿瘤细胞,具有响应迅速,且快速降解,能显著提升光动力疗效,适合于需要精准、快速释放药物的应用,具有巨大的潜能。
附图说明
图1:为本发明实施例一中一种活性氧响应的自激活骨架聚合物的合成步骤示意图;
图2:为本发明一种活性氧响应的自激活骨架聚合物的合成步骤中卤素取代产物的核磁共振氢谱图;
图3:为本发明一种活性氧响应的自激活骨架聚合物的合成步骤中聚合反应产物的核磁共振氢谱图;
图4:为本发明一种活性氧响应的自激活骨架聚合物的合成步骤中封端反应产物的核磁共振氢谱图;
图5:为本发明一种活性氧响应的自激活骨架聚合物的核磁共振氢谱图;
图6:为本发明活性氧响应的自激活骨架(PTKPA)聚合物和脱镁叶绿素A(Ppa)的紫外吸收光谱图;
图7:为本发明活性氧响应的自激活骨架(PTKPA)聚合物经660nm的激光照射后释放Ppa的荧光光谱变化情况;
图8:为本发明活性氧响应的自激活骨架(PTKPA)聚合物与ABDA处理后经660nm的激光照射后的紫外吸收光谱变化情况;
图9:为本发明活性氧响应的自激活骨架(PTKPA)聚合物激光照射前的粒径;
图10:为本发明活性氧响应的自激活骨架(PTKPA)聚合物经660nm的激光照射前后的粒径变化图(注:w/o Laser为非660nm光照条件下的粒径;w/Laser为660nm光照条件下的粒径);
图11:为本发明活性氧响应的自激活骨架(PTKPA)聚合物在PBS中孵育7天后的粒径变化情况;
图12:为本发明活性氧响应的自激活骨架(PTKPA)聚合物体外条件下及活性氧响应前的Ppa释放曲线图(注:PTKPa为非660nm光照条件下的聚合物;PTKPa/L为660nm光照条件下的聚合物);
图13:为在体内条件下肿瘤细胞摄取本发明活性氧响应的自激活骨架(PTKPA)聚合物后采用激光共聚焦扫描显微镜观察叶绿酸A荧光强度的统计结果;
图14:为在体内条件下肿瘤细胞摄取本发明活性氧响应的自激活骨架(PTKPA)聚合物后采用激光共聚焦扫描显微镜观察叶绿酸A荧光强度图;
图15:为样品在体内条件下与4T1肿瘤细胞孵育后经660nm激光照射并采用激光共聚焦扫描显微镜观察肿瘤细胞活性氧产生的荧光强度图(注:PBS为空白对照组;Ppa为未经激光照射组样品;Ppa/L为经660nm激光照射组样品;PTKPa为本申请自激活骨架聚合物未经激光照射组样品;PTKPa/L为本申请自激活骨架聚合物经660nm激光照射组样品);
图16:为样品在体内条件下与4T1肿瘤细胞孵育后经660nm激光照射并采用激光共聚焦扫描显微镜观察肿瘤细胞活性氧产生的荧光强度统计结果(注:PBS为空白对照组;Ppa为未经激光照射组样品;Ppa/L为经660nm激光照射组样品;PTKPa为本申请自激活骨架聚合物未经激光照射组样品;PTKPa/L为本申请自激活骨架聚合物经660nm激光照射组样品)。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
一种活性氧响应的自激活骨架聚合物,其制备方法包括以下步骤:
1)卤素取代反应:
将24g硫酸钠溶于12mL水中,向溶液中滴加二硫化碳6.6mL,于40℃条件下反应5h,减压排出多余的二硫化碳,用35mL水稀释混合溶液,获得硫代碳酸钠溶液,在室温下滴加1,3-二氯丙醇(4.61g,35mmo l),反应混合物在60℃下搅拌5h,溶液恢复室温后,加入乙醚,清洗3次,收集水溶液部分,加入浓硫酸缓慢酸化到pH为2,然后用乙醚萃取,乙醚提物用水洗净,用无水Na2SO4干燥,得到浅棕色油的粗产物,经柱层析纯化处理,得到1,3-二巯基丙醇。
2)聚合反应:
取0.26g卤素取代产物、0.13g丙酮加入圆底烧瓶,卤素取代产物和丙酮的摩尔比为1:1.05,并加入卤素取代物质量15%的盐酸,在氩气保护条件下于0℃环境中搅拌反应20mi n,加入500μL四氢呋喃(THF)溶解粘稠溶液,加入冰己烷沉淀,离心获取沉淀,用THF溶解白色沉淀物,通过冰己烷再次沉淀,再次离心并采用THF溶解沉淀后,凝胶柱去除低聚物,真空干燥得到无色蜡状固体产物,其化学结构式为
Figure BDA0004110206400000061
3)封端反应:
取0.18g聚合反应产物、0.47g 2,2-二硫吡啶溶解于2mL DMF中,加入与聚合反应产物摩尔比为1:1的乙酸,聚合反应产物和2,2-二硫吡啶的摩尔比为1:3,在氩气下,于25℃条件下搅拌混合物,反应24h,,然后从过量的冷乙醚溶液中沉淀,淡黄色沉淀物在DMF中再溶解,再沉淀到冰乙醚中,沉淀真空干燥得到淡黄色蜡状固体PTK-SS(0.18g,产率92%),其化学结构式为
Figure BDA0004110206400000071
4)酯化反应与键合Ppa、PEG:
取缩聚反应产物(0.28g,0.07mmol)、脱镁叶绿素A(Ppa,0.2g,0.35mmol)和4-二甲氨基吡啶(0.03g,0.24mmol)溶解于3mL DMF中,加入圆底烧瓶中,在氩气条件下,室温搅拌5min,加入2mL含0.05g的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和0.2g的甲氧基聚乙二醇-羧基(mPEG-COOH,MW:2000)的DMF混合溶液,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和甲氧基聚乙二醇-羧基摩尔比为1:2.4,在氩气条件下室温避光反应24h,该混合溶液由过量的冰乙醚沉淀两次,在真空下干燥,得到粗产物,溶剂溶解后经凝胶柱纯化,真空干燥,得到黑色蜡状固体产物PTKPA,其化学结构式为:
Figure BDA0004110206400000072
性能检测试验
1)活性氧响应的自激活聚合物的表征:各中间体产物的核磁共振氢谱(1H NMR)表征如图2-5所示,已成功制备活性氧响应的自激活骨架;由图5可知该骨架的平均聚合度(DP)为20,即n=20;由图6的紫外吸收光谱图可知,活性氧响应自激活骨架成功键合脱镁叶绿酸A。
2)聚合物的活性氧响应性:
1、聚合物活性氧响应前后脱镁叶绿酸A(Ppa)荧光光谱改变:将自激活骨架聚合物纳米颗粒(PTKPA NPs)与牛血清蛋白(1%)孵育30分钟后分别经660nm的激光照射,经荧光分光光度计测试Ppa的荧光得到的PTKPA NP释放Ppa的荧光光谱变化情况,如图7所示可知:PTKPA NP内聚合物活性氧响应释放Ppa后引起Ppa荧光强度显著升高。
2、PTKPA活性氧响应前后活性氧指示剂(9,10-蒽二基-双(亚甲基)二丙二酸,ABDA)紫外吸收光谱变化:将PTKPA纳米颗粒(5μg/mL)分别与ABDA(100μM)在37℃水浴锅中静置30分钟,使用660nm激光器按照0-5mi n,分别照射各样品(0.1W/cm2),随后经紫外分光光度计检测ABDA在不同处理后的紫外吸收光谱变化情况,如图8所示可知:PTKPA NP内聚合物活性氧响应后释放Ppa产生活性氧引起ABDA的紫外吸收显著下降。
3、聚合物的粒径及活性氧响应前后粒径变化:PTKPA NP调整浓度为1mg/mL,在PBS中孵育30mi n,经过660nm激光器照射3分钟(0.1W/cm2)后,并设置一组不经过激光照射的PTKPA颗粒作为对照,使用纳米粒度仪测试光照前后PTKPA NP的粒径变化情况图如图9-10所示。
由图9-10可知:在非光照条件下粒径,PTKPA NP在PBS的环境下,粒径约120nm;在光照条件下,粒径明显变化,由原来的的120nm变为40nm,这些实验结果说明PTKPA NP发生了降解,也表明了PTKPA NP具有活性氧响应性。
4、颗粒稳定性:PTKPA NP在PBS溶液中孵育培养7天,调整浓度为1mg/mL,每天使用粒度仪检测粒径,得到PTKPA NP的粒径变化情况图如图11所示,可知PTKPA NP在PBS孵育7天后,粒径仍无明显变化,分散性良好,实验结果表明了PTKPA NP在生理环境中具有较好的稳定性。
5、体外药物释放:采用透析法测量Ppa的释放情况,将适量聚合物PTKPA NP分散在0.02mo l/L的磷酸缓冲盐溶液(PBS)中,其中一组转移到透析袋(MWCO:1000Da)中,另外一组经过660nm激光照射3分钟后再转移到透析袋(MWCO:1000Da)中,置于37℃水浴中在不同条件下振荡孵育,按照预定的间隔,收集1mL透析袋的外液,并用1mL新鲜缓冲液代替,采用多功能微孔检测板分析系统,通过检测收集外液在408nm处的紫外吸收来测定Ppa的浓度,测试结果如图12所示。
由图12可知:PTKPA NP在生理条件下(PBS)孵育48h后,PTKPA NP在PBS的环境下,Ppa几乎不释放,当在660nm激光照射的环境下,在48h内PTKPA NP聚合物Ppa释放率达61.8%,药物释放量明显增加。这些实验结果表明了PTKPA NP具有响应性释放,在660nm激光照射条件下颗粒崩解,快速释放出Ppa。
3)聚合物的体外细胞实验:
1、激光共聚焦观察Ppa胞内释放情况:为了了解活性氧响应的自激活骨架材料在肿瘤细胞内Ppa释放的情况,分别将Ppa和PTKPA NP与4T1肿瘤细胞系共同培养4h,然后利用激光共聚焦扫描显微镜观察胞内Ppa荧光,测试结果如图13-14所示,可知PTKPA NP能显著提高疏水性Ppa的水溶性,且有利于细胞摄取。
2、激光共聚焦观察PTKPA NP胞内活性氧产生情况:为了了解活性氧响应的自激活骨架材料在肿瘤细胞内的光动力效应,分别将Ppa和PTKPA NP与4T1肿瘤细胞系共同培养4h,采用PBS作为空白对照组,其中一组Ppa和PTKPA NP组进行660nm激光照射,随后将所有组与活性氧指示剂DCFH-DA(2',7'-二氯荧光素二乙酸酯)共孵育30分钟,然后利用激光共聚焦扫描显微镜观察胞内DCFH-DA被活性氧氧化为DCF(2',7'-二氯荧光素)的荧光恢复情况。由图15-16可知,在激光照射条件下,相比于Ppa组,本申请的PTKPA NP可以更好地引起活性氧响应聚合物的激活、降解并释放Ppa,在此过程中显著升高活性氧。
基于上述的实验结果可以得出结论:本申请PTKPA NP能有效递送疏水性光敏剂Ppa,并具有良好的光动力效应。肿瘤细胞摄取PTKPA NP后,在激光照射条件下可以引起活性氧响应聚合物的激活、降解并释放Ppa,在此过程中显著升高细胞内活性氧并产生强大的光动力疗效。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种活性氧响应的自激活骨架聚合物,其特征在于,其化学结构式为:
Figure FDA0004110206380000011
其中,n为15-30的自然数,m为40-50的自然数。
2.一种基于如权利要求1所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,包括以下步骤:将溶解有化合物A、脱镁叶绿素A、催化剂A的溶剂和溶解有1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、甲氧基聚乙二醇-羧基的溶剂混合后,在氩气条件下避光进行酯化反应,,获得活性氧响应的自激活骨架聚合物,所述化合物A的化学结构式为
Figure FDA0004110206380000012
n为15-30的自然数。
3.如权利要求2所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述化合物A和脱镁叶绿素A的摩尔比为1:(3-5)。
4.如权利要求2所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述催化剂A为4-二甲氨基吡啶,所述催化剂A与化合物A的摩尔比为1:(3-4)。
5.如权利要求2所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述甲氧基聚乙二醇-羧基和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐的摩尔比为1:(2-3),所述甲氧基聚乙二醇-羧基为化合物A质量的70%-99%。
6.如权利要求2所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述化合物A包括以下制备步骤:采用化合物B、2,2-二硫吡啶、催化剂B溶解于溶剂中,在氩气条件下进行封端反应,随后进行分离纯化,干燥后得到化合物A,所述化合物B的化学结构式为
Figure FDA0004110206380000021
n为15-30的自然数。
7.如权利要求6所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述化合物B和2,2-二硫吡啶的摩尔比为(3-4):10,所述催化剂B与化合物B的摩尔比为1:(1-2),所述催化剂B为乙酸、铁粉、BPO、FeBr3中的至少一种。
8.如权利要求6所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述化合物B包括以下制备步骤:将1,3-二巯基丙醇、丙酮和催化剂C分散在溶剂中,进行聚合反应,再对产物进行分离纯化,干燥后得到化合物B。
9.如权利要求8所述的一种活性氧响应的自激活骨架聚合物的制备方法,其特征在于,所述1,3-二巯基丙醇和丙酮的摩尔比为1:(1.1-1.2),所述催化剂C为盐酸。
10.一种基于如权利要求1所述的活性氧响应的自激活骨架聚合物在药物递送或释放载体领域中的应用。
CN202310204211.6A 2023-03-03 2023-03-03 一种活性氧响应的自激活骨架聚合物及其制备方法和应用 Active CN116376033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310204211.6A CN116376033B (zh) 2023-03-03 2023-03-03 一种活性氧响应的自激活骨架聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310204211.6A CN116376033B (zh) 2023-03-03 2023-03-03 一种活性氧响应的自激活骨架聚合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116376033A true CN116376033A (zh) 2023-07-04
CN116376033B CN116376033B (zh) 2024-01-16

Family

ID=86975916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310204211.6A Active CN116376033B (zh) 2023-03-03 2023-03-03 一种活性氧响应的自激活骨架聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116376033B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003230164A1 (en) * 2002-05-08 2003-11-11 Yeda Research And Development Co. Ltd. Sensitized online bold-mri imaging method
CN111718465A (zh) * 2020-06-17 2020-09-29 华南理工大学 一种聚二硫缩醛及其制备方法和应用
US20210138084A1 (en) * 2017-06-16 2021-05-13 The Regents Of The University Of California Conjugates of active pharmaceutical ingredients
CN113072704A (zh) * 2021-02-23 2021-07-06 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种基于活性氧自放大降解的聚硫缩醛及其制备方法和应用
CN113461952A (zh) * 2021-06-30 2021-10-01 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种活性氧响应型自降解聚合物及其制备方法与应用
CN113527693A (zh) * 2021-06-23 2021-10-22 华南理工大学 一种侧链可修饰的聚缩硫酮及其衍生物的制备方法和医药新用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003230164A1 (en) * 2002-05-08 2003-11-11 Yeda Research And Development Co. Ltd. Sensitized online bold-mri imaging method
US20210138084A1 (en) * 2017-06-16 2021-05-13 The Regents Of The University Of California Conjugates of active pharmaceutical ingredients
CN111718465A (zh) * 2020-06-17 2020-09-29 华南理工大学 一种聚二硫缩醛及其制备方法和应用
CN113072704A (zh) * 2021-02-23 2021-07-06 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种基于活性氧自放大降解的聚硫缩醛及其制备方法和应用
CN113527693A (zh) * 2021-06-23 2021-10-22 华南理工大学 一种侧链可修饰的聚缩硫酮及其衍生物的制备方法和医药新用途
CN113461952A (zh) * 2021-06-30 2021-10-01 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) 一种活性氧响应型自降解聚合物及其制备方法与应用

Also Published As

Publication number Publication date
CN116376033B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
Park et al. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment
Gao et al. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells
Chen et al. Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery
CN110801431B (zh) 一种核-壳型智能纳米递送系统的构建及应用
CN107669632B (zh) 药物载体、胶束、药物制剂、及其制备方法和用途
CN108926531B (zh) 一种还原及pH双重响应性的纳米胶束及其制备方法与应用
CN105175656B (zh) 一种温度和氧化剂双重刺激响应性纳米聚集体制备方法和应用
CN109966507A (zh) 一种肿瘤靶向的pH和氧化还原双重响应的大分子纳米前药及其制备方法与应用
Zhao et al. Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo–photodynamic therapy
CN114177305B (zh) 一种诱导肿瘤细胞多机制死亡的前药纳米粒及其制备方法、应用
Jin et al. Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy
CN113105614A (zh) 一种易降解响应型可核心交联的两亲性嵌段聚合物及其制备方法和作为药物载体的应用
Xue et al. Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy
Xing et al. Cyclodextrin-based supramolecular nanoparticles break the redox balance in chemodynamic therapy-enhanced chemotherapy
CN111592634B (zh) 一种光还原自降解高分子及其制备方法和应用
CN116376033B (zh) 一种活性氧响应的自激活骨架聚合物及其制备方法和应用
CN104173282B (zh) 基于聚磷酸酯的叶酸靶向酸敏感核交联载药胶束及其制备方法
CN109821025B (zh) 一种光和氧化还原双重刺激响应型两亲性聚合物药物载体及其制备方法和应用
CN111135309B (zh) 一种核壳结构的替拉扎明药物载体及其制备方法和应用
Feng et al. Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery
CN107929734B (zh) 一种用于可控光动力治疗的纳米药物及其制备方法
CN113912841A (zh) 一种pH和Redox双响应两嵌段两亲性聚合物前药及其制备方法
CN115671297A (zh) 一种具有pH敏感和活性氧敏感的智能药物载体及其制备方法和应用
CN111471185B (zh) 三重刺激响应性嵌段聚合物胶束及其制备方法和应用
CN111419805B (zh) 一种基于壳聚糖的环境多重响应型聚合物前药胶束及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant