CN116283271A - 一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法 - Google Patents

一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法 Download PDF

Info

Publication number
CN116283271A
CN116283271A CN202310256707.8A CN202310256707A CN116283271A CN 116283271 A CN116283271 A CN 116283271A CN 202310256707 A CN202310256707 A CN 202310256707A CN 116283271 A CN116283271 A CN 116283271A
Authority
CN
China
Prior art keywords
refractive index
optical quality
preparation
transparent ceramic
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310256707.8A
Other languages
English (en)
Other versions
CN116283271B (zh
Inventor
吕滨
裴瑞杰
薛博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN202310256707.8A priority Critical patent/CN116283271B/zh
Publication of CN116283271A publication Critical patent/CN116283271A/zh
Application granted granted Critical
Publication of CN116283271B publication Critical patent/CN116283271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法。将六水合硝酸钆和五水合四氯化锡按照阳离子1∶1的摩尔比加入至去离子水溶解配制成一定浓度的母盐溶液,加入一定掺量的六水合氯化铝,搅拌均匀。将充分溶解后的混合盐溶液逐滴滴加到NH4HCO3溶液中反应,陈化后依次经过洗涤、烘干获得沉淀前驱体,再经过煅烧得到Gd2Sn2O7陶瓷粉体;随后对其进行预压、冷等静压成型、氧气气氛烧结以及打磨抛光处理,最后获得了光学性质优良的Gd2Sn2O7透明陶瓷材料。

Description

一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的 制备方法
技术领域
本发明涉及一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备。
背景技术
高折射率透镜在现代光学器件中起着简化光学系统、改善成像质量和增加视角的作用。特别是光学器件的小型化需要折射率高的光学透镜(折射率大于2.0),但是蓝宝石、氮化铝、尖晶石等商用透明材料的折射率都在2.0以下,因此需要开发出折射率高的新型透明材料。虽然氧化钇稳定的二氧化锆透明陶瓷材料的折射率可以超过2.0,但是制备高光学质量的该系列陶瓷通常需要成本较高的热等静压设备。相比于压力辅助烧结方法,无压烧结透明陶瓷具有成本低、省时、高效等优点。
A2B2O7(其中,A和B分别为稀土离子和过渡金属离子)型透明陶瓷材料具有高强度、高硬度、高折射率、以及耐高温和耐腐蚀等优异的性能。因此广泛应用于热障涂层、固体氧化物燃料电池、高温窗口、闪烁体基质材料、光学透镜、固态激光材料等领域。新型Gd2Sn2O7透明陶瓷是A2B2O7型化合物家族的成员之一,理论计算的结果表明该材料具有立方烧绿石结构,预期在可见光区及近红外光区都有较高的透过率。
由于SnO2在高温条件下容易挥发和分解,因此难以利用传统的熔体生长方法制备Gd2Sn2O7单晶,因此制备透明陶瓷是一种切实可行的方法。
本发明解决的技术问题是提供一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法。以六水合硝酸钆和五水合四氯化锡为原料,六水合氯化铝为添加剂,采用共沉淀法制备出分散性好、颗粒小、粒度均匀的超细粉体。在氧气气氛下煅烧发生固相反应生成Gd2Sn2O7超细粉末。成型后的坯体在氧气气氛保护下和相对低的烧结温度下获得了高致密度的Gd2Sn2O7透明陶瓷材料。
本发明的技术方案是:
一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其具体步骤是:
(1)将六水合硝酸钆和五水合四氯化锡按照阳离子1∶1的摩尔比加入至去离子水溶解配制成浓度为0.25mol/L~0.4mol/L的母盐溶液,加入一定掺量的六水合氯化铝,搅拌均匀;
(2)将步骤(1)得到的混合盐溶液按一定滴速滴定到NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
(3)将步骤(2)获得的前驱体在氧气气氛下煅烧生成Gd2Sn2O7粉体;
(4)Gd2Sn2O7粉体依次经过预压和冷等静压成型,然后在氧气气氛下烧结获得Gd2Sn2O7陶瓷,最后对烧结体进行打磨和抛光。
进一步的,步骤(1)中,所述六水合氯化铝掺量控制为的总阳离子物质的量的0.1%~0.5%。
进一步的,步骤(2)中,所述混合盐滴定速度为1mL/min~5mL/min。
进一步的,步骤(2)中,所述沉淀剂NH4HCO3溶液是将NH4HCO3固体溶解于去离子水配制而成,NH4HCO3溶液的浓度为0.9mol/L~1.8mol/L。
进一步的,步骤(3)中,前驱体在氧气浓度为99.99%、流速为100mL/min的气氛下煅烧,煅烧温度为1000℃~1400℃,保温时间为1h~6h。
进一步的,步骤(4)中,冷等静压成型时,压强为100MPa~400MPa。
进一步的,步骤(4)中,烧结温度控制在1500℃~1630℃,氧气流速为80mL/min,保温时间在3h~8h。
与现有技术相比,本发明的优点在于:
本发明以六水合氯化铝作为添加剂,在陶瓷烧结过程中产生晶体缺陷,降低了烧结温度同时促进了烧结过程中的扩散率速,有利于获得高致密度的无孔陶瓷材料。本发明采用的氧气气氛保护的烧结方法通过增加氧分压成功抑制了SnO2的挥发与分解。利用本发明方法在相对较低的烧结温度下获得了高折射率和高透过率的Gd2Sn2O7光功能陶瓷材料。
附图说明
图1为本发明(对应实施例4)制备方法得到的陶瓷粉体的扫描电镜形貌图;
图2为本发明(对应对比例1)制备方法得到的陶瓷粉体的X射线衍射图;
图3为本发明(对应实施例4)制备方法得到的透明陶瓷的X射线衍射图;
图4为本发明(对应实施例1)制备方法得到的Gd2Sn2O7陶瓷;
图5为本发明(对应对比例1)制备方法得到的Gd2Sn2O7陶瓷;
图6为本发明(对应实施例2)制备方法得到的Gd2Sn2O7陶瓷;
图7为本发明(对应实施例3)制备方法得到的Gd2Sn2O7陶瓷;
图8为本发明(对应实施例4)制备方法得到的Gd2Sn2O7陶瓷;
图9为本发明(对应实施例1)制备方法得到的Gd2Sn2O7陶瓷的折射率曲线;
图10为本发明(对应实施例1)制备方法得到的Gd2Sn2O7陶瓷的透过率曲线。
以下结合附图实施例对本发明作进一步详细描述。
实施例1
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子11的摩尔比加入至去离子水溶解配置成浓度为0.36mol/L的母盐溶液,加入六水合氯化铝添加剂,其中铝离子与总阳离子物质的量之比为0.3%,搅拌均匀;
步骤二:将步骤一得到的混合盐以2.5mL/min的滴速滴定到浓度为1.5mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1200℃煅烧3h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为250MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1630℃烧结5h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
对比例1
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子1∶1的摩尔比加入至去离子水溶解配置成浓度为0.30mol/L的母盐溶液,不加入六水合氯化铝添加剂,搅拌均匀;
步骤二:将步骤一得到的混合盐以1.5mL/min的滴速滴定到浓度为1.2mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1100℃煅烧6h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为400MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1620℃烧结4h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
实施例2
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子1∶1的摩尔比加入至去离子水溶解配置成浓度为0.36mol/L的母盐溶液,加入六水合氯化铝添加剂,其中铝离子与总阳离子物质的量之比为0.2%,搅拌均匀;
步骤二:将步骤一得到的混合盐以1mL/min的滴速滴定到浓度为1.5mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1250℃煅烧4h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为300MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1630℃烧结5h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
实施例3
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子1∶1的摩尔比加入至去离子水溶解配置成浓度为0.40mol/L的母盐溶液,加入六水合氯化铝添加剂,其中铝离子与总阳离子物质的量之比为0.1%,搅拌均匀;
步骤二:将步骤一得到的混合盐以2mL/min的滴速滴定到浓度为0.9mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1000℃煅烧5h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为200MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1600℃烧结8h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
实施例4
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子11的摩尔比加入至去离子水溶解配置成浓度为0.25mol/L的母盐溶液,加入六水合氯化铝添加剂,其中铝离子与总阳离子物质的量之比为0.5%,搅拌均匀;
步骤二:将步骤一得到的混合盐以3mL/min的滴速滴定到浓度为1.0mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1400℃煅烧1h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为350MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1610℃烧结6h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
实施例5
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子11的摩尔比加入至去离子水溶解配置成浓度为0.3mol/L的母盐溶液,加入六水合氯化铝添加剂,其中铝离子与总阳离子物质的量之比为0.2%,搅拌均匀;
步骤二:将步骤一得到的混合盐以5mL/min的滴速滴定到浓度为1.8mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1400℃煅烧1h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为350MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1550℃烧结3h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
实施例6
步骤一:将六水合硝酸钆和五水合四氯化锡按照阳离子11的摩尔比加入至去离子水溶解配置成浓度为0.3mol/L的母盐溶液,加入六水合氯化铝添加剂,其中铝离子与总阳离子物质的量之比为0.3%,搅拌均匀;
步骤二:将步骤一得到的混合盐以3mL/min的滴速滴定到浓度为1.0mol/L的NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
步骤三:将步骤二得到的沉淀前驱体在氧气气氛下1400℃煅烧1h,获得Gd2Sn2O7粉体;
步骤四:将步骤三得到的Gd2Sn2O7粉体依次经过预压和冷等静压成型,冷等静压压强为100MPa下冷等静压成型,然后在氧气流速为80mL/min的条件下1500℃烧结4h获得Gd2Sn2O7陶瓷,最后对样品进行打磨和抛光。
图1给出了实施例4制备的Gd2Sn2O7粉体的扫描电子显微(SEM)照片,可以看出Gd2Sn2O7陶瓷粉体形貌呈类球状,且分散性较好、粒度较细、粒度分布均匀、无硬团聚体。
图2给出了对比例1的制备方法制备得到的粉体的X射线衍射(XRD)图谱。图2中横坐标2θ表示扫描角度,纵坐标Intensity表示强度。从图2可以看出,粉体呈现出纯Gd2Sn2O7烧绿石的结构特征,衍射峰尖锐,结晶性好。
图3给出了实施例4的制备方法制备得到的透明陶瓷的XRD图谱。从图3可以看出,透明陶瓷呈现出纯Gd2Sn2O7烧绿石的结构特征,衍射峰更加尖锐,结晶性更好。
图4、图5、图6、图7、图8分别相应给出了实施例1、对比例1、实施例2、实施例3、实施例4的制备方法制备得到的Gd2Sn2O7陶瓷经打磨和抛光处理后得到的抛光样品的照片。从图4、图6中可以看出,当抛光后的样品放在有文字的纸上时,可透过抛光样品读出文字,光学质量高;从图5、图7、图8中可以看出,光学质量较差、透过率低,只能隐约透过抛光样品读出文字。分析图4、图5、图6、图7、图8,对应实施例1、对比例1、实施例2、实施例3、实施例4工艺制备的Gd2Sn2O7陶瓷光学质量有所差异,这反映了Gd2Sn2O7陶瓷的光学质量不同在很大程度上与六水合氯化铝添加剂的含量有关;此外,粉体合成过程的滴定速度、煅烧温度,以及陶瓷的成型压力、烧结工艺的不同也会不同程度地影响陶瓷的透过率。
图9给出了实施例1的制备方法制备得到的Gd2Sn2O7陶瓷的折射率曲线。图9中横坐标Wavelength表示波长,纵坐标Refractive index表示折射率。结果表明,Gd2Sn2O7陶瓷在波长633nm处的折射率为2.02,是一种高折射率材料。
图10给出了实施例1的制备方法制备得到的Gd2Sn2O7陶瓷的透过率曲线。图10中横坐标Wavelength表示波长,纵坐标Transmittance表示透过率。经测试,本发明制备的Gd2Sn2O7透明陶瓷在光波长为750nm处透过率约为80%。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其具体步骤是:
(1)将六水合硝酸钆和五水合四氯化锡按照阳离子1∶1的摩尔比加入至去离子水溶解配制成母盐溶液,加入一定掺量的六水合氯化铝,搅拌均匀;
(2)将碳酸氢铵溶液作为沉淀剂,将制备得到的混合盐溶液按一定滴速滴定到NH4HCO3溶液中反应生成白色沉淀,随后陈化、洗涤和烘干得到沉淀前驱体;
(3)将步骤(2)获得的前驱体在氧气气氛下煅烧生成Gd2Sn2O7粉体;
(4)Gd2Sn2O7粉体依次经过预压和冷等静压成型,在氧气气氛下高温烧结获得Gd2Sn2O7烧结体;最后对样品进行打磨和抛光获得Gd2Sn2O7透明陶瓷。
2.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(1)中,所述母盐溶液中阳离子总浓度为0.25~0.40mol/L。
3.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(1)中,所述六水合氯化铝掺量控制为的总阳离子物质的量的0.1%~0.5%。
4.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(2)中,所述母盐溶液与沉淀剂的摩尔比为1∶3~1∶5。
5.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(2)中,所述混合盐滴定速度为1mL/min~5mL/min。
6.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(2)中,所述沉淀剂NH4HCO3溶液是将NH4HCO3固体溶解于去离子水配制而成,NH4HCO3溶液的浓度为0.9mol/L~1.8mol/L。
7.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(2)中,去离子水洗涤次数为2次~6次,无水乙醇洗涤次数1次~5次;烘箱烘干温度为80℃~90℃,烘干时间为12h~24h。
8.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(3)中,前驱体在氧气浓度为99.99%、流速为100mL/min的气氛下煅烧,煅烧温度为1000℃~1400℃,保温时间为1h~6h。
9.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(4)中,冷等静压成型时,压强为100MPa~400MPa。
10.根据权利要求1所述的一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法,其特征是:步骤(4)中,烧结温度在1500℃~1630℃,氧气流速为80mL/min,保温时间在3h~8h。
CN202310256707.8A 2023-03-07 2023-03-07 一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法 Active CN116283271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310256707.8A CN116283271B (zh) 2023-03-07 2023-03-07 一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310256707.8A CN116283271B (zh) 2023-03-07 2023-03-07 一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN116283271A true CN116283271A (zh) 2023-06-23
CN116283271B CN116283271B (zh) 2024-03-12

Family

ID=86802709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310256707.8A Active CN116283271B (zh) 2023-03-07 2023-03-07 一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116283271B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252313A (ja) * 1990-02-28 1991-11-11 Osaka Titanium Co Ltd A↓22↓2o↓7型酸化物粉末の製造方法
JP2005097042A (ja) * 2003-09-25 2005-04-14 Alps Electric Co Ltd 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
CN101041458A (zh) * 2007-03-02 2007-09-26 浙江理工大学 一种镧系稀土锡酸盐纳米粉体的通用合成方法
JP2008038235A (ja) * 2006-08-10 2008-02-21 Idemitsu Kosan Co Ltd 酸化ガドリニウム含有酸化物ターゲット
US20100248938A1 (en) * 2009-03-31 2010-09-30 Yvonne Menke Passive optoceramics with cubic crystal structure, process for manufacturing the same and their uses
US20110033779A1 (en) * 2007-07-05 2011-02-10 Michael Edward Badding Insulation for SOFC Systems
CN103113106A (zh) * 2013-01-25 2013-05-22 福建福晶科技股份有限公司 一种烧绿石型a2b2o7透明陶瓷的制备方法
US20150285595A1 (en) * 2012-12-19 2015-10-08 Schott Ag Protective glazing comprising transparent ceramics
CN110724530A (zh) * 2019-10-31 2020-01-24 广东省稀有金属研究所 近红外长余辉发光材料、其制备方法及其应用
CN113880578A (zh) * 2021-11-05 2022-01-04 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法
US20220017377A1 (en) * 2020-07-15 2022-01-20 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramics

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252313A (ja) * 1990-02-28 1991-11-11 Osaka Titanium Co Ltd A↓22↓2o↓7型酸化物粉末の製造方法
JP2005097042A (ja) * 2003-09-25 2005-04-14 Alps Electric Co Ltd 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
JP2008038235A (ja) * 2006-08-10 2008-02-21 Idemitsu Kosan Co Ltd 酸化ガドリニウム含有酸化物ターゲット
CN101041458A (zh) * 2007-03-02 2007-09-26 浙江理工大学 一种镧系稀土锡酸盐纳米粉体的通用合成方法
US20110033779A1 (en) * 2007-07-05 2011-02-10 Michael Edward Badding Insulation for SOFC Systems
US20100248938A1 (en) * 2009-03-31 2010-09-30 Yvonne Menke Passive optoceramics with cubic crystal structure, process for manufacturing the same and their uses
US20150285595A1 (en) * 2012-12-19 2015-10-08 Schott Ag Protective glazing comprising transparent ceramics
CN103113106A (zh) * 2013-01-25 2013-05-22 福建福晶科技股份有限公司 一种烧绿石型a2b2o7透明陶瓷的制备方法
CN110724530A (zh) * 2019-10-31 2020-01-24 广东省稀有金属研究所 近红外长余辉发光材料、其制备方法及其应用
US20220017377A1 (en) * 2020-07-15 2022-01-20 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramics
CN113880578A (zh) * 2021-11-05 2022-01-04 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王景;孙明娟;杜飞;殷洁;潘尚可;潘建国;: "离子液体中镧的氟化物合成及其上转换发光性能研究", 人工晶体学报, no. 02, pages 26 - 31 *

Also Published As

Publication number Publication date
CN116283271B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6493207B2 (ja) 酸化セリウム研磨材の製造方法
US7691765B2 (en) Translucent material and manufacturing method of the same
CN103930386B (zh) 一种CaF2类透光性陶瓷及其制造方法
Li et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics
JP6911811B2 (ja) ファラデー回転子用透明セラミックスの製造方法
CN107285770B (zh) 一种纯度高形貌均匀的锆酸镧钆粉体及透明陶瓷制备方法
TW201609605A (zh) 透明陶瓷之製造方法及透明陶瓷、磁性光學裝置以及燒結用稀土類氧化物粉末
JP2008024555A (ja) ジルコニア微粉末及びその製造方法並びにその用途
CN110526704B (zh) 制备可烧结复合氧化物粉末和制造透明陶瓷
CN109678506B (zh) 一种氧化铒透明陶瓷的制备方法
CN113880578B (zh) 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法
JP5521551B2 (ja) Ca−La−F系透光性セラミックスの製造方法、Ca−La−F系透光性セラミックス、光学部材、光学装置、及びCa−La−F系透光性セラミックス形成用組成物
Cook et al. A new powder production route for transparent spinel windows: powder synthesis and window properties
US5066617A (en) Method for producing plzt powder
JP6988779B2 (ja) 焼結用ガーネット型複合酸化物粉末の製造方法、及び透明セラミックスの製造方法
CN108358635B (zh) 一种磁光氧化钬透明陶瓷的制备方法
CN101492180A (zh) 一种片状铌酸盐粉体的熔盐法制备方法
CN111087235A (zh) 一种采用钇/助剂/铝三重核壳结构粉体制备yag透明陶瓷的方法
CN108046794B (zh) 利用共沉淀法合成粉体制备钛酸钇透明陶瓷的方法
CN116283271B (zh) 一种高折射率和高光学质量的Gd2Sn2O7烧绿石型透明陶瓷的制备方法
Yuan et al. Synthesis and characterization of Nd3+-doped CaF2 nanoparticles
CN110511027B (zh) 一种高光学质量的氧化铥透明陶瓷的制备方法
JP5682132B2 (ja) Ca−Gd−F系透光性セラミックスの製造方法、Ca−Gd−F系透光性セラミックス、光学部材、光学系、及びセラミックス形成用組成物
CN111302800B (zh) 一种镍离子均匀掺杂技术制备高费尔德常数及高光学质量的氧化钬磁光透明陶瓷
CN115340824B (zh) 一种铈系研磨抛光材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant