CN116356126B - 一种超薄耐腐蚀硅钢带及其制备方法 - Google Patents

一种超薄耐腐蚀硅钢带及其制备方法 Download PDF

Info

Publication number
CN116356126B
CN116356126B CN202310325599.5A CN202310325599A CN116356126B CN 116356126 B CN116356126 B CN 116356126B CN 202310325599 A CN202310325599 A CN 202310325599A CN 116356126 B CN116356126 B CN 116356126B
Authority
CN
China
Prior art keywords
silicon steel
steel strip
ultrathin
washing
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310325599.5A
Other languages
English (en)
Other versions
CN116356126A (zh
Inventor
王勇
单朝晖
贲海峰
喻晓明
吴益峰
邢勇
王亚沂
缪翔
邢建
王晨阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yongjin Metal Technology Co ltd
Original Assignee
Jiangsu Yongjin Metal Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yongjin Metal Technology Co ltd filed Critical Jiangsu Yongjin Metal Technology Co ltd
Priority to CN202310325599.5A priority Critical patent/CN116356126B/zh
Publication of CN116356126A publication Critical patent/CN116356126A/zh
Application granted granted Critical
Publication of CN116356126B publication Critical patent/CN116356126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D187/00Coating compositions based on unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及钢带技术领域,具体是一种超薄耐腐蚀硅钢带及其制备方法,将硅钢板直接一次冷轧成厚度为0.02‑0.08mm的超薄硅钢带,活化处理后涂覆绝缘涂层,然后使用磁热耦合处理;在超薄硅钢带表面进行活化,通过活化液处理,在表面原位生成具有CO3 2‑插层的铁、锌双金属氢氧化物与铁、锌双金属甘油酸盐;在绝缘浸渍胶的制备中,以正硅酸乙酯、十二烷基三乙氧基硅烷为硅源,植酸、铁铝双金属有机骨架作为催化剂制备得到硅溶胶,提拉镀膜,然后通过低温电磁耦合,在减少磁环的涡流损耗、消除硅钢带残余应力的同时,得到结构完整、具有高疏水性的绝缘层,进一步提高硅钢带的软磁性能。

Description

一种超薄耐腐蚀硅钢带及其制备方法
技术领域
本发明涉及钢带技术领域,具体是一种超薄耐腐蚀硅钢带及其制备方法。
背景技术
随着电子与机械行业的升级,所需的各类钢的品质在不断提高。超薄硅钢带是指厚度低于0.1mm的铁硅合金,主要采用高磁感取向硅钢成品作为原材料加工制备而成,是用于电机、变压器、电器、电工仪表中磁性材料的主要原料。
现有市场要求硅钢具有好的冲剪性,表面光滑平整、厚度均匀、磁时效小,且兼具好的绝缘膜,从而改善其加工性能并防止相当于钢板厚度自乘的涡电流损失。但是,常规方法制备的超薄硅钢带,经冷轧塑性变形后会携带复杂的残余应力,会导致板带表面产生裂纹,影响其服役寿命;同时,应力松弛会导致硅钢带产生局部回复并变形,从而大幅降低尺寸精度和组织稳定性,且残余应力会严重影响硅钢的软磁性能。
发明内容
本发明的目的在于提供一种超薄耐腐蚀硅钢带及其制备方法,以解决现有技术中的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种超薄耐腐蚀硅钢带的制备方法,包括以下步骤:
S1:利用四辊轧机将硅钢板冷轧至0.02-0.08mm,得到超薄硅钢带;
S2:将超薄硅钢带清洁后依次进行碱洗、酸洗,用超纯水、乙醇进行冲洗后,干燥,得到预处理硅钢带;
S3:将预处理硅钢带放置在活化液中进行活化处理,得到活化硅钢带;
S4:采用浸渍提拉法,在活化硅钢带表面用绝缘浸渍胶制备绝缘涂层,然后进行磁热耦合处理,冷却,得到一种超薄耐腐蚀硅钢带。
进一步的,以质量分数计,S1中硅钢板的组成为:硅2.6-3.1%、锰0.08-0.11%、铝0.055-0.063%、锡0.028-0.32%、磷0.018-0.022%、碳0.002%,余量为铁:硅钢板的冷轧压下率为68%。
目前去除硅钢带因冷轧而生成的残余应力使用最广泛工艺是高温热处理,但耗时长、温度高,通常需要600℃左右的高温,且硅钢带在实际工业应用中通常在硅钢表面涂覆绝缘涂层后进行退火,600℃的高温会破坏绝缘涂层的绝缘性能,甚至导致硅钢带表面氧化,影响其品质,不适合精密零件的加工。
而本发明中将硅钢板直接一次冷轧成厚度为0.02-0.08mm的超薄硅钢带,活化处理后涂覆绝缘涂层,然后使用磁热耦合处理,使其在低温热处理基础上施加低强度脉冲磁场,进一步增强了超薄硅钢带内部位错运动,实现了局部回复,达到降低位错密度和减小残余应力的同时,不会破坏绝缘涂层的性能。
进一步的,用质量分数8-10%的NaOH溶液冲洗5-8次,S2中酸洗的工作条件为:用质量分数8-10%的硝酸溶液冲洗5-8次。
通过控制碱洗、酸洗的时间与所用溶液的浓度,对冷轧后的超薄硅钢带进行去污处理,使其在去污时不会破坏硅钢带的强度及抗拉强度。
进一步的,活化处理工作条件为:将预处理硅钢带放置在活化液中,升温至110-120°C保温12-14h,活化液的制备包括以下步骤:将异丙醇、甘油混合搅拌5-10min,加入九水硝酸铁、六水硝酸锌、尿素、碳酸钠、去离子水的混合液,超声搅拌10-20min,得到活化液。
进一步的,九水硝酸铁、六水硝酸锌、尿素、碳酸钠的摩尔比为1:1:1.5:1.5。
本发明所用绝缘涂层主要原料是硅溶胶,而硅溶胶直接涂覆在硅钢带上形成涂层,存在成膜性较差,干裂粉化脱落等情况,本发明先在超薄硅钢带表面进行活化,通过活化液处理,在表面原位生成具有CO3 2-插层的铁、锌双金属氢氧化物与铁、锌双金属甘油酸盐,从而提高超薄硅钢带与绝缘浸渍胶的结合力,且磁热耦合处理后形成致密结构的铁锌双金属氧化物,实现了对氯离子的物理阻隔与化学排斥,提高硅钢带的抗腐蚀性能和阻锈潜力;而铁、锌双金属甘油酸盐的生成会提高绝缘浸渍胶的浸润性,起到现有工艺中添加磷酸盐来提高绝缘涂层浸润性的作用。
进一步的,绝缘浸渍胶的制备包括以下步骤:
1)将九水硝酸铝、六水硝酸锌、反丁烯二酸、N,N-二甲基甲酰胺混合,转移到反应釜中115-120℃保温8-10h,冷却,依次用乙醇、超纯水离心洗涤3-5次,得到双金属有机骨架;
2)将正硅酸乙酯、十二烷基三乙氧基硅烷、无水乙醇混合搅拌,加入植酸、去离子水、双金属有机骨架,超声搅拌5-10min,升温至60-70℃保温1-2h,得到绝缘浸渍胶。
进一步的,正硅酸乙酯、十二烷基三乙氧基硅烷、植酸、双金属有机骨架的摩尔质量比为0.05mol:0.15mol:1g:1g。
进一步的,S5中浸渍提拉法的工作条件为:提拉时,将活化硅钢带表面浸入绝缘浸渍胶40-50s,以4500µm/s的速率将活化硅钢带拉出,在18-25℃下干燥8-10h。
现有硅钢带需通过高温退火达到所需磁性能,而本发明在绝缘浸渍胶的制备中,以正硅酸乙酯、十二烷基三乙氧基硅烷为硅源,植酸、铁铝双金属有机骨架作为催化剂制备得到硅溶胶,提拉镀膜,然后通过低温电磁耦合,在减少磁环的涡流损耗、消除硅钢带残余应力的同时,得到结构完整、具有高疏水性的绝缘层,进一步提高硅钢带的软磁性能;且铁铝双金属有机骨架是以反丁烯二酸为配体构筑的有机骨架,属于有机无机杂化物,大幅提升绝缘涂层与硅钢带的结合力,且经过低温电磁耦合处理,生成的氧化铝有效提升超薄硅钢带的抗腐蚀性。
本发明的有益效果:
本发明提供一种超薄耐腐蚀硅钢带及其制备方法,将硅钢板直接一次冷轧成厚度为0.02-0.08mm的超薄硅钢带,活化处理后涂覆绝缘涂层,然后使用磁热耦合处理,制备的超薄硅钢带具有较好的磁性能,同时兼具高抗腐蚀性与高疏水性。
通过控制碱洗、酸洗的时间与所用溶液的浓度,对冷轧后的超薄硅钢带进行去污处理,使其在去污时不会破坏硅钢带的强度及抗拉强度。
本发明中在低温热处理基础上施加低强度脉冲磁场,进一步增强了超薄硅钢带内部位错运动,实现了局部回复,达到降低位错密度和减小残余应力的目的的同时,不会破坏绝缘涂层的性能;
在超薄硅钢带表面进行活化,通过活化液处理,在表面原位生成具有CO32-插层的铁、锌双金属氢氧化物与铁、锌双金属甘油酸盐,从而提高超薄硅钢带与绝缘浸渍胶的结合力,且铁、锌双金属氢氧化物经过磁热耦合处理后会形成具有致密结构的铁、锌双金属氧化物,实现了对氯离子的物理阻隔与化学排斥,提高硅钢带的抗腐蚀性能和阻锈潜力;而铁、锌双金属甘油酸盐的生成会提高绝缘浸渍胶的浸润性,起到现有工艺中常添加磷酸盐来提高绝缘涂层浸润性的作用。
在绝缘浸渍胶的制备中,以正硅酸乙酯、十二烷基三乙氧基硅烷为硅源,植酸、铁铝双金属有机骨架作为催化剂制备得到硅溶胶,提拉镀膜,然后通过低温电磁耦合,在减少磁环的涡流损耗、消除硅钢带残余应力的同时,得到结构完整、具有高疏水性的绝缘层,进一步提高硅钢带的软磁性能。
实施方式
下面将结合本发明的实施例,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示诸如上、下、左、右、前、后……,则该方向性指示仅用于解释在某一特定姿态如各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
以下结合具体实施例对本发明的技术方案做进一步详细说明,应当理解,以下实施例仅仅用以解释本发明,并不用于限定本发明。
实施例
一种超薄耐腐蚀硅钢带的制备方法,包括以下步骤:
S1:利用四辊轧机将硅钢板冷轧至0.02mm,得到超薄硅钢带;
以质量分数计,S1中硅钢板的组成为:硅2.6%、锰0.08%、铝0.055%、锡0.028%、磷0.018%、碳0.002%,余量为铁:硅钢板的冷轧压下率为68%;
S2:将超薄硅钢带清洁后依次进行碱洗、酸洗,用超纯水、乙醇进行冲洗后,干燥,得到预处理硅钢带;
碱洗的工作条件为:用8%的NaOH溶液冲洗8次,酸洗的工作条件为:用8%的硝酸溶液冲洗8次;
S3:将预处理硅钢带放置在活化液中进行活化处理,得到活化硅钢带;
活化处理工作条件为:将预处理硅钢带放置在活化液中,升温至110°C保温14h,活化液的制备包括以下步骤:将210mL异丙醇、30mL甘油混合搅拌5min,加入1mmol九水硝酸铁、1mmol六水硝酸锌、1.5mmol尿素、1.5mmol碳酸钠、10mL去离子水的混合液,超声搅拌10min,得到活化液;
S4:采用浸渍提拉法,在活化硅钢带表面用绝缘浸渍胶制备绝缘涂层,然后进行磁热耦合处理,冷却,得到一种超薄耐腐蚀硅钢带;
浸渍提拉法的工作条件为:提拉时,将活化硅钢带表面浸入绝缘浸渍胶40s,以4500µm/s的速率将活化硅钢带拉出,在18℃下干燥10h;
绝缘浸渍胶的制备包括以下步骤:
1)将1mmol九水硝酸铝、1mmol六水硝酸锌、2mmol反丁烯二酸、50mLN,N-二甲基甲酰胺混合,转移到反应釜中115℃保温10h,冷却,依次用乙醇、超纯水离心洗涤3次,得到双金属有机骨架;
2)将0.05mol正硅酸乙酯、0.15mol十二烷基三乙氧基硅烷、0.6mol无水乙醇混合搅拌,加入1mL植酸、0.6mol去离子水、1g双金属有机骨架,超声搅拌5min,升温至60℃保温2h,得到绝缘浸渍胶;
磁热耦合处理的工作条件为:将具有绝缘涂层的硅钢带垂直置于石英管中,使硅钢带垂直于磁场方向,加载的电流为单边矩形脉冲电流,峰值电流为185A,时间为160s,温度为380℃,频率为40Hz,占空比为60%。
实施例
一种超薄耐腐蚀硅钢带的制备方法,包括以下步骤:
S1:利用四辊轧机将硅钢板冷轧至0.05mm,得到超薄硅钢带;
以质量分数计,S1中硅钢板的组成为:硅2.8%、锰0.1%、铝0.06%、锡0.03%、磷0.02%、碳0.002%,余量为铁:硅钢板的冷轧压下率为68%;
S2:将超薄硅钢带清洁后依次进行碱洗、酸洗,用超纯水、乙醇进行冲洗后,干燥,得到预处理硅钢带;
碱洗的工作条件为:用9%的NaOH溶液冲洗7次,酸洗的工作条件为:用9%的硝酸溶液冲洗7次;
S3:将预处理硅钢带放置在活化液中进行活化处理,得到活化硅钢带;
活化处理工作条件为:将预处理硅钢带放置在活化液中,升温至115°C保温13h,活化液的制备包括以下步骤:将210mL异丙醇、30mL甘油混合搅拌8min,加入1mmol九水硝酸铁、1mmol六水硝酸锌、1.5mmol尿素、1.5mmol碳酸钠、10mL去离子水的混合液,超声搅拌15min,得到活化液;
S4:采用浸渍提拉法将活化硅钢带表面用绝缘浸渍胶制备绝缘涂层,然后进行磁热耦合处理,冷却,得到一种超薄耐腐蚀硅钢带;
浸渍提拉法的工作条件为:提拉时,将活化硅钢带表面浸入绝缘浸渍胶45s,以4500µm/s的速率将活化硅钢带拉出,在20℃下干燥9h;
绝缘浸渍胶的制备包括以下步骤:
1)将1mmol九水硝酸铝、1mmol六水硝酸锌、2mmol反丁烯二酸、50mLN,N-二甲基甲酰胺混合,转移到反应釜中118℃保温9h,冷却,依次用乙醇、超纯水离心洗涤4次,得到双金属有机骨架;
2)将0.05mol正硅酸乙酯、0.15mol十二烷基三乙氧基硅烷、0.6mol无水乙醇混合搅拌,加入1mL植酸、0.6mol去离子水、1g双金属有机骨架,超声搅拌8min,升温至65℃保温1.5h,得到绝缘浸渍胶;
磁热耦合处理的工作条件为:将具有绝缘涂层的硅钢带垂直置于石英管中,使硅钢带垂直于磁场方向,加载的电流为单边矩形脉冲电流,峰值电流为185A,时间为165s,温度为370℃,频率为40Hz,占空比为60%。
实施例
一种超薄耐腐蚀硅钢带的制备方法,包括以下步骤:
S1:利用四辊轧机将硅钢板冷轧至0.08mm,得到超薄硅钢带;
以质量分数计,S1中硅钢板的组成为:硅3.1%、锰0.11%、铝0.063%、锡0.32%、磷0.022%、碳0.002%,余量为铁:硅钢板的冷轧压下率为68%;
S2:将超薄硅钢带清洁后依次进行碱洗、酸洗,用超纯水、乙醇进行冲洗后,干燥,得到预处理硅钢带;
碱洗的工作条件为:用10%的NaOH溶液冲洗5次,酸洗的工作条件为:用10%的硝酸溶液冲洗5次;
S3:将预处理硅钢带放置在活化液中进行活化处理,得到活化硅钢带;
活化处理工作条件为:将预处理硅钢带放置在活化液中,升温至120°C保温12h,活化液的制备包括以下步骤:将210mL异丙醇、30mL甘油混合搅拌10min,加入1mmol九水硝酸铁、1mmol六水硝酸锌、1.5mmol尿素、1.5mmol碳酸钠、10mL去离子水的混合液,超声搅拌20min,得到活化液;
S4:采用浸渍提拉法将活化硅钢带表面用绝缘浸渍胶制备绝缘涂层,然后进行磁热耦合处理,冷却,得到一种超薄耐腐蚀硅钢带;
浸渍提拉法的工作条件为:提拉时,将活化硅钢带表面浸入绝缘浸渍胶50s,以4500µm/s的速率将活化硅钢带拉出,在25℃下干燥8h;
绝缘浸渍胶的制备包括以下步骤:
1)将1mmol九水硝酸铝、1mmol六水硝酸锌、2mmol反丁烯二酸、50mLN,N-二甲基甲酰胺混合,转移到反应釜中120℃保温8h,冷却,依次用乙醇、超纯水离心洗涤5次,得到双金属有机骨架;
2)将0.05mol正硅酸乙酯、0.15mol十二烷基三乙氧基硅烷、0.6mol无水乙醇混合搅拌,加入1mL植酸、0.6mol去离子水、1g双金属有机骨架,超声搅拌10min,升温至70℃保温1h,得到绝缘浸渍胶;
磁热耦合处理的工作条件为:将具有绝缘涂层的硅钢带垂直置于石英管中,使硅钢带垂直于磁场方向,加载的电流为单边矩形脉冲电流,峰值电流为185A,时间为170s,温度为360℃,频率为40Hz,占空比为60%。
对比例1
以实施例3为对照组,未进行磁热耦合处理,直接在600℃退火1h,其他工序正常。
对比例2
以实施例3为对照组,没有进行活化处理,其他工序正常。
对比例3
以实施例3为对照组,活化液中没有添加六水硝酸锌,其他工序正常。
对比例4
以实施例3为对照组,活化液中没有添加九水硝酸铁,其他工序正常。
对比例5
以实施例3为对照组,在制备绝缘浸渍胶时,用盐酸替换植酸,其他工序正常。
对比例6
以实施例3为对照组,在制备绝缘浸渍胶时,没有制备双金属有机骨架,其他工序正常。
对比例7
以实施例3为对照组,在制备绝缘浸渍胶时,没有加入十二烷基三乙氧基硅烷,其他工序正常。
上述实施例与对比例中绝缘涂层的厚度为50µm。
上述实施例与对比例中所用原料来源:
NaOH、硝酸、乙醇、异丙醇、碳酸钠,分析纯:国药集团化学试剂有限公司;九水硝酸铁F100208、六水硝酸锌Z111703、尿素U111897、甘油G116203、九水硝酸铝S492260、反丁烯二酸F110741、N,N-二甲基甲酰胺D111999、十二烷基三乙氧基硅烷D155295、植酸P350767:上海阿拉丁生化科技股份有限公司;正硅酸乙酯86578:西格玛奥德里奇(上海)贸易有限公司。
性能测试:
对实施例1-3、对比例1-7所制得的钢带进行磁性、疏水性、耐腐蚀性测试;
参考GB/T3655-2008,采用爱泼斯坦方圈测试硅钢样品的铁损P17/50和磁感应强度B8;疏水性:测量接触角;耐腐蚀性:盐雾测试参考GB/T1771-2007,长、宽裁剪为150X75mm板,放入温度为35℃的盐雾箱内,时间为2000h;所得结果如表1所示;
表1
本发明提供一种超薄耐腐蚀硅钢带及其制备方法,将硅钢板直接一次冷轧成厚度为0.02-0.08mm的超薄硅钢带,活化处理后涂覆绝缘涂层,然后使用磁热耦合处理,制备的超薄硅钢带具有较好的磁性能,同时兼具高抗腐蚀性与高疏水性。
将实施例3与对比例1进行对比,高温600℃会损坏本发明绝缘涂层的疏水性,本发明中在低温热处理基础上施加低强度脉冲磁场,进一步增强了超薄硅钢带内部位错运动,实现了局部回复,达到降低位错密度和减小残余应力的目的的同时,不会破坏绝缘涂层的性能,从而提高超薄硅钢带的磁性与耐腐蚀性;
将实施例3与对比例2、对比例3、对比例4进行对比,在超薄硅钢带表面进行活化,通过活化液处理,在表面原位生成具有CO3 2-插层的铁、锌双金属氢氧化物与铁、锌双金属甘油酸盐,从而提高超薄硅钢带与绝缘浸渍胶的结合力,且铁、锌双金属氢氧化物的致密的结构,实现了对氯离子的物理阻隔与化学排斥,提高硅钢带的抗腐蚀性能和阻锈潜力;而铁、锌双金属甘油酸盐的生成会提高绝缘浸渍胶的浸润性,起到现有工艺中常添加磷酸盐来提高绝缘涂层浸润性的作用;
将实施例3与对比例5、对比例6、对比例7进行对比,在绝缘浸渍胶的制备中,以正硅酸乙酯、十二烷基三乙氧基硅烷为硅源,植酸、铁铝双金属有机骨架作为催化剂制备得到硅溶胶,提拉镀膜,然后通过低温电磁耦合,在减少磁环的涡流损耗、消除硅钢带残余应力的同时,得到结构完整、具有高疏水性的绝缘层,进一步提高硅钢带的软磁性能。
将实施例3与对比例5进行对比,用小分子盐酸做催化剂,会影响涂层的成膜性及与软磁合金基材结合力较差,会出现干裂粉化等情况,无法得到结构完整的绝缘涂层,从而影响硅钢带的磁性;将实施例3与对比例6进行对比,以反丁烯二酸为配体构筑的铁铝双金属有机骨架在协效植酸催化硅溶胶形成绝缘涂层的同时,提升其硅钢带的疏水性与抗腐蚀性;将实施例3与对比例7进行对比,十二烷基三乙氧基硅烷的引入有效提高绝缘涂层的疏水性。
以上所述仅为本发明的为实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (6)

1.一种超薄耐腐蚀硅钢带的制备方法,其特征在于,包括以下步骤:
S1:利用四辊轧机将硅钢板冷轧至0.02-0.08mm,得到超薄硅钢带;
S2:将超薄硅钢带清洁后依次进行碱洗、酸洗,用超纯水、乙醇进行冲洗后,干燥,得到预处理硅钢带;
S3:将预处理硅钢带放置在活化液中进行活化处理,得到活化硅钢带;
S4:采用浸渍提拉法,在活化硅钢带表面用绝缘浸渍胶制备绝缘涂层,然后进行磁热耦合处理,冷却,得到一种超薄耐腐蚀硅钢带;
活化处理工作条件为:将预处理硅钢带放置在活化液中,升温至110-120°C保温12-14h,活化液的制备包括以下步骤:将异丙醇、甘油混合搅拌5-10min,加入九水硝酸铁、六水硝酸锌、尿素、碳酸钠、去离子水的混合液,超声搅拌10-20min,得到活化液;
活化液的制备中,九水硝酸铁、六水硝酸锌、尿素、碳酸钠的摩尔比为1:1:1.5:1.5;
绝缘浸渍胶的制备包括以下步骤:
1)将九水硝酸铝、六水硝酸锌、反丁烯二酸、N,N-二甲基甲酰胺混合,转移到反应釜中115-120℃保温8-10h,冷却,依次用乙醇、超纯水离心洗涤3-5次,得到双金属有机骨架;
2)将正硅酸乙酯、十二烷基三乙氧基硅烷、无水乙醇混合搅拌,加入植酸、去离子水、双金属有机骨架,超声搅拌5-10min,升温至60-70℃保温1-2h,得到绝缘浸渍胶;
正硅酸乙酯、十二烷基三乙氧基硅烷、植酸、双金属有机骨架的摩尔质量比为0.05mol:0.15mol:1g:1g。
2.根据权利要求1所述的一种超薄耐腐蚀硅钢带的制备方法,其特征在于,以质量分数计,S1中硅钢板的组成为:硅2.6-3.1%、锰0.08-0.11%、铝0.055-0.063%、锡0.028-0.32%、磷0.018-0.022%、碳0.002%,余量为铁:硅钢板的冷轧压下率为68%。
3.根据权利要求1所述的一种超薄耐腐蚀硅钢带的制备方法,其特征在于,S2中碱洗的工作条件为:用质量分数8-10%的NaOH溶液冲洗5-8次,S2中酸洗的工作条件为:用质量分数8-10%的硝酸溶液冲洗5-8次。
4.根据权利要求1所述的一种超薄耐腐蚀硅钢带的制备方法,其特征在于,S4中浸渍提拉法的工作条件为:提拉时,将活化硅钢带表面浸入绝缘浸渍胶40-50s,以4500µm/s的速率将活化硅钢带拉出,在18-25℃下干燥8-10h。
5.根据权利要求1所述的一种超薄耐腐蚀硅钢带的制备方法,其特征在于,S4中磁热耦合处理的工作条件为:将具有绝缘涂层的硅钢带垂直置于石英管中,使硅钢带垂直于磁场方向,加载的电流为单边矩形脉冲电流,峰值电流为185A,时间为160-170s,温度为360-380℃,频率为40Hz,占空比为60%。
6.一种超薄耐腐蚀硅钢带,其特征在于,由权利要求1-5中任一项制备方法制备得到。
CN202310325599.5A 2023-03-30 2023-03-30 一种超薄耐腐蚀硅钢带及其制备方法 Active CN116356126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310325599.5A CN116356126B (zh) 2023-03-30 2023-03-30 一种超薄耐腐蚀硅钢带及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310325599.5A CN116356126B (zh) 2023-03-30 2023-03-30 一种超薄耐腐蚀硅钢带及其制备方法

Publications (2)

Publication Number Publication Date
CN116356126A CN116356126A (zh) 2023-06-30
CN116356126B true CN116356126B (zh) 2024-04-19

Family

ID=86941504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310325599.5A Active CN116356126B (zh) 2023-03-30 2023-03-30 一种超薄耐腐蚀硅钢带及其制备方法

Country Status (1)

Country Link
CN (1) CN116356126B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270234A (zh) * 2000-04-21 2000-10-18 清华大学 用低频脉冲磁处理降低钢铁工件中内应力的方法及其装置
KR20030054695A (ko) * 2001-12-26 2003-07-02 주식회사 포스코 무방향성전기강판의 자장열처리방법
JP2005007771A (ja) * 2003-06-19 2005-01-13 Nisshin Steel Co Ltd 耐食性に優れた塗装ステンレス鋼板
JP2012057201A (ja) * 2010-09-07 2012-03-22 Sumitomo Metal Ind Ltd 絶縁皮膜付き電磁鋼板
CN106755790A (zh) * 2016-11-15 2017-05-31 上海大学 一种利用磁场回复退火提高硅钢性能的工艺方法
CN110328235A (zh) * 2019-07-15 2019-10-15 上海大学 一种在磁场下高硅钢冷轧的方法
CN111575594A (zh) * 2020-06-29 2020-08-25 马鞍山钢铁股份有限公司 一种低磁场下的无取向电工钢及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270234A (zh) * 2000-04-21 2000-10-18 清华大学 用低频脉冲磁处理降低钢铁工件中内应力的方法及其装置
KR20030054695A (ko) * 2001-12-26 2003-07-02 주식회사 포스코 무방향성전기강판의 자장열처리방법
JP2005007771A (ja) * 2003-06-19 2005-01-13 Nisshin Steel Co Ltd 耐食性に優れた塗装ステンレス鋼板
JP2012057201A (ja) * 2010-09-07 2012-03-22 Sumitomo Metal Ind Ltd 絶縁皮膜付き電磁鋼板
CN106755790A (zh) * 2016-11-15 2017-05-31 上海大学 一种利用磁场回复退火提高硅钢性能的工艺方法
CN110328235A (zh) * 2019-07-15 2019-10-15 上海大学 一种在磁场下高硅钢冷轧的方法
CN111575594A (zh) * 2020-06-29 2020-08-25 马鞍山钢铁股份有限公司 一种低磁场下的无取向电工钢及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"磁热耦合场去除冷轧薄板残余应力试验研究";罗家豪;中国优秀硕士学位论文全文数据库 工程科技I辑》;20230215(第2期);摘要,第12页第2段,第15页第2段,第26页第3段 *

Also Published As

Publication number Publication date
CN116356126A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN107190252B (zh) 一种无铬绝缘涂层组合物及其制备方法与取向硅钢板
EP1384275A4 (en) CATHODE SIDE HARDWARE WITH SOL GEL COATING FOR CARBON FUEL CELLS
CN108286021A (zh) 一种高磁感无取向硅钢板的制备方法
CN102246248A (zh) 经涂层的磁性合金材料及其制备方法
CN116356126B (zh) 一种超薄耐腐蚀硅钢带及其制备方法
US3421949A (en) Composition and process for producing an electrically resistant coating on ferrous surfaces
KR101168509B1 (ko) 열전도성이 우수한 절연 피막을 갖는 전자기 강판 및 그 제조 방법
CN106544657B (zh) 提高材料表面改性层性能的涂覆液、方法及其应用
JPS5928525A (ja) キユ−ブ・オン・エツジケイ素鋼の製造方法
CN111433292B (zh) 用于将电工钢带电绝缘的无铬无磷酸盐涂层
CN114226723B (zh) 氧化物陶瓷包覆金属铝的低红外、抗氧化复合材料、制备方法及其应用
CN114106593B (zh) 一种用于取向硅钢表面涂层的涂料、取向硅钢板及其制造方法
JPH08269573A (ja) 密着性の優れた一方向性電磁鋼板の絶縁被膜形成方法
KR910003743B1 (ko) 절연성 인산염이 피복된 박판용 강부재
CN112831200A (zh) 一种不含铬取向电磁钢板用涂料、其制备方法及带涂层的不含铬取向电磁钢板的制备方法
TWI506102B (zh) 非方向性電磁鋼片之塗料與非方向性電磁鋼片
CN118048092B (zh) 环保高性能水性卷材涂料及其制备工艺
JP2667098B2 (ja) 低鉄損方向性電磁鋼板の製造方法
JPS61284529A (ja) 鉄損の極めて低い方向性電磁鋼板の製造方法
TWI494382B (zh) 耐熱絕緣塗佈組成物、其形成之耐熱絕緣膜及其於非方向性電磁鋼片之應用
JPS60152681A (ja) 無方向性電磁鋼板の絶縁皮膜
JP2000345360A (ja) 歪み取り焼鈍後の特性に優れたクロムフリー絶縁被膜付き電磁鋼板
TWI734448B (zh) 無方向性電磁鋼板及其製造方法
CN101805908B (zh) 一种在钢基表面制备二氧化钛耐蚀抗垢膜的方法
JPH04110476A (ja) 歪取り焼鈍後に密着性と絶縁性にすぐれた絶縁被膜を有する電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant