CN116253515A - 玻璃浆料 - Google Patents

玻璃浆料 Download PDF

Info

Publication number
CN116253515A
CN116253515A CN202211588903.7A CN202211588903A CN116253515A CN 116253515 A CN116253515 A CN 116253515A CN 202211588903 A CN202211588903 A CN 202211588903A CN 116253515 A CN116253515 A CN 116253515A
Authority
CN
China
Prior art keywords
thermal expansion
glass
substrate
filler
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211588903.7A
Other languages
English (en)
Inventor
渡边智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of CN116253515A publication Critical patent/CN116253515A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Sealing Material Composition (AREA)

Abstract

本发明涉及玻璃浆料。本发明涉及一种玻璃浆料,所述玻璃浆料包含玻璃组合物、无机填料和有机载体,其中,所述玻璃组合物的50℃~250℃下的热膨胀系数为70×10‑7/℃以上且110×10‑7/℃以下,所述无机填料的波长808nm的光谱发射率小于80%,并且所述无机填料包含负热膨胀填料和正热膨胀填料,所述负热膨胀填料的30℃~500℃下的热膨胀系数大于等于‑40×10‑7/℃且小于0×10‑7/℃;所述正热膨胀填料的30℃~500℃下的热膨胀系数为60×10‑7/℃以上且110×10‑7/℃以下,所述无机填料中的所述负热膨胀填料的含量为60体积%以上且95体积%以下,所述无机填料中的所述正热膨胀填料的含量为5体积%以上且40体积%以下。

Description

玻璃浆料
技术领域
本发明涉及玻璃浆料、玻璃浆料的密封方法、密封封装体和有机电致发光元件。
背景技术
有机电致发光显示器(Organic Electro-Luminescence Display:OELD)、等离子体显示面板(PDP)等平板型显示装置(FPD)具有通过密封有一对玻璃基板的玻璃封装体来封装发光元件的结构。另外,液晶显示装置(LCD)具有在一对玻璃基板之间密封有液晶的结构。此外,有机薄膜太阳能电池、染料敏化型太阳能电池等太阳能电池具有在一对玻璃基板之间封装有太阳能电池元件(光电转换元件)的结构。
其中,有机电致发光显示器由于与水分的接触而使有机电致发光元件的发光特性显著劣化,因此需要将有机电致发光元件与外部空气严密地阻断。另外,由于有机电致发光元件在暴露在高温下时受到损伤,因此封装方法极为重要。
因此,作为有机电致发光显示器的封装方法,使用玻璃粉末作为密封材料并通过局部加热进行封装的方法被认为最具有前途。玻璃粉末是指将玻璃组合物粉碎而得到的玻璃粉末。通常将该玻璃粉末、无机填料、激光吸收物质和有机载体混合而形成浆料来使用。通过丝网印刷或分配器等将该浆料涂布在一个玻璃基板上,并进行烧印而制成预煅烧层。接着,使另一个玻璃基板重合,通过对预煅烧层使用激光等的局部加热而使玻璃粉末熔融并密封。
作为这样的密封材料,例如在专利文献1中列举了将V2O5-TeO2-ZnO类玻璃组合物、无机填料、激光吸收物质和有机载体混合而得到的玻璃浆料。
现有技术文献
专利文献
专利文献1:日本专利第6885445号公报
发明内容
发明所要解决的问题
随着各种形状的显示器的需求,有时对密封后的显示面板在密封部、其周边实施切割、研磨等加工。特别是近年来,要求曲面大的显示面板等进一步形状复杂化的显示面板,大多实施端面研磨等研磨加工。但是,在这样的研磨加工中,存在产生剪切应力、容易引起密封层中的剪切断裂(凝聚断裂)的问题。为了解决该问题,要求提高剪切强度。
使用了玻璃粉末的密封材料的剪切强度主要受密封材料与玻璃基板的胶粘强度(以下简称为“胶粘强度”)、密封材料自身的强度、在密封材料内蓄积的热应力(残留热应力)的大小的影响。
其中,由研磨引起的剪切断裂是由于在研磨时产生的剪切应力超过密封材料自身的强度而引起的,因此为了防止剪切断裂,需要提高密封材料自身的强度。但是,在专利文献1中记载的玻璃浆料在用作密封材料时,虽然胶粘强度和热应力显示出良好的值,但是从抑制剪切断裂的观点考虑,密封材料自身的强度还有进一步改善的余地。
本发明是鉴于上述情况而完成的,其目的在于提供一种在用于密封材料的情况下显示出优异的剪切强度的玻璃浆料。另外,本发明的目的还在于提供含有该玻璃浆料的密封材料和使用所述密封材料的密封方法以及密封封装体和有机电致发光元件。
用于解决问题的手段
本发明人发现,在包含玻璃组合物、无机填料和有机载体的玻璃浆料中,通过以组合包含具有特定范围的热膨胀系数的无机填料的方式构成无机填料,在用作密封材料时剪切强度提高,基于该发现完成了本发明。
即,本发明如下所述。
[1]一种玻璃浆料,所述玻璃浆料包含玻璃组合物、无机填料和有机载体,其中,
所述玻璃组合物的50℃~250℃下的热膨胀系数为70×10-7/℃以上且110×10-7/℃以下,
所述无机填料的波长808nm的光谱发射率小于80%,并且所述无机填料包含负热膨胀填料和正热膨胀填料,
所述负热膨胀填料的30℃~500℃下的热膨胀系数大于等于-40×10-7/℃且小于0×10-7/℃;
所述正热膨胀填料的30℃~500℃下的热膨胀系数为60×10-7/℃以上且110×10-7/℃以下,
所述无机填料中的所述负热膨胀填料的含量为60体积%以上且95体积%以下,
所述无机填料中的所述正热膨胀填料的含量为5体积%以上且40体积%以下。
[2]如[1]所述的玻璃浆料,其中,所述玻璃组合物实质上不含有碱金属氧化物,并且以氧化物基准的摩尔%计,所述玻璃组合物含有15.0%~45.0%的V2O5、16.0%~40.0%的TeO2和10.0%~40.0%的ZnO。
[3]如[1]或[2]所述的玻璃浆料,其中,所述负热膨胀填料包含磷酸锆类化合物。
[4]如[1]~[3]中任一项所述的玻璃浆料,其中,所述正热膨胀填料包含氧化锆和氧化铝中的至少一者。
[5]如[1]~[4]中任一项所述的玻璃浆料,其中,所述玻璃组合物为玻璃粉末。
[6]如[1]~[5]中任一项所述的玻璃浆料,其中,所述玻璃浆料还包含激光吸收物质。
[7]一种密封方法,其中,使用[1]~[6]中任一项所述的玻璃浆料,并通过对所述玻璃浆料照射激光束而对其进行加热,从而将基板彼此密封。
[8]一种密封封装体,所述密封封装体具有:第一基板、与所述第一基板相对配置的第二基板和密封层,所述密封层配置在所述第一基板与所述第二基板之间并将所述第一基板与所述第二基板胶粘,其中,
所述密封层包含[1]~[5]的任一项中所述的所述玻璃组合物和所述无机填料。
[9]一种有机电致发光元件,其中,所述有机电致发光元件具有:
基板;层叠结构体,所述层叠结构体具有层叠在所述基板上的阳极、有机薄膜层和阴极;玻璃构件,所述玻璃构件覆盖所述层叠结构体的外表面侧并载置在所述基板上;和密封层,所述密封层将所述基板与所述玻璃构件胶粘,并且
所述密封层包含[1]~[5]的任一项中所述的所述玻璃组合物和所述无机填料。
[10]如[9]所述的有机电致发光元件,其中,所述密封层含有组成不同的多种玻璃。
发明效果
本发明的玻璃浆料含有玻璃组合物、无机填料和有机载体,所述无机填料以组合包含热膨胀系数范围互不相同的负热膨胀填料和正热膨胀填料的方式构成。在该构成中,通过使无机填料中含有负热膨胀填料,能够抑制在密封后的热收缩时产生的残留热应力,增大剪切强度。另外,通过在无机填料中含有正热膨胀填料,能够降低在密封处理后的收缩时产生的无机填料与玻璃组合物之间产生的收缩应力,提高密封材料自身的强度,提高剪切强度。由此,在使用本发明的玻璃浆料作为密封材料的情况下,显示出优异的剪切强度,能够抑制剪切断裂。
附图说明
图1为表示密封封装体的一个实施方式的主视图。
图2为图1所示的密封封装体的A-A线剖视图。
图3A为表示密封封装体的制造方法的一个实施方式的工序图。
图3B为表示密封封装体的制造方法的一个实施方式的工序图。
图3C为表示密封封装体的制造方法的一个实施方式的工序图。
图3D为表示密封封装体的制造方法的一个实施方式的工序图。
图4为在图1所示的密封封装体的制造中使用的第一基板的俯视图。
图5为图4所示的第一基板的B-B线剖视图。
图6为在图1所示的密封封装体的制造中使用的第二基板的俯视图。
图7为图6所示的第二基板的C-C线剖视图。
图8为作为密封封装体的一例的有机电致发光元件的概念图。
图9为在实施例中的密封封装体的制造中使用的玻璃基板的俯视图。
图10为图9所示的玻璃基板的D-D线剖视图。
图11为表示实施例的密封封装体的剖视图。
图12为将密封封装体的两面固定在夹具上的密封封装体的示意图。
标号说明
10:密封封装体
11:第一基板
12:第二基板
13:电子元件部
15:密封层
15a:预煅烧层
16:激光束
31:玻璃基板
32:玻璃基板
30:密封层
30a:预煅烧层
33:密封封装体
34:夹具
210:有机电致发光元件
211:基板
212:玻璃构件
213:层叠结构体
213a:阳极
213b:有机薄膜层
213c:阴极
215:密封层
具体实施方式
以下,对本发明的实施方式进行说明。需要说明的是,本发明不限于以下说明的实施方式。另外,在以下的附图中,有时对起到相同作用的构件、部位标注相同的符号来进行说明,有时省略或简化重复的说明。另外,在附图中记载的实施方式为了明确地说明本发明而进行了示意化,并不一定要准确地表示实际的尺寸、比例尺。
<玻璃浆料>
本实施方式的玻璃浆料为包含玻璃组合物、无机填料和有机载体的玻璃浆料,其特征在于,该玻璃组合物的50℃~250℃下的热膨胀系数为70×10-7/℃以上且110×10-7/℃以下,该无机填料的波长808nm的光谱发射率小于80%,并且所述无机填料包含负热膨胀填料和正热膨胀填料,所述负热膨胀填料的30℃~500℃下的热膨胀系数大于等于-40×10-7/℃且小于0×10-7/℃;所述正热膨胀填料的30℃~500℃下的热膨胀系数为60×10-7/℃以上且110×10-7/℃以下,该无机填料中的该负热膨胀填料的含量为60体积%以上且95体积%以下,该无机填料中的该正热膨胀填料的含量为5体积%以上且40体积%以下。
[玻璃组合物]
本实施方式中的玻璃组合物的50℃~250℃下的热膨胀系数为70×10-7/℃以上且110×10-7/℃以下。通过上述热膨胀系数为70×10-7/℃以上,能够提高胶粘强度。50℃~250℃下的热膨胀系数优选为75×10-7/℃以上。另外,通过上述热膨胀系数为110×10-7/℃以下、并且通过将玻璃组合物与规定了热膨胀系数的填料一起含有,材料强度提高。50℃~250℃下的热膨胀系数优选为100×10-7/℃以下,进一步优选为90×10-7/℃以下。玻璃组合物的50℃~250℃下的热膨胀系数通过在实施例中后述的方法进行测定。
从确保充分的胶粘强度的观点考虑,相对于玻璃组合物与无机填料的合计,玻璃组合物的含量优选为85体积%以下,更优选为80体积%以下,进一步优选为75体积%以下。另外,玻璃组合物的含量优选为55体积%以上,更优选为60体积%以上,进-步优选为65体积%以上。
优选:玻璃组合物实质上不含有碱金属氧化物,含有V2O5、TeO2、ZnO。
接着,对本实施方式中的玻璃组合物的各成分的优选的一例进行说明。在以下的说明中,只要没有特别说明,则玻璃组合物的各成分的含量中的“%”的表示均为以氧化物为基准,即以氧化物换算的摩尔%计。在本说明书中,表示数值范围的“~”以包含上下限的含义使用。
当在密封材料中使用的玻璃组合物含有碱金属氧化物时,当在密封时、在密封后密封材料暴露在高温下时,碱成分向玻璃基板等被密封材料扩散,被密封材料劣化。因此,玻璃组合物优选实质上不含有碱金属氧化物。需要说明的是,实质上不含有表示除不可避免的杂质以外不含有,即表示不有意地添加。因此,玻璃组合物可以含有微量的作为不可避免的杂质的碱金属氧化物。玻璃组合物中的碱金属氧化物的含量优选为1000ppm以下,更优选为500ppm以下。
需要说明的是,在本说明书中,碱金属氧化物是指Li2O、Na2O和K2O。另外,ppm是指质量ppm。
V2O5是用于形成玻璃的氧化物,形成玻璃的网络并且是低软化成分。另外,作为激光吸收成分也是有效的。另一方面,当V2O5的含量多时,耐水性降低,另外,在制造玻璃时,玻璃稳定性降低,玻璃有可能容易失透。另外,当V2O5的含量过少时,玻璃化转变温度上升,低温密封性有可能变差。因此,V2O5的含量优选为15.0%~45.0%。V2O5的含量更优选为20.0%以上,进一步优选为25.0%以上,另外V2O5的含量更优选为40.0%以下,进一步优选为35.0%以下。
TeO2是玻璃氧化物,形成玻璃网络并且是低软化成分。另一方面,当TeO2的含量多时,热膨胀系数变大。另外,当TeO2过少时,玻璃化转变温度上升,低温密封性有可能变差,另外在密封煅烧时容易晶化。因此,TeO2的含量优选为16.0%~40.0%。TeO2的含量更优选为18.0%以上,进一步优选为20.0%以上,另外TeO2的含量更优选为35.0%以下,进一步优选为30.0%以下。
ZnO是降低热膨胀系数的成分。另一方面,当ZnO的含量多时,在玻璃制造时玻璃稳定性降低,玻璃有可能容易失透。另外,当ZnO过少时,热膨胀系数变大。因此,ZnO的含量优选为10.0%~40.0%。ZnO的含量更优选为15.0%以上,进一步优选为20.0%以上,另外ZnO的含量更优选为35.0%以下,进一步优选为30.0%以下。
Bi2O3是在密封时容易与玻璃基板反应并通过形成反应层而提高胶粘强度的成分,优选含有Bi2O3。通过含有Bi2O3,胶粘强度提高。另一方面,当Bi2O3的含量多时,玻璃化转变温度变高,有可能损害低温密封性。而且,由于过度与玻璃基板反应,将玻璃基板中的SiO2等高熔点成分引入到玻璃组合物中,因此固接点上升,密封后的密封材料的残留热应力有可能变大。因此,Bi2O3的含量优选为1.0%以上,更优选为1.5%以上,进一步优选为2.0%以上,另外,Bi2O3的含量优选为15.0%以下,更优选为10.0%以下,进一步优选为7.0%以下。
CuO是具有降低热膨胀系数的效果的成分,另外,CuO具有提高耐水性的效果,因此优选含有CuO。此外,作为激光吸收成分也是有效的。因此,通过含有CuO,在制作玻璃浆料时,能够减少为了激光吸收的目的而含有的颜料的添加量,取而代之以多量地含有无机填料,因此能够制造热膨胀系数更低的玻璃浆料。另一方面,当CuO的含量多时,在密封煅烧时容易晶化。因此,为了充分地得到激光吸收的效果,CuO的含量优选为1.0%以上,更优选为2.0%以上,进一步优选为3.0%以上。另外,为了避免玻璃的晶化,CuO的含量优选为10.0%以下,更优选为9.0%以下,进一步优为8.0%以下。
Fe2O3作为激光吸收成分也是有效的,因此可以含有Fe2O3。通过含有Fe2O3,在制作玻璃浆料时,能够减少为了激光吸收的目的而含有的颜料的添加量,取而代之以多量地含有无机填料,因此能够制作热膨胀系数更低的玻璃浆料。另一方面,当Fe2O3的含量多时,在煅烧密封时玻璃容易晶化,此外,玻璃的软化点上升,低温密封性变差。因此,Fe2O3的含量优选为7.0%以下,更优选为5.0%以下,进一步优选为2.0%以下。另外,为了得到激光吸收的效果,Fe2O3的含量优选为1.0%以上。但是,如果含有CuO,则即使不含有Fe2O3也能够得到上述效果。
MnO2作为激光吸收成分是有效的成分,因此优选含有MnO2。通过含有MnO2,在制作玻璃浆料时,能够减少为了激光吸收的目的而含有的颜料的添加量,取而代之以多量地含有无机填料,因此能够制作热膨胀系数更低的玻璃浆料。另一方面,当MnO2的含量多时,在煅烧密封时玻璃容易晶化。因此,MnO2的含量优选为7.0%以下,更优选为5.0%以下,进一步优选为2.0%以下。另外,为了得到激光吸收的效果,MnO2的含量优选为1.0%以上。但是,如果含有CuO、Fe2O3,则即使不含有MnO2也能够得到上述效果。
为了充分地得到激光吸收的效果,CuO、Fe2O3和MnO2的含量的合计(CuO+Fe2O3+MnO2)优选为1.0%以上,更优选为2.0%以上,进一步优选为3.0%以上,更进一步优选为4.0%以上。另外,为了避免激光煅烧密封时的玻璃的晶化,上述CuO、Fe2O3和MnO2的含量的合计优选为10.0%以下,更优选为9.0%以下,进一步优选为8.0%以下。
CuO、Fe2O3和MnO2均为作为激光吸收成分有效的成分,但是从该激光吸收的效果和避免玻璃的晶化的平衡考虑,优选多量地包含CuO。具体而言,如果上述CuO的含量相对于CuO、Fe2O3和MnO2的含量的合计(CuO+Fe2O3+MnO2)之比{CuO/(CuO+Fe2O3+MnO2)}为30%以上,则能够保持玻璃的低温密封性,还能够避免玻璃的晶化,因此是优选的,{CuO/(CuO+Fe2O3+MnO2)}更优选为50%以上,进一步优选为70%以上。
B2O3是玻璃氧化物,是形成玻璃网络、提高玻璃稳定性的成分,因此优选含有B2O3。另一方面,当B2O3的含量多时,玻璃反而变得不稳定,在密封煅烧时容易晶化。因此,为了使玻璃稳定化,B2O3的含量优选为0.5%以上,更优选为1.0%以上,进一步优选为1.5%以上。另外,为了避免因过量含有B2O3而引起的玻璃的晶化,B2O3的含量优选为10.0%以下,更优选为7.5%以下,进一步优选为5.0%以下。
BaO是对使玻璃稳定化有效的成分,可以在玻璃组合物中含有BaO,在含有BaO的情况下BaO的含量优选为0.5%以上,进一步优选为1.0%以上。另一方面,为了将玻璃化转变温度、热膨胀系数保持在适当的范围内,在使玻璃组合物中含有BaO的情况下BaO的含量优选为10.0%以下,更优选为8.0%以下。
Al2O3和Nb2O5虽然不是必不可少的,但是具有降低热膨胀系数的效果,另外,具有提高耐水性的效果,可以使玻璃组合物中含有Al2O3和Nb2O5。在玻璃组合物中含有Al2O3和/或Nb2O5的情况下的含量优选各自为2.0%以上,进一步优选各自为3.0%以上。另一方面,为了将玻璃化转变温度保持在适当的范围内,使玻璃组合物中含有Al2O3和/或Nb2O5的情况下的含量优选各自为10.0%以下,更优选各自为9.0%以下。
玻璃组合物可以含有除上述成分以外的成分(以下称为“其它成分”。)。其它成分的合计含量优选为10.0%以下。
玻璃组合物可以含有CaO、TiO2、ZrO2、CeO2、La2O3、CoO、MoO3、Sb2O3、WO3、GeO2等作为其它成分。
另外,为了降低对环境的影响,玻璃组合物优选实质上不含有铅、即PbO。
通过玻璃组合物的玻璃化转变温度(以下用“Tg”表示。)为350℃以下,低温密封性良好,因此是优选的。Tg更优选为330℃以下。需要说明的是,玻璃组合物的Tg可以使用差示热分析装置进行测定。
对玻璃组合物的制造方法没有特别限制。例如,可以通过以下所示的方法制造。
首先,准备原料混合物。原料只要是在通常的氧化物类玻璃的制造中使用的原料,就没有特别限制,可以使用氧化物、碳酸盐等。以所得到的玻璃组合物的组成在上述范围内的方式适当调节原料的种类和比例,从而制成原料混合物。
接着,通过公知的方法对原料混合物进行加热,从而得到熔融物。加热熔融的温度(熔融温度)优选为1000℃~1200℃,更优选为1050℃以上,另外,熔融温度更优选为1150℃以下。加热熔融的时间优选为30分钟~90分钟。
然后,通过将熔融物冷却固化,能够得到玻璃组合物。对冷却方法没有特别限制。可以使用辊轧机(rollout machine)、压制机,另外,可以采用通过向冷却液体中滴加等而进行急冷的方法。所得到的玻璃组合物优选完全为非晶,即结晶度为0%。但是,只要在不损害本发明的效果的范围内,可以含有晶化的部分。
以这样的方式得到的玻璃组合物可以为任意形态。例如,可以为块状、板状、薄板状(薄片状)、粉末状等。
在将玻璃组合物用于密封材料的情况下,玻璃组合物优选为玻璃粉末。需要说明的是,对于评价玻璃组合物的上述特性时的形态,从观察作为密封材料的性能的观点考虑,优选为玻璃粉末。
(玻璃粉末)
本实施方式中的玻璃粉末为包含上述玻璃组合物的玻璃粉末。需要说明的是,包含玻璃组合物的玻璃粉末是指玻璃粉末的平均组成与上述玻璃组合物的组成相同。即,玻璃粉末可以包含组成与玻璃组合物相同的一种组成的玻璃粉末,另外,可以为将组成不同的多种玻璃粉末以平均组成与玻璃组合物相同的方式混合而得到的玻璃粉末。需要说明的是,以下为了方便,将玻璃粉末中的包含组成不同的多种玻璃粉末的玻璃粉末称为“玻璃粉末混合物”。
玻璃粉末的粒度可以根据用途适当选择。在用途为密封材料的情况下,玻璃粉末的粒度优选为0.1μm~100μm。另外,当本实施方式的玻璃粉末的粒度大时,制成浆料并进行涂布、干燥时,容易沉降分离,此外,存在所得到的密封层的厚度增加的问题。因此,将本实施方式的玻璃粉末制成浆料而使用的情况下,玻璃粉末的粒度优选在0.1μm~5.0μm的范围内,更优选为0.1μm~2.0μm。
需要说明的是,在本说明书中,“粒度”是指累积粒度分布中的体积基准的50%粒径(D50),具体而言,是指在使用激光衍射/散射式粒度分布测定装置测定的粒径分布的累积粒度曲线中,其累积量以体积基准计占50%时的粒径。
玻璃粉末例如可以通过将玻璃组合物粉碎而得到。因此,玻璃粉末的粒度可以通过粉碎的条件来调节。作为粉碎的方法,可以列举:旋转球磨机、振动球磨机、行星式磨机、喷射式粉碎机、粉碎机、介质搅拌磨机(珠磨机)、颚式破碎机、辊式破碎机等。
特别是在形成5.0μm以下的细粒度的情况下,可以使用湿式粉碎。湿式粉碎是在水或醇等溶剂中使用包含氧化铝、氧化锆的介质或珠磨机进行粉碎。
为了调节玻璃粉末的粒度,除了玻璃组合物的粉碎以外,还可以根据需要使用筛子等进行分级。
需要说明的是,对构成玻璃粉末混合物的组成不同的玻璃粉末的各自的组成没有特别限制,可以以成为平均组成与上述玻璃组合物相同的方式混合适当种类的玻璃粉末,形成本实施方式的玻璃粉末混合物。玻璃粉末混合物可以包含两种组成不同的玻璃粉末,也可以包含三种以上组成不同的玻璃粉末。
另外,在制造包含玻璃粉末混合物的玻璃浆料时,可以混合玻璃粉末而形成玻璃粉末混合物,然后制成浆料,也可以混合包含组成不同的玻璃粉末的多种浆料。
[无机填料]
本实施方式中的无机填料的特征在于,波长808nm的光谱发射率小于80%,并且包含负热膨胀填料和正热膨胀填料,所述负热膨胀填料的30℃~500℃下的热膨胀系数大于等于-40×10-7/℃且小于0×10-7/℃;所述正热膨胀填料的30℃~500℃下的热膨胀系数为60×10-7/℃以上且110×10-7/℃以下,上述无机填料中的上述负热膨胀填料的含量为60体积%以上且95体积%以下,上述无机填料中的上述正热膨胀填料的含量为5体积%以上且40体积%以下。
无机填料为波长808nm的光谱发射率小于80%的物质。在本说明书中,光谱发射率由分光光度计求出。光谱发射率可以根据JIS R1801(2002年)求出,也可以测定反射率和透射率,根据基尔霍夫定律,通过(光谱发射率)=1-(反射率)-(透射率)求出。
(负热膨胀填料)
本实施方式中的无机填料包含30℃~500℃下的热膨胀系数大于等于-40×10-7/℃以上且小于0×10-7/℃的负热膨胀填料。通过使无机填料中含有上述热膨胀系数在上述范围内的负热膨胀填料,能够降低玻璃组合物和无机填料的热膨胀系数与作为被密封材料的玻璃基板的热膨胀系数之差。由此,能够抑制在密封后的热收缩时产生的残留热应力,增大剪切强度。
无机填料的30℃~500℃下的热膨胀系数通常用TMA法求出,但不限于这些方法,例如可以通过光干涉法进行测定。另外,难以加工成粉末状这样的块状的材料可以通过使用高温X射线衍射测定来测定晶格常数来求出。
当负热膨胀填料的热膨胀系数过小时,有可能因过度的负膨胀而在玻璃组合物与无机填料的界面产生残留热应力,因此负热膨胀填料的热膨胀系数为-40×10-7/℃以上,优选为-35×10-7/℃以上,更优选为-30×10-7/℃以上。另外,从抑制在玻璃组合物与玻璃基板的界面产生的残留热应力的观点考虑,负热膨胀填料的热膨胀系数小于0×10-7/℃,优选为-5×10-7/℃以下,更优选为-10×10-7/℃以下。
无机填料中的负热膨胀填料的含量为60体积%以上,更优选为65体积%以上,进一步优选为70体积%以上,特别优选为75体积%以上。另外,无机填料中的负热膨胀填料的含量为95体积%以下,更优选为93体积%以下,进一步优选为91体积%以下,特别优选为89体积%以下。通过使负热膨胀填料的含量在上述范围内,能够降低玻璃组合物和无机填料整体的热膨胀系数与作为被密封材料的玻璃基板的热膨胀系数之差,从而充分抑制残留热应力,增大剪切强度。
作为负热膨胀填料,只要在30℃~500℃下的热膨胀系数为-40×10-7/℃以上且0×10-7以下,就没有特别限制,但优选磷酸锆类化合物。在本说明书中,磷酸锆类化合物是指包含磷和锆作为组成的氧化物。例如,可以列举(ZrO)2P2O7、NaZr2(PO4)3、KZr2(PO4)3、Ca0.5Zr2(PO4)3、NbZr(PO4)3和Zr2(WO3)(PO4)2以及它们的复合化合物等。这些物质可以使用一种,也可以组合两种以上使用。
从提高与玻璃的反应性和材料强度的观点考虑,负热膨胀填料的粒度优选为0.1μm以上,更优选为0.3μm以上,进一步优选为0.5μm以上。另外,所述负热膨胀填料的粒度优选为5.0μm以下,更优选为3.0μm以下,进一步优选为2.0μm以下。在本说明书中,无机填料的粒度是指利用激光衍射式粒度分布测定装置测定的平均粒径(D50)。
负热膨胀填料的粒度可以通过利用干式合成、湿式合成等的控制和/或利用干式粉碎、湿式粉碎的微粒化来调节。作为粉碎的方法,没有特别限制,例如可以列举旋转球磨机、振动球磨机、行星式磨机、喷射式粉碎机、粉碎机、介质搅拌磨机(珠磨机)、颚式破碎机、辊式破碎机等。
特别是在形成2.0μm以下的细粒度的情况下,可以使用湿式粉碎。湿式粉碎通过在水或醇等溶剂中使用包含氧化铝、氧化锆的介质或珠磨机进行粉碎。
为了调节负热膨胀填料的粒度,除了负热膨胀填料的粉碎以外,还可以根据需要使用筛子等进行分级。
(正热膨胀填料)
本实施方式中的无机填料包含30℃~500℃下的热膨胀系数为60×10-7/℃以上且110×10-7/℃以下的正热膨胀填料。该正热膨胀填料的热膨胀系数是与玻璃组合物的热膨胀系数接近的值。因此,通过使无机填料中含有正热膨胀填料,能够降低在密封处理后的收缩时产生的在无机填料与玻璃组合物之间产生的收缩应力,从而提高密封材料自身的强度,抑制剪切断裂。
正热膨胀填料的热膨胀系数为60×10-7/℃以上,更优选为65×10-7/℃以上,进一步优选为70×10-7/℃以上,特别优选为75×10-7/℃以上。另外,正热膨胀填料的热膨胀系数为110×10-7/℃以下,更优选为105×10-7/℃以下,进一步优选为100×10-7/℃以下,特别优选为95×10-7/℃以下。如果在上述范围内,则能够抑制在玻璃组合物与玻璃基板的界面产生的残留热应力以及在玻璃组合物与无机填料的界面产生的残留热应力。
无机填料中的正热膨胀填料的含量为5体积%以上,更优选为7体积%以上,进一步优选为9体积%以上,特别优选为11体积%以上。另外,无机填料中的正热膨胀填料的含量为40体积%以下,更优选为35体积%以下,进一步优选为30体积%以下,特别优选为25体积%以下。通过使正热膨胀填料的含量在上述范围内,能够抑制玻璃组合物与无机填料之间的热收缩时的残留热应力的产生,提高剪切强度。
只要正热膨胀填料的30℃~500℃下的热膨胀系数为60×10-7/℃以上且110×10-7/℃以下就没有特别限制,例如可以列举氧化锆、氧化铝、镁橄榄石等。其中,正热膨胀填料优选为氧化锆和氧化铝中的至少一者。
另外,从提高与玻璃的反应性和材料强度的观点考虑,正热膨胀填料的粒度优选为0.1μm以上,更优选为0.3μm以上,进一步优选为0.5μm以上。另外,正热膨胀填料的粒度优选为5.0μm以下,更优选为3.0μm以下,进一步优选为2.0μm以下。
正热膨胀填料的粒度可以根据粉碎条件进行调节。粉碎方法和粒度的调节与对负热膨胀填料的上述描述相同。
正热膨胀填料与负热膨胀填料的合计含量优选设定为使将本实施方式的玻璃浆料用作密封材料的情况下的热膨胀系数接近作为被密封材料的玻璃基板的热膨胀系数。相对于玻璃组合物与无机填料的合计,正热膨胀填料与负热膨胀填料的合计含量优选为15体积%以上,更优选为20体积%以上,进一步优选为25体积%以上。另外,从抑制密封材料熔融时的流动性降低的观点考虑,相对于玻璃组合物与无机填料的合计,正热膨胀填料与负热膨胀填料的合计含量优选为45体积%以下,更优选为40体积%以下,进一步优选为35体积%以下。
本实施方式的玻璃浆料通过组合上述负热膨胀填料和正热膨胀填料,在用作密封材料时显示出优异的剪切强度。这是因为,如上所述,通过利用负热膨胀填料使密封材料与玻璃基板的热膨胀系数匹配,能够抑制残留热应力,此外,通过利用正热膨胀填料使无机填料与玻璃组合物的热膨胀系数匹配,能够增大密封材料自身的强度。特别是通过增大密封材料自身的强度,在用作密封层时,能够抑制剪切断裂。
(其它无机填料)
本实施方式中的无机填料可以含有除上述正热膨胀填料和负热膨胀填料以外的其它无机填料。例如,可以列举莫来石、堇青石、无定形二氧化硅等。
相对于无机填料整体的体积的合计,上述其它无机填料的含量优选为15体积%以下。通过在上述范围内,能够在不影响本发明的作用的情况下得到合适的材料强度。另外,上述其它无机填料的含量更优选为10体积%以下,进一步优选5体积%以下。
[有机载体]
作为本实施方式中的有机载体,例如可以使用在溶剂中溶解有作为粘结剂成分的树脂的有机载体。作为有机载体,具体而言,例如可以列举将甲基纤维素、乙基纤维素、羧甲基纤维素、羟乙基纤维素、苄基纤维素、丙基纤维素、硝基纤维素等树脂溶解在松油醇、Texanol、乙酸丁基卡必醇酯、乙酸乙基卡必醇酯等溶剂中而得到的物质。
另外,例如可以列举将包含(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸2-羟基乙酯等(甲基)丙烯酸类单体的丙烯酸类树脂溶解在甲基乙基酮、松油醇、Texanol、乙酸丁基卡必醇酯、乙酸乙基卡必醇酯等溶剂中而得到的物质。需要说明的是,在本说明书中,(甲基)丙烯酸酯是指丙烯酸酯和甲基丙烯酸酯中的至少一者。
另外,例如可以列举将聚碳酸亚乙脂、聚碳酸亚丙酯等聚碳酸亚烷基酯溶解在乙酰柠檬酸三乙酯、丙二醇二乙酸酯、琥珀酸二乙酯、乙酸乙基卡必醇酯、三乙酸甘油酯、Texanol、己二酸二甲酯、苯甲酸乙酯、丙二醇单苯醚与三乙二醇二甲醚的混合物等溶剂中而得到的物质。
对有机载体中的树脂与溶剂的比例没有特别限制,可以选择有机载体的粘度,以使其成为可以调节玻璃浆料的粘度的粘度。对于有机载体中的树脂与溶剂的比例,具体而言,由树脂:溶剂表示的质量比优选为约3∶97~约30∶70。
本实施方式的玻璃浆料中的有机载体相对于玻璃组合物、无机填料和激光吸收物质的合计的比例可以根据所要求的玻璃浆料的粘度适当调节。具体而言,玻璃组合物、无机填料和激光吸收物质的合计与有机载体的比(质量)优选为约60∶40~约80∶20。在玻璃浆料中除了配合玻璃组合物、无机填料和有机载体以外,还可以根据需要并且在不违背本发明的目的的限度内配合公知的添加剂。
玻璃浆料的制备可以通过使用具有搅拌叶片的旋转式混合机、辊磨机、球磨机等的公知的方法进行。
[激光吸收物质]
本实施方式的玻璃浆料可以含有激光吸收物质。在本发明中,激光吸收物质是指在波长808nm下的光谱发射率为80%以上的物质。激光吸收物质能够提高在密封时照射的激光的吸收率,促进在玻璃浆料中所含的玻璃组合物的熔融。
作为激光吸收物质,没有特别限制,例如除了构成上述的CuO、Fe2O3、MnO2的Cu、Fe、Mn以外,还可以列举选自Cr、Ni等中的至少一种金属或包含该金属的氧化物等化合物(无机颜料)等。另外,激光吸收物质可以为除这些物质以外的颜料。
激光吸收物质的粒度优选为0.1μm~5.0μm,更优选为0.1μm~2.0μm。在本说明书中,激光吸收物质的粒度是指用激光衍射式粒度分布测定装置测定的平均粒径(D50)。
激光吸收物质的含量优选设定为CuO、Fe2O3和MnO2的含量满足在[玻璃组合物]项中所述的范围。由此,通过激光照射能够充分地熔融密封材料。另外,相对于玻璃组合物、无机填料和激光吸收物质的合计,包含其它的激光吸收物质的激光吸收物质的合计含量优选为0.1体积%以上,更优选为1体积%以上,进一步优选为3体积%以上。另一方面,从确保密封材料熔融时的流动性、提高胶粘强度的观点考虑,包含其它的激光吸收物质的激光吸收物质的合计含量优选为20体积%以下,更优选为18体积%以下,进一步优选为15体积%以下。
<密封封装体>
接着,对适用本实施方式的玻璃浆料的密封封装体进行说明。
图1、2为表示密封封装体的一个实施方式的俯视图和剖视图。图3A~3D为表示图1所示的密封封装体的制造方法的一个实施方式的工序图。图4、5为在图1、2所示的密封封装体的制造中使用的第一基板的俯视图和剖视图。图6、7为在图1、2所示的密封封装体的制造中使用的第二基板的俯视图和剖视图。
本实施方式中的密封封装体10构成使用了OELD、PDP、LCD等FPD、有机电致发光(OEL)元件等发光元件的照明装置(OEL照明等)、或者染料敏化型太阳能电池等太阳能电池等。
即,密封封装体10具有第一基板11、与上述第一基板相对配置的第二基板12和配置在上述第一基板与上述第二基板之间并且将上述第一基板与上述第二基板胶粘的密封层15。另外,该密封层15包含本实施方式中的玻璃组合物和无机填料。
第一基板11例如为主要设置电子元件部13的元件基板。第二基板12例如为主要用于封装的封装基板。在第一基板11上设置电子元件部13。第一基板11和第二基板12以彼此相对的方式配置,并且通过在它们之间配置成框状的密封层15而被胶粘。
在第一基板11、第二基板12中使用钠钙玻璃基板、无碱玻璃基板等。作为钠钙玻璃基板,例如可以列举AS、PD200(均为AGC公司制造,商品名)、对它们进行化学强化而得到的基板。另外,作为无碱玻璃基板,例如可以列举AN100(AGC公司制造,商品名)、EAGLE2000(康宁公司制造,商品名)、EAGLE GX(康宁公司制造,商品名)、JADE(康宁公司制造,商品名)、#1737(康宁公司制造,商品名)、OA-10(日本电气硝子公司制造,商品名)、TEMPAX(肖特公司制造,商品名)等。
例如,如果是OELD、OEL照明,则电子元件部13具有OEL元件,如果是PDP,则电子元件部13具有等离子体发光元件,如果是LCD,则电子元件部13具有液晶显示元件,如果是太阳能电池,则电子元件部13具有染料敏化型太阳能电池元件(染料敏化型光电转换部元件)。电子元件部13可以具有各种公知的结构,不限于图示的结构。
在图1、2的密封封装体10中,在第一基板11上设置有OEL元件、等离子体发光元件等作为电子元件部13。在电子元件部13为染料敏化型太阳能电池元件等的情况下,虽然未图示,但是在第一基板11和第二基板12各自的相对面上设置有布线膜、电极膜等元件膜。
在电子元件部13为OEL元件等的情况下,在第一基板11与第二基板12之间残留一部分空间。该空间可以为保持原样的状态,也可以填充有透明的树脂等。透明树脂可以与第一基板11和第二基板12胶粘,也可以仅与第一基板11和第二基板12接触。
在电子元件部13为染料敏化型太阳能电池元件等的情况下,虽然未图示,但是在第一基板11与第二基板12之间的整个空间内配置电子元件部13。需要说明的是,封装对象不限于电子元件部13,也可以为光电变换装置等。另外,密封封装体10可以为不具有电子元件部13的多层玻璃等建材。
以下,作为密封封装体的一个例子,参照图8对构成OELD的有机电致发光元件详细地进行说明。
使用本实施方式的玻璃浆料得到的有机电致发光元件210具有基板211、层叠结构体213、玻璃构件212和密封层215,所述层叠结构体213具有层叠在基板211上的阳极213a、有机薄膜层213b和阴极213c,所述玻璃构件212覆盖层叠结构体213的外表面侧并载置在基板211上,所述密封层215将基板211与玻璃构件212胶粘。另外,该密封层215包含本实施方式中的玻璃组合物和无机填料。
<密封封装体的制造方法>
接着,对适用上述本实施方式的玻璃浆料的密封封装体的制造方法的实施方式进行说明。
在本实施方式中,在密封中使用上述的玻璃浆料。玻璃浆料在第二基板12上被涂布成框状,然后被干燥而成为涂布层。作为涂布方法,可以列举丝网印刷、凹版印刷等印刷法、分配器法等。为了除去溶剂而实施干燥,通常在120℃以上的温度下进行10分钟以上。当在涂布层中残留溶剂时,有可能在之后的预煅烧中不能充分地除去粘结剂成分。
对涂布层进行预煅烧,从而形成预煅烧层15a(图6、图7)。预煅烧通过如下方式进行:将涂布层加热到密封材料中所含的玻璃组合物的玻璃化转变温度以下的温度,从而除去粘结剂成分,然后加热到密封材料中所含的玻璃组合物的软化点以上的温度。
在第一基板11上,根据密封封装体10的规格而设置电子元件部13(图4、图5)。
接着,将设置有预煅烧层15a的第二基板12和设置有电子元件部13的第一基板11以预煅烧层15a与电子元件部13相对的方式配置并层叠(图3A、图3B)。
然后,通过第二基板12对预煅烧层15a照射激光束16来实施煅烧(图3C)。激光束16在沿着框状形状的预煅烧层15a扫描的同时进行照射。通过对预煅烧层15a的整周照射激光束16,在第一基板11与第二基板12之间形成框状的密封层15。需要说明的是,激光束16也可以通过第一基板11照射到预煅烧层15a上。
对激光束16的种类没有特别限制,可以使用半导体激光、二氧化碳激光、准分子激光、YAG激光、HeNe激光等激光束。激光束16的照射条件根据预煅烧层15a的厚度、线宽、厚度方向的截面积等来选择。激光束16的输出功率优选为2W~150W。当激光束的输出功率小于2W时,预煅烧层15a有可能不熔融。当激光束的输出功率大于150W时,在第一基板11、第二基板12上容易产生裂纹等。激光束16的输出功率更优选为5W~120W。
通过如此操作,制造在第一基板11与第二基板12之间利用密封层15气密地封装了电子元件部13的密封封装体10(图3D)。
以上,对通过激光束16的照射进行煅烧的方法进行了说明,但煅烧的方法不一定限于通过激光束16的照射进行的方法。煅烧方法可以根据电子元件部13的耐热性、密封封装体10的结构等而采用其它方法。例如,在电子元件部13的耐热性高的情况下或者在不具有电子元件部13的情况下,可以以如下方式代替激光束16的照射:将如图3B所示的组装体的整体配置在电炉等煅烧炉内,并且通过对包含预煅烧层15a的组装体的整体进行加热而制成密封层15。
以上,列举一个例子对本发明的密封封装体的实施方式进行了说明,但本发明的密封封装体不限于此。在不违反本发明主旨的限度内,还可以根据需要适当变更其结构。
实施例
以下,参照实施例对本发明更详细地进行说明,但本发明不限于实施例。例1~11为实施例,例12~16为比较例。
(玻璃组合物(玻璃粉末的制造))
以成为在表1的玻璃组成栏中以摩尔%计的组成的方式调配并混合原料,在1050℃~1150℃的电炉内使用铂坩埚熔融1小时,将所得到的熔融玻璃成形为薄板状玻璃。利用旋转球磨机将该薄板状玻璃粉碎,并利用筛子进行分级,从而得到了粒度为0.5μm~15μm的玻璃组合物a~c的玻璃粉末。对所得到的各玻璃粉末进行以下测定。
(玻璃组合物的热膨胀系数(α))
将各玻璃粉末成形为长方体状,然后进行将各玻璃粉末在370℃~480℃下保持10分钟的煅烧,得到了热膨胀测定用煅烧体。将所得到的热膨胀测定用煅烧体加工成直径为5mm±0.5mm、长度为2cm±0.05cm的圆柱形。将所加工的热膨胀测定用煅烧体利用RIGAKU公司制造的热膨胀计Thermoplus2系统TMA8310在升温速度10℃/分钟的条件下进行加热,计算出50℃~250℃下的热膨胀系数α(单位:10-7/℃)。将所得到的结果示于表1中。
表1
Figure BDA0003990584090000251
[例1~16]
(玻璃浆料的制造)
将由上述得到的玻璃组合物(玻璃粉末)、激光吸收物质(Fe2O3-CuO-MnO2)、正热膨胀填料(氧化铝或氧化锆)和负热膨胀填料(磷酸锆类化合物)调配成表2所示的比例(体积%)。另外,在包含二乙二醇单2-乙基己醚(溶剂)、2,4-二乙基-1,5-戊二醇(溶剂)和乙酰柠檬酸三丁酯(溶剂)中的至少一种以上的溶剂中加入乙基纤维素(树脂),从而制备了有机载体。树脂和溶剂以按质量比例计为5∶95~15∶85的方式进行了调配。
然后,将混合了玻璃粉末、激光吸收物质、无机填料的混合材料和有机载体以质量比例计为70∶30~85∶15的方式进行调配,并以成为适合于丝网印刷的粘度的方式使用二乙二醇单2-乙基己醚(溶剂)、2,4-二乙基-1,5-戊二醇(溶剂)和乙酰柠檬酸三丁酯(溶剂)中的至少一种以上的溶剂进行稀释,从而制备了例1~16的玻璃浆料。在稀释后,混合材料和有机载体(溶剂和树脂)以质量比计为65∶35~75∶25。
需要说明的是,负热膨胀填料(A)、正热膨胀填料(B)、除(A)和(B)以外的无机填料(C)和激光吸收物质的粒度如下所述。
负热膨胀填料(A):1.2μm
正热膨胀填料(B):氧化铝(0.7μm)、氧化锆(0.6μm)
除(A)和(B)以外的无机填料(C):莫来石(0.8μm)、堇青石(0.8μm)、无定形二氧化硅(1.2μm)
激光吸收物质:0.6μm
另外,负热膨胀填料(A)和正热膨胀填料(B)的30℃~500℃下的热膨胀系数如下所述。
负热膨胀填料(A):-20×10-7/℃
正热膨胀填料(B):氧化铝(75×10-7/℃)、氧化锆(100×10-7/℃)
(密封封装体的制造)
如图9、10所示,分别使用400目的丝网以长度为20mm的线状将上述例1~16的玻璃浆料涂布在包含作为无碱玻璃的AN100(AGC公司制造,25mm×25mm×厚度0.5mm)的玻璃基板31的表面上。接着,在120℃~140℃下干燥20分钟,进一步在390℃~420℃下预煅烧10分钟,从而形成了预煅烧层30a。需要说明的是,在将预煅烧层30a制成密封层30时,将宽度设定为了约500μm,将膜厚设定为了约4μm~约8μm。
然后,如图11所示,将玻璃基板32(45mm×45mm×厚度0.5mm)和设置有预煅烧层30a的玻璃基板31以玻璃基板32与预煅烧层30a接触的方式重叠而制成了组装体。
此外,从玻璃基板31侧以10mm/秒的扫描速度对该组装体照射波长为940nm、光点直径为1.6mm的激光束(半导体激光),使预煅烧层30a熔融并急冷固化。由此,制作了经由密封层30将玻璃基板32胶粘在玻璃基板31上的密封封装体33。
(剪切强度的评价方法)
剪切强度的评价使用如图12所示的夹具34实施。
以1mm/分钟的压入速度向图12中的35的方向压入玻璃基板32。测定将玻璃基板32从玻璃基板31上剥离时的载荷,从而求出了剪切强度。对于强度结果,各实施10次,使用除去了最大值和最小值后的平均值。将结果示于表2中。
表2
Figure BDA0003990584090000281
如表2所示,在作为实施例的例1~11的玻璃浆料中,在用作密封层时,均显示出高于比较例的剪切强度。另一方面,在仅含有负热膨胀填料和正热膨胀填料的任一者的例12~15中,剪切强度差。另外,负热膨胀填料的比例多且正热膨胀填料的比例少的例16的剪切强度差。
本申请基于在2021年12月10日提交的日本专利申请2021-201088,其内容以引用的方式并入本文中。

Claims (10)

1.一种玻璃浆料,所述玻璃浆料包含玻璃组合物、无机填料和有机载体,其中,
所述玻璃组合物的50℃~250℃下的热膨胀系数为70×10-7/℃以上且110×10-7/℃以下,
所述无机填料的波长808nm的光谱发射率小于80%,并且
所述无机填料包含负热膨胀填料和正热膨胀填料,
所述负热膨胀填料的30℃~500℃下的热膨胀系数大于等于-40×10-7/℃且小于0×10-7/℃;
所述正热膨胀填料的30℃~500℃下的热膨胀系数为60×10-7/℃以上且110×10-7/℃以下,
所述无机填料中的所述负热膨胀填料的含量为60体积%以上且95体积%以下,
所述无机填料中的所述正热膨胀填料的含量为5体积%以上且40体积%以下。
2.如权利要求1所述的玻璃浆料,其中,所述玻璃组合物实质上不含有碱金属氧化物,并且以氧化物基准的摩尔%计,所述玻璃组合物含有15.0%~45.0%的V2O5、16.0%~40.0%的TeO2和10.0%~40.0%的ZnO。
3.如权利要求1或2所述的玻璃浆料,其中,所述负热膨胀填料包含磷酸锆类化合物。
4.如权利要求1~3中任一项所述的玻璃浆料,其中,所述正热膨胀填料包含氧化锆和氧化铝中的至少一者。
5.如权利要求1~4中任一项所述的玻璃浆料,其中,所述玻璃组合物为玻璃粉末。
6.如权利要求1~5中任一项所述的玻璃浆料,其中,所述玻璃浆料还包含激光吸收物质。
7.一种密封方法,其中,使用权利要求1~6中任一项所述的玻璃浆料,并通过对所述玻璃浆料照射激光束而对其进行加热,从而将基板彼此密封。
8.一种密封封装体,所述密封封装体具有:
第一基板、
与所述第一基板相对配置的第二基板、和
密封层,所述密封层配置在所述第一基板与所述第二基板之间并将所述第一基板与所述第二基板胶粘,其中,
所述密封层包含权利要求1~5的任一项中所述的所述玻璃组合物和所述无机填料。
9.一种有机电致发光元件,其中,所述有机电致发光元件具有:
基板;
层叠结构体,所述层叠结构体具有层叠在所述基板上的阳极、有机薄膜层和阴极;
玻璃构件,所述玻璃构件覆盖所述层叠结构体的外表面侧并载置在所述基板上;和
密封层,所述密封层将所述基板与所述玻璃构件胶粘,并且
所述密封层包含权利要求1~5的任一项中所述的所述玻璃组合物和所述无机填料。
10.如权利要求9所述的有机电致发光元件,其中,所述密封层含有组成不同的多种玻璃。
CN202211588903.7A 2021-12-10 2022-12-09 玻璃浆料 Pending CN116253515A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201088A JP2023086521A (ja) 2021-12-10 2021-12-10 ガラスペースト
JP2021-201088 2021-12-10

Publications (1)

Publication Number Publication Date
CN116253515A true CN116253515A (zh) 2023-06-13

Family

ID=86686935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211588903.7A Pending CN116253515A (zh) 2021-12-10 2022-12-09 玻璃浆料

Country Status (2)

Country Link
JP (1) JP2023086521A (zh)
CN (1) CN116253515A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118136909A (zh) * 2024-05-08 2024-06-04 西安稀有金属材料研究院有限公司 固体氧化物燃料电池电堆及其制备方法、能源系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118136909A (zh) * 2024-05-08 2024-06-04 西安稀有金属材料研究院有限公司 固体氧化物燃料电池电堆及其制备方法、能源系统

Also Published As

Publication number Publication date
JP2023086521A (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
KR101477044B1 (ko) 시일링 재료층이 형성된 유리 기판, 이것을 사용한 유기 el 디바이스, 및 전자 디바이스의 제조 방법
US8697242B2 (en) Glass member provided with sealing material layer, electronic device using it and process for producing the electronic device
JP5673102B2 (ja) 封着材料層付きガラス部材およびそれを用いた電子デバイスとその製造方法
CN111302629B (zh) 玻璃组合物、玻璃粉末、封接材料、玻璃糊、封接方法、封接封装体和有机电致发光元件
CN103328402B (zh) 带封接材料层的玻璃构件和使用其的电子装置及其制造方法
WO2011122218A1 (ja) 封着材料及びこれを用いたペースト材料
TWI769168B (zh) 密封材料
CN116253515A (zh) 玻璃浆料
CN113745427A (zh) 密封的封装体和有机电致发光器件
WO2017183490A1 (ja) セラミック粉末、複合粉末材料及び封着材料
JP6031846B2 (ja) 封着材料層付きガラス基板及びこれを用いた有機elデバイス
JP6311530B2 (ja) 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ
JP5994438B2 (ja) 封着材料層付きガラス基板の製造方法
JP6079011B2 (ja) 封着材料層付きガラス基板の製造方法
JP6885445B2 (ja) ガラス組成物、ガラス粉末、封着材料、ガラスペースト、封着方法、封着パッケージおよび有機エレクトロルミネセンス素子
CN117486490A (zh) 玻璃组合物、玻璃浆料、密封封装体和有机电致发光元件
JP6075599B2 (ja) 封着材料層付きガラス基板の製造方法
JP2023090532A (ja) 気密パッケージ用窓材
JP2013053032A (ja) 気密部材とその製造方法
JP2014221695A (ja) 封着パッケージ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication