CN116283269A - 一种高熵稀土高温超导薄膜的制备方法 - Google Patents

一种高熵稀土高温超导薄膜的制备方法 Download PDF

Info

Publication number
CN116283269A
CN116283269A CN202310160006.4A CN202310160006A CN116283269A CN 116283269 A CN116283269 A CN 116283269A CN 202310160006 A CN202310160006 A CN 202310160006A CN 116283269 A CN116283269 A CN 116283269A
Authority
CN
China
Prior art keywords
temperature
rare earth
acetate
superconducting film
entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310160006.4A
Other languages
English (en)
Inventor
彭发宏
高波
高锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Superconducting Energy Technology Co ltd
Original Assignee
Anhui Superconducting Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Superconducting Energy Technology Co ltd filed Critical Anhui Superconducting Energy Technology Co ltd
Priority to CN202310160006.4A priority Critical patent/CN116283269A/zh
Publication of CN116283269A publication Critical patent/CN116283269A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高熵稀土高温超导薄膜的制备方法,其技术方案是:按照五种稀土元素的元素摩尔比配置低氟前驱溶液,然后将前驱溶液涂敷在双轴织构的衬底上,涂敷后的凝胶膜先经过室温到400℃的低温热解过程,最后经过750‑800℃的高温晶化过程和400‑500℃的退火吸氧处理,从而获得性能优良的高熵稀土高温超导外延薄膜:(Y0.7Gd0.2Dy0.2Sm0.2Eu0.2)Ba2Cu3O7‑δ,本发明有益效果是:通过高熵稀土高温超导薄膜的低氟化学溶液制备成本低,工艺简单,相对于纯的钇钡铜氧薄膜,高熵稀土高温超导薄膜含有更多的有效钉扎中心,从而具有更高的超导临界电流密度,而且单次涂敷的厚度可以达到800nm,如采用多次涂敷工艺,厚度可以增加到3‑4微米,进一步提高带材的载流能力。

Description

一种高熵稀土高温超导薄膜的制备方法
技术领域
本发明涉及高温超导薄膜和超导强电技术领域,具体涉及一种高熵稀土高温超导薄膜的制备方法。
背景技术
在铜氧化物超导体中,稀土123相超导体结构最简单,也最容易制备合成,是目前高温超导应用的主要材料之一,超导稀土123相包括了钇Y、钕Nd、钐Sm,铕Eu,钆Gd,铽Tb,镝Dy等稀土元素,科研人员发现通过在钇钡铜氧中掺杂至少3-4种稀土元素,不同稀土离子随机占据晶格中Y的位置,形成了一类高熵稀土高温超导材料,由于掺杂稀土离子尺寸的不同,在材料中形成一定的晶格畸变和应力,会大大提高钇钡铜氧的超导性能和载流能力,但该高熵稀土高温超导材料研究主要集中在块体中,在外延薄膜方面工作很少。
目前已经报道的高熵稀土高温超导外延薄膜的超导性能较差,而且薄膜厚度薄,还不能在制备第二代高温超导带材中替代现有的钇钡铜氧薄膜。
发明内容
为此,本发明提供一种高熵稀土高温超导薄膜的制备方法,通过低成本的化学溶液法制备高性能的高熵稀土高温超导薄膜,以解决进一步提高第二代高温超导带材的载流能力,且重稀土123相外延薄膜制备工艺要求较高,无法使用化学溶液方法制备,已有的高熵超导薄膜的厚度薄的问题。
为了实现上述目的,本发明提供如下技术方案:一种高熵稀土高温超导薄膜的制备方法,具体步骤如下:
S1、按元素Y:Dy:Gd:Sm:Eu:Ba:Cu=0.7:0.2:0.2:0.2:0.2:2:3的摩尔比,分别称量定量的醋酸钇、醋酸镝、醋酸钆、醋酸钐,醋酸铕、醋酸钡和醋酸铜;
S2、将S1中的醋酸钡溶于去离子水中,加入过量的三氟乙酸,充分搅拌后得到三氟乙酸钡溶液,再使用减压蒸馏方法得到凝胶;
S3、将S1中的所有稀土醋酸盐和醋酸铜溶于去离子水和丙酸中,搅拌均匀后使用减压蒸馏方法得到凝胶;
S4、将在S1和S2中制备的两种凝胶,分别加入甲醇溶解后混合,继续使用减压蒸馏方法去除溶剂得到凝胶,再以甲醇为溶剂重复减压蒸馏2-3次,得到最终的凝胶,然后将凝胶溶于定量的甲醇中,混合均匀后,获得所有稀土元素、钡、铜总阳离子浓度为1.0-3.0mol/L的前驱溶液;
S5、将在S4中制备的前驱溶液涂敷在双轴织构的衬底上,形成凝胶前驱膜;
S6、将在S5中的前驱膜,放置在管式气氛炉中进行从室温到400℃的低温热解和750-800℃的高温晶化过程,其升温过程为:在干燥的氧气气氛下,从室温加热到100-140℃时改为流动的潮湿氧气,同时以5-25度/min的升温速率升温到400℃,然后改为潮湿的氮氧或者氩氧混合气体快速升温到750-800℃,并维持1-2小时,之后再降温到400-500℃,在纯氧气氛下完成超导薄膜吸氧退火过程,即可获得所需的高熵稀土高温超导薄膜。
优选的,所述步骤S5中的涂覆工艺包括了旋转涂敷法、浸涂提拉法或者流延涂敷法。
优选的,所述步骤S5中的衬底包括了钛酸锶或铝酸镧等单晶基片,或带有缓冲层的金属基带。
优选的,所述步骤S6中的低温热解过程中湿氧中水分压为2.1%-4.2%,干氧和湿氧的气流量为0.2-1.0L/min。
优选的,所述步骤S6中的高温晶化过程中从400℃到750-800℃的升温速率不能低于25℃/min,混合气体中氧分压为100ppm-200ppm,其中的水分压为2.1%-4.2%,混合气体的气流量为0.2-1.0L/min。
优选的,所述单次涂敷超导薄膜的厚度不高于800nm。
本发明实施例具有如下优点:
通过高熵稀土高温超导薄膜的低氟化学溶液制备成本低,工艺简单,相对于纯的钇钡铜氧薄膜,高熵稀土高温超导薄膜含有更多的有效钉扎中心,从而具有更高的超导临界电流密度,而且单次涂敷的厚度可以达到800nm,如采用多次涂敷工艺,厚度可以增加到3-4微米,进一步提高带材的载流能力。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
图1为本发明提供的高熵稀土高温超导薄膜的XRD图;
图2为本发明提供的高熵稀土高温超导薄膜与纯的钇钡铜氧薄膜的超导临界电流密度与磁场(30K,65K,77K下)的依赖关系图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
本发明提供的一种高熵稀土高温超导薄膜的制备方法,具体步骤如下:
S1、按Y:Dy:Gd:Sm:Eu:Ba:Cu=0.7:0.2:0.2:0.2:0.2:2:3的摩尔比,分别称量定量的0.0035mol的醋酸钇、0.001mol的醋酸镝、0.001mol的醋酸钆、0.001mol的醋酸钐,0.001mol的醋酸铕、0.01mol的醋酸钡和0.015mol的醋酸铜;
S2、将S1中的称量的醋酸钡先溶于去离子水中,搅拌半小时后加入过量25%的三氟乙酸,再搅拌半小时使二者充分反应,然后用旋转蒸发仪,减压蒸馏去除溶剂得到凝胶;
S3、将S1中称量的所有稀土醋酸盐和醋酸铜溶于去离子水中,搅拌1小时后加入过量2倍的丙酸,再搅拌3小时,搅拌均匀后,然后用旋转蒸发仪,减压蒸馏去除溶剂得到凝胶;
S4、将在S1和S2中制备的两种凝胶,分别加入甲醇溶解后混合,继续使用减压蒸馏方法去除溶剂得到凝胶,再以甲醇为溶剂重复减压蒸馏2-3次,得到最终的凝胶,然后将凝胶溶于定量的甲醇中,混合均匀后,获得所有稀土元素、钡、铜总阳离子浓度为2.5mol/L的前驱溶液;
S5、采用浸涂提拉法将在S4中制备的前驱溶液涂敷在带有缓冲层的Hastelloy金属基带上形成凝胶前驱膜,缓冲层为Al2O3/Y2O3/MgO/LaMnO3
S6、将凝胶前驱膜放入管式气氛炉中进行从室温到400℃的低温热解和780℃的高温晶化过程,其升温过程为:在干燥的氧气气氛下,从室温加热到120℃,之后改为水分压为2.1%的湿氧,气流量为0.2L/mol,同时以5℃/min的升温速率升温到400℃,然后改为水分压为2.1%的氮氧混合气体,氧分压为100ppm,同时以25℃/min的速率快速加热到780℃,并保温1小时,然后再降温到450℃,在纯氧气氛下维持1小时,完成超导薄膜吸氧退火过程,即可获得所需的高熵稀土高温超导薄膜;
单次涂敷超导薄膜的厚度不高于800nm;
本实施方案中,图1是本实施例制备的(Y0.7Gd0.2Dy0.2Sm0.2Eu0.2)Ba2Cu3O7-δ外延薄膜的(005)峰的摇摆曲线(ω扫描)和(103)峰的φ扫描图谱,从中可以看出,最终得到的高熵薄膜的面内外半高宽分别为1.1°和3.2°,表面该高熵薄膜具有良好的双轴织构。
实施例2:
本发明提供的一种高熵稀土高温超导薄膜的制备方法,具体步骤如下:
S1、按Y:Dy:Gd:Sm:Eu:Ba:Cu=0.7:0.2:0.2:0.2:0.2:2:3的摩尔比,分别称量定量的0.0035mol的醋酸钇、0.001mol的醋酸镝、0.001mol的醋酸钆、0.001mol的醋酸钐,0.001mol的醋酸铕、0.01mol的醋酸钡和0.015mol的醋酸铜;
S2、将S1中的称量的醋酸钡先溶于去离子水中,搅拌半小时后加入过量25%的三氟乙酸,再搅拌半小时使二者充分反应,然后用旋转蒸发仪,减压蒸馏去除溶剂得到凝胶;
S3、将S1中称量的所有稀土醋酸盐和醋酸铜溶于去离子水中,搅拌1小时后加入过量2倍的丙酸,再搅拌3小时,搅拌均匀后,然后用旋转蒸发仪,减压蒸馏去除溶剂得到凝胶;
S4、将在S1和S2中制备的两种凝胶,分别加入甲醇溶解后混合,继续使用减压蒸馏方法去除溶剂得到凝胶,再以甲醇为溶剂重复减压蒸馏2-3次,得到最终的凝胶,然后将凝胶溶于定量的甲醇中,混合均匀后,获得所有稀土元素、钡、铜总阳离子浓度为2.0mol/L的前驱溶液;
S5、采用浸涂提拉法将在S4中制备的前驱溶液涂敷在带有缓冲层的Hastelloy金属基带上形成凝胶前驱膜,缓冲层为Al2O3/Y2O3/MgO/LaMnO3
S6、将凝胶前驱膜放入管式气氛炉中进行从室温到400℃的低温热解和780℃的高温晶化过程,其升温过程为:在干燥的氧气气氛下,从室温加热到120℃,之后改为水分压为2.1%的湿氧,气流量为0.2L/mol,同时以5℃/min的升温速率升温到400℃,然后改为水分压为2.1%的氮氧混合气体,氧分压为100ppm,同时以25℃/min的速率快速加热到780℃,并保温1小时,然后再降温到450℃,在纯氧气氛下维持1小时,完成超导薄膜吸氧退火过程,即可获得所需的高熵稀土高温超导薄膜;
单次涂敷超导薄膜的厚度不高于800nm。
实施例3:
本发明提供的一种高熵稀土高温超导薄膜的制备方法,具体步骤如下:
S1、按Y:Dy:Gd:Sm:Eu:Ba:Cu=0.7:0.2:0.2:0.2:0.2:2:3的摩尔比,分别称量定量的0.0035mol的醋酸钇、0.001mol的醋酸镝、0.001mol的醋酸钆、0.001mol的醋酸钐,0.001mol的醋酸铕、0.01mol的醋酸钡和0.015mol的醋酸铜;
S2、将S1中的称量的醋酸钡先溶于去离子水中,搅拌半小时后加入过量25%的三氟乙酸,再搅拌半小时使二者充分反应,然后用旋转蒸发仪,减压蒸馏去除溶剂得到凝胶;
S3、将S1中称量的所有稀土醋酸盐和醋酸铜溶于去离子水中,搅拌1小时后加入过量2倍的丙酸,再搅拌3小时,搅拌均匀后,然后用旋转蒸发仪,减压蒸馏去除溶剂得到凝胶;
S4、将在S1和S2中制备的两种凝胶,分别加入甲醇溶解后混合,继续使用减压蒸馏方法去除溶剂得到凝胶,再以甲醇为溶剂重复减压蒸馏2-3次,得到最终的凝胶,然后将凝胶溶于定量的甲醇中,混合均匀后,获得所有稀土元素、钡、铜总阳离子浓度为3.0mol/L的前驱溶液;
S5、采用浸涂提拉法将在S4中制备的前驱溶液涂敷在带有缓冲层的Hastelloy金属基带上形成凝胶前驱膜,缓冲层为Al2O3/Y2O3/MgO/LaMnO3
S6、将凝胶前驱膜放入管式气氛炉中进行从室温到400℃的低温热解和780℃的高温晶化过程,其升温过程为:在干燥的氧气气氛下,从室温加热到120℃,之后改为水分压为2.1%的湿氧,气流量为0.2L/mol,同时以5℃/min的升温速率升温到400℃,然后改为水分压为2.1%的氮氧混合气体,氧分压为100ppm,同时以25℃/min的速率快速加热到780℃,并保温1小时,然后再降温到450℃,在纯氧气氛下维持1小时,完成超导薄膜吸氧退火过程,即可获得所需的高熵稀土高温超导薄膜;
单次涂敷超导薄膜的厚度不高于800nm。
根据上述实施例1-3制备的(Y0.7Gd0.2Dy0.2Sm0.2Eu0.2)Ba2Cu3O7-δ外延薄膜的(005)峰的摇摆曲线(ω扫描)和(103)峰的φ扫描图谱进行分析并得到以下数据:
高熵薄膜的面内外半高宽数据对比:
Figure BDA0004093779010000071
Figure BDA0004093779010000081
实施例1所制备的高熵薄膜具有良好的双轴织构。
根据实施列1所制备的高熵薄膜,对高熵稀土高温超导薄膜与纯的钇钡铜氧薄膜的超导临界电流密度(Jc)与磁场(30K,65K,77K下)的依赖关系进行比对(如图2所示);
在低场下高熵薄膜的临界电流密度都要大于纯的钇钡铜氧薄膜,特别是在较高的工作温区下,高熵薄膜的临界电流密度提升的幅度更大。
以上所述,仅是本发明的较佳实施例,任何熟悉本领域的技术人员均可能利用上述阐述的技术方案对本发明加以修改或将其修改为等同的技术方案。因此,依据本发明的技术方案所进行的任何简单修改或等同置换,尽属于本发明要求保护的范围。

Claims (6)

1.一种高熵稀土高温超导薄膜的制备方法,其特征在于:具体步骤如下:
S1、按元素Y:Dy:Gd:Sm:Eu:Ba:Cu=0.7:0.2:0.2:0.2:0.2:2:3的摩尔比,分别称量定量的醋酸钇、醋酸镝、醋酸钆、醋酸钐,醋酸铕、醋酸钡和醋酸铜;
S2、将S1中的醋酸钡溶于去离子水中,加入过量的三氟乙酸,充分搅拌后得到三氟乙酸钡溶液,再使用减压蒸馏方法得到凝胶;
S3、将S1中的所有稀土醋酸盐和醋酸铜溶于去离子水和丙酸中,搅拌均匀后使用减压蒸馏方法得到凝胶;
S4、将在S1和S2中制备的两种凝胶,分别加入甲醇溶解后混合,继续使用减压蒸馏方法去除溶剂得到凝胶,再以甲醇为溶剂重复减压蒸馏2-3次,得到最终的凝胶,然后将凝胶溶于定量的甲醇中,混合均匀后,获得所有稀土元素、钡、铜总阳离子浓度为1.0-3.0mol/L的前驱溶液;
S5、将在S4中制备的前驱溶液涂敷在双轴织构的衬底上,形成凝胶前驱膜;
S6、将在S5中的前驱膜,放置在管式气氛炉中进行从室温到400℃的低温热解和750-800℃的高温晶化过程,其升温过程为:在干燥的氧气气氛下,从室温加热到100-140℃时改为流动的潮湿氧气,同时以5-25度/min的升温速率升温到400℃,然后改为潮湿的氮氧或者氩氧混合气体快速升温到750-800℃,并维持1-2小时,之后再降温到400-500℃,在纯氧气氛下完成超导薄膜吸氧退火过程,即可获得所需的高熵稀土高温超导薄膜。
2.根据权利要求1所述的一种高熵稀土高温超导薄膜的制备方法,其特征在于:所述步骤S5中的涂覆工艺包括了旋转涂敷法、浸涂提拉法或者流延涂敷法。
3.根据权利要求1所述的一种高熵稀土高温超导薄膜的制备方法,其特征在于:所述步骤S5中的衬底包括了钛酸锶或铝酸镧等单晶基片,或带有缓冲层的金属基带。
4.根据权利要求1所述的一种高熵稀土高温超导薄膜的制备方法,其特征在于:所述步骤S6中的低温热解过程中湿氧中水分压为2.1%-4.2%,干氧和湿氧的气流量为0.2-1.0L/min。
5.根据权利要求1所述的一种高熵稀土高温超导薄膜的制备方法,其特征在于:所述步骤S6中的高温晶化过程中从400℃到750-800℃的升温速率不能低于25℃/min,混合气体中氧分压为100ppm-200ppm,其中的水分压为2.1%-4.2%,混合气体的气流量为0.2-1.0L/min。
6.根据权利要求1所述的一种高熵稀土高温超导薄膜的制备方法,其特征在于:所述单次涂敷超导薄膜的厚度不高于800nm。
CN202310160006.4A 2023-02-24 2023-02-24 一种高熵稀土高温超导薄膜的制备方法 Pending CN116283269A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310160006.4A CN116283269A (zh) 2023-02-24 2023-02-24 一种高熵稀土高温超导薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310160006.4A CN116283269A (zh) 2023-02-24 2023-02-24 一种高熵稀土高温超导薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN116283269A true CN116283269A (zh) 2023-06-23

Family

ID=86835302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310160006.4A Pending CN116283269A (zh) 2023-02-24 2023-02-24 一种高熵稀土高温超导薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN116283269A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304533A (en) * 1987-08-24 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Process for producing an oxide superconductor from alkoxides
CN102531567A (zh) * 2011-12-02 2012-07-04 西安理工大学 一种改性的低氟溶液法制备高温超导薄膜的方法
CN103102162A (zh) * 2013-01-30 2013-05-15 江苏天诚线缆集团有限公司 一种元素掺杂钇钆钡铜氧高温超导薄膜的制备方法
CN104795180A (zh) * 2015-04-07 2015-07-22 上海大学 极低氟mod法快速制备rebco超导膜的方法
CN105551681A (zh) * 2016-02-05 2016-05-04 上海上创超导科技有限公司 一种钡铜氧高温超导涂层导体的多层结构
CN106229404A (zh) * 2016-08-11 2016-12-14 上海大学 多层结构高温超导厚膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304533A (en) * 1987-08-24 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Process for producing an oxide superconductor from alkoxides
CN102531567A (zh) * 2011-12-02 2012-07-04 西安理工大学 一种改性的低氟溶液法制备高温超导薄膜的方法
CN103102162A (zh) * 2013-01-30 2013-05-15 江苏天诚线缆集团有限公司 一种元素掺杂钇钆钡铜氧高温超导薄膜的制备方法
CN104795180A (zh) * 2015-04-07 2015-07-22 上海大学 极低氟mod法快速制备rebco超导膜的方法
CN105551681A (zh) * 2016-02-05 2016-05-04 上海上创超导科技有限公司 一种钡铜氧高温超导涂层导体的多层结构
CN106229404A (zh) * 2016-08-11 2016-12-14 上海大学 多层结构高温超导厚膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING CHEN ET AL.: "Nucleation and epitaxy growth of high-entropy REBa2Cu3O7-δ (RE= Y, Dy, Gd, Sm, Eu) thin films by metal organic deposition", 《JOURNAL OF RARE EARTHS》, vol. 41, pages 1092 *

Similar Documents

Publication Publication Date Title
EP1805817B1 (en) Thick superconductor films with improved performance
CN100395847C (zh) 一种高温超导覆膜导体及其制备方法
US8409657B2 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
WO2008100281A2 (en) High temperature superconductors having planar magnetic flux pinning centers and methods for making the same
JP2007165153A6 (ja) 厚膜テープ状re系(123)超電導体の製造方法。
US7625843B2 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
CN102931338B (zh) 一种具有多层复合结构的ybco超导膜及其制备方法
KR100665587B1 (ko) 유기금속전구용액 제조방법 및 이를 이용하여유기금속증착법에 의한 박막형 산화물 초전도체 제조방법
CN106242553B (zh) 一种高温超导rebco薄膜的制备方法
US20110166026A1 (en) Method of fabricatiing oxide superconducting thin film
JP4422959B2 (ja) Y系テープ状酸化物超電導体の製造方法
CN101471161B (zh) 一种三氟酸盐-金属有机沉积制备高温超导薄膜的方法
JP2003034527A (ja) 厚膜テープ状酸化物超電導体及びその製造方法
CN104446435B (zh) 银掺杂稀土类钡铜氧高温超导涂层导体材料的制备方法
CN116283269A (zh) 一种高熵稀土高温超导薄膜的制备方法
KR20070003348A (ko) 유기금속전구용액 제조방법 및 이를 이용한유기금속증착법에 의한 박막형 산화물 초전도체 제조방법
JP4709005B2 (ja) 希土類系酸化物超電導体及びその製造方法
CN101746807A (zh) 提高三氟乙酸盐-金属有机沉积制备ybco薄膜厚度的方法
CN1258618C (zh) 一种在金属基底上形成织构外延膜的方法
CN106653993A (zh) 一种多层结构钇钡铜氧超导厚膜的制备方法
Van Driessche et al. Review of the application of high temperature superconductors in coated conductor development and the measurement of their properties
CN102690114B (zh) 一种ybco超导复合膜的制备方法
CN103613377B (zh) 一种稀土钡铜氧高温超导膜的制备方法
AU2021102202A4 (en) Multilayer structure for high-temperature superconductor-coated conductors and method for preparing thick films
Hishinuma et al. J/sub c/increase of BPSCCO-2223 bulk by composing with Ag wires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination