CN116354734A - 一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法 - Google Patents

一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法 Download PDF

Info

Publication number
CN116354734A
CN116354734A CN202310286407.4A CN202310286407A CN116354734A CN 116354734 A CN116354734 A CN 116354734A CN 202310286407 A CN202310286407 A CN 202310286407A CN 116354734 A CN116354734 A CN 116354734A
Authority
CN
China
Prior art keywords
rare earth
thermal barrier
barrier coating
coating material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310286407.4A
Other languages
English (en)
Inventor
靳洪允
罗学维
李开云
黄烁
侯书恩
洪建和
袁硕果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202310286407.4A priority Critical patent/CN116354734A/zh
Publication of CN116354734A publication Critical patent/CN116354734A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法。该热障涂层材料的化学组成为(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。制备方法,包括如下步骤:S1,将稀土源和锆源按分子式中的摩尔比进行配料混合;S2,将步骤S1得到的溶液逐滴加入至氨水中,不断搅拌,生成絮凝沉淀物;S3,将步骤S2得到的絮凝沉淀物洗涤并干燥;S4,将步骤S3得到的干燥混合粉体在预热处理一段时间,然后热处理得到的粉末烧结一段时间得到高熵稀土锆酸盐热障涂层材料。本发明设计的高熵稀土锆酸盐晶粒生长速度明显减慢,并且平均晶粒尺寸更小,抗烧结能力更好。

Description

一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法
技术领域
本发明涉及热障涂层材料技术领域,尤其涉及一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法。
背景技术
随着航空发动机向更高推重比、更高进口温度的发展,对发动机热端部件表面防护的热障涂层材料提出了更高的要求。长期高温服役环境下,热障涂层系统的热障陶瓷隔热层会发生显著的烧结现象,目前广泛应用的氧化钇稳定氧化锆(YSZ)在1200℃会发生相变和快速烧结,从而引起涂层微结构、力学、热学性能的变化,严重影响涂层的热障效果和安全服役。可见,陶瓷层高温烧结现象是制约热障涂层长期服役稳定性与寿命的瓶颈之一。
近年来,与单组分陶瓷相比,高熵陶瓷通常具有更好的热稳定性、较高的硬度、较低的导热系数和良好的耐环境腐蚀性能,而且由于高熵的迟滞扩散效应,高熵陶瓷晶粒生长速度通常较慢,被认为是目前最有潜力的热障涂层材料之一,晶粒生长速度越慢,抗烧结能力越好,但是目前现有技术中公开的一些高熵陶瓷晶粒生长速度相对来比较快,与实际应用存在差距,例如,Zhao等人在题为(Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7:A defectivefluorite structured high entropy ceramic with low thermal conductivity andclose thermal expansion coefficient to Al2O3的文章指出:(Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7在1590℃退火烧结18h后的平均晶粒尺寸从0.57um增加到2.30um,而Yb2Zr2O7平均晶粒尺寸的从0.55um增加2.98um,Y2O3的平均晶粒尺寸从1.00um增加到12.12um。zhao等人在(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7:Anovel high-entropy ceramic with lowthermal conductivity and sluggish grain growth rate文章中合成的(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7在1500℃加热1-18h后,平均晶粒尺寸从1.69um增加到3.92um,对比La2Zr2O7的平均晶粒尺寸则1.96um增加到8.89um。
发明内容
本发明的目的在于,针对现有技术的上述不足,提出一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法。
本发明的一种抗烧结的高熵稀土锆酸盐热障涂层材料,所述热障涂层材料的化学组成为(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7
一种如上述的一种抗烧结的高熵稀土锆酸盐热障涂层材料的制备方法,包括如下步骤:
S1,将稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比进行配料混合;
S2,将步骤S1得到的溶液逐滴加入至氨水中,不断搅拌,生成絮凝沉淀物;
S3,将步骤S2得到的絮凝沉淀物洗涤并干燥;
S4,将步骤S3得到的干燥混合粉体在预热处理一段时间,然后热处理得到的粉末烧结一段时间得到高熵稀土锆酸盐热障涂层材料。
进一步的,所述稀土源包括但不限于稀土氧化物、稀土氯化物、稀土硝酸盐、稀土硫酸盐。
进一步的,所述锆源包括但不限于八水合二氯氧化锆、硝酸锆、硫酸锆。
进一步的,在步骤S2滴定过程中将溶液逐滴加入氨水中,并且在整个滴定过程中通过不断添加氨水控制其pH始终大于10,确保完全生成絮凝沉淀物。
进一步的,步骤S3中,生成的絮凝沉淀物先用去离子水反复离心洗涤至中性,去除氯离子,然后再用乙醇和正丁醇各洗涤1次。
进一步的,在步骤S4中,预热处理温度为850~1050℃,预热处理时间为5~10h。
进一步的,热处理温度为1400~1600℃,热处理至少1h。
稀土锆酸盐通过高熵设计后,由于烧结过程中氧空位移动能够促进晶粒的生长,在本发明中,镧系元素Dy3+等的加入能有效抑制氧空位的作用,此外经过尺寸差和质量差等计算筛选出五种等摩尔比元素,具有高熵固溶体的缓慢扩散效应,降低高熵陶瓷的晶粒生长速度。本发明通过在稀土位筛选设计五元等摩尔比高熵稀土锆酸盐涂层材料(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7,在1600℃烧结1~50h后,平均晶粒尺寸仅从0.73um增加到2.22um,对比与文献中La2Zr2O7在1 500℃加热1~18h平均晶粒尺寸从1.96um增加到8.89um。本发明设计的高熵稀土锆酸盐(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7晶粒生长速度明显减慢,并且平均晶粒尺寸更小,抗烧结能力更好。
附图说明
图1是高熵稀土锆酸盐(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7在1600℃分别烧结1、10、20、30、40、50h的SEM图;
图2是高熵稀土锆酸盐(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7在1600℃分别烧结1、10、20、30、40、50h的平均晶粒尺寸图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且保持pH>10完全生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至中性(pH≈7),再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中950℃预热处理预10h;将热处理完成的粉末在高温烧结炉中1600℃烧结1h,得到抗烧结的高熵稀土锆酸盐热障涂层材料,平均晶粒尺寸为0.73um。
图1(a)为本实施例的抗烧结的高熵稀土锆酸盐热障涂层材料的SEM图。
实施例2:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且保持pH>10完全生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至中性(pH≈7),再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中950℃预热处理预10h;将热处理完成的粉末在高温烧结炉中1600℃烧结10h,得到抗烧结的高熵稀土锆酸盐热障涂层材料,平均晶粒尺寸为1.24um。
图1(b)为本实施例的抗烧结的高熵稀土锆酸盐热障涂层材料的SEM图。
实施例3:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且保持pH>10完全生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至中性(pH≈7),再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中950℃预热处理预10h;将热处理完成的粉末在高温烧结炉中1600℃烧结20h,得到抗烧结的高熵稀土锆酸盐热障涂层材料,平均晶粒尺寸为1.64um。
图1(c)为本实施例的抗烧结的高熵稀土锆酸盐热障涂层材料的SEM图。
实施例4:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧化锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧化锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且需保持pH>10生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至中性(pH≈7),再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中950℃预热处理预10h;将热处理完成的粉末在高温烧结炉中1600℃烧结30h,得到抗烧结的高熵稀土锆酸盐热障涂层材料,平均晶粒尺寸为2.03um。
图1(d)为本实施例的抗烧结的高熵稀土锆酸盐热障涂层材料的SEM图。
实施例5:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧化锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧化锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且需保持pH>10生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至中性(pH≈7),再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中950℃预热处理预10h;将热处理完成的粉末在高温烧结炉中1600℃烧结40h,得到抗烧结的高熵稀土锆酸盐热障涂层材料,平均晶粒尺寸为2.14um。
图1(e)为本实施例的抗烧结的高熵稀土锆酸盐热障涂层材料的SEM图。
实施例6:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧化锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧化锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且需保持pH>10生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至pH≈7,再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中950℃预热处理预10h;将热处理完成的粉末在高温烧结炉中1600℃烧结50h,得到抗烧结的高熵稀土锆酸盐热障涂层材料,平均晶粒尺寸为2.22um。
图1(f)为本实施例的抗烧结的高熵稀土锆酸盐热障涂层材料的SEM图。
实施例7:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧化锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧化锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且需保持pH>10生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至pH≈7,再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中850℃预热处理预8h;将热处理完成的粉末在高温烧结炉中1500℃烧结10h,得到高熵稀土锆酸盐热障陶瓷材料。
实施例8:
一种抗烧结的高熵稀土锆酸盐热障涂层材料,化学组成为:(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7。所述抗烧结的高熵稀土锆酸盐热障涂层材料制备方法包括:
(1)采用共沉淀法,将所有稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比,分别称取:7.4600g氧化镝、6.7296g氧化钕、6.9744g氧化钐、7.0386g氧化铕、7.8816g氧化镱和64.4500g八水氯氧化锆,将稀土氧化物溶于硝酸形成稀土硝酸盐溶液,八水氯氧化锆溶于去离子水形成锆溶液;
(2)将步骤(1)得到的溶液逐滴加入pH>10.0的氨水中,全程磁力搅拌,且需保持pH>10生成絮凝沉淀物;
(3)将步骤(2)得到的沉淀物先用去离子水反复离心洗涤至pH≈7,再用乙醇和正丁醇离心洗涤并干燥;
(4)将步骤(3)得到的干燥粉体在马弗炉中1050℃预热处理预5h;将热处理完成的粉末在高温烧结炉中1400℃烧结20h,得到高熵稀土锆酸盐热障陶瓷材料。
图2是高熵稀土锆酸盐(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7在1600℃分别烧结1、10、20、30、40、50h的平均晶粒尺寸图,从图中可以看出,即使在烧结50h后,平均晶粒尺寸也才到2.22um,说明本申请制备的高熵稀土锆酸盐抗烧结能力很好。
以上未涉及之处,适用于现有技术。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (8)

1.一种抗烧结的高熵稀土锆酸盐热障涂层材料,其特征在于:所述热障涂层材料的化学组成为(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7
2.一种如权利要求1所述的一种抗烧结的高熵稀土锆酸盐热障涂层材料的制备方法,其特征在于:包括如下步骤:
S1,将稀土源和锆源按(Dy0.2Nd0.2Sm0.2Eu0.2Yb0.2)2Zr2O7分子式中的摩尔比进行配料混合;
S2,将步骤S1得到的溶液逐滴加入至氨水中,不断搅拌,生成絮凝沉淀物;
S3,将步骤S2得到的絮凝沉淀物洗涤并干燥;
S4,将步骤S3得到的干燥混合粉体在预热处理一段时间,然后热处理得到的粉末烧结一段时间得到高熵稀土锆酸盐热障涂层材料。
3.如权利要求2所述的制备方法,其特征在于:所述稀土源包括但不限于稀土氧化物、稀土氯化物、稀土硝酸盐、稀土硫酸盐。
4.如权利要求2所述的制备方法,其特征在于:所述锆源包括但不限于八水合二氯氧化锆、硝酸锆、硫酸锆。
5.如权利要求2所述的制备方法,其特征在于:在步骤S2滴定过程中将溶液逐滴加入氨水中,并且在整个滴定过程中通过不断添加氨水控制其pH始终大于10,确保完全生成絮凝沉淀物。
6.如权利要求2所述的制备方法,其特征在于:步骤S3中,生成的絮凝沉淀物先用去离子水反复离心洗涤至中性,去除氯离子,然后再用乙醇和正丁醇各洗涤1次。
7.如权利要求2所述的制备方法,其特征在于:在步骤S4中,预热处理温度为850~1050℃,预热处理时间为5~10h。
8.如权利要求2所述的制备方法,其特征在于:热处理温度为热处理至少1h。
CN202310286407.4A 2023-03-22 2023-03-22 一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法 Pending CN116354734A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310286407.4A CN116354734A (zh) 2023-03-22 2023-03-22 一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310286407.4A CN116354734A (zh) 2023-03-22 2023-03-22 一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116354734A true CN116354734A (zh) 2023-06-30

Family

ID=86935776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310286407.4A Pending CN116354734A (zh) 2023-03-22 2023-03-22 一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116354734A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894027A (zh) * 2022-12-12 2023-04-04 广东省科学院新材料研究所 基于锆酸钆的高熵陶瓷热障涂层粉体及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978761A (zh) * 2019-05-22 2020-11-24 北京理工大学 一种锆酸盐复合材料及其制备方法和应用
CN112661511A (zh) * 2021-01-13 2021-04-16 中国人民解放军国防科技大学 一种掺杂改性的稀土锆酸盐粉体及其制备方法和应用
CN113248271A (zh) * 2021-06-25 2021-08-13 中国地质大学(武汉) 高熵稀土铝酸盐-高熵稀土锆酸盐复合热障涂层材料及其制备方法和应用
CN113772723A (zh) * 2021-09-23 2021-12-10 中国地质大学(武汉) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用
CN113929453A (zh) * 2020-07-14 2022-01-14 厦门稀土材料研究所 一种稀土基隔热多孔高熵陶瓷及其制备方法
US20220290285A1 (en) * 2021-03-09 2022-09-15 General Electric Company High entropy ceramic thermal barrier coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978761A (zh) * 2019-05-22 2020-11-24 北京理工大学 一种锆酸盐复合材料及其制备方法和应用
CN113929453A (zh) * 2020-07-14 2022-01-14 厦门稀土材料研究所 一种稀土基隔热多孔高熵陶瓷及其制备方法
CN112661511A (zh) * 2021-01-13 2021-04-16 中国人民解放军国防科技大学 一种掺杂改性的稀土锆酸盐粉体及其制备方法和应用
US20220290285A1 (en) * 2021-03-09 2022-09-15 General Electric Company High entropy ceramic thermal barrier coating
CN113248271A (zh) * 2021-06-25 2021-08-13 中国地质大学(武汉) 高熵稀土铝酸盐-高熵稀土锆酸盐复合热障涂层材料及其制备方法和应用
CN114516761A (zh) * 2021-06-25 2022-05-20 中国地质大学(武汉) 高熵稀土铝酸盐增韧高熵稀土锆酸盐的高断裂韧性热障涂层材料及其制备方法和应用
CN113772723A (zh) * 2021-09-23 2021-12-10 中国地质大学(武汉) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894027A (zh) * 2022-12-12 2023-04-04 广东省科学院新材料研究所 基于锆酸钆的高熵陶瓷热障涂层粉体及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN113772723A (zh) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用
Stokes et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials
CN100386391C (zh) 稀土锆酸盐高温热障涂层材料及其制备方法
CN116354734A (zh) 一种抗烧结的高熵稀土锆酸盐热障涂层材料及其制备方法
CN113248271A (zh) 高熵稀土铝酸盐-高熵稀土锆酸盐复合热障涂层材料及其制备方法和应用
CN111978761B (zh) 一种锆酸盐复合材料及其制备方法和应用
CN111978087A (zh) 一种复合材料及其制备方法和应用
JP2951771B2 (ja) 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
CN110563035A (zh) 一种稀土锆酸盐纳米粉体及其制备方法和应用
CN111170726A (zh) 一种基于am凝胶注模成型制备均匀yag透明陶瓷素坯的方法
CN113956037A (zh) 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法
CN114671683B (zh) 一种高温相稳定高熵氧化锆热障涂层材料及其制备方法
CN111434613B (zh) 一种稀土系复合材料及其制备方法和应用
US7534290B2 (en) Corrosion resistant thermal barrier coating material
JPH02258674A (ja) 導電性ジルコニア焼結体およびその製造法
Zhou et al. Reaction mechanisms of (RE0. 2Nd0. 2Sm0. 2Eu0. 2Gd0. 2) 2Zr2O7 (RE= La or Yb) under CaO-MgO-Al2O3-SiO2 (CMAS) attack
TWI240715B (en) Setter for firing ceramic electronic component
CN116730730A (zh) 一种高热膨胀系数的高熵稀土锆酸盐热障涂层材料及其制备方法
CN107619066B (zh) 一种镁复合稳定的氧化锆粉体制备工艺
CN112811882A (zh) 一种高稳定传感器陶瓷材料及其制备方法
Kilbourn The role of the lanthanides and yttrium in advanced engineering and high-technology ceramics
CN106966719B (zh) 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器
CN116621577A (zh) 一种晶界和表面掺杂的稀土锆基陶瓷材料及其制备方法和应用
JP2001302337A (ja) 耐熱衝撃抵抗性に優れたセラミック製熱処理用部材
KR100246145B1 (ko) 고강도.고인성 지르코니아계 세라믹스의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Jin Hongyun

Inventor after: Li Kaiyun

Inventor after: Luo Xuewei

Inventor after: Huang Shuo

Inventor after: Hou Shuen

Inventor after: Hong Jianhe

Inventor after: Yuan Shuoguo

Inventor before: Jin Hongyun

Inventor before: Luo Xuewei

Inventor before: Li Kaiyun

Inventor before: Huang Shuo

Inventor before: Hou Shuen

Inventor before: Hong Jianhe

Inventor before: Yuan Shuoguo