CN116285972A - 铁离子检测用荧光复合薄膜及其制备方法 - Google Patents

铁离子检测用荧光复合薄膜及其制备方法 Download PDF

Info

Publication number
CN116285972A
CN116285972A CN202310167258.XA CN202310167258A CN116285972A CN 116285972 A CN116285972 A CN 116285972A CN 202310167258 A CN202310167258 A CN 202310167258A CN 116285972 A CN116285972 A CN 116285972A
Authority
CN
China
Prior art keywords
pvdf
composite film
nitrogen
fluorescent composite
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310167258.XA
Other languages
English (en)
Inventor
解文媛
李鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202310167258.XA priority Critical patent/CN116285972A/zh
Publication of CN116285972A publication Critical patent/CN116285972A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种铁离子检测用荧光复合薄膜及其制备方法。所述方法先将柠檬酸、尿素和乙醇混合反应制得氮掺杂碳点,然后将PVDF、海藻酸钠和DMF混合,刮制成PVDF‑SA基底薄膜,再浸入EDC/NHS溶液中进行活化,最后将活化的PVDF‑SA基底薄膜浸入氮掺杂碳点分散液中,得到荧光复合薄膜。本发明的荧光复合薄膜可实现对Fe3+的痕量检测与吸附,最低检测限为0.095μM。

Description

铁离子检测用荧光复合薄膜及其制备方法
技术领域
本发明属于金属离子检测领域,涉及一种铁离子检测用荧光复合薄膜及其制备方法。
背景技术
处理污水中的重金属污染物过程中的主要问题是如何成功检测重金属离子。目前,重金属离子的检测方法包括电化学检测、原子吸收光谱、原子荧光光谱、电感耦合等离子体质谱等。尽管这些方法在实验室中被广泛使用,但技术或经济因素有时会限制其可行性。荧光光谱法因其简单、快速、灵敏,而且可以实现痕量重金属离子的检测,因此在重金属离子检测中具有良好的发展前景。
与传统的碳量子点和荧光染料相比,荧光碳点(CDs)具有良好的生物相容性、稳定的荧光、环保和稳定的理化性质。Jeongyeon Woo(Jeongyeon Woo,Younghan Song,JungbinAhn&Hyungsup Kim,Cellulose volume 27,pages 4609–4621(2020))等人根据电子受体猝灭的荧光碳点的性质,制备了金属离子荧光探针,可有效检测重金属离子,实现了一定范围内重金属离子的选择性、灵敏度检测。然而,粉末状荧光碳点是一种高度亲水的物质,易溶于水溶液,不利于回收。因此,需要一种载体来固定荧光碳点以更方便地将其应用于不同环境中的重金属离子检测。于是,Andong Zhao(Andong Zhao,Chuanqi Zhao,Meng Li,et al,Analytica Chimica Acta Pub Date:2014-01-01)等人将碳点与薄膜材料共混形成嵌入碳点的薄膜。但由于碳点被包裹,不能与金属离子直接接触,其最低检测限为0.4077μM,对金属离子痕量检测效果仍有待进一步提高。
发明内容
本发明的目的在于提供一种铁离子检测用荧光复合薄膜及其制备方法。该方法通过酰胺化反应将荧光碳点接枝到聚偏氟乙烯-海藻酸钠(PVDF-SA)膜表面,制备了具有稳定荧光的PVDF-SA-CDs复合膜。
实现本发明目的的技术方案如下:
铁离子检测用荧光复合薄膜的制备方法,包括以下步骤:
(1)将柠檬酸、尿素和乙醇搅拌混合均匀,置于120~240℃下反应8h以上,反应结束后,乙醚萃取,离心去除上清液,干燥得到氮掺杂碳点;
(2)将PVDF、海藻酸钠和N,N-二甲基甲酰胺(DMF)混合,在40~80℃下搅拌6h以上,形成均匀的PVDF-SA溶液,然后刮制成PVDF-SA基底薄膜;
(3)将PVDF-SA基底薄膜浸入EDC/NHS溶液中,活化基底薄膜上的羧基;
(4)将氮掺杂碳点均匀分散在水中形成氮掺杂碳点分散液,然后将活化的PVDF-SA基底薄膜浸入氮掺杂碳点分散液中,浸泡完全后,水洗,得到荧光复合薄膜。
优选地,步骤(1)中,柠檬酸和尿素的质量比为63:20。
优选地,步骤(1)中,搅拌时间为30min以上,反应温度为200℃。
优选地,步骤(2)中,搅拌温度为60℃,搅拌时间为6h。
优选地,步骤(2)中,PVDF和海藻酸钠的质量比为7:1~2。
优选地,步骤(3)中,EDC/NHS溶液中,EDC和NHS的质量比为1:3。
优选地,步骤(4)中,氮掺杂碳点分散液的浓度为0.1~0.8mg/ml。
本发明还提供上述制备方法制得的荧光复合薄膜。
进一步地,本发明提供上述荧光复合薄膜在铁离子检测中的应用。
与现有技术相比,本发明具有以下优点:
本发明采用氮掺杂碳点作为荧光响应材料,海藻酸钠、PVDF在有机溶剂中共混后浇注成薄膜作为具有吸附金属离子及表面能接枝碳点的基底膜材料,制得荧光复合薄膜。本发明的荧光复合薄膜浸入Fe3+离子溶液时,含羧基基团的海藻酸钠对金属离子的螯合作用可加速金属离子在复合膜表面富集,吸附的Fe3+离子与碳点键合,Fe3+离子迅速与碳点进行电子转移导致碳点荧光猝灭,增加了复合膜检测灵敏性。在浓度为0-600μM的Fe3+离子溶液中,荧光强度与金属离子浓度具有良好的线性关系,可实现对Fe3+的痕量检测与吸附,最低检测限为0.095μM。
附图说明
图1为荧光复合膜的产物图(上图为在日光下,下图在紫外灯下的)。
图2为产物在激发波长为340nm-400nm下的荧光性能表征图。
图3为荧光复合膜表面的扫描电镜图。
图4为荧光复合膜在不同金属离子溶液中的荧光强度变化图。
图5为荧光复合膜浸入Fe3+离子溶液的荧光强度随浸入时间变化图。
图6为荧复合膜的荧光强度随浸入Fe3+离子溶液浓度(0-600μM)变化图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详述。
实施例1
1.氮掺杂碳点的制备
将0.63g柠檬酸、0.2g尿素、20mL乙醇加入反应釜中,磁力搅拌30min,再在烘箱中以200℃加热8h,用200ml乙醚进行萃取,离心倒掉上清液,在真空干燥箱中干燥,制得氮掺杂碳点。
2.基底膜的制备
将3.5g PVDF、0.5g海藻酸钠和25ml N,N-二甲基甲酰胺混合,在60℃下搅拌6h,得到PVDF-SA溶液。将PVDF-SA溶液用刮膜刀制备成厚度为250μm的薄膜,储存在去离子水中备用。
3.荧光复合薄膜的制备
(1)在20ml去离子水中加入10mg 1-(3-二甲基氨基丙基)-3-乙基碳二亚胺(EDC)与30mg N-羟基丁二酰亚胺(NHS),将PVDF-SA基底薄膜浸入EDC/NHS溶液30min,以活化基底膜上的羧基。
(2)将氮掺杂碳点加入20ml去离子水中配制成0.5mg/ml的碳点溶液。
(3)将活化的PVDF-SA基底薄膜在室温下浸入碳点溶液中24h,取出薄膜,并用去离子水洗涤三次,制得荧光复合薄膜,浸入去离子水中备用。
4.荧光复合膜性能测试及结果:
图1为PVDF膜,PVDF-SA膜,PVDF-SA-CDs膜在日光下和360nm紫外光照射下的对比图。从图1可以看出,PVDF膜、PVDF-SA膜、PVDF-SA-CDs复合膜在日光下无明显差异;PVDF-SA-CDs在紫外灯下发出绿色荧光,另两种膜无荧光。
图2为用紫外分光光度计在激发波长为340nm-400nm时PVDF-SA-CDs复合膜的荧光发射光谱。从图2可以看出,PVDF-SA-CDs复合膜表现出与CD一致的激发依赖性光致发光行为。
图3为PVDF-SA膜与PVDF-SA-CDs复合膜的表面扫描电镜图。从图3可以看出,相较于PVDF-SA膜,PVDF-SA-CDs复合膜表面接枝有碳点微球。
图4为荧光复合膜在不同金属离子溶液中的荧光强度变化图(初始强度/浸入1min后强度)。从图4可以看出PVDF-SA-CDs复合膜对Fe3+、Hg+、Fe2+有明显的荧光猝灭现象,其中对Fe3+更为突出。
图5为PVDF-SA-CDs复合膜浸入Fe3+离子溶液0-60min,复合膜荧光变化图。从图5中可以看到,在1min时复合膜荧光强度下降的最迅速,该复合膜可以快速检测Fe3+
图6为PVDF-SA-CDs复合膜浸入不同离子溶度Fe3+离子溶液中1min,荧光强度变化图和复合膜荧光强度随离子浓度改变的拟合线性关系图。从图6中可以看出,随着离子浓度的升高,复合膜的荧光强度在下降,且复合膜的荧光强度变化与离子浓度满足良好的线性关系为F/F0=4.088C(Fe3+)+1.108,R2=0.995,可实现对Fe3+最低检测限为0.095μM,可实现对Fe3+的痕量检测。

Claims (9)

1.铁离子检测用荧光复合薄膜的制备方法,其特征在于,包括以下步骤:
(1)将柠檬酸、尿素和乙醇搅拌混合均匀,置于120~240℃下反应8h以上,反应结束后,乙醚萃取,离心去除上清液,干燥得到氮掺杂碳点;
(2)将PVDF、海藻酸钠和N,N-二甲基甲酰胺(DMF)混合,在40~80℃下搅拌6h以上,形成均匀的PVDF-SA溶液,然后刮制成PVDF-SA基底薄膜;
(3)将PVDF-SA基底薄膜浸入EDC/NHS溶液中,活化基底薄膜上的羧基;
(4)将氮掺杂碳点均匀分散在水中形成氮掺杂碳点分散液,然后将活化的PVDF-SA基底薄膜浸入氮掺杂碳点分散液中,浸泡完全后,水洗,得到荧光复合薄膜。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,柠檬酸和尿素的质量比为63:20。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,搅拌时间为30min以上,反应温度为200℃。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,搅拌温度为60℃,搅拌时间为6h。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,PVDF和海藻酸钠的质量比为7:1~2。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,EDC/NHS溶液中,EDC和NHS的质量比为1:3。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,氮掺杂碳点分散液的浓度为0.1~0.8mg/ml。
8.根据权利要求1~7任一所述的制备方法制得的荧光复合薄膜。
9.根据权利要求8所述的荧光复合薄膜在铁离子检测中的应用。
CN202310167258.XA 2023-02-24 2023-02-24 铁离子检测用荧光复合薄膜及其制备方法 Pending CN116285972A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310167258.XA CN116285972A (zh) 2023-02-24 2023-02-24 铁离子检测用荧光复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310167258.XA CN116285972A (zh) 2023-02-24 2023-02-24 铁离子检测用荧光复合薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN116285972A true CN116285972A (zh) 2023-06-23

Family

ID=86802420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310167258.XA Pending CN116285972A (zh) 2023-02-24 2023-02-24 铁离子检测用荧光复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN116285972A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793042A (zh) * 2017-10-10 2018-03-13 宝鸡文理学院 一种低毒高荧光薄膜的制备方法及其在Fe3+检测中的应用
CN107884375A (zh) * 2017-11-10 2018-04-06 华南师范大学 一种检测三价铁离子的方法及试剂盒
CN109054821A (zh) * 2018-07-13 2018-12-21 山西大学 一种荧光碳点及其制备方法和应用
CN109425599A (zh) * 2017-09-05 2019-03-05 中国林业科学研究院林产化学工业研究所 一种水溶性氮铁共掺杂碳点的合成方法及应用
CN111205484A (zh) * 2020-03-06 2020-05-29 大连海事大学 一种碳量子点荧光双网络水凝胶及其制备方法与应用
CN111474148A (zh) * 2020-03-20 2020-07-31 东华大学 一种选择性检测Fe(Ⅲ)离子的方法
KR20200137396A (ko) * 2019-05-30 2020-12-09 가천대학교 산학협력단 질소 도핑된 탄소점 및 이의 제조방법
CN113046071A (zh) * 2021-03-13 2021-06-29 聊城大学 基于掺杂碳量子点/pva复合膜及其制备方法与检测四环素的应用
CN113340860A (zh) * 2021-05-11 2021-09-03 五邑大学 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425599A (zh) * 2017-09-05 2019-03-05 中国林业科学研究院林产化学工业研究所 一种水溶性氮铁共掺杂碳点的合成方法及应用
CN107793042A (zh) * 2017-10-10 2018-03-13 宝鸡文理学院 一种低毒高荧光薄膜的制备方法及其在Fe3+检测中的应用
CN107884375A (zh) * 2017-11-10 2018-04-06 华南师范大学 一种检测三价铁离子的方法及试剂盒
CN109054821A (zh) * 2018-07-13 2018-12-21 山西大学 一种荧光碳点及其制备方法和应用
KR20200137396A (ko) * 2019-05-30 2020-12-09 가천대학교 산학협력단 질소 도핑된 탄소점 및 이의 제조방법
CN111205484A (zh) * 2020-03-06 2020-05-29 大连海事大学 一种碳量子点荧光双网络水凝胶及其制备方法与应用
CN111474148A (zh) * 2020-03-20 2020-07-31 东华大学 一种选择性检测Fe(Ⅲ)离子的方法
CN113046071A (zh) * 2021-03-13 2021-06-29 聊城大学 基于掺杂碳量子点/pva复合膜及其制备方法与检测四环素的应用
CN113340860A (zh) * 2021-05-11 2021-09-03 五邑大学 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法

Similar Documents

Publication Publication Date Title
Lin et al. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers
Sun et al. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing
CN111205484B (zh) 一种碳量子点荧光双网络水凝胶及其制备方法与应用
Gu et al. Controlled synthesis of conjugated microporous polymer films: Versatile platforms for highly sensitive and label‐free chemo‐and biosensing
Tu et al. Photoelectrochemistry of Free‐Base‐Porphyrin‐Functionalized Zinc Oxide Nanoparticles and Their Applications in Biosensing
Wang et al. Ascorbic acid induced enhancement of room temperature phosphorescence of sodium tripolyphosphate‐capped Mn‐doped ZnS quantum dots: mechanism and bioprobe applications
CN110243889B (zh) 基于CsPbBr3/GO同型异质结构的分子印迹光电化学传感器及其制备方法和应用
Yu et al. Polymer composite fluorescent hydrogel film based on nitrogen‐doped carbon dots and their application in the detection of Hg2+ ions
Zhang et al. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine
CN107727717B (zh) 多氯联苯光电化学适配体传感器的制备方法及应用
CN107576704B (zh) 微囊藻毒素-lr分子印迹光电化学传感器及其制备与应用
Li et al. Porphyrin nanosphere–graphene oxide composite for ehanced electrochemiluminescence and sensitive detection of Fe3+ in human serum
CN108226137B (zh) 一种柔性、透明的二硫化钼@银颗粒/三维金字塔结构pmma sers基底的制备方法及应用
Qin et al. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection
CN111534299B (zh) 一种GOQDs@PDA-ir-MIP分子印迹荧光传感器及其制备方法与应用
CN105713607A (zh) 负载碳量子点的介孔二氧化硅/聚丙烯腈核壳纳米纤维膜的制备及应用
Weerasinghe et al. Monochromatic Blue and Switchable Blue‐Green Carbon Quantum Dots by Room‐Temperature Air Plasma Processing
Wu et al. Carbon quantum dots‐based fluorescent hydrogel hybrid platform for sensitive detection of iron ions
Sobhanie et al. An Ultrasensitive ECL Sensor Based on Conducting Polymer/Electrochemically Reduced Graphene Oxide for Non‐Enzymatic Detection in Biological Samples
Bu et al. Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures
Hao et al. The synthesis of carbon dots by folic acid and utilized as sustainable probe and paper sensor for Hg2+ sensing and cellular imaging
Huang et al. Stable chitosan fluorescent nanofiber sensor containing Eu3+ complexes for detection of copper ion
Deng et al. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing
CN112630279B (zh) 用于检测双氯酚酸的基于金纳米粒子的等离子共振增强型电化学发光传感器及制备方法
CN103954606B (zh) 一种基于纳米Au增强拉曼光谱的超薄膜及其在染料检测中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination