CN116375469B - 一种固相合成质子导体电解质陶瓷粉体的方法 - Google Patents

一种固相合成质子导体电解质陶瓷粉体的方法 Download PDF

Info

Publication number
CN116375469B
CN116375469B CN202310335143.7A CN202310335143A CN116375469B CN 116375469 B CN116375469 B CN 116375469B CN 202310335143 A CN202310335143 A CN 202310335143A CN 116375469 B CN116375469 B CN 116375469B
Authority
CN
China
Prior art keywords
powder
hours
ball milling
solid phase
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310335143.7A
Other languages
English (en)
Other versions
CN116375469A (zh
Inventor
王绍荣
张晓玉
黄祖志
刘魁
陈婷
耿玉翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202310335143.7A priority Critical patent/CN116375469B/zh
Publication of CN116375469A publication Critical patent/CN116375469A/zh
Application granted granted Critical
Publication of CN116375469B publication Critical patent/CN116375469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种固相合成质子导体电解质陶瓷粉体的方法,包括以下步骤:采用商业化的电解质粉体为原材料之一;再补充化学计量比的Ba和其他元素的化合物后,加入一定量的溶剂进行球磨混合均匀;取出后搅拌烘干,高温煅烧,得到无杂相的电解质粉体。本发明以商业化的粉体为原料,三价稀土金属离子已全部进入晶格,制备得到的粉体不含杂相,易于烧结,具有良好的电导率;采用固相法合成陶瓷粉体,制备工艺简单易于大规模生产;商业化的粉体有利于保证产品的一致性。

Description

一种固相合成质子导体电解质陶瓷粉体的方法
技术领域
本发明属于燃料电池电解质技术领域,具体是指一种固相合成质子导体电解质陶瓷粉体的方法。
背景技术
燃料电池是持续地将氢气、甲醇、烃类等燃料的化学能直接转化为电能的一种化学电源装置,在交通运输、分布式高效供能等方面具有广阔的应用前景,是实现“双碳”目标的有效途径之一。燃料电池主要分为固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)、碱性燃料电池(AFC)、熔融碳酸盐燃料电池(MCFC)和磷酸盐燃料电池(PAFC)等,其中,SOFC具有不使用贵金属催化剂、燃料适用性强、全陶瓷结构等优势。SOFC根据电解质载流子的不同,可分为氧离子传导型和质子传导型陶瓷固体氧化物燃料电池(PCFC)。在低温下,质子传导电解质与氧离子传导电解质相比具有更高的电导率,可在低温区间400-650℃表现出较高的电化学性能。而且降低工作温度可以降低电池多层陶瓷结构的热应力,减缓电极材料的老化速度,提高长期稳定性,因此,PCFC具有良好的发展前景和应用优势。
质子传导型电解质主要是钙钛矿结构材料,其A位一般是由离子尺寸较大的碱金属、碱土金属或稀土金属填充(如Ba2+、Sr2+、La3+、Ca2+),B位常由较小离子半径的四价金属元素填充(Ce4+,Zr4+)。通过采用三价的金属离子(如Y3+,Yb3+,Sm3+,Sc3+,In3+,Gd3+等)对B位进行掺杂,而使钙钛矿氧化物陶瓷的氧空位浓度大大增加,促进质子吸收。质子传导电解质粉体的制备方法主要为溶胶凝胶法和固相法,溶胶凝胶法的原料为硝酸盐和络合剂,硝酸盐易潮解,容易造成化学计量不准确,并且产品颗粒团聚严重,工艺复杂不适宜大规模生产。固相法是将原料多次球磨预混、焙烧,此方法生产成本低、产量大、制备工艺简单,但是目前固相法以金属氧化物为原料,造成掺杂的三价稀土金属离子难于全部进入晶格,而导致物相不纯,降低该物质的电导率。
发明内容
本发明的目是提供一种固相合成质子导体电解质陶瓷粉体的方法,用来解决固相法中三价稀土金属离子难于全部进入晶格的问题,从而提高物质的导电率。
为实现上述目的,本发明一种固相合成质子导体电解质陶瓷粉体的方法,包括以下步骤:
采用商业化的电解质粉体为原材料之一;
再补充化学计量比的Ba和其他元素的化合物后,加入一定量的溶剂进行球磨混合均匀;
取出后搅拌烘干,高温煅烧,得到无杂相的电解质粉体。
作为本发明进一步的方案:所述商业化的电解质粉体包括:3YSZ、5YSZ、8YSZ、10YSZ、SSZ、GDC20,选取其中的1种或2种。
作为本发明进一步的方案:所述Ba和其他元素的化合物包括:BaCO3和Y(NO3)3·6H2O、Ce(NO3)3·6H2O、Sc(NO3)3、CeO2、Y2O3、Yb2O3,选取其中的1至3种化合物。
作为本发明进一步的方案:所述球磨的转速为400r/min,球磨时间24-48h,所述高温煅烧的温度是1250-1350℃,焙烧时间10-15h。
作为本发明进一步的方案:所述一定量的溶剂的容量是800mL。
作为本发明进一步的方案:所述溶剂选择无水乙醇或去离子水,所述球磨混合过程中加入氧化锆球磨珠。
作为本发明进一步的方案:所述无杂相的电解质粉体包括:BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411)、BaZr0.1Ce0.7Y0.1Gd0.1O3-δ(BZCYG1711)、BaZr0.4Ce0.4Gd0.1Sc0.1O3-δ(BZCGS4411)、BaZr0.4Ce0.4Y0.1Yb0.1O3-δ(BZCYYb4411)。
与现有技术相比,本发明的有益效果如下:本发明以商业化的粉体为原料,三价稀土金属离子已全部进入晶格,制备得到的粉体不含杂相,易于烧结,具有良好的电导率;采用固相法合成陶瓷粉体,制备工艺简单易于大规模生产;商业化的粉体有利于保证产品的一致性。
附图说明
图1是利用不同原料固相合成的BZCYG4411与BZCYYb4411的XRD。
图2是BZCYG4411与BZCYYb4411在1450℃保温5小时后表面SEM。
图3是BZCYG4411在湿空气中电导率的Arrhenius图。
图4是BZCYG4411电解质纽扣电池IVP性能。
图5是BZCYG1711的XRD图。
图6是BZCYYb4411的XRD图。
图7是BZCYG4411的XRD图。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1:以常用的BZCYG4411与BZCYYb4411为例,分别利用本发明的方法合成和常规方法合成。本发明方法合成过程:取86.9714g的GDC20(分子式Ce0.8Gd0.2O1.9)、57.2254g的8YSZ(分子式Y0.15Zr0.85O1.96)、11.2999g的Y(NO3)3·6H2O(纯度99.99%)以及199.3333g的BaCO3(纯度99.9%)粉体加入球磨罐中,再加入一定量的无水乙醇,然后以400r/min的速度球磨48h混合均匀,取出后搅拌烘干,最后高温1300℃煅烧10h,即可得到BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411);常规方法合成过程:利用BaCO3,ZrO2,Y2O3,CeO2,Yb2O3为原料经过球磨-煅烧-球磨-煅烧过程,其中最后一次煅烧是在1250℃焙烧10h后得到BZCYYb4411。如图1所示,BZCYG4411与BZCYYb4411的XRD图,BZCYYb4411明显存在BaCO3与Y2O3物质的特征峰,而使用本方法制备的BZCYG4411只煅烧一次即可成相,并且没有杂相。
如图2所示,BZCYG4411与BZCYYb4411两种不同原料固相法合成的粉体压片后经1450℃保温5小时烧结后晶粒尺寸有很大不同。BZCYG4411的晶粒尺寸为约12μm,而BZCYY4411的电解质的晶粒尺寸约为6μm,表明利用商业化的电解质粉体合成的质子电解质的烧结活性优于采用BaCO3,ZrO2,Y2O3,CeO2,Yb2O3为原料固相法合成的BZCYYb4411粉体。
将BZCYG4411粉体压成长方形的样品条并烧结致密,然后采用四端子法测试导电率,数据经过计算处理后得到如图3所示的BZCYG4411在湿空气中电导率的Arrhenius图;650℃时,BZCYG4411样品条在湿空气中的电导率为0.0146S/cm,具有良好的导电率;根据不同温度数值的变化可以通过公式计算出活化能,在湿空气中,BZCYG4411的活化能为0.49eV。
以实施例1中得到的BZCYG4411为电解质,以PMMA、NiO、La0.6Sr0.4Co0.2Fe0.8O3-δ为原料,通过流延-叠层-热压制备大面积质子陶瓷燃料电池,电池结构:NiO-BZCYG4411(6:4)|BZCYG4411|LSCF。裁切成纽扣电池测试IVP性能如图4所示,700℃时峰值功率密度为325.8mW/cm2
实施例2:取86.9714g的GDC20、14.2988g的8YSZ、31.5632g的Y(NO3)3·6H2O(纯度99.99%)、129.7958g的Ce(NO3)3·6H2O(纯度99.99%)以及199.3333g的BaCO3(纯度99%)粉体加入球磨罐中,再加入一定量的无水乙醇,然后400r/min球磨48h混合均匀,取出后搅拌烘干,最后1300℃煅烧10h,即可得到BaZr0.1Ce0.7Y0.1Gd0.1O3-δ(BZCYG1711)。如图5所示,为BZCYG1711的XRD图,可以看出使用本方法制备得到的粉体物相均一,没有Y2O3杂峰。
实施例3:取68.8440g的CeO2、57.2684g的8YSZ、3.3217g的Y2O3(纯度99.99%)、19.7040g的Yb2O3(纯度99.99%)以及199.3333g的BaCO3(纯度99%)粉体加入球磨罐中,再加入一定量的无水乙醇,然后400r/min球磨48h混合均匀,取出后搅拌烘干,最后1300℃煅烧10h,即可得到BaZr0.4Ce0.4Y0.1Yb0.1O3-δ(BZCYYb4411)。如图6所示,为BZCYYb4411的XRD图,可以看出目标粉体为钙钛矿结构,没有Y2O3杂峰,证明掺杂的离子全部进入晶格内部,没有杂相。
实施例4:86.9714g的GDC20、56.3449g的SSZ(分子式为(Sc2O3)0.1(CeO2)0.01(ZrO2)0.89)、2.5674g的Sc(NO3)3以及199.3333g的BaCO3粉体加入球磨罐中,再加入一定量的无水乙醇,然后400r/min球磨48h混合均匀,取出后搅拌烘干,最后1300℃煅烧10h,即可得到无杂相的BaZr0.4Ce0.4Gd0.1Sc0.1O3-δ(BZCGS4411)。
因BZCYG4411是常用的电解质材料,下面给出采用其他计量比得到的BZCYYG4411实施例。
实施例5:取86.9714g的GDC20、59.2027g的10YSZ(分子式Y0.18Zr0.82O1.91)、4.6689g的Y(NO3)3·6H2O(纯度99.99%)以及199.3333g的BaCO3(纯度99.9%)粉体加入球磨罐中,再加入一定量的无水乙醇,然后400r/min球磨36h混合均匀,取出后搅拌烘干,最后1300℃煅烧12h,也可得到BZCYG4411。如图7所示,为BZCYG4411的XRD图,可以看出BZCYG4411特征峰与标准峰一致,没有出现BaCO3和Y2O3杂峰。
实施例6:86.9714g的GDC20、54.0270g的5YSZ(分子式Y0.095Zr0.905O1.952)、22.2184g的Y(NO3)3·6H2O(纯度99.99%)以及199.3333g的BaCO3(纯度99.9%)粉体加入球磨罐中,再加入一定量的无水乙醇,然后400r/min球磨48h混合均匀,取出后搅拌烘干,最后1300℃煅烧10h,即可得到BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411)。
实施例7:86.9714g的GDC20、52.0668g的3YSZ(分子式Y0.058Zr0.942O1.971)、28.8675g的Y(NO3)3·6H2O(纯度99.99%)以及199.3333g的BaCO3(纯度99.9%)粉体加入球磨罐中,再加入一定量的无水乙醇,然后400r/min球磨48h混合均匀,取出后搅拌烘干,最后1300℃煅烧10h,即可得到BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411)。
实施例6和实施例7得到的BZCYG4411的XRD图也具有良好的波峰特性,没有出现BaCO3和Y2O3杂峰。

Claims (5)

1.一种固相合成质子导体电解质陶瓷粉体的方法,其特征在于,包括以下步骤:
采用商业化的电解质粉体Ce0.8Gd0.2O1.9、Y0.15Zr0.85O1.96为原材料;
再补充Y(NO3)3·6H2O和BaCO3,加入一定量的溶剂进行球磨48h混合均匀;
取出后搅拌烘干,高温1300℃煅烧10h,得到无杂相的电解质粉体BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411);
或采用商业化的电解质粉体Ce0.8Gd0.2O1.9、Y0.18Zr0.82O1.91为原材料;
再补充Y(NO3)3·6H2O和BaCO3,加入一定量的溶剂进行球磨36h混合均匀;
取出后搅拌烘干,高温1300℃煅烧12h,得到无杂相的电解质粉体BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411);
或采用商业化的电解质粉体Ce0.8Gd0.2O1.9、Y0.095Zr0.905O1.952为原材料;
再补充Y(NO3)3·6H2O和BaCO3,加入一定量的溶剂进行球磨48h混合均匀;
取出后搅拌烘干,高温1300℃煅烧10h,得到无杂相的电解质粉体BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411);
或采用商业化的电解质粉体Ce0.8Gd0.2O1.9、Y0.058Zr0.942O1.971为原材料;
再补充Y(NO3)3·6H2O和BaCO3,加入一定量的溶剂进行球磨48h混合均匀;
取出后搅拌烘干,高温1300℃煅烧10h,得到无杂相的电解质粉体BaZr0.4Ce0.4Y0.1Gd0.1O3-δ(BZCYG4411)。
2.一种固相合成质子导体电解质陶瓷粉体的方法,其特征在于,包括以下步骤:
采用商业化的电解质粉体Ce0.8Gd0.2O1.9、Y0.15Zr0.85O1.96为原材料;
再补充Y(NO3)3·6H2O、Ce(NO3)3·6H2O以及BaCO3,加入一定量的溶剂进行球磨48h混合均匀;
取出后搅拌烘干,高温1300℃煅烧10h,得到无杂相的电解质粉体BaZr0.1Ce0.7Y0.1Gd0.1O3-δ(BZCYG1711)。
3.一种固相合成质子导体电解质陶瓷粉体的方法,其特征在于,包括以下步骤:
采用商业化的电解质粉体Y0.15Zr0.85O1.96为原材料;
再补充CeO2、Y2O3、Yb2O3以及BaCO3,加入一定量的溶剂进行球磨48h混合均匀;
取出后搅拌烘干,高温1300℃煅烧10h,得到无杂相的电解质粉体BaZr0.4Ce0.4Y0.1Yb0.1O3-δ(BZCYYb4411)。
4.一种固相合成质子导体电解质陶瓷粉体的方法,其特征在于,包括以下步骤:
采用商业化的电解质粉体Ce0.8Gd0.2O1.9、(Sc2O3)0.1(CeO2)0.01(ZrO2)0.89为原材料;
再补充Sc(NO3)3以及BaCO3,加入一定量的溶剂进行球磨48h混合均匀;
取出后搅拌烘干,高温1300℃煅烧10h,得到无杂相的电解质粉体BaZr0.4Ce0.4Gd0.1Sc0.1O3-δ(BZCGS4411)。
5.根据权利要求1至4任一项所述的一种固相合成质子导体电解质陶瓷粉体的方法,其特征在于,所述球磨的转速为400r/min,所述一定量的溶剂的容量是800mL;所述溶剂选择无水乙醇或去离子水,所述球磨混合过程中加入氧化锆球磨珠。
CN202310335143.7A 2023-03-31 2023-03-31 一种固相合成质子导体电解质陶瓷粉体的方法 Active CN116375469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310335143.7A CN116375469B (zh) 2023-03-31 2023-03-31 一种固相合成质子导体电解质陶瓷粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310335143.7A CN116375469B (zh) 2023-03-31 2023-03-31 一种固相合成质子导体电解质陶瓷粉体的方法

Publications (2)

Publication Number Publication Date
CN116375469A CN116375469A (zh) 2023-07-04
CN116375469B true CN116375469B (zh) 2024-05-03

Family

ID=86961023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310335143.7A Active CN116375469B (zh) 2023-03-31 2023-03-31 一种固相合成质子导体电解质陶瓷粉体的方法

Country Status (1)

Country Link
CN (1) CN116375469B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187768A (ja) * 1993-12-27 1995-07-25 Kyocera Corp 導電性セラミックスおよびその製造方法、並びにそれを用いた固体電解質型燃料電池セル用集電部材
JPH07249414A (ja) * 1994-03-11 1995-09-26 Kyocera Corp 固体電解質型燃料電池セル
CN102381876A (zh) * 2010-08-31 2012-03-21 Tdk株式会社 电介质陶瓷组合物和陶瓷电子部件
JP2012104308A (ja) * 2010-11-09 2012-05-31 National Institute For Materials Science 固体酸化物燃料電池用電解質緻密材料の製造方法
WO2013048720A1 (en) * 2011-09-28 2013-04-04 Phillips 66 Company Scandium-doped bzcy electrolytes
CN103647097A (zh) * 2013-12-20 2014-03-19 湖南稀土金属材料研究院 Sc2O3稳定ZrO2基电解质粉体、其制备方法及Sc2O3稳定ZrO2电解质陶瓷片
CN106866137A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种电解质材料的制备方法
CN108424142A (zh) * 2018-04-28 2018-08-21 中国科学院宁波材料技术与工程研究所 一种BaZrY粉末材料的制备方法
JP2020149803A (ja) * 2019-03-11 2020-09-17 住友電気工業株式会社 燃料極−固体電解質層複合体の製造方法
CN112759392A (zh) * 2020-12-25 2021-05-07 合肥学院 一种多组分共掺杂氧化铈基固体电解质材料及其制备方法
CN113666415A (zh) * 2021-06-22 2021-11-19 南京工业大学 晶粒尺寸可控的高电导率钙钛矿型BaZrO3基质子导体材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595127B2 (en) * 2001-06-29 2009-09-29 Nextech Materials, Ltd. Nano-composite electrodes and method of making the same
US10714779B2 (en) * 2016-08-08 2020-07-14 Universiti Brunei Darussalam Proton conducting electrolyte composition and method of preparation thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187768A (ja) * 1993-12-27 1995-07-25 Kyocera Corp 導電性セラミックスおよびその製造方法、並びにそれを用いた固体電解質型燃料電池セル用集電部材
JPH07249414A (ja) * 1994-03-11 1995-09-26 Kyocera Corp 固体電解質型燃料電池セル
CN102381876A (zh) * 2010-08-31 2012-03-21 Tdk株式会社 电介质陶瓷组合物和陶瓷电子部件
JP2012104308A (ja) * 2010-11-09 2012-05-31 National Institute For Materials Science 固体酸化物燃料電池用電解質緻密材料の製造方法
WO2013048720A1 (en) * 2011-09-28 2013-04-04 Phillips 66 Company Scandium-doped bzcy electrolytes
CN103647097A (zh) * 2013-12-20 2014-03-19 湖南稀土金属材料研究院 Sc2O3稳定ZrO2基电解质粉体、其制备方法及Sc2O3稳定ZrO2电解质陶瓷片
CN106866137A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种电解质材料的制备方法
CN108424142A (zh) * 2018-04-28 2018-08-21 中国科学院宁波材料技术与工程研究所 一种BaZrY粉末材料的制备方法
JP2020149803A (ja) * 2019-03-11 2020-09-17 住友電気工業株式会社 燃料極−固体電解質層複合体の製造方法
CN112759392A (zh) * 2020-12-25 2021-05-07 合肥学院 一种多组分共掺杂氧化铈基固体电解质材料及其制备方法
CN113666415A (zh) * 2021-06-22 2021-11-19 南京工业大学 晶粒尺寸可控的高电导率钙钛矿型BaZrO3基质子导体材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国电池工业协会主编.《中国电池工业经营全书》.航空工业出版社,2006,第153页. *

Also Published As

Publication number Publication date
CN116375469A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Zhu et al. Evaluation of SrSc0. 175Nb0. 025Co0. 8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: the possibility of in situ creating protonic conductivity and electrochemical performance
US8637209B2 (en) Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes
Huang et al. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs
CN102569786B (zh) 一种钙钛矿型Co基复合阴极材料及其制备和应用
CN104916850B (zh) 固体氧化物燃料电池阴极用材料及具其复合阴极材料及其制备方法和电池复合阴极制备方法
Huang et al. Investigation of La2NiO4+ δ-based cathodes for SDC–carbonate composite electrolyte intermediate temperature fuel cells
CN104078687A (zh) 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途
CN104409742A (zh) 一种BaCoO3-δ基B位Bi2O3和Nb2O5共掺杂的固体氧化物燃料电池阴极材料及其制备方法与应用
CN117117208B (zh) 一种镧掺杂的中温sofc阴极材料及其制备方法和应用
CN102731090A (zh) 一种直接碳氢化合物固体氧化物燃料电池阳极材料及其制备方法
CN102842723B (zh) 钙钛矿结构中温固体氧化物燃料电池阴极材料的制备方法
Leng et al. The effect of sintering aids on BaCe0· 7Zr0· 1Y0. 1Yb0. 1O3-δ as the electrolyte of proton-conducting solid oxide electrolysis cells
Zheng et al. Ca and Fe co-doped SmBaCo2O5+ δ layered perovskite as an efficient cathode for intermediate-temperature solid oxide fuel cells
CN101237046A (zh) 一种a、b位共掺杂钛酸锶固体氧化物燃料电池阳极材料
CN116666670B (zh) 一种镧铌共掺杂的中温sofc阴极材料及其制备方法和应用
CN100502117C (zh) 一种用于固体氧化物燃料电池的b位缺位钙钛矿阳极材料
CN100517840C (zh) 中高温固体氧化物燃料电池阴极材料
Yang et al. Sr-substituted SmBa0. 75Ca0. 25CoFeO5+ δ as a cathode for intermediate-temperature solid oxide fuel cells
Zhang et al. An intermediate temperature fuel cell based on composite electrolyte of carbonate and doped barium cerate with SrFe0. 7Mn0. 2Mo0. 1O3− δ cathode
CN116375469B (zh) 一种固相合成质子导体电解质陶瓷粉体的方法
CN102683720A (zh) 一种固体氧化物燃料电池的梯度复合阴极及其制备方法
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
CN101572313A (zh) 中低温固体氧化物燃料电池阴极材料及其复合阴极材料
CN101794885A (zh) 钙铁石结构中温固体氧化物燃料电池阴极材料
Pikalova et al. Boosting the oxygen transport kinetics and functional properties of La2NiO4+ δ via partial La-to-Sm substitution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant