CN116286379A - 一种促进微藻积累岩藻黄素及合成脂质的方法 - Google Patents

一种促进微藻积累岩藻黄素及合成脂质的方法 Download PDF

Info

Publication number
CN116286379A
CN116286379A CN202310349074.5A CN202310349074A CN116286379A CN 116286379 A CN116286379 A CN 116286379A CN 202310349074 A CN202310349074 A CN 202310349074A CN 116286379 A CN116286379 A CN 116286379A
Authority
CN
China
Prior art keywords
microalgae
fucoxanthin
component
lipid
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310349074.5A
Other languages
English (en)
Other versions
CN116286379B (zh
Inventor
李峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Ocean University
Original Assignee
Guangdong Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Ocean University filed Critical Guangdong Ocean University
Priority to CN202310349074.5A priority Critical patent/CN116286379B/zh
Publication of CN116286379A publication Critical patent/CN116286379A/zh
Application granted granted Critical
Publication of CN116286379B publication Critical patent/CN116286379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种促进微藻积累岩藻黄素及合成脂质的方法,该方法包括如下步骤:S1.准备制备培养基的原料,按照质量浓度计算,培养基中包括A组分、B组分,其中,B组分包括NaNO3 75mg/L,KH2PO4 5mg/L,Na2SiO3·9H2O 90mg/L中的至少一种。该促进微藻积累岩藻黄素及其合成脂质的培养基,能够提高微藻岩藻黄素的积累量及加快其微藻脂质的合成。并且,由于本发明所引入的组分都为盐类,相较于现有技术中引入新组分以提高岩藻黄素及油脂含量的积累的方法,本发明所提供的方法在实际应用上具有成本低、实用性强等特点。

Description

一种促进微藻积累岩藻黄素及合成脂质的方法
技术领域
本发明属于微藻生产应用领域,尤其涉及一种促进微藻积累岩藻黄素及合成脂质的方法。
背景技术
微藻作为一种可持续再生的生物原料,具有高效的光合作用效率、高生物量和其富含各种活性物质。此外,微藻培养过程中不占用农田耕地,又可去除环境污染物、对大气中碳氮具有固定作用等优点。由于微藻结构简单、营养需求低,且均为单细胞生物,所有的细胞均可进行光合作用,因此理论上微藻的光合作用效率显著高于陆生及其他水生植物。与传统的能源作物相比,微藻展示了明显的生长优势,较其他植物相比而言具有2~10倍的提高。微藻的培养也不同于其他植物一样受季节及其他条件限制等特点,一般情况下培养1~2周即可收集,因此减少因为季节性变化而导致产量问题。除此之外,微藻的生物量翻倍的时间一般在6~12h左右,而其他的植物生物量的翻倍时间则要远高于微藻。
微藻富含糖类、脂质、蛋白、矿物质元素等多种营养成分,并可合成不饱和脂肪酸(二十碳五烯酸)、类胡萝卜素(β-胡萝卜素、虾青素、叶黄素、岩藻黄素等)、抗氧化物质、活性肽等多种生物活性物质。这类高附加值活性物质对人类健康作用效果显著,常被用于丰富的营养添加剂而广泛应用于各种食品和保健品中。此外,我国已经批准部分微藻作为食品原料或者饲料原料。
采用传统的微藻培养基培养微藻过程中,存在以下问题,一方面,传统的微藻培养基成本相对较高,导致微藻培养的成本增加;另一方面,现有的微藻培养基无法促进微藻的高附加值活性物质大量积累,无法满足目前商业化需求。
因此,研发一种廉价能显著促进微藻生物量和微藻高附加值活性物积累的培养基是本领域技术人员亟待解决的技术问题。
发明内容
为了提高微藻岩藻黄素的积累量及加快微藻脂质的合成且降低微藻培养的成本,本发明提供一种促进微藻积累岩藻黄素及合成脂质的方法。
根据本发明的一个方面,提供一种促进微藻积累岩藻黄素及合成脂质的方法,该方法包括如下步骤:S1.准备制备培养基的原料,按照质量浓度计算,培养基中包括A组分、B组分,其中,A组分包括NaNO3 75mg/L,KH2PO4 5mg/L,Na2SiO3·9H2O 20mg/L,C10H14N2Na2O84.16mg/L,FeC6H5O7 3.15mg/L,MnCl2·4H2O 180ug/L,ZnSO4·4H2O 22ug/L,CuSO4·5H2O10ug/L,CoCl2·6(H2O)10mg/L,H4MoNa2O6 6ug/L,生物素0.5ug/L,维生素B12 0.5ug/L,维生素B1100ug/L;B组分包括NaNO3 75mg/L,KH2PO4 5mg/L,Na2SiO3·9H2O 90mg/L中的至少一种;S2.制备微藻的种液;S3.使用A组分配置第一培养基;S4.使用种液在第一培养基中进行接种处理;S5.当微藻的密度达到6×105个细胞/mL时,加入B组分。
目前市面上普通培养基对促进微藻积累岩藻黄素及油脂含量的作用微弱,难以满足目前商业化的需求。而本申请人意外地发现,在接种微藻后添加适量的NaNO3、KH2PO4、Na2SiO3·9H2O,能够在实际应用中对微藻细胞中的岩藻黄素及油脂含量(尤其是二十碳五烯酸的含量)的积累具有较好的促进作用。此外,由于本发明所额外添加的组分都为盐类,本发明所提供的培养方法在实际应用上具有成本低、实用性强等特点。
优选地,按照质量浓度计算,B组分包括NaNO3 75mg/L,KH2PO4 5mg/L,Na2SiO3·9H2O 90mg/L。
优选地,在B组分中,NaNO3、KH2PO、Na2SiO3·9H2O分别溶于水中配置为母液后再使用。
优选地,微藻为真核藻。
优选地,微藻为海链藻科。
优选地,微藻为微藻为威氏海链藻。
优选地,在S2中,制备种液需在温度为23~27℃,光照强度为30μmol·m-2·s-1的环境下进行。
优选地,在S5中,加入B组分后在温度为23~27℃,光照强度为28~32μmol·m-2·s-1的环境下进行培养10天。
优选地,微藻的培养在柱状光生物反应器中进行。
优选地,在S5后还包括S6,S6为微藻积累的岩藻黄素的提取方法,岩藻黄素的提取方法包括如下步骤:(1)抽取经过S5培养的微藻80~100mL,在4℃下进行离心处理,将所得固体进行冷冻干燥处理、研磨处理后,得到藻粉;(2)将藻粉加入无水乙醇中,在60℃下进行避光浸提处理,随后进行离心处理,所得上清液即含有微藻积累的岩藻黄素。
优选地,藻粉与无水乙醇的料液比为1g:40mL。
优选地,离心处理中,转速为5000r/min,时间为10min。
优选地,浸提处理需要进行2~5次,每次1~2h。
优选地,在S6后还包括S7,S7为微藻积累的脂质的提取方法,脂质的提取方法包括如下步骤:将藻粉加入0.5mol/L氢氧化钠甲醇溶液中,在60℃下进行皂化处理,随后加入三氟化硼甲醇络合溶液,在60℃下进行甲基化处理后,加入异辛烷进行萃取处理,将所得混合溶液使用有机滤膜进行过滤处理,所得上清液即含有微藻积累的脂质。
优选地,藻粉与氢氧化钠甲醇溶液的料液比为1g:20mL。
优选地,皂化处理需要反应10~60min。
优选地,甲基化处理需要反应5~10min。
优选地,在皂化处理后、甲基化处理后,都需要进行冷却处理。
优选地,所述有机滤膜的孔径为0.1~1nm。
附图说明
图1为测试例1中所培养微藻积累岩藻黄素、脂质含量的测试结果,其中,实验组为实施例1的处理组1A,对照组为实施例1的对比组1A;
标号说明:(a)实验组与对照组所培养微藻积累岩藻黄素的对比图;(b)实验组与对照组所培养微藻积累岩脂质的对比图。
图2为测试例2中所培养微藻积累岩藻黄素、脂质含量的测试结果,其中,实验组为实施例2的处理组1B,对照组为实施例2的对比组1B;
标号说明:(a)实验组与对照组所培养微藻积累岩藻黄素的对比图;(b)实验组与对照组所培养微藻积累岩脂质的对比图。
图3为测试例3中所培养微藻积累岩藻黄素、脂质含量的测试结果,其中,实验组为实施例3的处理组1C,对照组为实施例3的对比组1C;
标号说明:(a)实验组与对照组所培养微藻积累岩藻黄素的对比图;(b)实验组与对照组所培养微藻积累岩脂质的对比图。
图4为测试例4中所培养微藻积累岩藻黄素、脂质含量的测试结果,其中,实验组为实施例4的处理组1D,对照组为实施例4的对比组1D;
标号说明:(a)实验组与对照组所培养微藻积累岩藻黄素的对比图;(b)实验组与对照组所培养微藻积累岩脂质的对比图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例和实施例中的附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1
本实施例选用海洋硅藻威氏海链藻、柱状光生物反应器进行培养实验,具体地微藻的培养方法如下所述:
S1.准备制备培养基的原料;
S2.制备微藻的种液:将海洋硅藻威氏海链藻置于温度25±2℃,光照强度为30μmol·m-2·s-1,持续光照,充气培养的条件下培养至对数生长期,获得海洋硅藻威氏海链藻的种液;
S3.配置仅含有A组分的第一培养基,其中,每1L培养基中包含如下组分:NaNO375mg,KH2PO4 5mg,Na2SiO3·9H2O 20mg,C10H14N2Na2O8 4.16mg,FeC6H5O7 3.15mg,MnCl2·4H2O180ug,ZnSO4·4H2O 22ug,CuSO4·5H2O 10ug,CoCl2·6(H2O)10mg,H4MoNa2O6 6ug,生物素0.5ug,维生素B12 0.5ug,维生素B1 100ug;
S4.使用种液,在第一培养基中进行微藻接种;
S5.当培养基中海洋硅藻威氏海链藻的接种密度为6×105cell/mL时,加入B组分,在温度为23~27℃,光照强度为28~32μmol·m-2·s-1的环境下进行培养10天。
其中,在本实施例中,B组分为NaNO3,并以NaNO3在B组分中的质量浓度设置不同的处理组及对比组,各处理组及对比组对应的质量浓度如表1所示。
表1.实施例1的各处理组及对比组在培养基中B组分NaNO3的质量浓度
组别 NaNO3的质量浓度(mg/L)
处理组1A 75
对比组1A 0
对比组2A 20
对比组3A 130
测试例1
1.测试对象
实施例1的各处理组及对比组所培养的微藻。
2.测试方法
(1)岩藻黄素含量的测试:首先,抽取培养的威氏海链藻80mL,在4℃下5000r/min的转速离心10min,弃上清液,冷冻干燥2天,研磨成粉。将藻粉加入无水乙醇中,使料液比为1g:40mL,60℃下避光浸提,浸提两次,每次1h。浸提后将藻液以5000r/min的转速离心10min,取上清液,利用紫外分光光度计在445nm处测定吸光度,随后使用代入下列公式(1)测定岩藻黄素的含量。
Figure BDA0004160832530000051
其中,D445是样品上清液在波长为445nm处测得的吸光度;N是稀释倍数;V是粗提液体积;A是在1cm光程长的比色杯中体积分数为1%的溶质的理论吸收值,为1600;M是待测样品的质量。
(2)脂质含量的测试:称取0.1g藻粉放入玻璃管中,加入2mL 0.5mol/L NaOH甲醇溶液震荡均匀,60℃水浴加热20min皂化,皂化完成后,取出冷却;加入三氟化硼甲醇络合溶液震荡均匀,60℃水浴加热6min进行甲基化;取出冷却后加入异辛烷萃取,用0.45nm有机滤膜过滤,吸取上清液到进样瓶中待测定。将制备好的样品用Agilent 7890a气相色谱仪进行分析测定,参数条件为:毛细管色谱柱(DB-23MS,柱长60m,内径0.25mm,膜厚0.15μm);进样方式为分流进样,分流比35﹕1;载气为氮气;进样口温度270℃,初始温度100℃,持续13min;100℃~180℃,升温速率10℃/min,保持6min;180℃~200℃,升温速率1℃/min,保持20min;200℃~230℃,升温速率4℃/min,保持10.5min;检测器:FID。自动进样,吸取1μL试样液注入气相色谱仪,记录色谱峰的保留时间和峰高。利用标准图谱确定每个色谱峰的保留时间,利用软件自带的自动积分方法计算各脂肪酸组分的百分含量。
3.实验结果及分析
本测试例的测试结果如表2所示,其中本测试例主要探索本发明所提供的培养基中,在B组分为NaNO3时,其含量变化对微藻的岩藻黄素及脂质积累的影响。在对比组1A~3A中可发现,对比组2A与对比组1A岩藻黄素及脂质含量相差不大,即当B组分中NaNO3的含量低于75mg/L时,其对微藻积累岩藻黄素及脂质的增强效果并不明显。此外,当NaNO3的含量高于75mg/L时,由于微藻细胞大量死亡,导致微藻合成岩藻黄素及脂质的含量降低。此外,在处理组1A中,其脂质含量相当于对比组1A的2.11倍,岩藻黄素含量则相当于对比组1A的1.74倍,说明在原培养基中额外添加75mg的NaNO3可以促进微藻的脂质和岩藻黄素的积累。
表2.测试例1的测试结果
组别 岩藻黄素的含量(mg/g) 脂质的含量(mg/g)
处理组1A 1.56 158.2
对比组1A 0.90 75.0
对比组2A 1.06 87.8
对比组3A 0.75 69.4
实施例2
本实施例参考实施例1的处理组1A的培养方法及培养基配方对海链藻属威氏海链藻藻种进行培养,与实施例1的处理组1A相区别的是,本实施例探索B组分为KH2PO4时其质量浓度变化对海洋微藻威氏海链藻岩藻黄素及脂质含量的影响。因而,在本实施例中,以KH2PO4在B组分中的质量浓度设置不同的处理组及对比组,各处理组及对比组对应的质量浓度如表3所示。
表3.实施例2中各处理组及对比组在培养基中B组分KH2PO4的质量浓度
组别 KH2PO4的质量浓度(mg/L)
处理组1B 5
对比组1B 0
对比组2B 2.5
对比组3B 7.5
测试例2
1.测试对象
实施例2的各处理组及对比组所培养的微藻。
2.测试方法
参考测试例1的测试方法对岩藻黄素含量及脂质含量进行测试。
3.实验结果及分析
本测试例的测试结果如表4所示,其中本测试例主要探索本发明所提供的培养基中,在B组分为KH2PO4时,其含量变化对微藻的岩藻黄素及脂质积累的影响。在对比组1B~3B中可发现,对比组2B与对比组1B岩藻黄素及脂质含量相差不大,即当B组分中KH2PO4的含量低于5mg/L时,其对微藻积累岩藻黄素及脂质的增强效果并不明显。此外,当KH2PO4的含量高于5mg/L时,由于微藻细胞大量死亡,导致微藻合成岩藻黄素及脂质的含量降低。此外,在处理组1B中,其脂质含量相当于对比组1B的1.28倍,岩藻黄素含量则相当于对比组1B的1.5倍,说明在原培养基中额外添加5mg的KH2PO4可以促进微藻的脂质和岩藻黄素的积累。
表4.测试例2的测试结果
组别 岩藻黄素的含量(mg/g) 脂质的含量(mg/g)
处理组1B 1.35 96.0
对比组1B 0.90 75.0
对比组2B 0.98 78.3
对比组3B 0.77 68.8
实施例3
本实施例参考实施例1的处理组1A的培养方法及培养基配方对海链藻属威氏海链藻藻种进行培养,与实施例1的处理组1A相区别的是,本实施例探索B组分为Na2SiO3·9H2O时其质量浓度变化对海洋微藻威氏海链藻岩藻黄素及脂质含量的影响。因而,在本实施例中,以Na2SiO3·9H2O在B组分中的质量浓度设置不同的处理组及对比组,各处理组及对比组对应的质量浓度如表5所示。
表5.实施例3中各处理组及对比组在培养基中B组分Na2SiO3·9H2O的质量浓度
组别 Na2SiO3·9H2O的质量浓度(mg/L)
处理组1C 90
对比组1C 0
对比组2C 30
对比组3C 150
测试例3
1.测试对象
实施例3的各处理组及对比组所培养的微藻。
2.测试方法
参考测试例1的测试方法对岩藻黄素含量及脂质含量进行测试。
3.实验结果及分析
本测试例的测试结果如表6所示,其中本测试例主要探索本发明所提供的培养基中,在B组分为Na2SiO3·9H2O时,其含量变化对微藻的岩藻黄素及脂质积累的影响。在对比组1C~3C中可发现,对比组2C与对比组1C岩藻黄素及脂质含量相差不大,即当B组分中Na2SiO3·9H2O的含量低于90mg/L时,其对微藻积累岩藻黄素及脂质的增强效果并不明显。此外,当KH2PO4的含量高于90mg/L时,由于微藻细胞大量死亡,导致微藻合成岩藻黄素及脂质的含量降低。此外,在处理组1C中,其脂质含量相当于对比组1C的1.02倍,岩藻黄素含量则相当于对比组1C的1.39倍,说明在原培养基中额外添加90mg的Na2SiO3·9H2O可以促进微藻岩藻黄素、脂质的积累。
表6.测试例3的测试结果
组别 岩藻黄素的含量(mg/g) 脂质的含量(mg/g)
处理组1C 1.25 76.5
对比组1C 0.90 75.0
对比组2C 0.95 75.1
对比组3C 0.64 63.4
实施例4
基于测试例1~3的结果,适量地加入NaNO3、KH2PO4、Na2SiO3·9H2O能够增加海洋微藻威氏海链藻岩藻黄素及脂质的含量的情况。因此,本实施例参考实施例1的处理组1A的培养方法及培养基配方对海链藻属威氏海链藻藻种进行培养,与实施例1的处理组1A相区别的是,本实施例探索B组分为NaNO3、KH2PO4、Na2SiO3·9H2O时其质量浓度变化对海洋微藻威氏海链藻岩藻黄素及脂质含量的影响。因而,在本实施例中,以NaNO3、KH2PO4、Na2SiO3·9H2O在B组分中的质量浓度设置不同的处理组及对比组,各处理组及对比组对应的质量浓度如表7所示。
表7.实施例4中各处理组及对比组在培养基中B组分各物料的质量浓度
组别 NaNO3(mg/L) KH2PO4(mg/L) Na2SiO3·9H2O(mg/L)
处理组1D 75 5 90
对比组1D 0 0 0
测试例4
1.测试对象
实施例4的各处理组及对比组所培养的微藻。
2.测试方法
参考测试例1的测试方法对岩藻黄素含量及脂质含量进行测试。
3.实验结果及分析
本测试例的测试结果如表8所示,其中本测试例主要探索本发明所提供的培养基中,在B组分为NaNO3、KH2PO4、Na2SiO3·9H2O时,其含量变化对微藻的岩藻黄素及脂质积累的影响。在处理组1D中,脂质含量相当于对比组1D的1.03倍,岩藻黄素含量则相当于对比组1A的2.12倍,说明在原培养基中额外添加适量的NaNO3、KH2PO4、Na2SiO3·9H2O可以促进微藻的岩藻黄素、脂质的积累。
表8.测试例4的测试结果
组别 岩藻黄素的含量(mg/g) 脂质的含量(mg/g)
处理组1D 1.91 77.3
对比组1D 0.90 75.0
以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种促进微藻积累岩藻黄素及合成脂质的方法,其特征在于,所述方法包括如下步骤:
S1.准备制备所述培养基的原料,按照质量浓度计算,所述培养基中包括A组分、B组分,其中,所述A组分包括NaNO3 75mg/L,KH2PO4 5mg/L,Na2SiO3·9H2O 20mg/L,C10H14N2Na2O84.16mg/L,FeC6H5O7 3.15mg/L,MnCl2·4H2O 180ug/L,ZnSO4·4H2O 22ug/L,CuSO4·5H2O10ug/L,CoCl2·6(H2O)10mg/L,H4MoNa2O6 6ug/L,生物素0.5ug/L,维生素B12 0.5ug/L,维生素B1100ug/L;所述B组分包括NaNO3 75mg/L,KH2PO4 5mg/L,Na2SiO3·9H2O 90mg/L中的至少一种;
S2.制备所述微藻的种液;
S3.使用所述A组分配置第一培养基;
S4.使用所述种液在所述第一培养基中进行接种处理;
S5.当所述微藻的密度达到6×105个细胞/mL时,加入所述B组分。
2.如权利要求1所述的方法,其特征在于,按照质量浓度计算,所述B组分包括所述NaNO375mg/L,所述KH2PO4 5mg/L,所述Na2SiO3·9H2O 90mg/L。
3.如权利要求2所述的方法,其特征在于,在所述B组分中,所述NaNO3、所述KH2PO、所述Na2SiO3·9H2O分别溶于水中配置为母液后再使用。
4.如权利要求1所述的方法,其特征在于,所述微藻为真核藻。
5.如权利要求4所述的方法,其特征在于,所述微藻为海链藻科。
6.如权利要求5所述的方法,其特征在于,所述微藻为威氏海链藻。
7.如权利要求6所述的方法,其特征在于,在所述S2中,制备所述种液需在温度为23~27℃,光照强度为30μmol·m-2·s-1的环境下进行。
8.如权利要求1所述的方法,其特征在于,在所述S5中,加入所述B组分后在温度为23~27℃,光照强度为28~32μmol·m-2·s-1的环境下进行培养10天。
9.如权利要求1所述的方法,其特征在于,在所述S5后还包括S6,所述S6为所述微藻积累的所述岩藻黄素的提取方法,所述岩藻黄素的提取方法包括如下步骤:
(1)抽取经过所述S5培养的所述微藻80~100mL,在4℃下进行离心处理,将所得固体进行冷冻干燥处理、研磨处理后,得到藻粉;
(2)将所述藻粉加入无水乙醇中,在60℃下进行避光浸提处理,随后进行所述离心处理,所得上清液即含有所述微藻积累的所述岩藻黄素。
10.如权利要求9所述的方法,其特征在于,在所述S6后还包括S7,所述S7为所述微藻积累的所述脂质的提取方法,所述脂质的提取方法包括如下步骤:
将所述藻粉加入0.5mol/L氢氧化钠甲醇溶液中,在60℃下进行皂化处理,随后加入三氟化硼甲醇络合溶液,在60℃下进行甲基化处理后,加入异辛烷进行萃取处理,将所得混合溶液使用有机滤膜进行过滤处理,所得上清液即含有所述微藻积累的所述脂质。
CN202310349074.5A 2023-04-03 2023-04-03 一种促进微藻积累岩藻黄素及合成脂质的方法 Active CN116286379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310349074.5A CN116286379B (zh) 2023-04-03 2023-04-03 一种促进微藻积累岩藻黄素及合成脂质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310349074.5A CN116286379B (zh) 2023-04-03 2023-04-03 一种促进微藻积累岩藻黄素及合成脂质的方法

Publications (2)

Publication Number Publication Date
CN116286379A true CN116286379A (zh) 2023-06-23
CN116286379B CN116286379B (zh) 2024-02-23

Family

ID=86801381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310349074.5A Active CN116286379B (zh) 2023-04-03 2023-04-03 一种促进微藻积累岩藻黄素及合成脂质的方法

Country Status (1)

Country Link
CN (1) CN116286379B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130309719A1 (en) * 2010-10-06 2013-11-21 Photonz Corporation Limited Heterotrophic microbial production of xanthophyll pigments
CN105132352A (zh) * 2015-09-10 2015-12-09 宁波大学 一种促进三角褐指藻中岩藻黄素和/或脂质积累的方法
CN107099564A (zh) * 2017-06-30 2017-08-29 北京大学 利用异养培养平滑菱形藻生产岩藻黄素的方法
CN107119099A (zh) * 2017-06-30 2017-09-01 北京大学 利用光照培养平滑菱形藻生产岩藻黄素的方法
KR20200121524A (ko) * 2019-04-16 2020-10-26 어업회사법인 가비 주식회사 규조류 배양 시 보조색소인 후코산틴의 함량 향상방법
CN112094798A (zh) * 2020-09-22 2020-12-18 深圳大学 提高平滑菱形藻中岩藻黄素产量的培养基及其应用
CN114561295A (zh) * 2022-03-14 2022-05-31 福建农林大学 一种促进微藻岩藻黄素积累和脂质合成的培养方法
CN115074251A (zh) * 2022-08-05 2022-09-20 青岛农业大学 用于提高三角褐指藻中岩藻黄质产量的培养基及培养方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130309719A1 (en) * 2010-10-06 2013-11-21 Photonz Corporation Limited Heterotrophic microbial production of xanthophyll pigments
CN105132352A (zh) * 2015-09-10 2015-12-09 宁波大学 一种促进三角褐指藻中岩藻黄素和/或脂质积累的方法
CN107099564A (zh) * 2017-06-30 2017-08-29 北京大学 利用异养培养平滑菱形藻生产岩藻黄素的方法
CN107119099A (zh) * 2017-06-30 2017-09-01 北京大学 利用光照培养平滑菱形藻生产岩藻黄素的方法
KR20200121524A (ko) * 2019-04-16 2020-10-26 어업회사법인 가비 주식회사 규조류 배양 시 보조색소인 후코산틴의 함량 향상방법
CN112094798A (zh) * 2020-09-22 2020-12-18 深圳大学 提高平滑菱形藻中岩藻黄素产量的培养基及其应用
CN114561295A (zh) * 2022-03-14 2022-05-31 福建农林大学 一种促进微藻岩藻黄素积累和脂质合成的培养方法
CN115074251A (zh) * 2022-08-05 2022-09-20 青岛农业大学 用于提高三角褐指藻中岩藻黄质产量的培养基及培养方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG LI ,等: "Effects of Temperature, Light and Salt on the Production of Fucoxanthin from Conticribra weissflogii", MAR. DRUGS, vol. 21, 16 September 2023 (2023-09-16), pages 1 - 13 *
XIANGYU RUI, 等: "Effects of Different Nitrogen Concentrations on Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii", MAR. DRUGS, vol. 21, no. 106, pages 1 - 12 *

Also Published As

Publication number Publication date
CN116286379B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
Kong et al. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture
Campenni’ et al. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions
JP6807329B2 (ja) ω−7脂肪酸合成物、及び黄緑色藻を培養して該合成物を生産する方法と応用
Hosikian et al. Chlorophyll extraction from microalgae: A review on the process engineering aspects
Ördög et al. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures
Işik et al. Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains
Gao et al. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem
Silva et al. Microalga Scenedesmus obliquus: extraction of bioactive compounds and antioxidant activity
Gao et al. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea
CN116286379B (zh) 一种促进微藻积累岩藻黄素及合成脂质的方法
Anitha et al. Modulation of lipid productivity under nitrogen, salinity and temperature stress in microalgae Dunaliella sp.
CN112899168B (zh) 4r-氨基戊酸、4-氨基戊酸和/或4-氨基丁酸在提高裸藻中叶绿素含量中的应用
CN109929886A (zh) 一种利用核桃壳提取液培养单针藻产生物柴油的方法
KR101684254B1 (ko) 갯벌 추출액 및 부식산을 이용한 미세조류 고농도 배양 방법
Kavadikeri et al. Extraction and characterization of microalgal oil and Fucoxanthin from diatom
JP7307435B2 (ja) ワックスエステル高含有ユーグレナの生産方法および生産システム、並びに、ワックスエステル又はバイオ燃料組成物の製造方法および製造システム、並びに、ワックスエステル発酵促進剤
Tosuner et al. Simultaneous Lipid Production and Valorization of Crude Glycerol by Mixotrophic and Heterotrophic Cultivation of Arthrospira platensis
YAMNA et al. Biomass and biochemical composition of Chlorella Sp and Scenedesmus apiculatus in culture
Zhang et al. The Effect of Phosphorus Concentration on the Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii
CN115747285A (zh) 一种促进三角褐指藻光合色素积累的方法
CN107937275B (zh) 一株黄丝藻及其培养与应用
Demura et al. Simple 100-l-scale and long-term culture of Desmodesmus communis (Chlorophyceae) in Japan
CN108102920B (zh) 一株黄丝藻及其培养与应用
Lionti MICROALGAE AS CELL FACTORIES: RESEARCH AND INDUSTRIAL APPLICATIONS
Kong et al. Učinak glicerola i glukoze na povećanje biomase, udjela lipida i topljivih ugljikohidrata u miksotrofnoj kulturi alge Chlorella vulgaris

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant