CN106966719B - 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器 - Google Patents
一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器 Download PDFInfo
- Publication number
- CN106966719B CN106966719B CN201710239911.3A CN201710239911A CN106966719B CN 106966719 B CN106966719 B CN 106966719B CN 201710239911 A CN201710239911 A CN 201710239911A CN 106966719 B CN106966719 B CN 106966719B
- Authority
- CN
- China
- Prior art keywords
- barium titanate
- batio
- ceramic material
- powder
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910002113 barium titanate Inorganic materials 0.000 title claims abstract description 113
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 title claims abstract description 73
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 68
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000003985 ceramic capacitor Substances 0.000 title claims description 10
- 239000000843 powder Substances 0.000 claims abstract description 69
- 238000005245 sintering Methods 0.000 claims abstract description 31
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract description 30
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 27
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 23
- 239000000725 suspension Substances 0.000 claims abstract description 21
- 230000032683 aging Effects 0.000 claims abstract description 15
- 239000002904 solvent Substances 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 150000000922 Holmium Chemical class 0.000 claims abstract description 11
- 150000002696 manganese Chemical class 0.000 claims abstract description 11
- 159000000003 magnesium salts Chemical class 0.000 claims abstract description 10
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 claims abstract description 7
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 7
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000003801 milling Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 15
- 238000000227 grinding Methods 0.000 claims description 13
- 239000011572 manganese Substances 0.000 claims description 10
- 229910052689 Holmium Inorganic materials 0.000 claims description 9
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 9
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- -1 holmium ions Chemical class 0.000 claims description 6
- 229910001437 manganese ion Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 238000000576 coating method Methods 0.000 abstract description 16
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 abstract description 12
- 239000002245 particle Substances 0.000 abstract description 10
- 238000000465 moulding Methods 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 4
- 239000007791 liquid phase Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 17
- 239000000919 ceramic Substances 0.000 description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 10
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- 238000009694 cold isostatic pressing Methods 0.000 description 5
- 239000011258 core-shell material Substances 0.000 description 5
- 229910052751 metal Chemical class 0.000 description 5
- 239000002184 metal Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- XDFCIPNJCBUZJN-UHFFFAOYSA-N barium(2+) Chemical compound [Ba+2] XDFCIPNJCBUZJN-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 239000011654 magnesium acetate Substances 0.000 description 3
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical group [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- WDVGLADRSBQDDY-UHFFFAOYSA-N holmium(3+);trinitrate Chemical compound [Ho+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WDVGLADRSBQDDY-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical group [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- BONORRGKLJBGRV-UHFFFAOYSA-N methapyrilene hydrochloride Chemical compound Cl.C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 BONORRGKLJBGRV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提供了一种钛酸钡基X8R陶瓷材料的制备方法,包括以下步骤:S1)将BaTiO3粉体与溶剂混合,进行滚磨处理,得到悬浮液;S2)将钬盐、镁盐与锰盐加至悬浮液中滚磨,得到反应液;S3)在反应液中加入氨水至反应液的pH值为9~11,陈化后得到前驱体;S4)将所述前驱体先进行预烧结,成型后,烧结,得到钛酸钡基X8R陶瓷材料。与现有技术相比,本发明采用液相化学包覆法使氧化钬、氧化镁与氧化锰均匀的包覆在BaTiO3外,使得到的钛酸钡基X8R陶瓷材料的粒径均匀且较小,并且也具有较好的电容温度稳定性。
Description
技术领域
本发明属于陶瓷材料技术领域,尤其涉及一种钛酸钡基X8R陶瓷材料及其制备方法、陶瓷电容器。
背景技术
随着汽车电子工业的发展,多层陶瓷电容器(MLCC)开始在汽车电子领域中得到广泛的使用,诸如防抱死制动系统(ABS)、燃油喷射控制模块(PGMFI)、发动机控制单元(ECU)等。但是,这些电子产品工作时温度较高,例如ECU常规工作温度高达130℃以上,当其满载工作时温度可达150℃,而现在市场中广泛使用的X7R型MLCC(-55℃~125℃,△C/C≤±15%)无法在如此苛刻的环境下稳定地工作,因此电子控制单元使用的MLCC必须具有EIAX8R特性(-55℃~150℃,△C/C≤±15%)。
据文献报道,获得温度稳定型X8R电容器的关键之一是在BaTiO3基陶瓷中形成化学非均匀“核-壳”结构,即铁电相的纯BaTiO3晶粒芯被顺电相的掺杂BaTiO3晶粒壳包裹,形成核-壳结构。形成核-壳结构陶瓷晶粒的关键在于制作陶瓷粉体时,用掺杂氧化物包覆钛酸钡粉末,陶瓷粉末压成陶瓷片后,经过高温煅烧,掺杂离子将扩散进钛酸钡内部,形成具有一定掺杂离子浓度梯度的壳层。
为了烧结出“核-壳”结构的BaTiO3基X8R陶瓷,必须先对BaTiO3粉体进行金属氧化物包覆,再将粉体烧结出陶瓷。目前包覆BaTiO3粉体制备钛酸钡基X8R型陶瓷大多利用传统的固相包覆法所制备,指将BaTiO3与金属氧化物或者金属盐类通过球磨充分混合后,而使氧化物包覆再BaTiO3颗粒表面。虽然该法工艺步骤简单,但烧结制备出的陶瓷平均晶粒尺寸较大,没法适应电子器件小型化发展的趋势。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种钛酸钡基X8R陶瓷材料及其制备方法、陶瓷电容器,该方法制备的钛酸钡基X8R陶瓷材料的粒径均匀且较小。
本发明提供了一种钛酸钡基X8R陶瓷材料的制备方法,包括以下步骤:
S1)将BaTiO3粉体与溶剂混合,进行滚磨处理,得到悬浮液;
S2)将钬盐、镁盐与锰盐加至悬浮液中滚磨,得到反应液;
S3)在反应液中加入氨水至反应液的pH值为9~11,陈化后得到前驱体;
S4)将所述前驱体先进行预烧结,成型后,烧结,得到钛酸钡基X8R陶瓷材料。
优选的,所述BaTiO3粉体与溶剂的质量比为1∶(1~5)。
优选的,所述步骤S1)中滚磨处理时磨球的直径为1~5mm;磨球的质量为BaTiO3粉体质量的4~10倍。
优选的,所述步骤S1)中滚磨处理的时间为2~10h;所述步骤S2)中滚磨的时间为1~3h。
优选的,所述钬盐中钬离子的摩尔数为BaTiO3粉体摩尔数的1.5%~10%;所述镁盐中镁离子的摩尔数为BaTiO3粉体摩尔数的2%~10%;所述锰盐中锰离子的摩尔数为BaTiO3粉体摩尔数的0.1%~1.5%。
优选的,所述步骤S3)具体为:
在加热搅拌的条件下,在反应液中滴加氨水,反应液的pH值每增加0.5~1.5,停止滴加氨水0.5~1.5min,再继续滴加氨水,直至反应液的pH值为9~11,继续搅拌0.5~1.5h后,陈化,得到前驱体。
优选的,所述预烧结的温度为500℃~800℃;所述预烧结的时间为1~3h。
优选的,所述步骤S4)中烧结具体为:
以5~15℃/min的升温速率升温至1100℃~1500℃,保温0~10min,然后以15~25℃/min的速率降温至800℃~1000℃,保温5~20h,得到钛酸钡基X8R陶瓷材料。
本发明还提供了一种钛酸钡基X8R陶瓷材料,所述钛酸钡基X8R陶瓷材料包括核与壳;所述核为BaTiO3;所述壳由氧化钬、氧化镁与氧化锰组成。
本发明还提供了一种陶瓷电容器,包括上述的钛酸钡基X8R陶瓷材料。
本发明提供了一种钛酸钡基X8R陶瓷材料的制备方法,包括以下步骤:S1)将BaTiO3粉体与溶剂混合,进行滚磨处理,得到悬浮液;S2)将钬盐、镁盐与锰盐加至悬浮液中滚磨,得到反应液;S3)在反应液中加入氨水至反应液的pH值为9~11,陈化后得到前驱体;S4)将所述前驱体先进行预烧结,成型后,烧结,得到钛酸钡基X8R陶瓷材料。与现有技术相比,本发明采用液相化学包覆法使氧化钬、氧化镁与氧化锰均匀的包覆在BaTiO3外,使得到的钛酸钡基X8R陶瓷材料的粒径均匀且较小,并且也具有较好的电容温度稳定性。
附图说明
图1为本发明实施例1中得到的被金属氧化物均匀包覆的纳米级BaTiO3基粉体的扫描电镜照片;
图2为本发明实施例1中得到的被金属氧化物均匀包覆的纳米级BaTiO3基粉体的扫描电镜照片;
图3为本发明实施例1中得到的钛酸钡基X8R陶瓷材料的扫描电镜照片;
图4为本发明实施例1中得到的钛酸钡基X8R陶瓷材料的晶粒尺寸分布图;
图5为本发明实施例1中得到的钛酸钡基X8R陶瓷材料及比较例1~4中得到的钛酸钡基陶瓷材料的介温曲线图;
图6为本发明实施例1中得到的钛酸钡基X8R陶瓷材料及比较例1~4中得到的钛酸钡基陶瓷材料的电容量变化率温度曲线;
图7为本发明实施例2中得到的钛酸钡基X8R陶瓷材料的介温曲线图;
图8为本发明实施例2中得到的钛酸钡基X8R陶瓷材料的电容量变化率温度曲线图;
图9为本发明实施例3中得到的钛酸钡基X8R陶瓷材料的介温曲线图;
图10为本发明实施例3中得到的钛酸钡基X8R陶瓷材料的电容量变化率温度曲线图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种钛酸钡基X8R陶瓷材料的制备方法,包括以下步骤:S1)将BaTiO3粉体与溶剂混合,进行滚磨处理,得到悬浮液;S2)将钬盐、镁盐与锰盐加至悬浮液中滚磨,得到反应液;S3)在反应液中加入氨水至反应液的pH值为9~11,陈化后得到前驱体;S4)将所述前驱体先进行预烧结,成型后,烧结,得到钛酸钡基X8R陶瓷材料。
本发明对所有原料的来源并没有特殊的限制,为市售即可。
将BaTiO3粉体与溶剂混合,进行滚磨处理,得到悬浮液;所述BaTiO3粉体为本领域技术人员熟知的BaTiO3粉体即可,并无特殊的限制,本发明中优选为水热法合成的BaTiO3粉体;所述BaTiO3粉体的平均粒径优选为80~120nm,更优选为90~110nm,再优选为100nm;所述溶剂为本领域技术人员熟知的有机溶剂即可,并无特殊的限制,本发明中优选为醇溶剂,更优选为异丙醇;所述BaTiO3粉体与溶剂的质量比1:(1~5),更优选为1:(1~4),再优选为1:(2~3),最优选为1:2;所述滚磨处理时磨球的直径优选为1~5mm,更优选为2~4mm,再优选为3mm;所述磨球的质量优选为BaTiO3粉体质量的4~10倍,更优选为5~8倍,再优选为6~7倍,最优选为6倍;所述滚磨的时间优选为2~10h,更优选为4~8h,再优选为4~6h,最优选为5h。
将钬盐、镁盐与锰盐加至悬浮液中滚磨,得到反应液;所述钬盐为本领域技术人员熟知的钬盐即可,并无特殊的限制,本发明中优选为硝酸钬和和/或醋酸钬;所述钬盐中钬离子的摩尔数优选为BaTiO3粉体摩尔数的1.5%~10%,更优选为1.5%~8%,再优选为1.5%~6%,再优选为1.5%~4%,再优选为1.5%~2%,最优选为2%;所述镁盐为本领域技术人员熟知的镁盐即可,并无特殊的限制,本发明中优选为醋酸镁和/硝酸镁;所述镁盐中镁离子的摩尔数优选为BaTiO3粉体摩尔数的2%~10%,更优选为3%~8%,再优选为3%~6%,再优选为3%~4%,最优选为3%;所述锰盐为本领域技术人员熟知的锰盐即可,并无特殊的限制,本发明中优选为醋酸锰和/或氯化锰;所述锰盐中锰离子的摩尔数优选为BaTiO3粉体摩尔数的0.1%~1.5%,更优选为0.3%~1.5%,再优选为0.5%~1.5%,最优选为0.5%或1.5%,且当锰离子的摩尔数为BaTiO3粉体摩尔数的0.5%时钬盐中钬离子的摩尔数优选大于BaTiO3粉体摩尔数1.5%,;在本发明中所述钬盐、镁盐与锰盐优选以水溶液的形式加入;所述水溶液中钬离子的浓度优选为0.01~0.1mol/L,更优选为0.05~0.1mol/L,再优选为0.06~0.09mol/L,最优选为0.0643~0.0857mol/L;所述水溶液中镁离子的浓度优选为0.1~0.2mol/L,更优选为0.12~0.18mol/L,再优选为0.1286~0.1715mol/L;所述水溶液中锰离子的浓度优选为0.01~0.1mol/L,更优选为0.02~0.08mol/L,再优选为0.0214~0.0643mol/L;所述滚磨的时间优选为1~3h,更优选为2~3h,再优选为2h。
在反应液中加入氨水至反应液的pH值为9~11,更优选为10~11,再优选为10,陈化后,得到前驱体;按照本发明,此步骤优选具体为:在加热搅拌的条件下,在反应液中滴加氨水,反应液的pH值每增加0.5~1.5,停止滴加氨水0.5~1.5min,再继续滴加氨水,直至反应液的pH值为9~11,继续搅拌0.5~1.5h后,陈化,得到前驱体;更优选为具体为:在加热搅拌的条件下,在反应液中滴加氨水,反应液的pH值每增加0.8~1.2,停止滴加氨水0.8~1.2min,再继续滴加氨水,直至反应液的pH值为9~11,继续搅拌0.5~1.5h后,陈化,得到前驱体;再优选为具体为:在加热搅拌的条件下,在反应液中滴加氨水,反应液的pH值每增加1,停止滴加氨水1min,再继续滴加氨水,直至反应液的pH值为9~11,继续搅拌0.5~1.5h后,陈化,得到前驱体;所述加热搅拌的温度优选为30℃~50℃,更优选为35℃~45℃,再优选为40℃;所述继续搅拌的时间优选为0.8~1.2h,更优选为1h;在此过程中BaTiO3粉体表面生成相应的氢氧化物沉淀,沉淀反应式为:Mn++nNH3·H2O→M(OH)n↓+nNH4+;所述陈化的时间优选为10~30h,更优选为10~25h,再优选为10~20h,最优选为15h;陈化后,过滤,水洗,优选用去离子水洗至洗出液的pH值为中性;水洗后,干燥;所述干燥的温度优选为60℃~100℃,更优选为70℃~90℃,再优选为80℃;所述干燥的时间优选为10~40h,更优选为15~30h,再优选为15~25h,最优选为20h;干燥后,优选经研磨、过筛后得到前驱体。氨水捉奸加入可使掺杂剂中的Ho3+、Mg2+与Mn2+分别得到各自适合的沉淀反应化学环境,使氢氧化物对钛酸钡的包覆将更完全。
将所述前驱体进行预烧结;所述预烧结的温度优选为500℃~800℃,更优选为550℃~750℃,再优选为600℃~700℃,最优选为600℃;所述预烧结的时间优选为1~3h,更优选为1.5~2.5h,再优选为2h。此过程中反应式为:预烧结可确保包覆的氢氧化物在主晶相BaTiO3颗粒表面上完成晶化,生成相应的氧化物。
预烧结后,进行成型;所述成型的方法为本领域技术人员熟知的方法即可,并无特殊的限制,本发明中优选为将预烧结后的粉体与粘结剂混合造粒,压制成型;所述粘结剂为本领域技术人员熟知的粘结剂即可,并无特殊的限制,本发明中优选为聚乙烯醇缩丁醛(PVB)和/或聚乙烯醇(PVA);所述粘结剂的质量优选为预烧结后的粉体的质量的1%~10%,更优选为2%~8%,再优选为3%~6%,最优选为5%;所述压制成型优选为冷等静压;所述冷等静压的压力优选为100~400MPa,更优选为200~300MPa,再优选为200~250MPa,最优选为200MPa。
成型后,再进行烧结,得到钛酸钡基X8R陶瓷材料;所述烧结的方法为本领域技术人员熟知的方法即可,并无特殊的限制,本发明中优选为以5~15℃/min的升温速率升温至1100℃~1500℃,保温0~10min,然后以15~25℃/min的速率降温至800℃~1000℃,保温5~20h,得到钛酸钡基X8R陶瓷材料;更优选为以8~12℃/min的升温速率升温至1150℃~1400℃,保温0~8min,然后以18~25℃/min的速率降温至900℃~1000℃,保温5~15h,得到钛酸钡基X8R陶瓷材料;再优选为以10℃/min的升温速率升温至1200℃~1300℃,保温0~5min,然后以20~23℃/min的速率降温至900℃~1000℃,保温5~15h,得到钛酸钡基X8R陶瓷材料;最优选为以10℃/min的升温速率升温至1250℃,保温0~5min,然后以20℃/min的速率降温至950℃,保温10h,得到钛酸钡基X8R陶瓷材料;保温后,更优选随炉降温,得到钛酸钡基X8R陶瓷材料。烧结过程使用两步煅烧法,先快速升温至较高的温度以得到75%以上的陶瓷致密度,然后快速降温,并保持一段时间,维持晶界传质扩散处于活跃的状态,直到陶瓷样品完全致密。
本发明采用液相化学包覆法使氧化钬、氧化镁与氧化锰均匀的包覆在BaTiO3外,使得到的钛酸钡基X8R陶瓷材料的粒径均匀且较小,并且也具有较好的电容温度稳定性。
本发明还提供了一种上述方法制备的钛酸钡基X8R陶瓷材料;所述钛酸钡基X8R陶瓷材料包括核与壳;所述核为BaTiO3;所述壳由氧化钬、氧化镁与氧化锰组成。所述氧化钬中钬离子、氧化镁中镁离子与氧化锰中的锰离子的摩尔量均同上所述,在此不再赘述。
本发明还提供了一种陶瓷电容器,包括上述方法制备的钛酸钡基X8R陶瓷材料。
为了进一步说明本发明,以下结合实施例对本发明提供的一种钛酸钡基X8R陶瓷材料及其制备方法、陶瓷电容器进行详细描述。
以下实施例中所用的试剂均为市售。
实施例1
以水热法合成的BaTiO3粉体为原料,其中Ba2+与Ti4+的摩尔比为1.00,平均粒径为100nm;采用分析纯Ho(NO3)3、Mg(CH3COO)2和Mn(CH3COO)2为原料。首先将纳米级BaTiO3粉体加入到一定量的异丙醇溶剂中并滚磨5h,其中控制异丙醇与BaTiO3粉体的质量比为2:1,磨球直径为3mm且质量为粉体的6倍,制备出分散良好的稳定悬浮液。
然后按2.0mol%Ho(NO3)3、3.0mol%Mg(CH3COO)2、0.5mol%Mn(CH3COO)2,将掺杂原料溶于一定量的去离子水中,其中Ho3+浓度为0.0857mol/L,Mg2+浓度为0.1286mol/L,Mn2+浓度为0.0214mol/L,并加入到悬浮液中滚磨2h,并在40℃的恒温水浴磁力搅拌下往悬浮液中缓慢逐滴加入氨水至溶液的pH=10,其详细过程是pH值每增加1,停止滴加氨水1分钟,直到pH值达到10为止,搅拌过程持续1h后BaTiO3粉体表面将生成相应的氢氧化物沉淀,待陈化15h后,将粉体过滤、用去离子水洗多次直到洗出液PH值等于7为止,然后在80℃环境下干燥20h,经研磨、过筛后得到淡紫色的复合前驱粉体。
将前驱粉体置于600℃的马弗炉中预烧2h得到被金属氧化物均匀包覆的纳米级BaTiO3基粉体,包覆后的粉体以5%的PVB为粘合剂进行造粒,经200MPa的冷等静压得到Φ10mm×1mm的圆片样品。在马弗炉中以两步法烧结,具体烧结程序是:以10℃/min的速度快速升温到1250℃,保温0分钟,再以20℃/min的速度降温到950℃,并保温10个小时后随炉降温,得到钛酸钡基X8R陶瓷材料,然后双面涂覆银电极后以备性能测试。
实施例1中钛酸钡基X8R陶瓷材料的组成见表1。
利用扫描电子显微镜对实施例1中得到的被金属氧化物均匀包覆的纳米级BaTiO3基粉体进行分析,得到其扫描电镜照片如图1与图2所示;图2为局部放大的扫描电镜照片。
利用扫描电子显微镜对实施例1中得到的钛酸钡基X8R陶瓷材料进行分析,得到其扫描电镜照片,如图3所示;图4为实施例1中得到的钛酸钡基X8R陶瓷材料的晶粒尺寸分布图。
对实施例1中得到的钛酸钡基X8R陶瓷材料的电学性能进行测试,得到测试结果见表2;得到其介温曲线图如图5所示;得到其电容量变化率温度曲线如图6所示。
比较例1
按照实施例1的方法制备,只是Ho(NO3)3的量为0mol%,得到钛酸钡基陶瓷材料。
比较例1中钛酸钡基陶瓷材料的组成见表1。
对比较例1中得到的钛酸钡基陶瓷材料的电学性能进行测试,得到测试结果见表2;得到其介温曲线图如图5所示;得到其电容量变化率温度曲线如图6所示。
比较例2
按照实施例1的方法制备,只是Ho(NO3)3的量为0.5mol%,得到钛酸钡基陶瓷材料。
比较例2中钛酸钡基陶瓷材料的组成见表1。
对比较例2中得到的钛酸钡基陶瓷材料的电学性能进行测试,得到测试结果见表2;得到其介温曲线图如图5所示;得到其电容量变化率温度曲线如图6所示。
比较例3
按照实施例1的方法制备,只是Ho(NO3)3的量为1.0mol%,得到钛酸钡基陶瓷材料。
比较例3中钛酸钡基陶瓷材料的组成见表1。
对比较例3中得到的钛酸钡基陶瓷材料的电学性能进行测试,得到测试结果见表2;得到其介温曲线图如图5所示;得到其电容量变化率温度曲线如图6所示。
比较例4
按照实施例1的方法制备,只是Ho(NO3)3的量为1.5mol%,得到钛酸钡基陶瓷材料。
比较例4中钛酸钡基陶瓷材料的组成见表1。
对比较例4中得到的钛酸钡基陶瓷材料的电学性能进行测试,得到测试结果见表2;得到其介温曲线图如图5所示;得到其电容量变化率温度曲线如图6所示。
表1实施例1、比较例1~4中样品的组成
表2实施例1、比较例1~4中样品的电学性能测试结果
由上述实施例及比较例可知,陶瓷煅烧过程中Ho3+往钛酸钡晶粒内部扩散,形成合适的“核-壳”结构,致使BaTiO3基陶瓷的介温曲线更加平坦。当Ho3+含量为1.5mol%与1.0mol%时,两个样品的高温△C/C均大于20%,致使陶瓷电容温度稳定性明显变差,只能达到X7R标准;当Ho的包覆量达到2.0mol%时,BaTiO3基陶瓷的室温介电常数为1612,tanδ<0.7%,IR=7.7×1012Ω·cm,△C/C(-55~150℃)<±13%,满足EIA X8R的标准。
实施例2
以水热法合成的BaTiO3粉体为原料,其中Ba2+与Ti4+的摩尔比为1.00,平均粒径为100nm;采用分析纯Ho(NO3)3、Mg(CH3COO)2和Mn(CH3COO)2为原料。首先将纳米级BaTiO3粉体加入到一定量的异丙醇溶剂中并滚磨5h,其中控制异丙醇与BaTiO3粉体的质量比为2:1,磨球直径为3mm且质量为粉体的6倍,制备出分散良好的稳定悬浮液。
然后按1.5mol%Ho(NO3)3、4.0mol%Mg(CH3COO)2、1.0mol%Mn(CH3COO)2,将掺杂原料溶于一定量的去离子水中,其中Ho3+浓度为0.0643mol/L,Mg2+浓度为0.1715mol/L,Mn2+浓度为0.0428mol/L,并加入到悬浮液中滚磨2h,并在40℃的恒温水浴磁力搅拌下往悬浮液中缓慢逐滴加入氨水至溶液的pH=9,其详细过程是pH值每增加1,停止滴加氨水1分钟,直到pH值达到9为止,搅拌过程持续1h后BaTiO3粉体表面将生成相应的氢氧化物沉淀,待陈化15h后,将粉体过滤、用去离子水洗多次直到洗出液PH值等于7为止,然后在80℃环境下干燥20h,经研磨、过筛后得到淡紫色的复合前驱粉体。
将前驱粉体置于700℃的马弗炉中预烧2h得到被金属氧化物均匀包覆的纳米级BaTiO3基粉体,包覆后的粉体以5%的PVB为粘合剂进行造粒,经200MPa的冷等静压得到Φ10mm×1mm的圆片样品。在马弗炉中以两步法烧结,具体烧结程序是:以10℃/min的速度快速升温到1230℃,保温0分钟,再以15℃/min的速度降温到1000℃,并保温15个小时后随炉降温,得到钛酸钡基X8R陶瓷材料,然后双面涂覆银电极后以备性能测试。
对实施例2中得到的钛酸钡基X8R陶瓷材料的电学性能进行测试,得到其介温曲线图如图7所示;得到其电容量变化率温度曲线如图8所示。
当Ho的包覆量为到1.5mol%,Mg的包覆量为4.0%和Mn的包覆量为1.0%时,BaTiO3基陶瓷的室温介电常数为1716,tanδ<0.75%,IR=7.1×1012Ω·cm,△C/C(-55~150℃)<±11%,满足EIA X8R的标准。
实施例3
以水热法合成的BaTiO3粉体为原料,其中Ba2+与Ti4+的摩尔比为1.00,平均粒径为100nm;采用分析纯Ho(CH3COO)3、Mg(NO3)2和Mn(Cl)2为原料。首先将纳米级BaTiO3粉体加入到一定量的异丙醇溶剂中并滚磨5h,其中控制异丙醇与BaTiO3粉体的质量比为2:1,磨球直径为3mm且质量为粉体的6倍,制备出分散良好的稳定悬浮液。
然后按1.5mol%Ho(CH3COO)3、3.5mol%Mg(NO3)2、1.5mol%Mn(Cl)2,将掺杂原料溶于一定量的去离子水中,其中Ho3+浓度为0.0643mol/L,Mg2+浓度为0.15mol/L,Mn2+浓度为0.0643mol/L,并加入到悬浮液中滚磨2h,并在40℃的恒温水浴磁力搅拌下往悬浮液中缓慢逐滴加入氨水至溶液的pH=10.5,其详细过程是pH值每增加1,停止滴加氨水1分钟,直到pH值达到10.5为止,搅拌过程持续1h后BaTiO3粉体表面将生成相应的氢氧化物沉淀,待陈化15h后,将粉体过滤、用去离子水洗多次直到洗出液PH值等于7为止,然后在80℃环境下干燥20h,经研磨、过筛后得到淡紫色的复合前驱粉体。
将前驱粉体置于650℃的马弗炉中预烧3h得到被金属氧化物均匀包覆的纳米级BaTiO3基粉体,包覆后的粉体以5wt%的聚乙烯醇(PVA)为粘合剂进行造粒,经200MPa的冷等静压得到Φ10mm×1mm的圆片样品。在马弗炉中以两步法烧结,具体烧结程序是:以10℃/min的速度快速升温到1200℃,保温10分钟,再以20℃/min的速度降温到900℃,并保温20个小时后随炉降温,得到钛酸钡基X8R陶瓷材料,然后双面涂覆银电极后以备性能测试。
对实施例3中得到的钛酸钡基X8R陶瓷材料的电学性能进行测试,得到其介温曲线图如图9所示;得到其电容量变化率温度曲线如图10所示。
当Ho的包覆量为到1.5mol%,Mg的包覆量为3.5%和Mn的包覆量为1.5%时,BaTiO3基陶瓷的室温介电常数为1993,tanδ<0.8%,IR=6.8×1012Ω·cm,△C/C(-55~150℃)<±13%,满足EIA X8R的标准。
Claims (3)
1.一种钛酸钡基X8R陶瓷材料的制备方法,其特征在于,包括以下步骤:
S1)将BaTiO3粉体与溶剂混合,进行滚磨处理,得到悬浮液;
S2)将钬盐、镁盐与锰盐加至悬浮液中滚磨,得到反应液;
S3)在加热搅拌的条件下,在反应液中滴加氨水,反应液的pH值每增加0.5~1.5,停止滴加氨水0.5~1.5min,再继续滴加氨水,直至反应液的pH值为9~11,继续搅拌0.5~1.5h后,陈化,得到前驱体;
S4)将所述前驱体先进行预烧结,成型后,烧结,得到钛酸钡基X8R陶瓷材料;
所述钬盐中钬离子的摩尔数为BaTiO3粉体摩尔数的1.5%~10%;所述镁盐中镁离子的摩尔数为BaTiO3粉体摩尔数的2%~10%;所述锰盐中锰离子的摩尔数为BaTiO3粉体摩尔数的0.1%~1.5%;
所述BaTiO3粉体与溶剂的质量比为1:(1~5);
所述步骤S1)中滚磨处理时磨球的直径为1~5mm;磨球的质量为BaTiO3粉体质量的4~10倍;
所述步骤S1)中滚磨处理的时间为2~10h;所述步骤S2)中滚磨的时间为1~3h;
所述预烧结的温度为500℃~800℃;所述预烧结的时间为1~3h;
所述步骤S4)中烧结具体为:
以5~15℃/min的升温速率升温至1100℃~1500℃,保温0~10min,然后以15~25℃/min的速率降温至800℃~1000℃,保温5~20h,得到钛酸钡基X8R陶瓷材料。
2.一种权利要求1所制备的钛酸钡基X8R陶瓷材料,其特征在于,所述钛酸钡基X8R陶瓷材料包括核与壳;所述核为BaTiO3;所述壳由氧化钬、氧化镁与氧化锰组成。
3.一种陶瓷电容器,其特征在于,包括权利要求1所制备的钛酸钡基X8R陶瓷材料或权利要求2所述的钛酸钡基X8R陶瓷材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710239911.3A CN106966719B (zh) | 2017-04-13 | 2017-04-13 | 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710239911.3A CN106966719B (zh) | 2017-04-13 | 2017-04-13 | 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106966719A CN106966719A (zh) | 2017-07-21 |
CN106966719B true CN106966719B (zh) | 2020-10-23 |
Family
ID=59332854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710239911.3A Expired - Fee Related CN106966719B (zh) | 2017-04-13 | 2017-04-13 | 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106966719B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114956808B (zh) * | 2022-06-15 | 2023-05-23 | 无锡市高宇晟新材料科技有限公司 | Mlcc陶瓷介质材料及其制备方法、高温稳定型的mlcc陶瓷及其制备方法、应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101183610B (zh) * | 2007-11-27 | 2010-12-15 | 清华大学 | 化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料 |
CN101880167B (zh) * | 2010-06-11 | 2013-02-13 | 清华大学 | 水体系化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料 |
-
2017
- 2017-04-13 CN CN201710239911.3A patent/CN106966719B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106966719A (zh) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101183610B (zh) | 化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料 | |
Yao et al. | Nb‐Modified 0.9 BaTiO 3–0.1 (Bi 0.5 Na 0.5) TiO 3 Ceramics for X 9 R High‐Temperature Dielectrics Application Prepared by Coating Method | |
CN108329027B (zh) | 一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法 | |
TWI415795B (zh) | 複合氧化物粒子及其製造方法 | |
CN114940616B (zh) | 一种稀土改性的钛酸锶巨介电陶瓷材料及其制备方法 | |
CN1172321C (zh) | 介电常数、温度稳定型多层陶瓷电容器材料及其制备方法 | |
CN106966719B (zh) | 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器 | |
CN111410530A (zh) | 一种抗还原BaTiO3基介质陶瓷及其制备方法 | |
CN113666738A (zh) | 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法 | |
CN113121222A (zh) | 一种钛酸钡粉体制备方法 | |
KR20150032999A (ko) | 복합 페롭스카이트 분말, 그 제조방법 및 이를 포함하는 내부전극용 페이스트 조성물 | |
US20040009351A1 (en) | Process for coating ceramic particles and compositions formed from the same | |
CN115798931A (zh) | 用于x8r多层陶瓷电容器的介质瓷料及制备方法和应用 | |
CN115947598B (zh) | 一种可与贱金属内电极共烧的反铁电材料及其制备方法 | |
CN1281549C (zh) | 镍内电极钛酸钡基多层陶瓷电容器纳米瓷粉的制备方法 | |
Thomas et al. | Structure and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique | |
CN100392779C (zh) | 细晶高介陶瓷电容器介质材料及其制备方法 | |
KR102548437B1 (ko) | 복합조성 페로브스카이트 금속 산화물 나노분말 제조 방법 및 이를 이용한 유전체 세라믹스 | |
CN110791287B (zh) | 一种稀土掺杂钨钼酸盐及其制备方法、应用 | |
CN103992103B (zh) | 二元系钛酸铜钇-钛酸锶巨介电陶瓷材料及其制备方法 | |
CN1295189C (zh) | 一种用于制备SrTiO3基压敏电容双功能陶瓷的方法 | |
Wang et al. | Synthesis of fine-grain Ba0. 96La0. 04TiO3 dielectric ceramics by different routes for multilayer ceramic capacitors | |
KR20220137247A (ko) | 금속 산화물 나노 입자가 부착된 그래핀 산화물을 포함하는 유전 세라믹스의 제조방법 | |
Xue et al. | Synthesis, sintering and characterization of PLZST perovskite prepared by a lactate precursor route | |
Gu et al. | Low‐Temperature, Single Step, Reactive Sintering of Lead Magnesium Niobate Using Mg (OH) 2‐Coated Nb2O5 Powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201023 |