CN116218900A - 增加植物中病毒样颗粒的产率 - Google Patents

增加植物中病毒样颗粒的产率 Download PDF

Info

Publication number
CN116218900A
CN116218900A CN202310130025.2A CN202310130025A CN116218900A CN 116218900 A CN116218900 A CN 116218900A CN 202310130025 A CN202310130025 A CN 202310130025A CN 116218900 A CN116218900 A CN 116218900A
Authority
CN
China
Prior art keywords
seq
plant
protein
influenza
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310130025.2A
Other languages
English (en)
Inventor
马克-安德烈·德奥斯特
马农·科图雷
路易斯-菲利普·韦齐纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aramis Biotechnology Co.
Original Assignee
Medicago Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medicago Inc filed Critical Medicago Inc
Publication of CN116218900A publication Critical patent/CN116218900A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1018Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16223Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16211Influenzavirus B, i.e. influenza B virus
    • C12N2760/16251Methods of production or purification of viral material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Pulmonology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本申请涉及增加植物中病毒样颗粒的产率。提供一种在植物中生产病毒样颗粒(VLP)的方法。该方法包括将第一核酸和第二核酸引入该植物或该植物的部分。该第一核酸包含在植物中具有活性并且有效连接到编码病毒结构蛋白之核苷酸序列的第一调节区。第二核酸包含在植物中具有活性并且有效连接到编码通道蛋白(例如但不限于质子通道蛋白)之核苷酸序列的第二调节区。将该植物或该植物的部分在容许该核酸表达的条件下培养,从而生产VLP。

Description

增加植物中病毒样颗粒的产率
本申请是申请号为201280047819.2的发明名称为“增加植物中病毒样颗粒的产率”的中国专利申请的分案申请,原申请是2012年09月28日提交的PCT国际申请PCT/CA2012/050681于2014年03月28日进入中国国家阶段的申请。
技术领域
本发明涉及在植物中生产病毒蛋白。更特别地,本发明涉及在植物中生产并且增加病毒样颗粒生产。
背景技术
流行性感冒是由正粘病毒科(orthomyxoviridae)的RNA病毒引起。这些病毒有三种类型并且它们引起三个不同类型的流行性感冒:甲型、乙型与丙型。甲型流感病毒感染哺乳动物(人、猪、雪貂、马)以及鸟类。由于此类型病毒是已造成全世界流行病,因此对于人类是非常重要的。乙型流感病毒(又简称为乙型流感)仅感染人类。它偶尔引发流感的地方性爆发。丙型流感病毒亦仅感染人类。它们感染大多数年轻的人类并且鲜少造成严重的疾病。
疫苗接种通过在感染前诱导对象建立防御而提供对由类似物质引起之疾病的保护。通常,通过使用活的减毒形式或完整的失活形式的感染性物质作为免疫原而实现这一目的。为了避免使用全病毒(例如杀死的或减弱的病毒)作为疫苗的危险,已将重组病毒蛋白例如亚单位(subunit)实行为疫苗。肽与亚单位疫苗两者皆受到一些潜在的限制。由于不正确的折叠或差的抗原呈递,亚单位疫苗可能表现差的免疫原性。主要问题为确保工程蛋白质的构型模拟抗原在其自然环境中之构象的困难。必须使用适合的佐剂以及对于肽来说使用载体蛋白来加强免疫应答。此外,这些疫苗主要引起体液应答,并因此可能无法引起有效的免疫。亚单位疫苗对于可证实以完整的失活病毒提供保护的疾病经常是无效的。
病毒样颗粒(VLP)为纳入免疫原性组合物的潜在候选。VLP十分近似于成熟的病毒粒子,但它们不包含病毒的基因组物质。因此,VLP本质上为不可复制的,使得将它们作为疫苗施用是安全的。此外,可将VLP改造为在VLP的表面上表达病毒糖蛋白,这是其最天然的生理构型。此外,因为VLP类似完整的病毒粒子并且为多价颗粒结构,所以比起可溶的包膜蛋白抗原,VLP在引发对糖蛋白的中和抗体上可能是更有效。
已在植物中(WO2009/009876;WO 2009/076778;WO 2010/003225;WO 2010/003235;WO 2011/03522;WO 2010/148511;将其通过参考并入本文),以及在昆虫和哺乳动物系统中(Noad,R.and Roy,P.,2003,Trends Microbiol 11:438-44;Neumann et al.,2000,J.Virol.,74,547-551)生产VLP。Latham与Galarza(2001,J.Virol.,75,6154-6165)报道了在以共表达血细胞凝集素(HA)、神经氨酸酶(NA)、M1和M2基因的重组杆状病毒感染的昆虫细胞中流感VLP的形成。此研究证实了于真核细胞中共表达后流感病毒粒子蛋白的自组装,以及需要M1基质蛋白供VLP产生。然而,Gomez-Puertas et al.(1999,J.Gen.Virol,80,1635-1645)亦显示M2的过表达完全阻断CAT RNA传输至MDCK培养物。
M2作用为离子通道蛋白并且已显示当过表达此蛋白质时,共表达的HA之胞内运输被抑制,以及血细胞凝集素(HA)在细胞膜的累积减少75-80%(Sakaguchi et al.,1996;Henkel&Weisz,1998)。此外,通过过表达M2,病毒膜蛋白在细胞膜的累积降低,因而产生的功能性VLP数目急剧降低。
M2蛋白于甲型流感感染的细胞之细胞表面丰富地表达(Lamb et al.(1985)Cell,40,627至633)。亦在病毒颗粒本身的膜发现此蛋白质,但量少得多,每病毒粒子14至68分子的M2(Zebedee and Lamb(1988)J.Virol.62,2762至72)。通过在位置50之半胱氨酸上添加棕榈酸,M2蛋白被翻译后修饰(Sugrue et al.(1990)Virology 179,51至56)。
M2蛋白为由两个二硫键连接的二聚体构成的同型四聚体,其通过非共价相互作用保持在一起(Sugrue与Hay(1991)Virology 180,617至624)。通过定点诱变(site-directedmutagenesis),Holsinger与Lamb,(1991)Virology 183,32至43,证实于第17以及第19位的半胱氨酸残基涉及二硫键桥形成。仅有位于第17位的半胱氨酸存在于所有分析的病毒中。在半胱氨酸19亦存在的病毒株中,不清楚第二个二硫键桥是否在相同二聚体(已通过Cys17-Cys 17连接)中形成还是伴随其它二聚体形成。
Smith等人(美国专利申请书2010/0143393)以及Song等人(Plos ONE 2011 6(1):e14538)描述含有流感M2蛋白的疫苗与VLP。VLP包含至少病毒核心蛋白,例如M1。所述核心蛋白驱动出芽以及颗粒从昆虫宿主细胞中释放。
Szecsi et al.(Virology Journal,2006,3:70)在衍生自鼠类白血病病毒(MLV)的复制缺陷型核心颗粒上组装VLP。此经改造的流感VLP系衍生自:瞬时共表达细胞表面(HA、NA、M2)以及内部病毒组分(Gag、GFP标记基因组)并且锚定于其表面HA、HA和NA或M2、或者所有三种衍生自H7N1或H5N1病毒的蛋白质。根据Szecsi et al.,在Flu-VLP生产期间M2的表达不影响HA或NA合并至病毒颗粒上(Szecsi et al.中的第2页,右栏,第二段)。
发明内容
本发明涉及在植物中生产病毒蛋白。更特别地,本发明涉及在植物中生产以及增加病毒样颗粒生产。
本发明的一个目标为提供增加植物中病毒样颗粒生产的改良方法。
根据本发明,提供了在植物中生产病毒样颗粒(VLP)的方法(A),其包括
a)将第一核酸引入至植物或植物的部分,所述第一核酸包含在植物中具有活性且有效连接至编码结构病毒蛋白之核苷酸序列的第一调节区,
b)将第二核酸引入,所述第二核酸包含在植物中具有活性且有效连接至编码通道蛋白之核苷酸序列的第二调节区,
c)在容许所述核酸表达的条件下培养所述植物或植物的部分,从而生产VLP。
在植物中具有活性的第一调节区和在植物中具有活性的第二调节区可以是相同或不同的。
上述方法(A)中的通道蛋白可为质子通道蛋白。该质子通道蛋白可选自M2或BM2。此外,质子通道蛋白可包含质子通道特征序列HXXXW。M2蛋白可为从流感A/波多黎各(Puerto Rico)/8/1934(SEQ ID NO:14)或从流感A/新喀里多尼亚(New Caledonia)/20/1999(SEQ ID NO:11)获得之M2蛋白。
本发明亦提供如上所述的方法(A),其中所述病毒结构蛋白包含三聚化结构域。此外,编码该病毒结构蛋白的核苷酸序列包含嵌合核苷酸序列,其依序编码抗原性病毒蛋白或其片段、流感跨膜结构域以及胞质尾。该病毒结构蛋白可包含流感HA蛋白质。此外流感HA蛋白中的一个或更多个蛋白水解环可被缺失。
本发明提供如上所述之方法(A),其中编码病毒结构蛋白的核苷酸序列可选自BHA、C,HA、H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15与H16。例如,编码病毒结构蛋白的核苷酸序列可为乙型HA或H3。编码病毒结构蛋白的核苷酸序列可为例如来自流感B/布里斯班(Brisbane)/60/2008、B/马来西亚(Malaysia)/2506/2004或B/威斯康辛(Wisconsin)/1/2010的HA,或来自流感A/珀斯(Perth)/16/2009或A/维多利亚(Victoria)/361/2011的H3。此外,编码病毒结构蛋白的核苷酸序列具有与SEQ ID NO:23、28、43、46、51、57或61的至少70%序列同一性。病毒结构蛋白的序列亦可包含SEQ ID NO:25、30、41、48、54、58或64的序列。
本发明亦包括如上所述之方法(A),其中所述第一核酸序列包含与一个或多于一个的豇豆花叶病毒属(comovirus)增强子、编码病毒结构蛋白的核苷酸序列以及一个或多于一个的双生病毒(geminivirus)扩增元件有效连接的第一调节区,以及将编码双生病毒复制酶的第三核酸引入所述植物或所述植物的部分。所述一个或多于一个的豇豆花叶病毒属增强子可为豇豆花叶病毒属UTR,例如,豇豆花叶病毒超翻译(CPMV-HT)UTR,(例如CPMV-HT 5’和/或3’UTR)。所述一个或多于一个的双生病毒扩增元件可选自豆黄矮病毒(BeanYellow Dwarf Virus)长基因间区域(Bean Yellow Dwarf Virus long intergenicregion,BeYDV LIR)以及BeYDV短基因间区域(Bean Yellow Dwarf Virus shortintergenic region,BeYDV SIR)。此外,编码病毒结构蛋白的核苷酸序列可为乙型HA或H3,例如,编码病毒结构蛋白的核苷酸序列可具有与SEQ ID NO:23、28、43、46、51、57或61至少70%的序列同一性。病毒结构蛋白的序列亦可包含SEQ ID NO:25、30、41、48、54、58或64的序列。
如上所述的方法(方法A)亦可涉及引入例如HcPro或p19的编码沉默性阻遏蛋白(suppressor of silencing)的另一核酸序列。
本发明亦包括如上所述的方法(A),其中在引入步骤中(步骤a),核酸在植物中瞬时表达。作为替代地,在引入步骤中(步骤a),核酸于植物中稳定地表达。
如上所述的方法(A)可进一步包括步骤:
d)收获所述植物并纯化VLP。
本发明亦包括如上所述的方法(A),其中所述VLP不包含病毒基质或核心蛋白。
本发明提供由如上所述之方法(A)生产的VLP。所述VLP可进一步包含一种或多于一种的衍生自植物的脂质。该VLP亦可以不包含通道蛋白为特征。此外,VLP的病毒结构蛋白可为HA0蛋白。包含VLP的一种或更多种病毒蛋白可包含植物特异性的N-聚糖或经修饰的N-聚糖。本发明亦提供使用该VLP制备的多克隆抗体。
本发明包括用于诱导免疫应答的含有有效剂量的如上所述的VLP以及药学上可接受之载体的组合物。
本发明亦包括在对象中对流感病毒感染诱导免疫的方法,其包含将如上所述之VLP施用于对象。可将VLP经口、皮内、鼻内、肌内、腹膜内、静脉内或皮下施用于对象。
本发明亦提供包含由上述之方法(A)所生产的VLP的植物物质。所述植物物质可用于在对象中诱导对流感病毒感染的免疫。该植物物质亦可被混合作为食物增补剂(foodsupplement)。
本发明亦提供生产病毒样颗粒(VLP)之方法(B),其包括
a)提供植物或植物的部分,其包含第一核酸和第二核酸,所述第一核酸包含在植物中具有活性且有效连接到编码病毒结构蛋白之核苷酸序列的第一调节区,至所述植物或植物的部分中,所述第二核酸包含在植物中具有活性且有效连接到编码通道蛋白之核苷酸序列的第二调节区。
b)在容许核酸表达的条件下培养所述植物或所述植物的部分,从而生产VLP。
在植物中具有活性的第一调节区和在植物中具有活性的第二调节区可以是相同或不同的。
上述方法(B)中的通道蛋白可为质子通道蛋白。所述质子通道蛋白可选自M2或BM2。此外,质子通道蛋白可包含质子通道特征序列HXXXW。
本发明亦提供如上所述的方法(B),其中所述病毒结构蛋白包含三聚化结构域(trimerization domain)。此外,编码该病毒结构蛋白的核苷酸序列包含嵌合核苷酸序列,其依序编码抗原性病毒蛋白或其片段、流感跨膜结构域以及胞质尾。该病毒结构蛋白可包含流感HA蛋白。此外流感HA蛋白中的一个或更多个蛋白水解环可被缺失。
本发明提供如上所述之方法(B),其中所述编码病毒结构蛋白的核苷酸序列可选自B HA、C,HA、H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15与H16。例如,编码病毒结构蛋白的核苷酸序列可为乙型HA或H3。编码病毒结构蛋白的核苷酸序列可为例如来自流感B/布里斯班/60/2008、B/马来西亚/2506/2004或B/威斯康辛/1/2010的HA,或来自流感A/珀斯/16/2009或A/维多利亚/361/2011的H3。
本发明亦包括如上所述之方法(B),其中所述第一核酸序列包含与一个或多于一个的豇豆花叶病毒属(comovirus)增强子、编码病毒结构蛋白的核苷酸序列以及一个或多于一个的双生病毒(geminivirus)扩增元件有效连接的第一调节区,以及将编码双生病毒复制酶的第三核酸引入所述植物或所述植物的部分。一个或多于一个的豇豆花叶病毒属增强子可为豇豆花叶病毒属UTR,例如,豇豆花叶病毒超翻译(CPMV-HT)UTR(如CPMV-HT 5’和/或3’UTR)。此外,一个或多于一个的双生病毒扩增元件可选自豆黄矮病毒(Bean YellowDwarf Virus)长基因间区域(BeYDV LIR)以及BeYDV短基因间区域(BeYDV SIR)。
如上所述的方法(方法B)亦可涉及引入编码沉默性阻遏蛋白(例如HcPro或p19)的另一核酸序列。
本发明亦包括如上所述的方法(B),其中在引入步骤中(步骤a),核酸为在植物中瞬时表达。作为替代地,在引入步骤中(步骤a),核酸于植物中稳定地表达。
如上所述的方法(B)可进一步包括步骤:
d)收获所述植物并纯化VLP。
本发明亦包括如上所述的方法(B),其中所述VLP不包含病毒基质或核心蛋白。
本发明提供由如上所述之方法(B)生产的VLP。所述VLP可进一步包含一种或多于一种衍生自植物的脂质。该VLP亦可以不包含通道蛋白为特征。此外,VLP的病毒结构蛋白可为HA0蛋白。包含VLP的一种或更多种病毒蛋白可包含植物特异性的N-聚糖或经修饰的N-聚糖。本发明亦提供使用该VLP制备的多克隆抗体。
本发明包括用于诱导免疫应答的含有有效剂量的如上所述VLP以及药学上可接受之载体的组合物。
本发明亦包括在对象中诱导对流感病毒感染之免疫的方法,其包含将如刚才所描述之VLP施用于对象。可将VLP以经口、皮内、鼻内、肌内、腹膜内、静脉内或皮下施用于对象。
本发明亦提供含有由上述之方法(B)所生产的VLP之植物物质。所述植物物质可用于在对象中诱导对流感病毒感染的免疫。该植物物质亦可被混合作为食物增补剂。
本发明提供包含SEQ ID NO:41(来自流感B/布里斯班/60/2008的具有缺失之蛋白水解环的PDISP/HA)之氨基酸序列的多肽,以及编码SEQ ID NO:41的多肽之核酸序列。该核酸序列可包含SEQ ID NO:43的核苷酸序列。本发明提供包含含有SEQ ID NO:41的氨基酸序列之多肽的VLP。此VLP可进一步包含衍生自植物的一种或多于一种的脂质。此VLP亦可以不包含通道蛋白为特征。此VLP可包含植物特异性N-聚糖或经修饰的N-聚糖。本发明提供包含有效剂量之包含SEQ ID NO:41的氨基酸序列、用于诱导免疫应答的VLP以及药学上可接受的载体之组合物。本发明亦包括诱导对象中对流感病毒感染之免疫的方法,其包含将含有SEQ ID NO:41的氨基酸序列之VLP施用于对象。可将VLP以经口、皮内、鼻内、肌内、腹膜内、静脉内或皮下施用。本发明亦提供包含含有SEQ ID NO:41的氨基酸序列之VLP的植物物质。可将植物物质用于诱导对象中对流感病毒感染的免疫。该植物物质亦可被混合作为食物增补剂。
通过共表达病毒结构蛋白和通道蛋白(例如但不限于质子通道蛋白),观察到病毒结构蛋白以及VLP的产率增加。已知HA经历pH依赖性构象变化。不希望被理论所约束地,于成熟与迁移作用期间,HA生产细胞之高尔基体(Golgi apparatus)内的pH可能影响HA折叠,影响HA的稳定性以及增加降解,或其组合。通过共表达通道蛋白(例如但不限于质子通道蛋白)和HA,高尔基体内的pH可增加,并且造成稳定增加、降解减少或其组合,而增加HA产率。
本发明的上述概要不一定描述了本发明的所有特征。
附图说明
本发明的这些与其它特征将参考附图由下列描述而变得更明显,其中:
图1A显示引物IF-H5A-I-05.s1+3c(SEQ ID NO:2)。图1B显示引物IF-H5dTm.r(SEQID NO:3)。图1C显示构建体1191的示意图。图1D显示构建体1191(SEQ ID NO 4)。图1E显示表达盒(expression cassette)编号489(SEQ ID NO 5)。图1F显示来自流感A/印度尼西亚(Indoneisa)/5/2005(H5N1)的H5氨基酸序列(SEQ ID NO:6)。图1G显示编码来自流感A/印度尼西亚/5/2005(H5N1)的H5之核酸苷酸序列(SEQ ID NO:42)。
图2A显示引物IF-S1-M1+M2ANC.c(SEQ ID NO:7)。图2B显示引物IF-S1-4-M2ANC.r(SEQ ID NO:8)。图2C显示合成M2基因的核苷酸序列(与来自GenBank登录号DQ508860连接至715-982之nt 1-26相对应)(SEQ ID NO:9)。图2D显示由2X35S启动子至NOS终止子之表达盒编号1261。将来自流感A/新喀里多尼亚/20/1999的M2(H1N1)加下划线(SEQ ID NO:10)。图2E显示来自流感A/新喀里多尼亚/20/1999(H1N1)的M2氨基酸序列(SEQ ID NO:11)。
图3A显示合成的M2基因的核苷酸序列(与来自GenBank登录号EF467824的nt 26-51连接nt 740-1007相对应)(SEQ ID NO:12)。图3B显示由2X35S启动子至NOS终止子之表达盒编号859。将来自流感A/波多黎各/8/1934(H1N1)之M2加下划线(SEQ ID NO:13)。图3C显示来自流感A/波多黎各/8/1934(H1N1)之M2的氨基酸序列(SEQ ID NO:14)。
图4A显示引物IF-H1A-C-09.s2+4c(SEQ ID NO:15)。图4B显示引物IF-H1A-C-09.s1-4r(SEQ ID NO:16)。图4C显示合成的H1基因的核苷酸序列(GenBank登录号FJ966974)(SEQ ID NO:17)。图4D显示构建体1192的示意图。示意图上注有用于质粒线性化的SacII与StuI限制性内切酶位点。图4E显示构建体1192,由左至右t-DNA边界(加下划线)。具有质体蓝素-P19-质体蓝素沉默性抑制子表达盒之2X35S/CPMV-HT/PDISP/NOS(SEQ IDNO:18)。图4F显示由2X35S启动子至NOS终止子之表达盒编号484。将来自流感A/加利福尼亚(California)/7/2009(H1N1)的PDISP/H1加下划线(SEQ ID NO:19)。图4G显示来自流感A/加利福尼亚/7/2009(H1N1)的PDISP-H1的氨基酸序列(SEQ ID NO:20)。
图5A显示引物IF-S2+S4-H3 Per.c(SEQ ID NO:21)。图5B显示引物IF-S1a4-H3Per.r(SEQ ID NO:22)。图5C显示合成的H3基因的核苷酸序列(与来自GenBank登录号GQ293081的nt 26-1726相对应)(SEQ ID NO:23)。图5D显示由2X35S启动子至NOS终止子之表达盒编号1019。将来自流感A/珀斯/16/2009(H3N2)的PDISP/H3加下划线(SEQ ID NO:24)。图5E显示来自流感A/珀斯/16/2009(H3N2)的PDISP/H3氨基酸序列(SEQ ID NO:25)。
图6A显示引物IF-S2+S4-B Bris.c(SEQ ID NO:26)。图6B显示引物IF-S1a4-BBris.r(SEQ ID NO:27)。图6C显示合成的HA B布里斯班基因的核苷酸序列(与来自GenBank登录号FJ766840的nt 34-1791相对应)(SEQ ID NO:28)。图6D显示表达盒编号1029由2X35S启动子至NOS终止子之核苷酸序列。将来自流感B/布里斯班/60/2008的PDISP/HA加下划线。(SEQ ID NO:29)。图6E显示来自流感B/布里斯班/60/2008的PDISP/HA的氨基酸序列(SEQID NO:30)。图6F显示构建体1194的示意图。示意图上注有用于质粒线性化的SacII与StuI限制性内切酶位点。图6G显示构建体1194,从左至右t-DNA边界(加下划线)。具有质体蓝素-P19-质体蓝素沉默性抑制子表达盒的2X35S/CPMV-HT/PDISP/NOS至BeYDV+复制酶扩增系统(SEQ ID NO:31)。图6H显示由BeYDV左LIR至BeYDV右LIR的表达盒编号1008。将来自流感B/布里斯班/60/2008的PDISP/HA加下划线(SEQ IDNO:32)。
图7A显示引物dTmH5I-B Bris.r(SEQ ID NO:33)。图7B显示引物B Bris-dTmH5I.c(SEQ ID NO:34)。图7C显示引物IF-S1aS4-dTmH5I.r(SEQ ID NO:35)。图7D显示由BeYDV左LIR至BeYDV右LIR的表达盒编号1009。将PDISP/HA B布里斯班/H5Indo TMCT加下划线(SEQID NO:36)。图7E显示PDISP/HA B布里斯班/H5Indo TMCT的氨基酸序列(SEQ ID NO:37)。
图8A显示引物1039+1059.r(SEQ ID NO:38)。图8B显示引物1039+1059.c(SEQ IDNO:39)。图8C显示由BeYDV左LIR至BeYDV右LIR的表达盒编号1059。将来自流感B/布里斯班/60/2008的具有缺失的蛋白水解环的PDISP/HA加下划线(SEQ ID NO:40)。图8D显示来自流感B/布里斯班/60/2008的具有缺失的蛋白水解环的PDISP/HA之氨基酸序列(SEQ ID NO:41)。图8E显示来自流感B/布里斯班/60/2008的具有缺失的蛋白水解环的PDISP/HA之核苷酸序列(SEQ ID NO:43)。
图9显示构建体编号1008的质粒图谱。构建体编号1008引导来自流感株B/布里斯班/60/2008的野生型HA之表达。此构建体包含用于DNA扩增的BeYDV衍生元件。
图10显示构建体编号1009的质粒图谱。构建体编号1009引导来自流感株B/布里斯班/60/2008的嵌合HA之表达,其中跨膜结构域以及胞质尾以来自流感A/印度尼西亚/05/2005之H5的那些所取代。此构建体包含用于DNA扩增的BeYDV衍生元件。
图11显示构建体编号1029的质粒图谱。构建体编号1029引导来自流感株B/布里斯班/60/2008的野生型HA的表达。
图12显示构建体编号1059的质粒图谱。构建体编号1059引导来自流感株B/布里斯班/60/2008的具有缺失的蛋白水解环之突变型HA的表达。此构建体包含用于DNA扩增的BeYDV衍生元件。
图13显示构建体编号1019的质粒图谱。构建体编号1019引导来自流感株A/珀斯/16/2009(H3N2)的野生型H3的表达。
图14显示构建体编号484的质粒图谱。构建体编号484引导来自流感株A/加利福尼亚/07/2009(H1N1)的野生型H1的表达。
图15显示构建体编号489的质粒图谱。构建体编号489引导来自流感株A/印度尼西亚/05/2005(H5N1)的野生型H5的表达。
图16显示构建体编号1261的质粒图谱。构建体编号1261引导来自流感株A/新喀里多尼亚/20/99(H1N1)的野生型M2的表达。
图17显示构建体编号859的质粒图谱。构建体编号859引导来自流感株A/波多黎各/8/34(H1N1)的野生型M2的表达。
图18显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。将来自B/布里斯班/60/2008的HA与来自A/新喀里多尼亚/20/99的M2共表达。“C+”:阳性对照,来自澳大利亚药物管理局(Therapeutic Goods Administration)之半纯化的B/布里斯班/60/2008病毒;“C–”:阴性对照,模拟渗透植物;“1008”:在扩增元件(BeYDV)存在下,来自B/布里斯班/60/2008的野生型HA之表达;“1008+1261”:在扩增元件(BeYDV)存在下,来自B/布里斯班/60/2008的野生型HA与M2的共表达;“1009+1261”:在扩增元件(BeYDV)存在下,来自B/布里斯班/60/2008的嵌合HA与M2的共表达;“1029”:在扩增元件(BeYDV)不存在下,来自B/布里斯班/60/2008的野生型HA之表达;“1029+1261”:在扩增元件(BeYDV)不存在下,来自B/布里斯班/60/2008的野生型HA与来自A/新喀里多尼亚/20/99的M2之共表达。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。
图19显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。道“C+”:阳性对照,来自澳大利亚药物管理局之半纯化A/威斯康辛/15/2009(H3N2)病毒;“C-”,阴性对照,模拟渗透植物;“1019”:来自A/珀斯/16/2009(H3N2)之野生型HA的表达;“1019+1261”:来自A/珀斯/16/2009(H3N2)之野生型HA与来自A/新喀里多尼亚/20/99之M2的共表达。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。
图20显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。道“C+”:阳性对照,来自NIBSC病毒之半纯化A/加利福尼亚/7/2009(H1N1)NYMC X-179A(NIBSC码09/146);“C-”,阴性对照,模拟渗透的植物;“484”:来自A/加利福尼亚/7/2009(H1N1)之野生型HA的表达;“484+1261”:来自A/加利福尼亚/7/2009(H1N1)之野生型HA与来自A/新喀里多尼亚/20/99之M2的共表达。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。
图21显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。道“C+”:阳性对照,来自Immune Technology Corporation(产品编号IT-003-052p)之A/印度尼西亚/05/2005的纯化重组H5;“C-”,阴性对照,模拟渗透的植物;“489”,来自A/印度尼西亚/5/05(H5N1)之野生型HA之表达;“489+1261”:来自A/印度尼西亚/5/05(H5N1)之野生型HA与来自A/新喀里多尼亚/20/99之M2的共表达。
图22A显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。“1008”:在扩增元件(BeYDV)存在下,来自B/布里斯班/60/2008的野生型HA的表达;“1008+1261”:在扩增元件(BeYDV)存在下来自B/布里斯班/60/2008的野生型HA与来自A/新喀里多尼亚/20/99之M2的共表达;“1059”:在扩增元件(BeYDV)存在下,来自B/布里斯班/60/2008的突变型HA的表达;“1059+1261”:在扩增元件(BeYDV)存在下来自B/布里斯班/60/2008的突变型HA与来自A/新喀里多尼亚/20/99之M2的共表达。分析来自三个不同渗透之植物(A、B与C)。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。图22B显示提取自HA生产植物的粗蛋白质的血细胞凝集能力之比较。
图23显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。图23A:“1059”:在扩增元件(BeYDV)存在下,来自B/布里斯班/60/2008的突变型HA的表达;“1059+1261”:在扩增元件(BeYDV)存在下来自B/布里斯班/60/2008的突变型HA与来自A/新喀里多尼亚/20/99之M2的共表达。“1059+859”:在扩增元件(BeYDV)存在下来自B/布里斯班/60/2008的突变型HA与来自A/波多黎各/8/34之M2的共表达。分析来自三不同渗透之植物(A、B与C)。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。图23B:“1019”:来自A/珀斯/16/2009(H3N2)之野生型HA的表达;“1019+1261”:来自A/珀斯/16/2009(H3N2)之野生型HA与来自A/新喀里多尼亚/20/99之M2的共表达;“1019+859”:来自A/珀斯/16/2009(H3N2)之野生型HA与来自A/波多黎各/8/34之M2的共表达。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。
图24显示来自几株流感的HA的序列比对。以箭头指出前体HA0的切割位点。
图25A显示引物IF-H3V36111.S2+4c(SEQ ID NO:44)。图25B显示引物IF-H3V36111.s1-4r(SEQ ID NO:45)。图25C显示合成的H3基因之核苷酸序列(与来自GISAID分离号EPI_ISL_101506之HA序列的nt 25至1725相对应)(SEQ ID NO:46)。图25D显示由2X35S启动子至NOS终止子的表达盒编号1391之核苷酸序列。将来自流感A/维多利亚/361/2011(H3N2)的PDISP/H3加下划线(SEQ ID NO:47)。图25E显示来自流感A/维多利亚/361/2011(H3N2)的PDISP-H3的氨基酸序列(SEQ ID NO:48)。图25F显示构建体1391的示意图。
图26A显示引物IF-HAB110.S1+3c(SEQ ID NO:49)。图26B显示引物IF-HAB110.s1-4r(SEQ ID NO:50)。图26C显示合成的HA B威斯康辛(GenBank登录号JN993010)之核苷酸序列(SEQ ID NO:51)。图26D显示构建体193的示意图。图26E显示构建体193,由左至右t-DNA边界(加下划线)。具有质体蓝素-P19-质体蓝素沉默性抑制子表达盒的2X35S/CPMV-HT/NOS至BeYDV(m)+复制酶扩增系统(SEQ ID NO:52)。图26F显示表达盒编号1462由2X35S启动子至NOS终止子的核苷酸序列。将来自流感B/威斯康辛/1/2010的HA加下划线(SEQ ID NO:53)。图26G显示来自流感B/威斯康辛/1/2010的HA之氨基酸序列(SEQ ID NO:54)。图26H显示构建体1462的示意图。
图27A显示引物HAB110(PrL-).r(SEQ ID NO:55)。图27B显示引物HAB110(PrL-).c(SEQ ID NO:56)。图27C显示表达盒编号1467由2X35S启动子至NOS终止子的核苷酸序列。将具有缺失的蛋白水解环的来自流感B/威斯康辛/1/2010之HA加下划线(SEQ ID NO:57)。图27D显示具有缺失的蛋白水解环的流感B/威斯康辛/1/2010之氨基酸序列(SEQ ID NO:58)。图27E显示构建体1467的示意图。
图28A显示引物IF-HB-M-04.s2+4c(SEQ ID NO:59)。图28B显示引物IF-HB-M-04.s1-4r(SEQ ID NO:60)。图28C显示合成的HAB马来西亚的核苷酸序列(与来自GenBank登录号EU124275的nt 31-1743相对应),其具有被加下划线的T759C与C888G突变(SEQ ID NO:61)。图28D显示构建体194的示意图,示意图上注有用于质粒线性化的SacII与StuI限制性内切酶位点。图28E显示构建体194由左至右t-DNA边界(加下划线)。具有质体蓝素-P19-质体蓝素沉默性抑制子表达盒的2X35S/CPMV-HT/NOS至BeYDV(m)+复制酶扩增系统(SEQ IDNO:62)。图28F显示表达盒编号1631由2X35S启动子至NOS终止子的核苷酸序列。将来自流感B/马来西亚/2506/2004的PDISP-HA加下划线(SEQ ID NO:63)。图28G显示来自流感B/马来西亚/2506/2004的PDISP-HA氨基酸序列(SEQ ID NO:64)。图28H显示构建体1631的示意图。
图29显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。将来自B/马来西亚/2506/2004的HA 与来自A/新喀里多尼亚/20/99的M2共表达。于每道加二十微克的蛋白质提取物。“C+”:阳性对照,来自英国国家生物标准品暨控制研究所(National Institute for Biological Standards and Control)的半纯化B/马来西亚/2506/2004病毒;“1631”:在扩增元件(BeYDV)存在下,来自B/马来西亚/2506/2004的野生型HA之表达;“1631+1261”:在扩增元件(BeYDV)存在下,来自B/马来西亚/2506/2004的野生型HA与M2之共表达。比例表示用于共表达实验之农杆菌(Agrobacterium)培养物的比。
图30A显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。将来自B/威斯康辛/1/2010的HA与来自A/新喀里多尼亚/20/99的M2共表达。于每道加十微克的蛋白质提取物。“C+”:阳性对照,来自英国国家生物标准品暨控制研究所(National Institute for Biological Standards and Control)的半纯化B/威斯康辛/1/2010病毒;“1462”:在扩增元件(BeYDV)存在下,来自B/威斯康辛/1/2010的野生型HA之表达;“1467”:在扩增元件(BeYDV)存在下,来自B/威斯康辛/1/2010的突变型HA之表达;“1462+1261”:在扩增元件(BeYDV)存在下,将来自B/威斯康辛/1/2010的野生型HA与M2共表达;“1467+1261”:在扩增元件(BeYDV)存在下,将来自B/威斯康辛/1/2010的突变型HA与M2共表达。比例表示用于表达与共表达实验之每一农杆菌(Agrobacterium)培养物的光密度。图30B显示提取自转化有AGL1/1462、AGL1/1467、AGL1/1462+AGL1/1261以及AGL1/1467+AGL1/1261的植物之粗蛋白的血细胞凝集能力的比较。
图31显示在以农杆菌浸润之本氏烟草(Nicotiana benthamiana)叶中的HA蛋白表达之蛋白质印迹分析。将来自H3/维多利亚/361/2011的HA与来自A/新喀里多尼亚/20/99的M2共表达。于每道加二十微克的蛋白质提取物。“C+”:阳性对照,来自澳大利亚药物管理局之半纯化H3/威斯康辛/15/2009病毒;“1391”:来自H3/维多利亚/361/2011的野生型HA之表达;“1391+1261”:来自H3/维多利亚/361/2011的野生型HA与M2之共表达。比例表示用于表达与共表达实验之每一农杆菌(Agrobacterium)培养物的光密度。
具体实施方式
以下描述为优选的实施方案。
本发明涉及病毒样颗粒(VLP)以及在植物中生产和增加VLP产率与生产的方法。
本发明部分地提供在植物中或植物的部分中生产病毒样颗粒(VLP)的方法。该方法涉及引入第一核酸和第二核酸至植物。第一核酸包含在植物或植物的部分中具有活性且有效连接到编码病毒结构蛋白之核苷酸序列的第一调节区。第二核酸包含在植物中具有活性且有效连接到编码通道蛋白(例如但不限于质子通道蛋白)之核苷酸序列的第二调节区。第一调节区和第二调节区可以是相同或不同的。将植物或植物的部分在容许核酸表达的条件下培养,从而生产VLP。如有需要,可将植物或植物的部分收获并且纯化VLP。优选地,VLP不包含M1、病毒基质或核心蛋白。本发明亦提供以此方法生产的VLP。VLP可包含衍生自植物的一种或多于一种的脂质。可将VLP用于制备用于诱导免疫应答的包含有效剂量之VLP以及药学上可接受之载体的组合物。
本发明亦提供包含通过表达以上所述第一和第二核酸而生产的VLP之植物物质。可将植物物质用以诱导对象中对流感病毒感染的免疫。该植物物质亦可被混合作为食物增补剂。
本发明之VLP亦可通过如下方式而生产:提供包含如上定义之第一核酸和第二核酸的植物以及植物的部分,并且将植物或植物的部分于容许所述第一和第二核酸表达的条件下培养,从而生产VLP。VLP可包含衍生自植物的一种或多于一种的脂质。可将VLP用以制备用于诱导免疫应答的包含有效剂量之VLP以及药学上可接受之载体的组合物。本发明亦提供包含通过表达第一和第二核酸而生产的VLP之植物物质。可将植物物质用以诱导对象对流感病毒感染之免疫。该植物物质亦可被混合作为食物增补剂。
本发明之VLP包含一种或更多种的病毒蛋白质。例如但不视为限制性的,所述一种或更多种病毒蛋白质可以是病毒结构蛋白(例如流感血细胞凝集素(HA))或通道蛋白(例如但不限于质子通道蛋白,像是例如M2)。所述HA可是任何HA,例如H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16或如WO 2009/009876;WO 2009/076778;WO2010/003225;WO2010/003235;WO 2011/03522中所描述的乙型HA,将其通过参考并入本文)。
如以下更详细地描述,可通过将编码病毒蛋白质的第一核酸与编码通道蛋白(例如但不限于质子通道蛋白)的第二核酸共表达而在植物中生产VLP。可将第一与第二核酸在相同步骤引入至植物,或它们可相继地引入至植物。第一与第二核酸可以瞬时的方式或以稳定的方式引入植物。此外,可用例如但不限于质子通道蛋白的通道蛋白质(第二核酸)转化表达编码病毒蛋白质之第一核酸的植物,以使第一和第二核酸两者在植物中共表达。作为替代地,可用编码病毒蛋白质的第一核酸转化表达通道蛋白(例如但不限于质子通道蛋白)(第二核酸)的植物,以使第一和第二核酸两者在植物中共表达。此外,可将表达编码病毒蛋白质的第一核酸的第一植物与表现编码通道蛋白(例如但不限于质子通道蛋白)之第二核酸的第二植物杂交,以生产共表达分别编码病毒蛋白质与通道蛋白(例如但不限于质子通道蛋白)的第一和第二核酸的子代植物。
本发明亦提供增加在植物中的病毒蛋白质表达和产率的方法,其通过共表达编码病毒蛋白质的第一核酸和编码通道蛋白(例如但不限于质子通道蛋白)的第二核酸。可将第一与第二核酸在相同步骤引入植物中,或可将它们相继地引入植物中。第一与第二核酸可以瞬时的方式或以稳定的方式引入植物中。此外,可用例如但不限于质子通道蛋白的通道蛋白(第二核酸)转化表达编码病毒蛋白质的第一核酸的植物,以使第一和第二核酸两者在植物中共表达。作为替代地,可用编码病毒蛋白质的第一核酸转化表达通道蛋白(例如但不限于质子通道蛋白)(第二核酸)的植物,以使第一和第二核酸两者在植物中共表达。此外,可将表达编码病毒蛋白质的第一核酸之第一植物与表达编码通道蛋白(例如但不限于质子通道蛋白)之第二核酸的第二植物杂交,以生产共表达分别编码病毒蛋白质与通道蛋白(例如但不限于质子通道蛋白)之第一与第二核酸的子代植物。
通道蛋白
“通道蛋白”是指能够形成跨越磷脂膜之通道的蛋白质,其容许离子和/或小分子通过膜。通道蛋白对于离子和/或小分子的尺寸和/或电荷可具选择性。通道蛋白的非限制性实例为改变膜对低分子量化合物之通透性的非特异性通道蛋白,以及像是例如氯通道、钾通道、钠通道、钙通道以及质子通道的离子通道蛋白。
“质子通道蛋白”是指能够形成跨越磷脂双层之质子选择性通道的蛋白质。质子通道蛋白可以为具有疏水结构域在侧面之跨膜(TM)结构域的单通膜蛋白(single passmembrane protein)。质子通道的TM结构域可包含序列HXXXW(SEQ ID NO.1)。
在HA0的切割之后,HA于内体(endosome)的pH(<pH 6.0)经历不可逆的构象改变变得对pH敏感,。前体HA0的构象于低pH时为稳定的,但经切割的HA1-HA2形式为亚稳定的(Bullough PA et.al.,1994,Nature.Vol 371:37-43)。对于在不同HA中诱导构象改变之pH阈值的研究中,显示对于B株此阈值约为pH 5.8-5.9,然而对于甲型HA为更酸(pH5.1至5.3)(Beyer WEP et al,1986,Archives Virol,vol 90:173)。在植物生物量提取期间(介于pH5-6),HA1-HA2的构象改变亦可能伴随乙型HA发生。
不希望被理论所约束地,包含HA的细胞区室(包括高尔基体)之pH因而可能对HA的折叠、稳定性和/或蛋白水解是重要的。质子通道蛋白,像是例如流感M2以及BM2蛋白可调节细胞区室中的pH。例如,M2通过缓冲在流感病毒复制的晚期与早期两者细胞内区室以调节膜融合的电位。在新细胞的感染早期、于病毒颗粒的胞吞摄取之后,M2质子通道活性的活化导致脱壳过程期间病毒粒子内部的酸化。在感染晚期的病毒产生期间,M2在转运通过反式高尔基网(trans-Golgi network)期间作用以升高pH,并且避免低pH诱导之共同运输蛋白质(例如在流感情况中的HA)的去活化作用。通过共表达病毒结构蛋白和例如但不限于质子通道蛋白的通道蛋白,观察到病毒结构蛋白与VLP的增加产率。已知HA经历pH依赖性的构象改变。不希望被理论所约束地,HA生产细胞之高尔基体内的pH于成熟与迁移期间可能影响HA折叠、影响HA的稳定性与增加HA降解或其组合。通过共表达例如但不限于质子通道蛋白的通道蛋白和HA,可提高高尔基体内的pH,并且造成HA和/或VLP稳定性的增加,降解的减少或其组合,并且增加其表达水平与产率。
当与表达病毒结构蛋白而没有共表达通道蛋白(例如但不限于质子通道蛋白)之植物相比较时,观察到通过在植物中共表达病毒结构蛋白和通道蛋白(例如但不限于质子通道蛋白)使得病毒结构蛋白和/或VLP的产率增加产率。
此外,当与未共表达通道蛋白(例如但不限于质子通道蛋白)的HA蛋白相比较时,通过在植物中共表达病毒结构蛋白(例如HA)和通道蛋白(例如但不限于质子通道蛋白),HA蛋白可能表现如由更强的血细胞凝集作用能力所显示的增加的活性。关于活性的增加,指的是当与在通道蛋白(例如但不限于质子通道蛋白)不存在下产生的相同HA蛋白之活性相比较,使用本领域标准技术所确定的血细胞凝集作用能力增加约2%至约100%,或任何介于其间之量,例如,由大约10%至大约50%或介于其间的任何值,例如大约2、5、8、10、12、15、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、50、52、54、55、56、58、60、65、70、75、80、85、90、95或100%。
如本文中所使用的,术语“M2”、“M2蛋白”、“M2序列”以及“M2结构域”意指由根据或存在于任何天然发生或人工产生的流感病毒株或分离株所分离之M2蛋白序列的全部或部分。因此,术语M2等等包括通过病毒生命周期期间的突变产生或对选择性压力(例如,药物治疗、宿主细胞向性或感染性的扩增等等)反应而产生的天然M2序列变体,以及重组地或合成地产生之M2序列。可使用的通道蛋白之实例包括但不限于列举于表1的那些质子通道蛋白。可与本发明使用的序列之非限制性的实例包括来自A/波多黎各/8/1934的M2以及来自A/新喀里多尼亚/20/1999的M2。示范性的M2蛋白由SEQ ID NO:11或14中显示之氨基酸序列所组成。
如本文中所使用的,术语“BM2”、“BM2蛋白”、“BM2序列”以及“BM2结构域”意指由根据或存在于任何自然发生或人工产生的流感病毒株或分离株分离之BM2蛋白序列的所有或部分。因此,术语BM2等等包括在病毒生命周期期间由突变产生或对选择性压力(例如,药物治疗、宿主细胞向性或感染性的扩增等等)反应而产生的天然BM2序列变体,以及重组地或合成地产生之BM2序列。可被使用的通道蛋白之实例包括但不限于那些列举于表2之质子通道蛋白。
额外的示范性质子通道蛋白序列由表1与表2所显示之保藏于GenBank登录号下的序列组成。
表1:M2质子通道蛋白氨基酸序列的登录号
Figure BDA0004083463410000181
/>
Figure BDA0004083463410000191
/>
Figure BDA0004083463410000201
/>
Figure BDA0004083463410000211
/>
Figure BDA0004083463410000221
表2:BM2质子通道蛋白氨基酸序列的登录号
Figure BDA0004083463410000222
/>
Figure BDA0004083463410000231
病毒结构蛋白
病毒结构蛋白(亦称为结构病毒蛋白)可为病毒的抗原性蛋白或其片段,例如但不限于病毒糖蛋白或病毒包膜蛋白。病毒结构蛋白可为嵌合病毒蛋白。病毒蛋白可以单体、二聚体、三聚体或其组合而存在。三聚体为由三个通常非共价键结合的蛋白质所形成之大分子复合体。不希望被理论所约束地,蛋白质的三聚化结构域(trimerization)对此三聚体的形成可能是重要的。因此,病毒结构蛋白或其片段可包含三聚化结构域。病毒结构蛋白的非限制性实例为流感血细胞凝集素(HA)或HA片段。根据本发明可使用的HA或HA片段之非限制性实例包括那些在WO2009/009876、WO 2009/076778;WO 2010/003225、WO 2010/003235、WO2011/03522、WO 2010/006452、WO 2010/148511、WO 2011/0354221中描述的(将其通过参考并入本文)。
此外病毒结构蛋白可为HA未经处理的前体蛋白。HA蛋白被合成为大约75kDa的前体蛋白(HA0),其于表面组装成长形的三聚体蛋白质。所述前体蛋白在保守的活化切割位点被切割为由二硫键连接之2个多肽链,HA1与HA2(其包含跨膜区域)。
蛋白水解环(切割位点)修饰
病毒结构蛋白可为血细胞凝集素蛋白内带有蛋白水解环(切割位点)缺失或修饰的流感B血细胞凝集素或流感A血细胞凝集素蛋白。蛋白水解环的缺失或修饰确保HA分子主要以HA0前体维持。
HA是以前体蛋白HA0合成,其经历蛋白水解过程成为由双硫桥连接在一起的两个亚单位(HA1与HA2)。由于分泌可于细胞外切割HA0前体之蛋白酶的细胞的限制性范围,哺乳类以及致病性禽流感病毒株引起解剖学上的局部感染(Chen J,et.al.1998,Cell.Vol 95:409-417)。在人流感感染中负责HA0之切割的蛋白酶由呼吸道的细胞或由共同感染的细菌或支原体分泌,或其可在对感染的炎症应答中产生。主要的蛋白酶候选为类胰蛋白酶Clara,其是由细支气管上皮的Clara细胞产生,并且具有有限的组织分布(上呼吸道)。此蛋白酶对在H1、H2、H3以及H6的切割位点发现之单碱性序列(monobasic sequence)Q/E-X-R具特异性。来自H9与B病毒株的HA分别地显示SSR与KER之稍微不同的单碱性切割位点(见图24)。在造成在水鸟中见到的肠胃与呼吸道感染的大多数流感病毒中尚未鉴定出蛋白酶。在实验室中,除非添加外源性蛋白酶(通常是胰蛋白酶),大多数细胞系不支持多轮复制。
然而,高度致病性禽流感病毒株由更广泛分布的细胞内蛋白酶家族切割,其造成全身性的感染。此致病性的差异为与位于HA0切割位点的结构差异相关。致毒性病毒株具有多碱性(polybasic)氨基酸插入于或相邻于单碱性位点。在此情况下切割于细胞内发生并且涉及的蛋白酶已被鉴定为弗林蛋白酶(furin),以及其它类枯草杆菌蛋白酶,其于高尔基体中发现并涉及荷尔蒙与生长因子前体的翻译后处理。弗林蛋白酶识别序列R-X-R/K-R为在H5与H7之HA0切割位点常见的插入氨基酸(见图24)。所述酶的广泛组织分布以及细胞内切割的效率,有助于这些病毒导致的广泛传播与致命性全身感染。
Horimoto T,et.al.(2006,Vaccine,Vol 24:3669-3676)描述H5中之H5多碱性切割位点(RERRRKKR↓G)的去除。选定的突变体用于小鼠中的免疫原性研究,其包括带有前4个带电荷氨基酸(RERR)之缺失以及用以失活多碱性切割位点的修饰(以TETR取代RKKR)的突变体。切割位点的去除不影响突变体H5之免疫原性。多碱性位点的去除(被RETR取代之GERRRKKR↓G)以产生突变体NIBSC 05/240NIBSC流感参考病毒NIBG-23亦已被报道。Hoffmanet.al.(2002,2002,Vaccine,Vol 20:3165-3170)以H6的单碱性位点取代H5 HA的多碱性切割位点以提高在卵(egg)中的表达。将头4个残基缺失并且以IETR取代多碱性位点的最后四个氨基酸(以IETR↓G取代RERRRKKR↓G)。此突变体H5显示在低pH下的高表达水平、潜在的蛋白水解与构象变化,免疫原性数据未被报道。这些研究显示可采用切割位点的修饰以减小病毒颗粒的毒性(在复制真实病毒的情况下,容许病毒复制而不杀害宿主的卵)。在无此类突变下,病毒在到达高效价前便将卵杀死。
在HA折叠与通过高尔基体进行分泌期间,位于HA表面之环上的血细胞凝集素前体切割位点易被蛋白酶接近而进行蛋白水解。不希望被理论所约束地,若在ER内的HA折叠期间前体HA0在单碱性或多碱性位点发生水解,那么因为植物之高尔基体以及质外体的pH环境是微酸性的,所以在分泌期间蛋白质可能于高尔基体中发生构象变化。可能产生低pH构象HA,其降低表达水平与颗粒固有的稳定性。因此,大多数未切割的HA0前体蛋白将由质膜出芽。
“蛋白水解环”或“切割位点”意指涉及前体HA0切割之蛋白水解位点的共有序列(consensus sequence)。如本文中所使用之“共有区”或“共有序列”意指包含根据多个序列比对分析的相关序列的序列变异性的序列(氨基酸或核苷酸序列),所述多个序列例如是特定流感HA0序列的多个亚型。流感HA0切割位点的共有序列可包括流感A共有血细胞凝集素氨基酸序列(包括例如共有H1、共有H3)或流感B共有血细胞凝集素氨基酸序列。共有序列的非限制性实例显示于图24。
在HA的氨基酸序列中,蛋白水解环位于在由HA2部分的头20个氨基酸所组成的融合肽之前。来自A/香港(Hong Kong)/68的HA0的晶体结构已被测定(Chen,J.,1998.Cell95:409-417;通过参考并入本文)。暴露于溶剂的残基一般被认为是形成长形的高度暴露的表面环之切割位点的部分。由该特定的肽序列,可在此选定的区域确定共有序列(Bianchiet al.,2005,Journal of Virology,79:7380-7388;通过参考并入本文)。
为了破坏蛋白水解环,检测B HA的结构。仅缺失HA蛋白水解切割位点将留下分离开来的HA1的C末端和HA2的N末端,并且必须设计长连接子。然而融合肽的缺失部分以及蛋白水解位点容许移除完整的蛋白水解环并且通过2个氨基酸的最小肽连接子连接剩余的HA1和HA2序列。综上所述,B变体包含HA1的C末端序列ALKLLKER的缺失加上HA2的N末端氨基酸GFFGAIAGFLEG的缺失。通过GG连接子将变短的HA1-HA2连接在一起。
如图22B中所显示的,通过缺失HA0的蛋白水解环,当相较于不具有其蛋白水解环移除之HA蛋白时,生成的HA0蛋白如更强的血细胞凝集能力所显示地表现增加的活性。活性的增加,意指当相较于不具有其蛋白水解环移除之相同HA蛋白的活性时,血细胞凝集能力以使用本领域之标准技术所确定的增加大约2%至大约100%,或其间的任何量,例如,从大约10%至大约50%或介于其间的任何数值,例如大约2、5、8、10、12、15、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、50、52、54、55、56、58、60、65、70、75、80、85、90、95或100%。
“嵌合病毒蛋白”或“嵌合病毒多肽”亦称为“嵌合蛋白”或“嵌合多肽”,其意指包含自二种或多于二种来源的氨基酸序列,例如但不限于二种或更多种流感类型或亚型,或融合为单一多肽之不同来源的流感。嵌合蛋白或多肽可包括与多肽或蛋白质的剩余部分相同或异源的信号肽。嵌合蛋白或嵌合多肽可被产生为来自嵌合核苷酸序列之转录子,并且在合成后切割的嵌合蛋白或嵌合多肽,并且如所需的相关于形成多聚体蛋白质。因此嵌合蛋白或嵌合多肽亦包括含有通过双硫桥相关联之亚单位的蛋白质或多肽(即,多聚体蛋白质)。例如,包含来自二种或多于二种来源之氨基酸序列的嵌合多肽可被处理成亚单位,并且亚单位通过双硫桥相关联以产生嵌合蛋白或嵌合多肽。嵌合病毒蛋白亦可包含第一流感病毒的抗原蛋白或其片段以及来自第二病毒流感HA的跨膜结构域复合体(TDC),其包括跨膜结构域以及胞质尾结构域(TM/CT)。多肽可为血细胞凝集素(HA),且构成此多肽的二个或多于二个的氨基酸序列的每一者可由不同HA获得以产生嵌合HA或嵌合流感HA。嵌合HA亦可包含含有在蛋白质合成之后或期间切割的异源性信号肽(嵌合HA前蛋白)的氨基酸序列。优选地,嵌合多肽或嵌合流感HA不是天然的。可将编码嵌合多肽的核酸描述为“嵌合核酸”或“嵌合核苷酸序列”。可将由嵌合HA所组成之病毒样颗粒描述为“嵌合VLP”。
此嵌合蛋白质或多肽可包括与多肽或蛋白质的剩余部分相同或异源的信号肽。术语“信号肽”为本领域公知并且一般意指氨基酸的短(大约5-30个氨基酸)序列,一般发现位于多肽的N末端,其引导新翻译的多肽转位至特定细胞器,或协助多肽链的特定结构域相对于其它的定位。作为非限制性的实例,此信号肽可能以蛋白质转运至内质网为目标和/或协助相对于新生多肽之膜锚定结构域之N末端近端结构域的定位,以协助成熟蛋白质(不视为限制地例如成熟HA蛋白质)的切割与折叠。
根据本发明而可使用之嵌合病毒蛋白或嵌合病毒核酸之非限制性实例描述于WO2009/076778、WO 2010/003235或WO 2010/148511(将其通过参考并入本文)。
信号肽
信号肽(signal peptide,SP)对抗原性蛋白或病毒蛋白质可以是天然的,或是信号肽相对于被表达的抗原性蛋白或病毒蛋白质之一级序列可为异源的。抗原蛋白或病毒蛋白质可包含来自第一流感类型、亚型或病毒株的信号肽,以及来自一种或多于一种不同型流感、亚型或病毒株之HA的剩余部分。例如可使用HA的H1、H2、H3、H5、H6、H7、H9亚型或乙型流感的天然信号肽以在植物系统中表达嵌合病毒蛋白质。在本发明的一些具体实施方案中,SP可以是乙型流感、H1、H3或H5;或是H1/Bri、H1/NC、H5/Indo、H3/Bri或B/Flo亚型。
信号肽亦可能是非天然的,例如,来自抗原性蛋白、病毒蛋白质、或病毒蛋白质以外之病毒的血细胞凝集素,或来自植物、动物或细菌的多肽。可使用的信号肽的非限制性实例为苜蓿草(alfalfa)蛋白二硫键异构酶(“PDISP”;登录号Z11499之核苷酸32-103;亦可见WO2009/076778;WO 2010/148511或WO 2010/003235,将其通过参考并入本文)。因而本发明提供包含天然的或非天然的信号肽以及编码此类嵌合病毒蛋白的核酸之嵌合病毒蛋白。
本发明因此亦提供植物中生产嵌合VLP之方法,其中将编码嵌合病毒蛋白的第一核酸与编码通道蛋白(例如但不限于质子通道蛋白)的第二核酸共表达。第一与第二核酸可在相同步骤中被引入至植物,或可相继地引入至植物中。
HA
关于流感病毒,如本文中所使用之术语“血细胞凝集素”或“HA”意指于流感病毒颗粒外侧发现之糖蛋白。HA为同源三聚体I型膜糖蛋白,一般包含单一肽、HA1结构域以及包含在C末端的跨膜锚定位点以及一个小的胞质尾的HA2结构域。编码HA的核苷酸序列为已公知的并且可得的,见例如BioDefence Public Health base(流感病毒;见URL:biohealthbase.org)或国家生物技术信息中心(National Center for BiotechnologyInformation,NCBI)(见URL:ncbi.nlm.nih.gov),将两者通过参考并入本文。
术语“同源三聚体(homotrimer)”或“同源三聚体的(homotrimeric)”意指由三个HA蛋白质分子形成之寡聚体。不希望被理论所约束地,在动物细胞中HA蛋白被合成为大约75kDa的单体前体蛋白(HA0),其于表面组装成延长的三聚体蛋白。在三聚作用发生之前,前体蛋白在保守的活化切割位点(亦称为融合肽)被切割成2个多肽链,HA1与HA2(包含跨膜区域)由二硫键连接。HA1段长度可为328氨基酸,以及HA2段长度可为221氨基酸。虽然此切割对病毒感染性可能是重要的,但对蛋白质的三聚作用可不为必需的。宿主细胞之内质网(ER)膜内的HA插入、信号肽切割以及蛋白质糖基化为共翻译事件。HA的正确再折叠需要蛋白质的糖基化以及6链内二硫键的形成。HA三聚体于顺式以及反式高尔基体复合体内组装,跨膜结构域在三聚作用过程中扮演了角色。经菠萝蛋白酶(bromelain)处理的缺乏跨膜结构域的HA蛋白之晶体结构在流感病毒株间已显示高度保守结构。在感染过程期间HA经历主要构形改变亦已被建立,其需要前体HA0被切割为2个多肽链HA1与HA2。HA蛋白可被处理(即,包含HA1与HA2结构域)或可不被处理(即,包含HA0结构域)。HA蛋白可被用于使用植物或植物细胞表达系统之VLP生产或形成中。
本发明之HA可由任何亚型获得。例如,HA可能是H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16亚型或流感乙型HA。本发明之重组HA亦可包含根据本领域已知的任何血细胞凝集素的序列之氨基酸序列,见例如BioDefence Public Health base(流感病毒;见URL:biohealthbase.org)或国家生物技术信息中心(见URL:ncbi.nlm.nih.gov)。此外,HA可以由一种或更多种形成或新确认的流感病毒中分离出的血细胞凝集素序列为基础。
根据本发明而可使用的HA或HA片段之非限制性实例包括那些于WO2009/009876、WO 2009/076778;WO 2010/003225、WO 2010/003235、WO 2010/006452、WO 2011/035422或WO 2010/148511中描述的(将其通过参考并入本文)。
如图18中所显示,来自B/布里斯班/60/2008之HA在农杆菌浸润之本氏烟草叶中表达量低(见道“1008”或“1029”)。然而,乙型HA与来自A/新喀里多尼亚/20/99的M2之共表达,造成HA表达的显著增加(见道“1008+1261”;“1009+1261”以及“1029+1261”)。在天然乙型HA或嵌合乙型HA中都观察到HA表达的增加。在扩增元件(BeYDV)存在或不存在以及于不同农杆菌稀释浓度下观察HA表达。当将来自A/珀斯/16/2009之H3与来自A/新喀里多尼亚/20/99的M2共表达时观察到H3表达类似的增加(图19;比较道“1019”中仅有H3以及道“1019+1261”中与M2共表达之H3)。
VLP
术语“病毒样颗粒”(VLP)或“病毒样颗粒”或“VLPs”意指自组装并且包含病毒蛋白质(例如像是流感HA蛋白的病毒结构蛋白或例如但不限于像是M2的质子通道蛋白的通道蛋白)或那些蛋白之组合的结构。VLP一般在形态上与抗原性上类似于感染中产生之病毒粒子,但缺乏足以复制的基因信息因而为非感染性的。在一些实例中,VLP可包含单一种类蛋白质,或多于一个种类的蛋白质。对包含多于一个种类蛋白质的VLP而言,蛋白质种类可来自相同病毒种或可包含来自不同病毒种、属、亚科或科(如由ICTV命名法指定的)的蛋白质。在另一些实例中,VLP所含的一种或更多种蛋白质种类可由天然序列出发修饰得到。VLP可由合适的宿主细胞生产,其包括植物与昆虫宿主细胞。在适合的条件下从宿主细胞提取与分离以及进一步纯化之后,可将VLP作为完整的结构纯化。
此外,可生产包含HA亚型组合的VLP。例如,VLP可包含来自H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16亚型、HAB亚型或其组合的一种或多于一种的HA。HA组合的选择可根据由VLP制备之疫苗的期望用途而决定。例如用以接种鸟类的疫苗可包含HA亚型的任何组合,而可用于接种人的VLP可包含一种或多于一种的H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16亚型、HA B亚型之亚型。然而,可视VLP的用途而制备其它HA亚型组合。为了生产包含HA亚型组合的VLP,可将所想要的HA亚型于相同细胞(例如植物细胞)中共表达。
如以下更详细描述的,当与来自A/新喀里多尼亚/20/99的M2共表达时,在农杆菌浸润的本氏烟草叶中来自B/布里斯班/60/2008之乙型HA或H3的表达增加(见图18以及19)。当将H1或H5与M2共表达时未观察到类似增加,因在M2的存在或不存在下皆观察到高水平的H1或H5表达(分别为图20与21)。已知HA以pH依赖性方式被加工(见ReedM.L.et.al.Journal of Virology,February 2010,p.1527-1535,Vol.84,No.3),并且经历pH依赖性构象改变(Skehel J.J.et.al.1982,PNAS79:968-972)。H1与H5在低于H3与乙型HA观察到构象变化的pH展现出构象的变化。不希望被理论所约束地,在成熟与迁移期间高尔基体内的pH可能不具有对H1或H5折叠的影响,然而,在高尔基体内的低pH可能影响H3以及乙型HA折叠。通过共表达通道蛋白(例如但不限于质子通道蛋白)和H3或乙型HA,高尔基体内的pH可能增加并且造成HA折叠从而增加HA产率。此外,H1与H5可能比起H3以及乙型HA在较低pH下更稳定。因此,通过共表达通道蛋白(例如但不限于质子通道蛋白)和H3或乙型HA,使得较少的HA在高尔基体内降解。
根据本发明的由流感衍生蛋白质产生之VLP不包含M1蛋白。已知M1蛋白结合RNA(Wakefield and Brownlee,1989),RNA为VLP制备的污染物。当获得VLP产物之监管部门批准(regulatory approval)时,RNA的存在是不希望的,因此缺少RNA的VLP制备可能是有利的。
如本文所描述而产生之VLP通常不包含神经氨酸酶(neuramindase,NA)。然而,需要包含HA与NA的VLP时,NA可与HA共表达。
本发明亦包括但不限于由表达VLP蛋白之细胞的质膜获得脂质包膜的病毒衍生VLP。例如,若VLP在植物基础的系统中表达,VLP可由细胞的质膜获得脂质包膜。
一般而言,术语“脂质”意指脂溶性(亲脂的)的天然分子。该术语亦用以更特别地意指脂肪酸及其衍生物(包括三-、二-以及单酰甘油与磷脂),以及其它脂溶性含固醇的代谢产物或固醇。磷脂与糖脂、固醇以及蛋白质为所有生物膜的主要成分。磷脂的实例包括磷脂酰乙醇胺(phosphatidylethanolamine)、磷脂酰胆碱(phosphatidylcholine)、磷脂酰肌醇(phosphatidylinositol)、磷脂酰丝氨酸(phosphatidylserine)等等。固醇的实例包括动物固醇(例如,胆固醇)以及植物固醇。已在各种植物物种中鉴定出超过200种植物固醇,最常见的为菜油固醇、豆固醇、麦角固醇、菜子固醇、δ-7-豆固醇、δ-7-燕麦固醇、胡萝卜固醇、谷固醇、24-甲基胆固醇、胆固醇或β-谷固醇。如本领域之技术人员将了解的,细胞质膜的脂质成分可随着细胞或由此获得细胞之有机体的培养或生长条件而变化。
细胞膜一般包含脂双层以及针对各种功能的蛋白质。在脂双层中可发现局部浓缩的特定脂质,称为“脂筏”(lipid rafts)。不希望被理论所约束地,脂筏可在内吞与胞吐作用、病毒或其它感染原的进入或逸出、细胞间信号转导、与细胞或有机体的其它结构组分(例如细胞内与细胞外基质)之相互作用中起重要作用。
在植物中,流感VLP由质膜出芽,因此VLP的脂质成分反映其来源。根据本发明生产之VLP包含与植物来源脂质复合的一种或多于一种流感病毒类型或亚型的HA。植物脂质可刺激特定免疫细胞并增强诱导的免疫应答。植物膜由脂质、磷脂酰胆碱(PC)以及磷脂酰乙醇胺(PE)形成,并且亦包含鞘糖脂(glycosphingolipid)、皂苷以及植物固醇。此外,亦于植物质膜发现脂筏,这些微结构域富含于鞘脂与固醇中。在植物中,已知存在各种植物固醇,包括豆固醇、谷固醇、24-甲基胆固醇以及胆固醇(Mongrand et al.,2004)。
PC与PE以及鞘糖脂可结合至由哺乳动物免疫细胞(例如抗原呈递细胞(APC)如树突细胞和巨噬细胞以及包括在胸腺与肝脏中的B与T淋巴细胞之其他细胞)表达之CD1分子(Tsuji M,.2006)。CD1分子结构上类似于第I类主要组织相容性复合体(MHC)分子,其作用为向NKT细胞(自然杀伤T细胞)呈递糖脂质抗原。于活化时,NKT细胞活化固有免疫细胞,例如NK细胞以及树突细胞,并且亦活化适应性免疫细胞,像是抗体生成B细胞以及T细胞。
可于质膜发现各种植物固醇––特定的组成可视物种、生长条件、营养来源或病原体状态而不同,仅列出几个因素。一般而言,β-谷固醇为最丰富的植物固醇。
植物固醇存在于与脂双层复合的流感VLP中,例如质膜衍生包膜可提供有利的疫苗成分。不希望被理论所约束地,植物制成之VLP与脂双层复合(例如质膜衍生的包膜)可比以其它表达系统制成的VLP诱导更强烈的免疫应答,并且可类似于由活的或减毒全病毒疫苗诱导的免疫应答。
因此,在一些具体实施方案中,本发明提供与植物衍生脂双层复合之VLP。在一些具体实施方案中,植物衍生脂双层可包含VLP的包膜。植物衍生脂质可包含生产VLP之植物的质膜的脂质成分,其包括但不限于磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、鞘糖脂、植物固醇或其组合。植物衍生脂质可作为替代地称为“植物脂质”。植物固醇的实例为本领域已知的,包括例如豆固醇、谷固醇、24-甲基胆固醇以及胆固醇,参考例如Mongrand et al.,2004。
VLP可通过例如血凝试验、电子显微镜或尺寸排阻层析法(size exclusionchromatograpy)评估结构与尺寸。
对于尺寸排阻层析法,可通过将冷冻粉碎的植物材料样品在提取缓冲液中匀浆(Polytron)而从植物组织中提取总可溶性蛋白质,并通过离心移除不可溶材料。可使用PEG沉淀。将可溶性蛋白质量化,并且将提取物通过尺寸排阻基质,例如但不限于SephacrylTM。在层析后,通过免疫印迹进一步分析级分以确定级分的蛋白质组成。
不希望被理论所约束地,HA结合至来自不同动物之RBC的能力被HA对唾液酸α2,3或α2,3的亲和力以及这些唾液酸于RBC表面的存在所驱动。来自多个物种的流感病毒凝集红细胞的马与禽HA,包括火鸡(turkey)、鸡、鸭、天竺鼠、人、羊、马以及牛;而人HA将结合至火鸡、鸡、鸭、天竺鼠、人与羊的红细胞(亦可见Ito T.et al,1997,Virology,vol 227,p493-499;以及Medeiros R et al,2001,Virology,vol 289p.74-85)。折叠(分子伴侣(chaperon))
表达的病毒蛋白质之正确折叠对蛋白质的稳定性、多聚体的形成、VLP的形成、病毒蛋白质的功能与病毒蛋白质被抗体所识别等等特性中可能是重要的。蛋白质的折叠与累积可被一种或更多种因素影响,其包括但不限于,蛋白质的序列、蛋白质的相对富集度、细胞内的拥挤程度、细胞区室内的pH、可结合或瞬时结合于折叠的、部分折叠的或未折叠的蛋白质之辅因子的可得性、一种或更多种分子伴侣蛋白的存在等等。
热休克蛋白(Hsp)或应激蛋白(stress protein)为分子伴侣蛋白的实例,其可参与于多种细胞过程(包括蛋白质合成、细胞内运输、错误折叠的预防、蛋白质聚集的预防、蛋白质复合体的组装与拆卸、蛋白质折叠以及蛋白质解聚作用)。此类分子伴侣蛋白的实例包括但不限于Hsp60、Hsp65、Hsp 70、Hsp90、Hsp100、Hsp20-30、Hsp10、Hsp100-200、Hsp100、Hsp90、Lon、TF55、FKBP、亲环蛋白、ClpP、GrpE、泛素、钙联蛋白以及蛋白质二硫键异构酶(见例如Macario,A.J.L.,Cold Spring Harbor Laboratory Res.25:59-70.1995;Parsell,D.A.&Lindquist,S.Ann.Rev.Genet.27:437-496(1993);美国专利号5,232,833)。如本文所描述的,可使用例如但不限于Hsp40与Hsp70的分子伴侣蛋白以确保病毒蛋白质的折叠。
Hsp70的实例包括来自哺乳动物细胞的Hsp72以及Hsc73、来自细菌的DnaK,特别地为分枝杆菌例如麻疯分枝杆菌(Mycobacterium leprae)、结核分枝杆菌(Mycobacteriumtuberculosis)以及牛分枝杆菌(Mycobacterium bovis)(例如Bacille-Calmette Guerin:此处称为Hsp7l)。来自大肠杆菌(Escherichia coli)、酵母菌以及其它原核生物的DnaK,以及来自例如拟南芥(A.thaliana)的真核生物的BiP与Grp78(Lin et al.2001Cell Stressand Chaperones 6:201-208)。Hsp70的特定实例为拟南芥Hsp70(由Genbankref:AY120747.1编码)。Hsp70能特异地结合ATP以及未折叠的多肽与肽,从而参与蛋白质折叠与展开以及蛋白质复合体之组装与拆卸。
Hsp40的实例包括来自原核生物例如大肠杆菌(E.coli)与分枝杆菌的DnaJ以及来自真核生物例如苜蓿(alfalfa)之HSJ1、HDJl与Hsp40(Frugis et al.,1999.PlantMolecular Biology 40:397-408)。Hsp40的特定实例为紫花苜蓿(M.sativa)MsJ1(Genbankref:AJ000995.1)。Hsp40扮演于其它细胞活动中之蛋白质折叠、耐热性与DNA复制中的分子伴侣角色。
在Hsp中,Hsp70以及其共同分子伴侣Hsp40涉及在合成完成之前翻译与新合成之多肽的稳定。不希望被理论所约束地,Hsp40结合至未折叠(新生或新转移)的多肽之疏水区(hydrophobic patches),因而促进Hsp70-ATP复合体与多肽的相互作用。ATP水解导致多肽、Hsp70与ADP间稳定复合体的生成以及Hsp40的释放。Hsp70-ADP复合体与多肽疏水区的结合防止它们与其它疏水区的相互作用,进而防止不正确折叠以及与其它蛋白质之聚集体的形成(于Hartl,FU.1996.Nature381:571-579中综述)。
天然分子伴侣蛋白可能促进低水平重组蛋白质的正确折叠,但随着表达水平的提高,天然分子伴侣蛋白的丰度可变为限制因素。在农杆菌浸润之叶子中病毒蛋白质之高表达水平可导致病毒蛋白质在胞质溶胶中的累积,并且一种或多于一种的分子伴侣蛋白(例如Hsp70、Hsp40或Hsp70与Hsp40两者)的共表达可降低错误折叠的或聚集的蛋白质的水平,并且增加展现三级与四级结构特征之蛋白质数量,其使得病毒样颗粒形成。
因此,本发明亦提供在植物中生产病毒蛋白质VLP的方法,其中编码病毒蛋白质的第一核酸与编码通道蛋白(例如但不限于质子通道蛋白)的第二核酸以及编码分子伴侣的第三核酸共表达。可将第一与第二与第三核酸于相同步骤引入植物中,或可相继地引入植物中。
N-聚糖
在植物内生产之VLP可诱导包含植物特异性N-聚糖之病毒蛋白质。因此,此发明亦提供包含具有植物特异性N-聚糖之病毒蛋白质的VLP。
此外,已知植物中N-聚糖的修饰作用(见例如WO 2008/151440;WO 2010/006452;或U.S.60/944,344;将其通过参考并入本文)并且可生产具有修饰的N-聚糖之病毒蛋白质。含有修饰的糖基化模式之病毒蛋白质(例如伴随降低的岩藻糖基化(fucosylate)、木糖基化(xylosylate)或盐藻糖基化与木糖基化两者)可获得N-聚糖,或可获得具有修饰的糖基化模式之病毒蛋白质,其中蛋白质缺乏岩藻糖基化、木糖基化或两者,以及含有增加的糖基化。此外,翻译后修饰之调节,例如,当相较于表达病毒蛋白质之野生型植物,尾端半乳糖的添加可造成表达之病毒蛋白质岩藻糖基化与木糖基化的降低。
例如,不将其视为限制,具有经修饰的糖基化模式之病毒蛋白质的合成可通过共表达目的蛋白质与编码β-1.4-半乳糖基转移酶(GalT)的核苷酸序列而达成,例如但不限于哺乳动物GalT或人GalT,然而亦可使用来自另一来源的GalT。亦可将GalT的催化结构域融合至N-乙酰葡萄糖胺移转酶(N-acetylglucosaminyl transferase,GNT1)的CTS结构域(即,胞质尾、跨膜结构域、干区)以生产GNT1-GalT杂合酶,并可将杂合酶与病毒蛋白质共表达。病毒蛋白质亦可与编码N-乙酰葡萄糖胺移转酶III(N-acetylglucosaminyltrasnferase III,GnT-III)的核苷酸序列(其例如但不限于哺乳动物GnT-III或人类GnT-III,亦可使用来自其它来源的GnT-III)共表达。此外,亦可使用包含融合至GnT-III的GNT1 CTS之GNT1-GnT-III杂合酶。
因此本发明亦包括含有一种或更多种具有经修饰之N-聚糖的病毒蛋白质之VLP。
序列
以本发明可使用之序列的非限制性实例包括:
由核酸分子编码之H2蛋白可来自A/新加坡(Singapore)/1/57(H2N2)株;
由核酸分子编码之H3蛋白可来自A/布里斯班10/2007(H3N2)、A/威斯康辛/67/2005(H3N2)株、A/维多利亚/361/2011(H3N2)或A/珀斯/16/2009(H3N2);
由核酸分子编码之H6蛋白可来自A/水鸭(Teal)/香港/W312/97(H6N1)株;
由核酸分子编码之H7蛋白亦可来自A/马(Equine)/布拉格(Prague)/56(H7N7)株;
由核酸分子编码之H9蛋白可来自A/香港/1073/99(H9N2)株;
由核酸编码的来自B亚型之HA蛋白可来自B/弗罗里达(Florida)/4/2006、B/马来西亚/2506/2004、B/威斯康辛/1/2010或B/布里斯班/60/2008株。
以本发明可使用的序列之非限制性实例亦包括那些在WO2009/009876;WO 2009/076778;WO 2010/003225;WO 2010/148511;WO 2010/003235;WO 2010/006452中描述的,将其通过参考并入本文)。编码此类HA蛋白质之氨基酸分子的序列实例来自本领域已知的H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16以及乙型HA。例如H3或B亚型包括SEQID No:25或30。编码病毒结构蛋白的序列可以是例如来自流感B/布里斯班/60/2008、B/马来西亚/2506/2004或B/威斯康辛/1/2010的HA,或是来自流感A/珀斯/16/2009或A/维多利亚/361/2011之H3。其它实例包括编码HA蛋白的核酸分子序列,其中HA蛋白的蛋白水解环已被缺失,像是例如但不限于由SEQ IDNO:41所定义之序列。
本发明亦包括但不限于编码HA的核苷酸序列,该HA来自例如H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16以及乙型HA。例如SEQ ID NO:28、43、23,分别编码来自B、具有缺失的蛋白水解环的B或H3的HA,于严格杂交条件下与SEQ ID NO:28、43、23杂交的核苷酸序列,或于严格杂交条件下与SEQ ID NO:28、43、23互补序列杂交的核苷酸序列,其中当表达时形成VLP时该核苷酸序列编码血细胞凝集素蛋白,并且VLP诱导抗体的产生。例如,植物细胞内的核苷酸序列表达生成VLP,并且可将VLP用以生产能够结合HA(包括来自B或H3的成熟HA)的抗体。当将VLP施用于对象时,诱导免疫应答。亦可将核苷酸序列与编码通道蛋白的第二核苷酸序列共表达,该核苷酸序列例如但不限于核苷酸序列SEQ ID NO:9、12、在严格杂交条件下与SEQ ID NO:9、12杂交之核苷酸序列或在严格杂交条件下与互补的SEQ ID NO:9、12杂交之核苷酸序列,其中编码质子通道蛋白的第二核苷酸序列形成VLP。优选地,VLP诱导抗体生成,并且当将VLP施用于对象时,诱导免疫应答。
例如,在植物细胞中之核苷酸序列的表达形成VLP,并且可使用VLP生产能够结合病毒蛋白质(像是例如HA)的抗体,该HA包括但不限于HA0、蛋白水解环缺失或修饰的HA0蛋白、一或更多型或亚型流感(像是例如但不限于H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15、H16亚型以及HAB亚型)的HA1或HA2。当将VLP施用于对象时,诱导免疫应答。
在严格杂交条件下的杂交反应为本领域已知的(见例如Current Protocols inMolecular Biology,Ausubel et al.,eds.1995以及增刊;Maniatis et al.,inMolecular Cloning(ALaboratory Manual),Cold Spring Harbor Laboratory,1982;Sambrook and Russell,in Molecular Cloning:ALaboratory Manual,3rd edition 2001;将其每个通过参考并入本文)。此类严格杂交条件的一个实例可为于65℃下在4X SSC中杂交大约16-20小时,接着于65℃下在0.1X SSC中清洗1小时,或于65℃下在0.1X SSC中清洗2次,每次20或30分钟。作为替代地,示范性的严格杂交条件可为于42℃下在50%甲酰胺、4XSSC中过夜(16-20小时),接着于65℃下在0.1X SSC中清洗1小时,或于65℃下在0.1XSSC中清洗2次,每次20或30分钟,或过夜(16-20小时),或于65℃下在Church磷酸盐缓冲水溶液(7% SDS;0.5M NaPO4缓冲液pH 7.2;10mM EDTA)中杂交,伴随于50℃下在0.1X SSC、0.1%SDS的两次清洗,每次20或30分钟,或者于65℃下在2X SSC、0.1% SDS的两次清洗,每次20或30分钟。
额外地,本发明包括核苷酸序列,其特征在于相较于编码来自B(SEQ ID NO:28)、具有缺失或修饰的蛋白水解环的B(SEQ ID NO:43)或H3(SEQ ID NO:23)的HA、或与由SEQID NO:23、28、43、46、51、57或61中的任何一个或更多个编码的HA,具有大约70、75、80、85、87、90、91、92、93、94、95、96、97、98、99、100%或介于其间任何量的序列同一性或序列相似性,其中当其表达形成VLP时该核苷酸序列编码血细胞凝集素蛋白,并且VLP诱导抗体的生成。例如,植物细胞内的核苷酸序列之表达形成VLP,并且可将VLP用以产生能够结合HA(其包括来自B或H3之未处理的和/或成熟的HA,或是其中蛋白水解环已被缺失的未处理的和/或成熟的HA)的抗体。当将VLP施用于对象时,诱导免疫应答。
本发明亦包括核苷酸序列,其特征在于相较于编码M2之核苷酸序列(SEQ ID NO:9、12),具有大约70、75、80、85、87、90、91、92、93、94、95、96、97、98、99、100%或介于其间任何量的序列同一性或序列相似性,其中该核苷酸序列编码通道蛋白(例如但不限于质子通道蛋白),当其与病毒结构蛋白共表达时,形成VLP。优选地,VLP引发抗体产生,并且当将VLP施用于对象时,诱导免疫应答。
序列同一性或序列相似性可使用核苷酸序列比对程序确定,例如DNASIS中提供的(使用例如但不限于下列参数:GAP penalty 5,#of top diagonals 5,fixed GAP penalty10,k-tuple 2,floating gap 10,和window size 5)。然而,序列比对以用于比对的其它方法为本领域公知,例如Smith&Waterman算法(1981,Adv.Appl.Math.2:482)、Needleman&Wunsch(J.Mol.Biol.48:443,1970)、Pearson&Lipman(1988,Proc.Nat'l.Acad.Sci.USA85:2444)以及通过这些算法之计算执行(例如GAP、BESTFIT、FASTA以及BLAST),或通过手动比对以及目视检查。可以在图24发现来自不同流感病毒株的HA序列比对实例。
“免疫应答”一般意指适应性免疫系统的应答。适应性免疫系统一般包含体液应答以及细胞介导应答。体液应答为由分泌的抗体介导之免疫的方面,该抗体由B淋巴细胞系的细胞(B细胞)产生。分泌的抗体结合至侵入微生物(例如病毒或细菌)表面的抗原,其将它们标志为破坏。体液免疫一般用以意指抗体产生以及与其相伴的过程,以及抗体的作用功能,其包括Th2细胞活化以及细胞因子产生、记忆细胞生成、吞噬作用的调理素(opsonin)的促进、病原体消除等等。术语“调节(modulate)”或“调节(modulation)”或诸如此类意指特定反应或参数之增加或降低,其通过一般已知或使用的数个分析的任一者所测定,其中的一些于本文例举。
细胞介导的应答是不涉及抗体但涉及响应抗原之巨噬细胞、自然杀手细胞(NK)、抗原特异细胞毒性T淋巴细胞的活化以及各种细胞因子释放之免疫应答。一般用细胞介导的免疫指一些Th细胞活化、Tc细胞活化以及T细胞介导的应答。细胞介导的免疫对响应病毒感染是特别重要的。
例如,抗原特异CD8阳性T淋巴细胞的诱导可使用ELISPOT检测来测量;CD4阳性淋巴细胞的诱导可使用增殖检测来测量。可使用ELISA检测来定量抗流感抗体效价;亦可使用抗同种型抗体(例如抗IgG、IgA、IgE或IgM)测量抗原特异同种型或交叉反应抗体。操作此类检测的方法与技术为本领域已公知的。
亦可使用交叉反应HAI效价来证明对疫苗亚型相关的其它病毒株之免疫应答的功效。例如,来自以第一株疫苗成分(例如A/印度尼西亚5/05的VLP)诱导免疫之对象的血清可与全病毒或病毒颗粒的第二株(例如A/越南(Vietnam)/1194/2004)在HAI检测中使用,并且确定HAI效价。
亦可定量细胞因子的存在或水平。例如T辅助细胞反应(Th1/Th2)将以使用ELISA(例如BD Biosciences OptEIA试剂盒)之IFN-γ与IL-4分泌细胞的测量为特征。可培养由对象获得的外围血单个核细胞(PMBC)或脾细胞,并且分析上清液。亦可使用本领域已知的特异性荧光标签标记物与方法,以荧光活化细胞分选(FACS)定量T淋巴细胞。
亦可进行微量中和(microneutralization)检测以表征对象中的免疫应答,见例如Rowe et al.,1973的方法。可以数种方式获得病毒中和效价,包括:1)细胞的结晶紫固定/染色后的裂解噬菌斑计数(噬菌斑测定);2)培养物中细胞裂解的显微镜观察;3)NP病毒蛋白之ELISA与分光光度法探测(与宿主细胞之病毒感染相关联)。
构建体
本发明进一步涉及包含编码通道蛋白(例如但不限于质子通道蛋白)或病毒结构蛋白之核酸的构建体,如上所述的,所述核酸有效连接到在植物中有效的调控元件。在植物细胞中运作的调控元件并且可根据本发明而使用之实例包括但不限于质体蓝素调节区(US7,125,978;将其通过参考并入本文)或核酮糖1,5-二磷酸羧化酶/加氧酶调节区(RuBisCO;US4,962,028;将其通过参考并入本文)、叶绿素a/b结合蛋白(CAB;Leutwiler et al;1986;将其通过参考并入本文)ST-LS1(与光合系统II之放氧复合体相关,并且由Stockhaus etal.1987,1989描述;将其通过参考并入本文)。
调控元件
本申请中的术语“调控区域”、“调控元件”或“启动子”之使用意在反映通常但非总是在基因的蛋白质编码区域上游的核酸部分,其可以由DNA或RNA或者DNA与RNA两者构成。当调控区域为具有活性的,并且与目的基因有效关连或有效连接时,此可造成目的基因的表达。调控元件可能能够介导器官特异性或控制发育的基因活化或时序基因活化。“调控区域”可包括启动子元件、表现基础启动子活性之核心启动子元件、可响应于外部刺激而诱导的元件、介导启动子活性的元件(例如负调控子或转录增强子)。如本文使用的,“调控区域”亦可包括转录之后具有活性的元件,例如,调控基因表达的调控元件,例如翻译与转录增强子、翻译与转录抑制子、上游活化序列以及mRNA不稳定性决定因素。这些随后的元件中的一些可位于编码区域近端。
在此公开内容之上下文中,术语“调控元件”或“调控区域”一般意指通常但非总是位于结构基因编码序列上游(5')的DNA序列,其通过提供针对RNA聚合酶之识别和/或于特定位点开始转录所需的其它因子,以控制编码区域的表达。然而,要了解位于内含子内或序列3'的其它核苷酸序列亦可有助于目的编码区域表达之调控。提供针对RNA聚合酶或其它转录因子之识别以确保于特定位点起始转录的调控元件实例为启动子元件。大部分但非全部地,真核生物的启动子因子包含TATA盒、其为通常位于转录起始位点上游大约25个碱基对的由腺苷酸与胸苷核苷酸碱基对构成的保守核酸序列。启动子元件包含负责转录的起始之基础启动子元件,以及调节基因表达的其它调控元件(如上所列者)。
有几种类型的调控区域,包括那些由发育调控的,可诱导的或组成型。发育调控的或控制在其控制之下基因差异表达的调控区域在器官或组织发育期间的特定时间于那些器官或器官之组织内活化。然而,由发育调控的一些调控区域可于某些器官或组织内于特定发育阶段优先地活化,它们也可以发育调控方式活化,或者在植物的其它器官或组织中处于基础水平。组织特异的调控区域之实例,例如视特异(see-specific)调控区域,其包括油菜籽蛋白(napin)启动子,以及十字花科蛋白(cruciferin)启动子(Rask et al.,1998,J.Plant Physiol.152:595-599;Bilodeau et aI.,1994,Plant Cell 14:125-130)。叶特异性启动子的实例包括质体蓝素启动子(见US 7,125,978,将其通过参考并入本文)。
可诱导的调控区域是能够响应诱导物而直接或间接活化一个或更多个DNA序列或基因之转录的那些。在缺少诱导物时,DNA序列或基因将不会被转录。通常,特异性地结合至可诱导调控区域以活化转录之蛋白质因子可以未活化形式存在,然后诱导物直接或间接地将其转变为活化形式。然而,蛋白质因子亦可不存在。诱导物可以是化学剂,例如蛋白质、代谢产物、生长调节剂、除草剂或酚类化合物或由热、冷、盐、有毒元素直接施加或通过病原体或疾病原(例如病毒)间接施加的生理胁迫。可将包含可诱导调控区域之植物细胞暴露于诱导物,所述诱导物通过例如经喷洒、浇灌、加热或类似的方法由外部施加至细胞或植物。可诱导的调控元件可衍生自植物或非植物基因(例如Gatz,C.and Lenk,LR.P.,1998,TrendsPlant Sci.3,352-358;将其通过参考并入)。潜在的可诱导启动子之实例包括但不限于四环素诱导启动子(Gatz,C.,1997,Ann.Rev.Plant Physiol.Plant Mol.BioI.48,89-108;将其通过参考并入)、类固醇诱导启动子(Aoyama.T.and Chua,N.H.,1997,Plant 1.2,397-404;将其通过参考并入)以及乙醇诱导启动子(Salter,M.G.,et aI,1998,Plant 10urnal16,127-132;Caddick,M.X.,et al,1998,Nature Biotech.16,177-180,将其通过参考并入)、细胞分裂素诱导之IB6与CKI1基因(Brandstatter,I.and K.ieber,1.1.,1998,PlantCell 10,1009-1019;Kakimoto,T.,1996,Science 274,982-985;将其通过参考并入)以及生长素诱导之因子DR5(Ulmasov,T.,et aI.,1997,Plant Cell 9,1963-1971;将其通过参考并入)。
组成型调控区域于整个植物的各部分以及持续地于整个植物发育中引导基因表达。已知的组成型调控元件包括关联于CaMV 35S转录之启动子(Odell et aI.,1985,Nature,313:810-812)、水稻肌动蛋白1(Zhang et aI,1991,Plant Cell,3:1155-1165)、肌动蛋白2(An et al.,1996,Plant J.,10:107-121)或tms 2(U.S.5,428,147,将其通过参考并入本文)以及磷酸丙糖异构酶1(triosephosphate isomerase 1)基因(Xu et.aI.,1994,Plant Physiol.106:459-467)、玉米泛素1基因(Cornejo et ai,1993,PlantMol.BioI.29:637-646)、拟南芥泛素1与6基因(Holtorf et aI,1995,Plant Mol.BioI.29:637--646)以及烟草翻译起始因子4A基因(Mandel et aI,1995,Plant Mol.BioI.29:995-1004)。
术语“组成型”如本文中所使用,不一定指基因在组成型调节区的控制下于所有细胞类型中以相同水平表达,但是尽管常常观察到丰度的变化,但是基因在广泛的细胞类型中表达。组成型调控元件可与其它序列偶联以进一步增强它们有效连接的核苷酸序列的转录和/或翻译。例如,CPMV-HT系统衍生自豇豆花叶病毒(Cowpea Mosaic Virus,CPMV)的非翻译区并且展现相关编码序列之增强翻译。所谓“天然”意指核酸或氨基酸序列为天然存在的,或“野生型”。所谓“有效连接”意指使特定序列(例如调控元件)与目的编码区域直接或间接相互作用以实现预期功能,例如基因表达的介导或调节。有效连接序列之相互作用可通过例如与有效连接序列相互作用的蛋白质而介导。
一种或更多种病毒蛋白质(例如病毒结构蛋白或例如但不限于质子通道蛋白的通道蛋白)可在包含以病毒为基础的、DNA或RNA表达系统中表达,所述表达系统例如但不限于豇豆花叶病毒属(comovirus)为基础的表达盒以及双生病毒(geminivirus)为基础的扩增元件。
如本文所描述之表达系统可包含以二分(bipartite)病毒或带有二分基因组的病毒为基础的表达盒。例如,二分病毒可能是豇豆花叶病毒科(Comoviridae)。豇豆花叶病毒科之属包括豇豆花叶病毒属、线虫传多面体病毒属(Nepovirus)、蚕豆萎蔫病毒属(Fabavirus)、樱桃锉叶病毒属(Cheravirus)以及温州蜜柑萎缩病毒属(Sadwavirus)。豇豆花叶病毒属包括豇豆花叶病毒(Cowpea mosaic virus,CPMV)、豇豆重型花叶病毒(Cowpeasevere mosaic virus,CPSMV)、南瓜花叶病毒(Squash mosaic virus,SqMV)、红三叶草斑驳病毒(Red clover mottle virus,RCMV)、菜豆荚斑驳病毒(Bean pod mottle virus,BPMV)、芜菁环斑病毒(Turnip ringspot virus,TuRSV)、蚕豆真花叶病毒(Broad beantrue mosaic virus,BBtMV)、蚕豆染色病毒(Broad bean stain virus,BBSV)、萝卜花叶病毒(Radish mosaic virus,RaMV)。包含对本发明的各方面有用的增强子元件之豇豆花叶病毒属RNA-2序列的实例包括但不限于:CPMV RNA-2(GenBank登录号NC_003550)、RCMV RNA-2(GenBank登录号NC_003738)、BPMV RNA-2(GenBank登录号NC_003495)、CPSMV RNA-2(GenBank登录号NC_003544)、SqMV RNA-2(GenBank登录号NC_003800)、TuRSV RNA-2(GenBank登录号NC_013219.1)、BBtMV RNA-2(GenBank登录号GU810904)、BBSV RNA2(GenBank登录号FJ028650)、RaMV(GenBank登录号NC_003800)。
二分豇豆花叶病毒RNA基因组的片段意指RNA-1与RNA-2。RNA-1编码涉及复制的蛋白质而RNA-2编码细胞-细胞移动所需的蛋白质以及两个衣壳(capsid)蛋白。可使用任何合适的豇豆花叶病毒(包括CPMV、CPSMV、SqMV、RCMV或BPMV)盒,例如,表达盒可以CPMV为基础。
“表达盒”意指包含目的核酸的核苷酸序列,该目的核酸受控于且有效连接于适合的启动子或其它调控元件,以在宿主细胞中转录该目的核酸。
已显示用全长的有复制能力的CPMV两个基因组RNA的cDNA拷贝转化本氏烟草可造成生产性感染(Liu et al.,2004,Virology 323,37-48,通过参考并入本文)。CPMV为基础的表达盒的实例描述于WO2007/135480;WO2009/087391;以及Sainsbury F.et al.(2008,Plant Physiology;148:1212-1218;Sainsbury F.et al(2008,Plant BiotechnologyJournal;6:82-92;Sainsbury F.et al.,2009,Plant Biotechnology Journal;7:682-693;文件通过参考并入本文)。作为实例而不将其视为限制地,由在5’前导序列中的两个第一翻译起始密码子已被缺失的豇豆花叶病毒(CPMV)的基因组RNA2获得之非翻译区域(UTR),可将其如于WO2009/087391描述中使用。当与CaMV 35S启动子以及胭脂碱合成酶(NOS)终止子结合时,经修饰的CPMV UTR增强侧翼编码区域的翻译。以CPMV为基础的表达系统称为CPMV-HT(超翻译(hyeranslatable))。本发明之表达盒、表达构建体以及表达系统因此亦可包含以CPMV为基础的表达系统,像是例如CPMV-HT表达系统。
如本文所描述的,表达增强子序列,其可使用衍生自(或与之享有同源性)二分RNA病毒(例如豇豆花叶病毒属)的RNA-2基因组片段的序列,其中目标起始位点已被突变,以用来表达目的核酸序列。本发明进一步提供增加衍生自二分病毒RNA-2基因组片段序列的表达或翻译增强活性的过程,其过程包含突变其中的目标起始位点。
“增强子”序列(或增强子元件)包括衍生自(或与之享有同源性)二分RNA病毒(例如豇豆花叶病毒属)的RNA-2基因组区段的序列,其中目标起始位点已被突变。此类序列可增强其所附着之异源ORF的下游表达。没有限制地,相信当存在于已转录的RNA时,此类序列可增强其所连接的异源ORF的翻译。
表达系统亦可包含来自双生病毒的扩增元件,例如,来自豆黄矮病毒(BeYDV)之扩增元件。BeYDV属于适应于双子叶植物的Mastreviruses属。BeYDV为具有单链环状DNA基因组的单组分(monopartite)并且可通过滚环式机制(rolling circle mechanism)复制至非常高的拷贝数。已使用BeYDV衍生之DNA复制子载体系统在植物中的快速高产量的蛋白质生产。
如本文中所使用的,该措辞“扩增元件”意指包含双生病毒基因组一个或更多个长基因间区域(long intergenic region,LIR)之至少部分的核酸片段。如本文中所使用的,“长基因间区域”意指包含rep结合位点的长基因间区域,其能够通过双生病毒Rep蛋白介导切除及复制。在一些方面,包含一个或更多个LIR的核酸片段可进一步包含双生病毒基因组的短基因间区域(SIR)。如本文中所使用的,“短基因间区域”意指互补链(Mastrevirus之短IR(SIR))。任何合适的双生病毒衍生之扩增元件可用于本文。参考例如WO2000/20557;WO2010/025285;Zhang X.et al.(2005,Biotechnology and Bioengineering,Vol.93,271-279)、Huang Z.etal.(2009,Biotechnology and Bioengineering,Vol.103,706-714)、Huang Z.et al(2009,Biotechnology and Bioengineering,Vol.106,9-17);将其通过参考并入本文)。若在构建体中使用多于一个的LIR,例如二个LIR,那么启动子、CMPV-HT区域以及目的核酸序列以及终止子被两个LIR的每一个围住(bracket)。
如本文所描述的,通过本氏烟草叶片的农杆菌浸润,豆黄矮病毒(BeYDV)衍生载体以及Rep/RepA供应载体的共同递送造成有效复制子扩增以及稳健(robust)蛋白质生产。
以豇豆花叶病毒属为基础的表达盒以及双生病毒衍生的扩增元件可被分别包含于第一与第二载体,或所述成分可被包含于一个载体。若使用两个载体,可将第一与第二载体同时或分别地引入至植物细胞。
亦可将病毒复制酶包含于如本文所述的表达系统中,以增加目的核酸的表达。复制酶的非限制性实例为编码BeYDV Rep与RepA的BeYDV复制酶(pREP110)(C2/C1;Huang etal.,2009,Biotechnol.Bioeng.103,706-714;将其通过参考入本文)。
转录后基因沉默(PTGS)可涉及植物中转基因的限制表达,以及来自西红柿丛矮病毒的p19(TBSV p19)或马铃薯病毒Y(HcPro)的沉默性阻遏蛋白之共表达可用于抵消转基因mRNA的特异性降解(Brigneti etal.,1998)。
替代的沉默性阻遏蛋白为本领域公知的并且可如本文所描述地使用(Chiba etal.,2006,Virology 346:7-14;将其通过参考并入本文),例如但不限于TEV-p1/HC-Pro(烟草蚀纹病毒-p1/HC-Pro)、BYV-p21、西红柿皱缩病毒的衣壳蛋白(TCV-CP)、黄瓜花叶病毒的2b(CMV-2b)、马铃薯病毒X的p25(PVX-p25)、马铃薯病毒M的p11(PVM-p11)、马铃薯病毒S的p11(PVS-p11)、蓝莓枯黄病毒的p16(BScV–p16)、柑橘衰退病毒的p23(CTV-p23)、葡萄卷叶相关病毒-2的p24(GLRaV-2p24)、葡萄病毒A的p10(GVA-p10)、葡萄树病毒B的p14(GVB-p14)、白芷潜伏性病毒的p10(HLV-p10)或大蒜普通潜伏性病毒的p16(GCLV-p16)。因此,可将沉默性阻遏蛋白,例如但不限于HcPro、TEV-p1/HC-Pro、BYV-p21、TBSV p19、TCV-CP、CMV-2b、PVX-p25、PVM-p11、PVS-p11、BScV-p16、CTV-p23、GLRaV-2p24、GBV-p14、HLV-p10、GCLV-p16或GVA-p10,与编码目的蛋白质的核酸序列共表达以进一步确保植物内高水平的蛋白质生产。
所谓“共表达”意指两种或多于两种的核苷酸序列大约同时于植物中以及植物的相同组织中表达。然而,核苷酸序列不需在完全相同的时间表达。而是,两种或更多种的核苷酸序列以编码产物有机会相互作用的方式表达。例如,修饰目的蛋白质的糖基化之蛋白质可在目的蛋白质表达之前或期间表达,以使目的蛋白质的糖基化的修饰发生。可使用瞬时的表达系统共表达两种或多于两种的核苷酸序列,其中所述两种或更多种的序列于大约同时在这两种序列表达的条件下被引入至植物。作为替代地,可将编码目的蛋白质的额外序列以瞬时或稳定的方式转化包含其中一种核苷酸序列(例如编码用以修饰目的蛋白质的糖基化的蛋白质之序列)之平台植物(platform plant)中。在此情况下,可将编码修饰目的蛋白质的糖基化的蛋白质的序列于想要的发育阶段之期间在想要的组织中表达,或可使用可诱导的启动子诱导其表达,而且可将编码目的蛋白质的额外序列于类似条件下并于相同组织中表达,以确保共表达核苷酸序列。
可由核苷酸序列生产一种或更多种病毒蛋白质为转录物,并且将蛋白质于合成后切割,且如有需要,相连接以形成多聚体蛋白。因此,一种或更多种病毒蛋白质亦包括含有藉由二硫键桥连接之亚单位(即多聚体蛋白)的蛋白质或多肽。例如,包含来自两种或多于两种来源的氨基酸序列之蛋白质可被处理成亚单位,并且亚单位藉由二硫键桥连接以产生蛋白质。
本发明的一种或更多种核酸序列或遗传构建体可通过本发明之核苷酸序列或构建体或载体转化于任何适合的植物宿主中表达。适合的宿主实例包括但不限于包括苜蓿、油菜籽、芸苔属物种(Brassica Spp.)、玉米、烟草属、马铃薯、人参、豌豆、燕麦、水稻、大豆、小麦、大麦、向日葵、棉花等等的农作物。
本发明的一种或更多种遗传构建体可进一步包含3'非翻译区域。3'非翻译区域意指含有包括多聚腺苷酸化信号以及能够造成mRNA加工或基因表达的任何其它调控信号之DNA区段的基因部分。多聚腺苷酸化信号通常以造成沿着mRNA前体之3'末端的多聚腺苷酸的添加为特征。虽然变化并不少见,但是多聚腺苷酸化信号通常由存在标准形式5'AATAAA-3'同源性而识别。合适的3'区域之非限制性实例为包含下列的多聚腺苷酸化信号之3'已转录非翻译区域:农杆菌属(Agrobacterium)肿瘤诱导(Ti)质粒基因例如胭脂碱合成酶(NOS)基因、植物基因例如大豆贮藏蛋白基因、核酮糖1,5-二磷酸羧化酶基因的小亚单位(ssRUBISCO;US 4,962,028;将其通过参考并入本文)、用于调节质体蓝素表达的启动子,其描述于US 7,125,978(将其通过参考并入本文)。
本发明的一种或更多种遗传构建体亦可进一步包括可能需要的翻译或转录增强子。增强子可位于要转录的序列之5'或3'。增强子区域为本领域之技术人员所公知,并且可包括ATG起始密码子、相邻序列或诸如此类。起始密码子如果存在,可与编码序列之阅读框(reading frame)同相(“框内”)以提供已转录序列之正确翻译。
所谓“转化”意指基因型地、表型地或其两者表现出的遗传信息(核苷酸序列)的种间转移。由构建体的遗传信息种间转移至宿主可以是瞬时的而遗传信息的转移为不可遗传的,或转移可能是遗传的而遗传信息的转移视为稳定的。
本发明之构建体可使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电穿孔等引入植物细胞。此类技术的综述见例如Weissbach and Weissbach,Methods forPlant Molecular Biology,Academy Press,New York VIII,pp.421-463(1988);Geiersonand Corey,Plant Molecular Biology,2d Ed.(1988);以及Miki and Iyer,Fundamentals of Gene Transfer in Plants.In Plant Metabolism,2d Ed.DT.Dennis,DH Turpin,DDLefebrve,DB Layzell(eds),Addison Wesly,Langmans Ltd.London,pp.561-579(1997)。其它方法包括直接DNA摄取、脂质体的使用、电穿孔(例如使用原生质体)、显微注射、微弹或晶须(whisker)以及真空渗透。见例如Bilang,et al.(Gene 100:247-250,1991)、Scheidet al.(Mol.Gen.Genet.228:104-112,1991)、Guerche etal.(Plant Science 52:111-116,1987)、Neuhause et al.(Theor.Appl Genet.75:30-36,1987)、Klein et al.,Nature327:70-73(1987);Howell et al.(Science 208:1265,1980)、Horsch et al.(Science227:1229-1231,1985)、DeBlock et al.(Plant Physiology 91:694-701,1989)、Methodsfor Plant Molecular Biology(Weissbach and Weissbach,eds.,Academic Press Inc.,1988)、Methods in Plant Molecular Biology(Schuler and Zielinski,eds.,AcademicPress Inc.,1989)、Liu and Lomonossoff(J Virol Meth,105:343-348,2002)、美国专利号4,945,050;5,036,006;以及5,100,792,1995年5月10日提出的美国专利申请辑编号08/438,666,以及1992年9月25日提出07/951,715(将所有在此通过参考并入本文)。
如下描述的,可使用瞬时表达的方法来表达现本发明之构建体(见Liu andLomonossoff,2002,Journal of Virological Methods,105:343-348;将其通过参考并入本文)。作为替代地,可使用如由Kapila et al.,1997所描述的以真空为基础的瞬时表达方法(将其通过参考并入本文)。这些方法可能包括,例如但不限于,农杆菌接种(Agro-inoculation)或农杆菌渗透(Agro-infiltration)、注射器渗透(syringe infiltration)的方法,然而,亦可使用如上所所述其它瞬时方法。使用农杆菌接种、农杆菌渗透或注射器渗透时,包含想要的核酸之农杆菌混合物进入组织(例如,叶、植物的地上部分(包括茎、叶以及花)、植物的其它部分(茎、根、花)或整株植物)的细胞间隙。在穿越表皮后,农杆菌感染并转移t-DNA拷贝至细胞中。t-DNA以附加体转录并且mRNA被翻译,导致目的蛋白质在感染细胞中的生产,然而,t-DNA在核内的传代为瞬时性的。
为协助确认转化的植物细胞,可进一步操作本发明的构建体以包含植物可选择标记物。有用的可选择标记物包括提供对化学物质具抗性之酶例如抗生素(例如,庆大霉素(gentamycin)、潮霉素(hygromycin)、卡那霉素(kanamycin)或除草剂例如草铵膦(phosphinothrycin)、草甘膦(glyphosate)、氯磺隆(chlorosulfuron)等等)。类似地,可使用通过颜色改变提供可识别的化合物生产之酶,例如GUS(β-葡萄糖醛酸酶,beta-glucuronidase)或发光例如萤光素酶(luciferase)或GFP。
所谓术语“植物物质(plant matter)”意指衍生自植物的任何材料。植物物质可包含整个植物、组织、细胞或其任何部分。进一步地,植物物质可包含细胞内植物组分、细胞外植物组分、植物的液体或固体提取物或其组合。进一步地,植物物质可包含植物、植物细胞、组织、液体提取物或其组合,其来自植物的叶、茎、果实、根或其组合。植物物质可包含还未受到任何处理步骤的植物或其部分。然而,也预期可将植物物质受如下所定义的最小处理步骤或更严格的处理,包括使用本领域普遍所知的技术之部分或大体上的蛋白质纯化,其包括但不限于层析法、电泳法等等。
所谓术语“最小处理(minimal processing)”意指将包含目的蛋白的植物物质例如植物或其部分部分地纯化,以生成植物提取物、匀浆、植物匀浆级分或诸如此类(即最小地处理)。部分纯化可包含但不限于破坏植物细胞的结构从而产生包含可溶性植物组分和不可溶植物组分(其可通过例如但不限于离心、过滤或其组合而分离)的组合物。就这点而言,在叶片或其它组织的细胞外空间分泌的蛋白质可轻易地使用真空或离心提取而获得,或是可将组织于压力下通过通过滚筒或研磨或诸如此类以挤压或释放蛋白脱离细胞外空间而提取。因为这些制备将具有来自二级植物产物之可忽略的污染,所以最小处理亦可涉及可溶性蛋白质粗提取物的制备。进一步地,最小处理可涉及从叶中水提取可溶性蛋白质,接着使用任何适合的盐类沉淀。其它方法可包括大规模的浸渍与汁液提取以容许提取物的直接使用。
可将植物物质以植物材料或组织的形式经口递送给对象。可将植物物质作为食物增补剂的一部分随着其它食物施用或包裹。亦可将植物物质或组织浓缩以改善或增加适口性(palatability),或如有需要随着其它材料、成分或药学赋形剂提供。
预期将包含目的蛋白或表达包含目的蛋白之VLP的植物视需要与情况以各种方式施用于对象或目标生物体。例如,可将从植物获得的目的蛋白在其使用之前以粗制的、部分纯化的或纯化的形式提取。若蛋白质要被纯化,那么它可在可食用的或不可食用的植物中生产。此外,若蛋白质为经口施用,可将植物组织收获并直接喂食对象,或将收获的组织在喂食前干燥,或容许动物在无预先收获发生下于植物上取食。亦将要提供作为动物喂食中之食物增补剂的收获植物组织考虑在本发明的范围内。若植物组织要以极少或无进一步处理而被喂食予对象或动物,优选地要施用之植物组织为可食用的。
可将根据本发明生产的VLP使用本领域之技术人员已知的方法从植物、植物的部分或植物物质中纯化、部分地纯化,或可作为经口疫苗而施用。纯化可包括如描述于WO2011/035422中的质外体级分的生产(将其通过参考并入本文)。对于制备型尺寸排阻层析法,可获得包含VLP的制剂并且通过离心移除不可溶的材料。亦可使用PEG沉淀。可使用传统方法定量回收的蛋白质(例如,Bradford Assay,BCA),并且将提取物通过尺寸排阻柱,使用例如SEPHACRYLTM、SEPHADEXTM或类似媒介并收集级分。可使用Blue Dextran 2000或适合的蛋白质作为校准标准品。亦可将提取物通过阳离子交换柱并且收集活性级分。在层析法之后,可进一步以蛋白质电泳、免疫印迹或两者分析级分,以确认VLP的存在和级分的蛋白质组成。
亦考虑本发明的部分为转基因植物、植物细胞、种子或其包含本发明之核苷酸序列的任何部分。从植物细胞再生整株植物的方法亦为本领域所知的。一般而言,在适当的培养基中培养转化的植物细胞,所述培养基可包含例如抗生素的筛选剂,其中使用可选择性标记物以促进转化的植物细胞的确认。一旦愈伤组织形成,可根据已知方法采用适当的植物激素以促进芽生成,并且将芽转移至用于植物再生的生根培养基。然后可将植物由种子或使用无性繁殖技术用以建立重复子代。亦可不使用组织培养而生成转基因植物。
如图18所显示的,来自B/布里斯班/60/2008的HA在农杆菌浸润的本氏烟草叶片中表达很差(见第“1008”道或“1029”道)。然而,HA乙型与来自A/新喀里多尼亚/20/99的M2共表达造成HA表达的显著增加(见第“1008+1261”道;“1009+1261”道以及“1029+1261”道)。在天然乙型HA或嵌合乙型HA两者观察到HA表达的增加。在扩增元件(BeYDV)的存在或不存在下,以及跨越各个农杆菌稀释浓度观察HA表达。当来自A/珀斯/16/2009的H3与来自A/新喀里多尼亚/20/99的M2共表达时,观察到类似的H3表达增加(图19;比较第“1019道”仅有H3,以及“1019+1261”道H3与M2共表达)。
本发明包括表3中所示的核苷酸序列:
表3.序列标识号列表
Figure BDA0004083463410000481
/>
Figure BDA0004083463410000491
/>
Figure BDA0004083463410000501
/>
Figure BDA0004083463410000511
将在下列实施例中进一步举例说明本发明。
实施例
材料与方法:具有流感病毒蛋白的表达盒的组装
A-2X35S/CPMV-HT/H5印度尼西亚/NOS(构建体编号489)
使用下列以PCR为基础的方法,将编码来自流感A/印度尼西亚/5/2005(H5N1)的H5之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S/CPMV-HT/NOS表达系统。使用引物IF-H5A-I-05.s1+3c(图1A,SEQ ID NO:2)与IF-H5dTm.r(图1B,SEQ IDNO:3),使用构建体编号972作为模板(构建体编号972的序列见WO 2010/003225的SEQ IDNO:134,图94,将其通过并入本文)扩增包含完整H5编码序列的片段。将PCR产物使用In-Fusion克隆系统(Clontech,Mountain View,CA)克隆于2X35S/CPMV-HT/NOS表达系统中。用SacII与StuI限制性内切酶消化构建体1191(图1D,SEQ ID NO:4),并且将线性化质粒用于In-Fusion组装反应。构建体编号1191是为在CPMV-HT为基础的表达盒中之目的基因“InFusion”克隆而准备的受体质粒。它亦合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒(binaryplasmid)并且于图1D呈现由左至右t-DNA边界的序列(SEQ ID NO:4)。将生成的构建体给予编号489(图1E,SEQ ID NO:5)。于图1F呈现来自流感A/印度尼西亚/5/2005(H5N1)的H5之氨基酸序列(SEQ ID NO:6)。质粒489的示意图呈现于图15。
B-2X35S/CPMV-HT/M2新喀里多尼亚/NOS(构建体编号1261)
使用下列以PCR为基础的方法,将编码来自流感A/新喀里多尼亚/20/1999(H1N1)的M2之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S/CPMV-HT/NOS表达系统。使用引物IF-S1-M1+M2ANC.c(图2A,SEQ ID NO:7)与IF-S1-4-M2ANC.r(图2B,SEQ ID NO:8),使用合成M2基因作为模板(与来自GenBank登录号DQ508860的nt 1-26连接到nt 715-982相对应)(图2C,SEQ ID NO:9)扩增包含完整M2编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将PCR产物克隆在2X35S/CPMV-HT/NOS表达系统中。用SacII与StuI限制性内切酶消化构建体1191(图1C),并且将线性化质粒用于In-Fusion组装反应。构建体编号1191是为在CPMV-HT为基础的表达盒中之目的基因“InFusion”克隆而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图1D呈现由左至右t-DNA边界的序列(SEQ ID NO:4)。将生成的构建体给予编号1261(图2D,SEQ IDNO:10)。于图2E呈现来自流感A/新喀里多尼亚/20/1999(H1N1)的M2之氨基酸序列(SEQ IDNO:11)。质粒1261的示意图呈现于图16。
C-2X35S/CPMV-HT/M2波多黎各/NOS(构建体编号859)
使用下列以PCR为基础的方法,将编码来自流感A/波多黎各/8/1934(H1N1)的M2之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S/CPMV-HT/NOS表达系统。使用引物IF-S1-M1+M2ANC.c(图2A,SEQ ID NO:7)与IF-S1-4-M2ANC.r(图2B,SEQ IDNO:8),使用合成M2基因作为模板(与来自GenBank登录号EF467824的nt26-51连接nt 740-1007相对应)(图3A,SEQ ID NO:12)扩增包含完整M2编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)在2X35S/CPMV-HT/NOS表达系统克隆PCR产物。以SacII与StuI限制性内切酶消化构建体1191(图1C),并且将线性化质粒用于In-Fusion组装反应。构建体编号1191是为在CPMV-HT为基础的表达盒中之目的基因“In Fusion”克隆而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。载体为pCAMBIA二元质粒并且于图1D呈现由左至右t-DNA边界的序列(SEQ ID NO:4)。将生成的构建体给予编号859(图3B,SEQ ID NO:13)。于图3C呈现来自流感A/波多黎各/8/1934(H1N1)的M2之氨基酸序列(SEQ ID NO:14)。质粒859的示意图呈现于图17。D-2X35S/CPMV-HT/PDISP/H1加利福尼亚/NOS(构建体编号484)
使用下列以PCR为基础的方法,将编码来自流感A/加利福尼亚/7/2009(H1N1)的H1之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S-CPMV-HT-PDISP-NOS表达系统。使用引物IF-H1A-C-09.s2+4c(图4A,SEQ ID NO:15)与IF-H1A-C-09.s1-4r(图4B,SEQ ID NO:16),使用合成H1基因作为模板(GenBank登录号FJ966974)(图4C,SEQ IDNO:17)扩增包含不带有其野生型信号肽的H1编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将PCR产物与苜蓿PDI信号肽在2X35S/CPMV-HT/NOS表达系统中框内克隆。以SacII与StuI限制性内切酶消化构建体1192(图4D),并且将线性化质粒用于In-Fusion组装反应。构建体编号1192是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图4E呈现由左至右t-DNA边界的序列(SEQ ID NO:18)。将生成的构建体给予编号484(图4F,SEQ ID NO:19)。于图4G呈现来自流感A/加利福尼亚/7/2009(H1N1)的PDISP/H1之氨基酸序列(SEQ ID NO:20)。质粒484的示意图呈现于图14。E-2X35S/CPMV-HT/ PDISP/H3珀斯/NOS(构建体编号1019)
使用下列以PCR为基础的方法,将编码来自流感A/珀斯/16/2009(H3N2)的H3之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S/CPMV-HT/PDISP/NOS表达系统。使用引物IF-S2+S4-H3Per.c(图5A,SEQ ID NO:21)与IF-S1a4-H3 Per.r(图5B,SEQ ID NO:22),使用合成H3基因作为模板(与来自GenBank登录号GQ293081的nt 26-1726相对应)(图5C,SEQ ID NO:23)扩增包含不带有其野生型信号肽的H3编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将PCR产物与苜蓿PDI信号肽在2X35S/CPMV-HT/NOS表达系统中框内克隆。以SacII与StuI限制性内切酶消化构建体1192(图4D),并且将线性化质粒用于In-Fusion组装反应。构建体编号1192是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图4E呈现由左至右t-DNA边界的序列(SEQ ID NO:18)。将生成的构建体给予编号1019(图5D,SEQ ID NO:24)。于图5E呈现来自流感A/珀斯/16/2009(H3N2)的PDISP/H3之氨基酸序列(SEQ ID NO:25)。质粒1019的示意图呈现于图13。
F-2X35S/CPMV-HT/PDISP/HAB布里斯班/NOS(构建体编号1029)
使用下列以PCR为基础的方法,将编码来自流感B/布里斯班/60/2008的HA之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S/CPMV-HT/PDISP/NOS表达系统。使用引物IF-S2+S4-B Bris.c(图6A,SEQ ID NO:26)与IF-S1a4-B Bris.r(图6B,SEQ ID NO:27),使用合成HA B布里斯班基因作为模板(与来自GenBank登录号FJ766840的nt 34-1791相对应)(图6C,SEQ ID NO:28)扩增包含不带有其野生型信号肽的HA B布里斯班编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将PCR产物与苜蓿PDI信号肽在2X35S/CPMV-HT/NOS表达系统中框内克隆。以SacII与StuI限制性内切酶消化构建体1192(图4D),并且将线性化质粒用于In-Fusion组装反应。构建体编号1192是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图4E呈现由左至右t-DNA边界的序列(SEQ ID NO:18)。将生成的构建体给予编号1029(图6D,SEQ ID NO:29)。于图6E呈现来自流感B/布里斯班/60/2008的PDISP/HA之氨基酸序列(SEQ ID NO:30)。质粒1029的示意图呈现于图11。
G-2X35S/CPMV-HT/PDISP/HA B布里斯班/NOS至BeYDV+复制酶扩增系统(构建体编 号1008)
使用下列以PCR为基础的方法,将编码来自流感B/布里斯班/60/2008的HA之序列克隆至含有Plasto_pro/P19/Plasto_ter表达盒的质粒中的包含BeYDV+复制酶扩增系统之2X35S/CPMV-HT/PDISP/NOS表达系统。使用引物IF-S2+S4-B Bris.c(图6A,SEQ ID NO:26)与IF-S1a4-B Bris.r(图6B,SEQ ID NO:27),使用合成HA B布里斯班基因作为模板(与来自GenBank登录号FJ766840的nt 34-1791相对应)(图6C,SEQ IDNO:28)扩增包含不带有其野生型信号肽的HA B布里斯班编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将PCR产物与2X35S/CPMV-HT/NOS表达盒中的苜蓿PDI信号肽框内克隆至BeYDV扩增系统。以SacII与StuI限制性内切酶消化构建体1194(图6F与6G),并且将线性化质粒用于In-Fusion组装反应。构建体编号1194是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆至BeYDV扩增系统而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图6G呈现由左至右t-DNA边界的序列(SEQ IDNO:31)。将生成的构建体给予编号1008(图6H,SEQ ID NO:32)。于图6E呈现来自B/布里斯班/60/08的流感PDISP/HA之氨基酸序列(SEQ ID NO:30)。质粒1008的示意图呈现于图9。
H-2X35S/CPMV-HT/PDISP/HA B 布里斯班/H5印度尼西亚跨膜结构域与胞质尾 (H5Indo TMCT)/NOS至BeYDV+复制酶扩增系统(构建体编号1009)
使用下列由Darveau等人给出的以PCR为基础的连接方法(Methods inNeuroscience 26:77-85(1995)),将融合至来自A/Indonesia/5/2005(H5N1)的H5的跨膜与胞质结构域的编码来自流感B/布里斯班/60/2008胞外结构域的HA之序列克隆至在含有Plasto_pro/P19/Plasto_ter表达盒的质粒中的包含BeYDV+复制酶扩增系统之2X35S/CPMV-HT/PDISP/NOS。在PCR的第一轮中,使用引物IF-S2+S4-B Bris.c(图6A,SEQ ID NO:26)与dTmH5I-B Bris.r(图7A,SEQ ID NO:33),使用合成HA B布里斯班基因作为模板(与来自GenBank登录号FJ766840的nt 34-1791相对应)(图6C,SEQ ID NO:28)扩增包含不带有天然信号肽、跨膜与胞质结构域的HA B布里斯班胞外结构域序列的片段。使用引物B Bris-dTmH5I.c(图7B,SEQ ID NO:34)及IF-S1aS4-dTmH5I.r(图7C,SEQ ID NO:35),使用构建体编号489(见图1E,SEQ ID NO:5)作为模板而扩增包含H5印度尼西亚的跨膜与胞质结构域的第二片段。然后,将来自两个扩增的PCR产物混合并且用来作为第二轮扩增的模板,所述扩增使用IF-S2+S4-B Bris.c(图6A,SEQ ID NO:26)以及IF-H5dTm.r(图7C,SEQ ID NO:34)作为引物。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将生成片段与2X35S/CPMV-HT/NOS表达盒中的苜蓿PDI信号肽框内克隆至BeYDV扩增系统。以SacII与StuI限制性内切酶消化构建体1194(图6F与6G),并且将线性化质粒用于In-Fusion组装反应。构建体编号1194是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆至BeYDV扩增系统而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图6G呈现由左至右t-DNA边界的序列(SEQ ID NO:31)。将生成的构建体给予编号1009(图7D,SEQ ID NO:36)。于图7E呈现来自B布里斯班/H5indo TMCT的PDISP/HA之氨基酸序列(SEQ ID NO:37)。质粒1009的示意图呈现于图10。
I-2X35S/CPMV-HT/PDISP-HA B布里斯班具有缺失的蛋白水解环至BeYDV+复制酶 扩增系统(构建体编号1059)
使用下列由Darveau等人所给出的以PCR为基础的连接方法(Methods inNeuroscience 26:77-85(1995)),将编码来自流感B/布里斯班/60/2008具有缺失的蛋白水解环的HA之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒之质粒中的含BeYDV+复制酶扩增系统之2X35S/CPMV-HT/PDISP/NOS中。在PCR的第一轮中,使用引物IF-S2+S4-BBris.c(图6A,SEQ ID NO:26)与1039+1059.r(图8A,SEQ ID NO:38),使用合成HA B布里斯班基因作为模板(与来自GenBank登录号FJ766840的nt 34-1791相对应)(图6C,SEQ ID NO:28)扩增包含由nt 46至nt 1065的HA B布里斯班编码序列的片段。使用引物1039+1059.c(图8B,SEQ ID NO:39)及IF-S1a4-B Bris.r(图6B,SEQ ID NO:27),使用合成HA B布里斯班基因(与来自GenBank登录号FJ766840的nt 34-1791相对应)作为模板(图6C,SEQ ID NO:28)而扩增包含由nt 1123至nt 1758之HA B布里斯班编码序列的第二片段。然后,将来自两个扩增的PCR产物混合并且用来作为第二轮扩增的模板,所属扩增使用IF-S2+S4-B Bris.c(图6A,SEQ ID NO:26)以及IF-H5dTm.r IF-S1a4-B Bris.r(图6B,SEQ ID NO:27)作为引物。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将生成片段(编码有片段间GG连接子的HA B/布里斯班/60/2008Δa.a.356-374)与包含BeYDV扩增系统之2X35S/CPMV-HT/NOS表达盒中的苜蓿PDI信号肽框内克隆。以SacII与StuI限制性内切酶消化构建体1194(图6F与6G),并且将线性化质粒用于In-Fusion组装反应。构建体编号1194是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆至BeYDV扩增系统而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图6G呈现由左至右t-DNA边界的序列(SEQ ID NO:31)。将生成的构建体给予编号1059(图8C,SEQ ID NO:40)。于图8D呈现来自B/布里斯班/60/2008具有缺失蛋白水解环的PDISP/HA之氨基酸序列(SEQ ID NO:41)。将质粒1059的示意图呈现于图12。
A-2X35S/CPMV-HT/PDISP/H3维多利亚/NOS(构建体编号1391)
使用下列以PCR为基础的方法,将编码来自流感A/维多利亚/361/2011(H3N2)的H3之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒的质粒中的2X35S-CPMV-HT-PDISP-NOS表达系统。使用引物IF-H3V36111.S2+4c(图25A,SEQ ID NO:44)与IF-H3V36111.s1-4r(图25B,SEQ ID NO:45),使用合成H3基因作为模板(与来自GISAID EPI_ISL_101506分离株HA序列的nt 25至1725相对应)(图25C,SEQ ID NO:46)扩增包含不带有其野生型信号肽的H3编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)与2X35S/CPMV-HT/NOS表达盒中的苜蓿PDI信号肽框内克隆PCR产物。以SacII与StuI限制性内切酶消化构建体1192(图4D),并且将线性化质粒用于In-Fusion组装反应。构建体编号1192是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图4E呈现由左至右t-DNA边界的序列(SEQ ID NO:18)。将生成的构建体给予编号1391(图25D,SEQ ID NO:47)。于图25E呈现来自流感A/维多利亚/361/2011(H3N2)的PDISP/H3之氨基酸序列(SEQ ID NO:48)。将质粒1391的示意图呈现于图25F。
B-2X35S/CPMV-HT/HA B威斯康辛/NOS至BeYDV(m)+复制酶扩增系统(构建体编号1462)
使用下列以PCR为基础的方法,将编码来自流感B/威斯康辛/1/2010的HA之序列克隆至含有Plasto_pro/P19/Plasto_ter表达盒的质粒中的包含BeYDV(m)+复制酶扩增系统之2X35S/CPMV-HT/NOS表达系统。使用引物IF-HAB110.S1+3c(图26A,SEQ ID NO:49)与IF-HAB110.s1-4r(图26B,SEQ ID NO:50),使用合成HA B威斯康辛基因作为模板(GenBank登录号JN993010)(图26C,SEQ ID NO:51)扩增包含完整的HA B威斯康辛编码序列的片段。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将PCR产物与2X35S/CPMV-HT/NOS表达盒中的苜蓿PDI信号肽在BeYDV(m)扩增系统框内克隆。以SacII与StuI限制性内切酶消化构建体193(图26D),并且将线性化质粒用于In-Fusion组装反应。构建体编号193是为在CPMV-HT为基础的表达盒中的目的基因“In Fusion”克隆至BeYDV(m)扩增系统而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图26E呈现由左至右t-DNA边界的序列(SEQ ID NO:52)。将生成的构建体给予编号1462(图26F,SEQ ID NO:53)。于图26G呈现来自流感B/威斯康辛/1/2010的PDISP/HA之氨基酸序列(SEQ ID NO:54)。质粒1462的示意图呈现于图26H。
C-2X35S/CPMV-HT/HA B威斯康辛具有缺失的蛋白水解环至BeYDV(m)+复制酶扩增系统(构建体编号1467)
使用下列由Darveau等人给出的以PCR为基础的连接方法(Methods inNeuroscience 26:77-85(1995)),将编码来自流感B/威斯康辛/1/2010具有缺失的蛋白水解环的HA之序列克隆至包含Plasto_pro/P19/Plasto_ter表达盒之质粒中的含BeYDV(m)+复制酶扩增系统之2X35S/CPMV-HT/NOS。在PCR的第一轮中,使用引物IF-HAB110.S1+3c(图26A,SEQ ID NO:49)与HAB110(PrL-).r(图27A,SEQ ID NO:55),使用合成HAB威斯康辛基因作为模板(GenBank登录号JN993010)(图26C,SEQ ID NO:51)扩增包含由nt 1至nt 1062的HAB威斯康辛编码序列的片段。使用引物HAB110(PrL-).c(图27B,SEQ ID NO:56)及IF-HAB110.s1-4r(图26B,SEQ ID NO:50),使用合成HA B威斯康辛基因(GenBank登录号JN993010)(图26C,SEQ ID NO:51)作为模板而扩增包含由nt 1120至nt 1755之HA B威斯康辛编码序列的第二片段。然后将来自两个扩增的PCR产物混合并且用作第二回合扩增的模板,所述扩增使用IF-HAB110.S1+3c(图26A,SEQ IDNO:49)以及IF-HAB110.s1-4r(图26B,SEQ ID NO:50)作为引物。使用In-Fusion克隆系统(Clontech,Mountain View,CA)将生成片段(编码有片段间GG连接子的HA B/威斯康辛/1/2010Δa.a.340-358)克隆在包含BeYDV(m)扩增系统的2X35S/CPMV-HT/NOS表达盒中。以SacII与StuI限制性内切酶消化构建体193(图26D),并且将线性化质粒用于In-Fusion组装反应。构建体编号193是为在CPMV-HT为基础的表达盒中之目的基因“In Fusion”克隆至BeYDV(m)扩增系统而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图26E呈现由左至右t-DNA边界的序列(SEQ IDNO:52)。将生成的构建体给予编号1467(图27C,SEQ ID NO:57)。于图27D呈现来自流感B/威斯康辛/1/2010具有缺失蛋白水解环的HA之氨基酸序列(SEQ ID NO:58)。将质粒1467的示意图呈现于图27E。
D-2X35S/CPMV-HT/PDISP/HA B马来西亚/NOS至BeYDV(m)+复制酶扩增系统(构建体编号1631)
使用下列以PCR为基础的方法,将编码来自流感B/马来西亚/2506/2004的HA之序列克隆至含有Plasto_pro/P19/Plasto_ter表达盒的质粒中的包含BeYDV(m)+复制酶扩增系统之2X35S/CPMV-HT/PDISP/NOS表达系统。使用引物IF-HB-M-04.s2+4c(图28A,SEQ IDNO:59)与IF-HB-M-04.s1-4r(图28B,SEQ ID NO:60),使用合成HA B马来西亚基因作为模板(与来自GenBank登录号EU124275的nt 31-1743相对应。将沉默性突变T759C与C888G插入合成序列中,以修饰DraIII与BamHI限制性内切酶识别位点)(图28C,SEQ ID NO:61)扩增包含不带有其野生型信号肽的HAB马来西亚编码序列片段。将PCR产物使用In-Fusion克隆系统(Clontech,Mountain View,CA)与2X35S/CPMV-HT/NOS表达盒中的苜蓿PDI信号肽框内克隆至BeYDV(m)扩增系统。以SacII与StuI限制性内切酶消化构建体194(图28D),并且将线性化质粒用于In-Fusion组装反应。构建体编号194是为在CPMV-HT为基础的表达盒中与苜蓿PDI信号肽之目的基因“In Fusion”框内克隆至BeYDV(m)扩增系统而准备的受体质粒。它也合并了处于苜蓿质体蓝素基因启动子与终止子下的TBSV P19沉默性阻遏蛋白之共表达的基因构建体。主链为pCAMBIA二元质粒并且于图28E呈现由左至右t-DNA边界的序列(SEQ IDNO:62)。将生成的构建体给定编号1631(图28F,SEQ ID NO:63)。于图28G呈现来自流感B/马来西亚/2506/2004的PDISP/HA之氨基酸序列(SEQ ID NO:64)。质粒1631的示意图呈现于图28H。
农杆菌转染
将使用由D’Aoust et al 2008描述的方法(Plant Biotechnology Journal 6:930-940)通过电穿孔用DNA构建体转染农杆菌株AGL1。将经转染的农杆菌生长于以10mM 2-(N-吗啉代)乙磺酸(MES)、20μM乙酰丁香酮、50μg/ml卡那霉素以及25μg/ml的pH5.6羧苄青霉素补充之YEB培养基至OD600为0.6至1.6。将农杆菌悬浮液在使用前离心并重新悬浮于渗透培养基(10mM MgCl2与10mM MES pH 5.6)。
植物生物质之制备、接种物与农杆菌渗透
该用语“生物质”以及“植物物质”如本文中所使用地意为反映来源于植物的任何材料。生物质或植物物质可包含整个植物、组织、细胞或其任何部分。进一步地,生物质或植物物质可包含细胞内植物组分、细胞外植物组分、植物的液体或固体提取物或其组合。进一步地,生物质或植物物质可包含植物、植物细胞、组织、液体提取物或其组合,来自植物的叶、茎、果实、根或其组合。植物的部分可包含植物物质或生物质。
本氏烟草(Nicotiana benthamiana)植物在填充了商品化泥炭藓基质的平地中由种子生长。使植物生长于16/8光周期以及25℃日/20℃夜之温度方案的温室。在播种后三星期,将个别的苗挑选出来,移植于盆中并使其在相同环境条件下于温室额外生长三星期。
将以每个构建体转染之农杆菌于以10mM 2-(N-吗啉代)乙磺酸(2-(N-morpholino)ethanesulfonic acid,MES)、20μM乙酰丁香酮、50μg/ml卡那霉素以及25μg/ml的pH5.6羧苄青霉素补充之YEB培养基生长直至它们到达OD600为0.6至1.6。将农杆菌悬浮液在使用前离心并且重新悬浮于渗透培养基(10mM MgCl2与10mM MES pH 5.6)并且于4℃储存过夜。在渗透之日,将培养批次在2.5倍培养体积稀释,并且使之在使用前升温。将本氏烟草(N.benthamiana)的整株植物于气密不锈钢罐中在20-40Torr的真空下倒置于细菌悬浮液2min。使植物回到温室,培养2-6日直至收获。
叶片收获以及全蛋白质提取
在培养后,将植物的地上部分收获,于-80℃冷冻并且粉碎成碎片。通过在3体积冷50mM Tris pH 8.0、0.15M NaCl、0.1% Triton X-100与1mM苯甲基磺酰氟中将每个冷冻粉碎植物材料的样品匀浆(Polytron)来提取总可溶性蛋白。在匀浆后,将浆液于4℃下以10,000g离心10分钟,将这些澄清的粗提取物(上清液)保留用于分析。
蛋白质分析与免疫印迹
通过Bradford检测(Bio-Rad,Hercules,CA)确定澄清粗提取物的总蛋白质含量,所述检测使用牛血清白蛋白作为参考标准品。通过SDS-PAGE分离蛋白质并且电转移至用于免疫探测之聚二氟乙烯(PVDF)膜(Roche Diagnostics Corporation,Indianapolis,IN)。免疫印迹之前,将膜以5%脱脂乳以及含0.1% Tween-20的Tris缓冲生理盐水(Tris-buffered saline,TBS-T)中于4℃封闭16-18h。
在TBS-Tween 20 0.1%中之2%脱脂乳中以2μg/ml第一抗体(表4呈现用于每个HA探测之抗体与条件)的第一次培养进行免疫印迹。用于化学发光探测的第二抗体如表4中所指出,如所指地稀释于TBS-Tween 20 0.1%中之2%脱脂乳中。免疫应答复合体由使用鲁米诺(luminol)作为基质(Roche Diagnostics Corporation)之化学发光而探测。人类IgG抗体的辣根过氧化物酶–酶缀合通过使用EZ-Link
Figure BDA0004083463410000611
活化过氧化物酶缀合试剂盒(Pierce,Rockford,IL)来进行。
表4:针对表达蛋白质之免疫印迹的电泳条件、抗体和稀释度
Figure BDA0004083463410000621
JIR:Jackson ImmunoResearch,West Grove,PA,USA;
CBER:生物学评价及研究中心(Center for Biologics Evaluation),罗克维尔(Rockville),MD,USA。
Sino:北京义翘神州生物技术有限公司(Sino Biological inc.),北京,中国。
TGA:药物管理局,澳大利亚。
NIBSC:国家生物标准品暨控制研究所,英国。
血凝试验
血凝试验系基于由Nayak and Reichl(2004)所描述的方法。简言之,在含有100μLPBS的V底96孔微孔板中进行测试样品(100μL)的连续双倍稀释,每孔留下100μL经稀释的样品。每孔添加100微升的0.25%火鸡红细胞悬浮液(Bio Link Inc.,Syracuse,NY),并且将板于室温下培养2h。记录显示完全血细胞凝集之最高稀释度的倒数作为HA活性。平行地,将重组HA标准品(A/越南/1203/2004H5N1)(Protein Science Corporation,Meriden,CT)于PBS中稀释并且作为每板上的对照进行。
实施例1:流感M2共表达对B HA和H3累积水平的影响
通过在农杆菌渗透为基础的瞬时转化系统中将驱动HA表达的构建体与来自流感A/新喀里多尼亚/20/1999(H1N1)的M2表达构建体共转移来分析流感M2共表达对来自不同流感病毒株的HA累积水平的影响。
在M2表达构建体(构建体编号1261)存在或不存在下,来自以驱动流感B HA(来自B/布里斯班/60/2008)(构建体编号1008、1009与1029)表达之构建体转化的植物之蛋白质提取物的蛋白质印迹分析显示M2的共表达造成流感B HA累积的增加(图18)。相似地,如图19中所显示地,当与仅用H3表达构建体(构建体编号1019)转化的植物相比较时,M2与来自流感A/珀斯/16/2009之H3的共表达(构建体编号1019+1261)造成转化植物中H3累积的增加。
M2与来自流感A/加利福尼亚/07/2009的H1共表达的植物之蛋白质提取物的蛋白质印迹分析显示M2与H1的共表达造成H1累积水平的轻微减少(图20,484对484+1261)。当与仅表达H5相比较时,M2与来自流感A/印度尼西亚/05/2005的H5的共表达亦造成H5累积的减少(图21,489对489+1261)。
进一步评估M2的共表达对经修饰的流感B HA的累积水平的影响。构建体编号1059编码其蛋白水解环被2氨基酸连接子(GG代替aa341-359)取代之流感B HA。由图22A呈现之蛋白质印迹分析的结果显示蛋白水解环的移除造成流感B HA累积水平的增加(将1008与1059相比较)以及M2与经修饰的流感B HA之共表达进一步地增加HA累积水平(图22A,1059对1059+1261)。对带或不带修饰以及有或无M2共表达的流感B HA转化之植物的粗蛋白提取物之血细胞凝集活性的分析,确认了M2共表达对天然型流感B HA(图22B,1008对1008+1261)以及经修饰的流感B HA(图22B,1059对1059+1261)之累积水平的积极作用。
将来自流感A/波多黎各/8/1934的M2增加经修饰的流感B HA和H3之累积与来自流感A/新喀里多尼亚/20/1999的M2对其的增加进行比较。对经修饰的流感B HA而言,比较通过来自用构建体1059、1059+1261以及1059+859转化的植物之蛋白质提取物的蛋白质印迹分析来进行。对H3而言,对用构建体1019、1019+1261以及1019+859转化的植物之蛋白质提取物进行类似的比较。获得的结果证实来自流感A/波多黎各/8/1934(由构建体编号859编码)的M2共表达与来自流感A/新喀里多尼亚/20/1999(由构建体编号1261编码)的M2共表达对于经修饰的流感B HA(图23A)与H3(图23B)两者累积的增加同样有效。
实施例2:流感M2共表达对B HA和H3的不同病毒株累积水平的影响
在M2表达构建体(构建体编号1261)存在或不存在下,来自用驱动流感B HA(来自B/马来西亚/2506/2004)(构建体编号1631)表达之构建体转化的植物之蛋白质提取物的蛋白质印迹分析显示M2共表达造成流感B HA累积的增加(图29)。
在M2表达构建体(构建体编号1261)存在或不存在下,来自用驱动流感B HA(来自B/威斯康辛/1/2010)(构建体编号1462)表达之构建体转化的植物之蛋白质提取物的蛋白质印迹分析显示M2共表达造成流感B HA累积的增加(图30)。
进一步评估M2的共表达对经修饰的流感B HA之累积水平的影响。构建体编号1467编码流感B HA,其中的蛋白水解环被2氨基酸连接子(GG代替aa 341-359)取代。由图30A呈现之蛋白质印迹分析的结果显示蛋白水解环的移除造成流感B HA累积水平的增加(将1462与1467进行比较)以及M2与经修饰的流感B HA之共表达进一步地增加HA累积水平(图30A,1467对1467+1261)。对带或不带修饰以及有或无M2共表达的流感B HA转化之植物的粗蛋白提取物之血细胞凝集活性的分析,确认了M2共表达对天然型流感B HA(图30B,1462对1462+1261)以及经修饰的流感B HA(图26B,1467对1467+1261)之累积水平的积极作用。
在M2表达构建体(构建体编号1261)存在或不存在下,来自用驱动流感H3(来自H3/维多利亚/361/2011)(构建体编号1391)表达之构建体转化的植物之蛋白质提取物的蛋白质印迹分析显示M2共表达造成流感H3累积的增加(图31)。
所有引文通过参考并入本文。
已针对一个或更多个实施方案描述了本发明。然而对于本领域之技术人员而言,在不悖离权利要求中中所定义之本发明范围下明显可作出多种改变与修饰。
本申请母案的原始权利要求在此作为本说明书的一部分并入此处:
1.一种在植物中生产病毒样颗粒(VLP)的方法,其包括
a)将第一核酸引入所述植物或所述植物的部分,所述第一核酸包含在所述植物中具有活性且有效连接到编码病毒结构蛋白之核苷酸序列的第一调节区,
b)将第二核酸引入,所述第二核酸包含在所述植物中具有活性且有效连接到编码通道蛋白之核苷酸序列的第二调节区,
c)将所述植物或所述植物的部分于容许所述核酸表达的条件下培养,从而生产VLP。
2.权利要求1的方法,其中所述通道蛋白为质子通道蛋白。
3.权利要求2的方法,其中所述质子通道蛋白选自M2或BM2。
4.权利要求2的方法,其中所述质子通道蛋白包含质子通道特征序列HXXXW。
5.权利要求1的方法,其中所述病毒结构蛋白包含三聚化结构域。
6.权利要求1的方法,其中所述编码病毒结构蛋白的核苷酸序列编码流感HA蛋白。
7.权利要求6的方法,其中所述流感HA蛋白的一个或更多个蛋白水解环已被缺失。
8.权利要求1的方法,其中所述核苷酸序列编码的病毒结构蛋白为选自下列的流感结构蛋白:B HA、C、H2、H3、H4、H6、H7、H8、H9、H10、H11、H12、H13、H14、H15和H16。
9.权利要求1的方法,其中所述核苷酸序列编码的病毒结构蛋白为流感B HA或流感H3。
10.权利要求9的方法,其中所述流感B HA来自流感B/布里斯班/60/2008、B/马来西亚/2506/2004或B/威斯康辛/1/2010。
11权利要求10的方法,其中所述流感B HA蛋白的一个或更多个蛋白水解环已被缺失。
12.权利要求9的方法,其中所述流感H3来自流感A/珀斯/16/2009或来自流感A/维多利亚/361/2011。
13.权利要求1的方法,其中所述编码病毒结构蛋白的核苷酸序列与选自SEQ IDNO:28、SEQ ID NO:51和SEQ ID NO:61的序列具有至少70%序列同一性。
14.权利要求1的方法,其中所述病毒结构蛋白之序列为如SEQ IDNO:30、SEQ IDNO:54和SEQ ID NO:64中至少之一所示的。
15.权利要求1的方法,其中所述编码病毒结构蛋白的核苷酸序列与选自SEQ IDNO:43和SEQ ID NO:57下划线部分的序列具有至少70%序列同一性。
16.权利要求1的方法,其中所述病毒结构蛋白之序列为如SEQ IDNO:41和SEQ IDNO:58中至少之一所示的。
17.权利要求1的方法,其中所述编码病毒结构蛋白的核苷酸序列与选自SEQ IDNO:23和SEQ ID NO:46的序列具有至少70%序列同一性。
18.权利要求1的方法,其中所述病毒结构蛋白之序列为如SEQ IDNO:25和SEQ IDNO:48中至少之一所示的。
19.权利要求1的方法,其中所述第一核酸序列包含有效连接一个或多于一个豇豆花叶病毒属增强子的第一调节区、编码病毒结构蛋白质的核苷酸序列以及一个或多于一个双生病毒扩增元件,并且将编码双生病毒复制酶的第三核酸引入所述植物或所述植物的部分。
20.权利要求19的方法,其中所述一个或多于一个豇豆花叶病毒属增强子为豇豆花叶病毒属UTR。
21.权利要求20的方法,其中所述豇豆花叶病毒属UTR为豇豆花叶病毒(CPMV)UTR。
22.权利要求19的方法,其中所述一个或多于一个双生病毒扩增元件选自豆黄矮病毒长基因间区域(BeYDV LIR)和BeYDV短基因间区域(BeYDV SIR)。
23.权利要求19的方法,其中所述核苷酸序列编码的病毒结构蛋白为流感B HA或流感H3。
24.权利要求23的方法,其中所述流感B HA来自流感B/布里斯班/60/2008、B/马来西亚/2506/2004或B/威斯康辛/1/2010。
25.权利要求24的方法,其中所述流感B HA蛋白中的一个或更多个蛋白水解环已被缺失。
26.权利要求23的方法,其中所述流感H3来自流感A/珀斯/16/2009或来自A/维多利亚/361/2011。
27.权利要求19的方法,其中所述编码病毒结构蛋白的核苷酸序列与选自SEQ IDNO:28、SEQ ID NO:51和SEQ ID NO:61的序列具有至少70%序列同一性。
28.权利要求19的方法,其中所述病毒结构蛋白的序列为如SEQ IDNO:30、SEQ IDNO:54和SEQ ID NO:64中至少之一所示的。
29.权利要求19的方法,其中所述编码病毒结构蛋白的核苷酸序列与选自SEQ IDNO:43和SEQ ID NO:57下划线部分的序列具有至少70%序列同一性。
30.权利要求19的方法,其中所述病毒结构蛋白的序列为如SEQ IDNO:41和SEQ IDNO:58中至少之一所示的。
31.权利要求19的方法,其中所述编码病毒结构蛋白的核苷酸序列与选自SEQ IDNO:23和SEQ ID NO:46的序列具有至少70%序列同一性。
32.权利要求19的方法,其中所述病毒结构蛋白的序列为如SEQ IDNO:25和SEQ IDNO:48中至少之一所示的。
33.权利要求1的方法,其中所述编码病毒结构蛋白的核苷酸序列包含依序编码病毒结构蛋白或其片段、流感跨膜结构域以及胞质尾的嵌合核苷酸序列。
34.权利要求1的方法,其中在所述引入步骤(步骤a)中,所述核酸于植物中瞬时表达。
35.权利要求1的方法,其中在所述引入步骤(步骤a)中,所述核酸于植物中稳定表达。
36.权利要求1的方法,还包括下述步骤
d)收获所述植物以及纯化所述VLP。
37.权利要求1的方法,其中所述VLP不包含病毒基质或核心蛋白。
38.一种生产病毒样颗粒(VLP)的方法,其包括
a)提供植物或植物的部分,其包含第一核酸和第二核酸,所述第一核酸包含在所述植物中具有活性且有效连接到编码病毒结构蛋白之核苷酸序列的第一调节区,至所述植物或所述植物的部分,以及所述第二核酸包含在所述植物中具有活性且有效连接到编码通道蛋白之核苷酸序列的第二调节区,
b)将所述植物或所述植物的部分于容许所述核酸表达的条件下培养,从而生产VLP。
39.权利要求38的方法,其中所述通道蛋白为质子通道蛋白。
40.权利要求39的方法,其中所述质子通道蛋白选自M2或BM2。
41.通过权利要求1的方法生产的VLP。
42.通过权利要求38的方法生产的VLP。
43.权利要求41或42的VLP,其还包含衍生自植物的一种或多于一种脂质。
44.权利要求41或42的VLP,其中所述一种或更多种病毒蛋白质包含植物特异性N-聚糖或经修饰的N-聚糖。
45.一种组合物,其包含用于诱导免疫应答的有效剂量的权利要求41或42所述的VLP以及药学上可接受之载体。
46.一种在对象中诱导对流感病毒感染之免疫的方法,其包括施用权利要求41或42的VLP。
47.权利要求46的方法,其中所述VLP以经口、皮内、鼻内、肌内、腹膜内、静脉内或皮下施用于对象。
48.使用权利要求41或42所述VLP制备的多克隆抗体。
49.植物物质,其包含通过权利要求1或38的方法生产的VLP。
50.权利要求49的植物物质,其用于在对象中诱导对流感病毒感染的免疫。
51.一种食物增补剂,其包含权利要求50的植物物质。
52.权利要求1的方法,其还包括引入第三核酸序列,所述第三核酸序列编码沉默性阻遏蛋白。
53.权利要求19的方法,其还包括引入第四核酸序列,所述第四核酸序列编码沉默性阻遏蛋白。
54.权利要求52或53的方法,其中所述沉默性阻遏蛋白选自HcPro和p19。
55.权利要求1或38的方法,其中所述VLP不包含通道蛋白。
56.权利要求1或38的方法,其中所述病毒结构蛋白为HA0蛋白。
57.权利要求3的方法,其中所述M2蛋白选自包含流感A/波多黎各/8/1934和流感A/新喀里多尼亚/20/1999的组。
58.一种多肽,其包含选自SEQ ID NO:41和SEQ ID NO:58序列的氨基酸序列。
59.一种核酸序列,其编码权利要求58的多肽。
60.权利要求59的核酸序列,其中所述核酸序列包含选自SEQ ID NO:43和SEQ IDNO:57下划线部分之序列的核苷酸序列。

Claims (32)

1.一种在植物中生产病毒样颗粒(VLP)的方法,其包括
a)将第一核酸引入所述植物或所述植物的部分,所述第一核酸包含在所述植物中具有活性且有效连接到编码流感血细胞凝集素(HA)蛋白之核苷酸序列的第一调节区,所述流感HA蛋白选自流感B HA和H3 HA,其中编码所述流感HA蛋白的核苷酸序列:
(i)与选自SEQ ID NO:28、SEQ ID NO:51和SEQ ID NO:61的序列具有至少70%的序列同一性;
(ii)与选自SEQ ID NO:43和SEQ ID NO:57下划线部分的序列具有至少70%的序列同一性;
(iii)与选自SEQ ID NO:23和SEQ ID NO:46的序列具有至少70%的序列同一性;或者
其中所述流感HA蛋白氨基酸序列为:
(iv)如SEQ ID NO:41和SEQ ID NO:58中的至少一个所示;
(v)如SEQ ID NO:30、SEQ ID NO:54和SEQ ID NO:64中的至少一个所示;
(vi)如SEQ ID NO:25和SEQ ID NO:48中的至少一个所示;
b)将第二核酸引入所述植物或所述植物的部分,所述第二核酸包含在所述植物中具有活性且有效连接到编码质子通道蛋白之核苷酸序列的第二调节区,其中所述质子通道蛋白是选自流感A/波多黎各/8/1934或流感A/新喀里多尼亚/20/1999的M2,和/或是M2并且包含质子通道特征序列HXXXW,和
c)将所述植物或所述植物的部分于容许所述核酸表达的条件下培养,从而生产VLP,并且其中所述VLP不包含所述质子通道蛋白。
2.权利要求1的方法,其中所述流感HA蛋白的一个或更多个蛋白水解环已被缺失。
3.权利要求1的方法,其中所述流感B HA来自流感B/布里斯班/60/2008、B/马来西亚/2506/2004或B/威斯康辛/1/2010。
4.权利要求3的方法,其中所述流感B HA蛋白的一个或更多个蛋白水解环已被缺失。
5.权利要求1的方法,其中所述流感H3 HA来自流感A/珀斯/16/2009或来自流感A/维多利亚/361/2011。
6.权利要求1的方法,其中所述第一核酸包含有效连接一个或多于一个豇豆花叶病毒属增强子的第一调节区、编码流感血细胞凝集素(HA)蛋白质的核苷酸序列以及一个或多于一个双生病毒扩增元件,并且将包含编码双生病毒复制酶之核苷酸序列的第三核酸引入所述植物或所述植物的部分。
7.权利要求6的方法,其中所述一个或多于一个豇豆花叶病毒属增强子为豇豆花叶病毒属UTR。
8.权利要求7的方法,其中所述豇豆花叶病毒属UTR为豇豆花叶病毒(CPMV)UTR。
9.权利要求6的方法,其中所述一个或多于一个双生病毒扩增元件选自豆黄矮病毒长基因间区域(BeYDV LIR)和BeYDV短基因间区域(BeYDV SIR)。
10.权利要求1的方法,其中在所述培养步骤(步骤c)中,所述核酸于植物中瞬时表达。
11.权利要求1的方法,其中在所述培养步骤(步骤c)中,所述核酸于植物中稳定表达。
12.权利要求1的方法,还包括下述步骤
d)收获所述植物以及纯化所述VLP。
13.权利要求1的方法,其中所述VLP不包含病毒基质、核心蛋白或通道蛋白。
14.一种生产病毒样颗粒(VLP)的方法,其包括
a)提供植物或植物的部分,其包含第一核酸和第二核酸,所述第一核酸包含在所述植物中具有活性且有效连接到编码选自B和H3的流感血细胞凝集素(HA)蛋白之核苷酸序列的第一调节区,其中编码所述流感HA蛋白的核苷酸序列:(i)与选自SEQ ID NO:28、SEQ IDNO:51和SEQ ID NO:61的序列具有至少70%的序列同一性;(ii)与选自SEQ IDNO:43和SEQID NO:57下划线部分的序列具有至少70%的序列同一性,或者(iii)与选自SEQ ID NO:23和SEQ ID NO:46的序列具有至少70%的序列同一性;或者其中所述流感HA蛋白氨基酸序列为:(iv)如SEQ ID NO:41和SEQ ID NO:58中的至少一个所示;(v)如SEQ ID NO:30、SEQ IDNO:54和SEQ ID NO:64中的至少一个所示;或者(vi)如SEQ ID NO:25和SEQ ID NO:48中的至少一个所示;以及所述第二核酸包含在所述植物中具有活性且有效连接到编码质子通道蛋白之核苷酸序列的第二调节区,其中所述质子通道蛋白是选自流感A/波多黎各/8/1934或流感A/新喀里多尼亚/20/1999的M2,和/或是M2并且包含质子通道特征序列HXXXW;和
b)将所述植物或所述植物的部分于容许所述核酸表达的条件下培养,从而生产VLP,并且其中所述VLP不包含所述质子通道蛋白。
15.通过权利要求2的方法生产的VLP。
16.权利要求15的VLP,其还包含衍生自植物的一种或多于一种脂质。
17.权利要求15或16的VLP,其中所述一种或更多种流感HA蛋白包含植物特异性N-聚糖或经修饰的N-聚糖。
18.一种组合物,其包含用于诱导免疫应答的有效剂量的权利要求15或16所述的VLP以及药学上可接受之载体。
19.权利要求15或16的VLP在制备用于在对象中诱导对流感病毒感染之免疫的药物中的用途。
20.权利要求19的用途,其中所述VLP用于经口、皮内、鼻内、肌内、腹膜内、静脉内或皮下施用于对象。
21.使用权利要求15或16所述VLP制备的多克隆抗体。
22.植物物质,其包含通过权利要求1或14的方法生产的VLP。
23.权利要求22的植物物质,其用于在对象中诱导对流感病毒感染的免疫。
24.一种食物增补剂,其包含权利要求23的植物物质。
25.权利要求1的方法,其还包括引入包含第三核苷酸序列的第三核酸,所述第三核苷酸序列编码沉默性阻遏蛋白。
26.权利要求6的方法,其还包括引入包含第四核苷酸序列的第四核酸,所述第四核苷酸序列编码沉默性阻遏蛋白。
27.权利要求25或26的方法,其中所述沉默性阻遏蛋白选自HcPro和p19。
28.权利要求1或14的方法,其中所述流感血细胞凝集素(HA)蛋白为HA0蛋白。
29.一种多肽,其包含选自SEQ ID NO:41和SEQ ID NO:58序列的氨基酸序列。
30.一种核酸,其包含编码权利要求29的多肽的核苷酸序列。
31.权利要求30的核酸,其中所述核酸包含选自SEQ ID NO:43和SEQ ID NO:57下划线部分之序列的核苷酸序列。
32.在植物中生产病毒样颗粒(VLP)的方法,其包括:
a)将第一核酸引入所述植物或所述植物的部分,所述第一核酸包含在所述植物中具有活性且有效连接到编码流感血细胞凝集素(HA)蛋白B之核苷酸序列的第一调节区,其中所述流感HA蛋白的一个或更多个蛋白水解环已被缺失,并且其中编码所述流感HA蛋白B的核苷酸序列:(i)与选自SEQ ID NO:28、SEQ ID NO:51和SEQ ID NO:61的序列具有至少70%的序列同一性;或者(ii)与选自SEQ ID NO:43和SEQ ID NO:57下划线部分的序列具有至少70%的序列同一性,或者其中所述流感HA蛋白B氨基酸序列为:(iii)如SEQ ID NO:41和SEQID NO:58中的至少一个所示;或者(iv)如SEQ ID NO:30、SEQ ID NO:54和SEQ ID NO:64中的至少一个所示;以及
b)将所述植物或所述植物的部分于容许所述核酸表达的条件下培养,从而生产VLP。
CN202310130025.2A 2011-09-30 2012-09-28 增加植物中病毒样颗粒的产率 Pending CN116218900A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161541780P 2011-09-30 2011-09-30
US61/541,780 2011-09-30
CN201280047819.2A CN103930435A (zh) 2011-09-30 2012-09-28 增加植物中病毒样颗粒的产率
PCT/CA2012/050681 WO2013044390A1 (en) 2011-09-30 2012-09-28 Increasing virus-like particle yield in plants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280047819.2A Division CN103930435A (zh) 2011-09-30 2012-09-28 增加植物中病毒样颗粒的产率

Publications (1)

Publication Number Publication Date
CN116218900A true CN116218900A (zh) 2023-06-06

Family

ID=47994080

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310130025.2A Pending CN116218900A (zh) 2011-09-30 2012-09-28 增加植物中病毒样颗粒的产率
CN201280047819.2A Pending CN103930435A (zh) 2011-09-30 2012-09-28 增加植物中病毒样颗粒的产率

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201280047819.2A Pending CN103930435A (zh) 2011-09-30 2012-09-28 增加植物中病毒样颗粒的产率

Country Status (27)

Country Link
US (1) US11155581B2 (zh)
EP (2) EP3626733B1 (zh)
JP (1) JP6248040B2 (zh)
KR (1) KR101974017B1 (zh)
CN (2) CN116218900A (zh)
AU (1) AU2012315421C1 (zh)
BR (1) BR112014007474A2 (zh)
CA (1) CA2850407C (zh)
DK (1) DK2760882T3 (zh)
ES (1) ES2951259T3 (zh)
FI (1) FI2760882T3 (zh)
HK (1) HK1200179A1 (zh)
HR (1) HRP20230695T1 (zh)
HU (1) HUE062759T2 (zh)
IL (1) IL231587B (zh)
IN (1) IN2014CN03077A (zh)
MX (2) MX358883B (zh)
MY (1) MY184072A (zh)
NZ (1) NZ622731A (zh)
PL (1) PL2760882T3 (zh)
PT (1) PT2760882T (zh)
RU (1) RU2682752C2 (zh)
SG (2) SG10201708052XA (zh)
SI (1) SI2760882T1 (zh)
TW (1) TWI700368B (zh)
WO (1) WO2013044390A1 (zh)
ZA (1) ZA201403059B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2850407C (en) 2011-09-30 2021-11-23 Medicago Inc. Increasing virus-like particle yield in plants
US11390878B2 (en) 2011-09-30 2022-07-19 Medicago Inc. Increasing protein yield in plants
EP2978848B1 (en) 2013-03-28 2020-05-06 Medicago Inc. Influenza virus-like particle production in plants
RU2699982C2 (ru) 2014-01-10 2019-09-11 Медикаго Инк. Энхансерные элементы cpmv
JP6599354B2 (ja) * 2014-03-27 2019-10-30 メディカゴ インコーポレイテッド 改変されたcpmvエンハンサーエレメント
AU2019233860A1 (en) * 2018-03-14 2020-10-15 Medicago Inc. Plant expression enhancer
SG11202012398UA (en) * 2018-06-27 2021-01-28 Medicago Inc Influenza virus hemagglutinin mutants
WO2020181354A1 (en) * 2019-03-14 2020-09-17 Mitsubishi Tanabe Pharma Corporation Endogenous plant expression enhancer
WO2021236908A2 (en) * 2020-05-20 2021-11-25 Biomarin Pharmaceutical Inc. Use of regulatory proteins for the production of adeno-associated virus

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428147A (en) 1983-04-15 1995-06-27 Mycogen Plant Science, Inc. Octopine T-DNA promoters
US5036006A (en) 1984-11-13 1991-07-30 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5100792A (en) 1984-11-13 1992-03-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues
US4962028A (en) 1986-07-09 1990-10-09 Dna Plant Technology Corporation Plant promotors
US5232833A (en) 1988-09-14 1993-08-03 Stressgen Biotechnologies Corporation Accumulation of heat shock proteins for evaluating biological damage due to chronic exposure of an organism to sublethal levels of pollutants
US5805417A (en) 1995-10-13 1998-09-08 Hitachi, Ltd. Heat dissipation structure in a portable computer including a heat dissipation block extending from a heat dissipation plate through a first circuit board to a CPU on a second circuit board
US6392121B1 (en) 1998-10-07 2002-05-21 Boyce Thompson Institute For Plant Research Gemini virus vectors for gene expression in plants
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
RU2164148C1 (ru) * 2000-08-09 2001-03-20 Петров Рэм Викторович Вакцина против вируса гриппа и способ ее получения
WO2004098530A2 (en) 2003-05-05 2004-11-18 Dow Agrosciences Llc Stable immunoprophylactic and therapeutic compositions derived from transgenic plant cells and methods for production
US7132291B2 (en) * 2003-05-05 2006-11-07 Dow Agro Sciences Llc Vectors and cells for preparing immunoprotective compositions derived from transgenic plants
EP2374892B1 (en) * 2005-04-29 2018-02-14 University of Cape Town Expression of viral proteins in plants
US7871626B2 (en) * 2005-08-04 2011-01-18 St. Jude Children's Research Hospital Modified influenza virus for monitoring and improving vaccine efficiency
PT1937301E (pt) * 2005-10-18 2015-09-14 Novavax Inc Partículas idênticas a vírus (vlps) da gripe funcionais
EP1948227A4 (en) * 2005-10-26 2010-03-31 Protelix Inc COMBINATORY ANTIGEN VACCINE AGAINST FLU
WO2007100584A2 (en) 2006-02-16 2007-09-07 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antiviral agents and vaccines against influenza
AU2007224034B2 (en) 2006-03-07 2012-03-29 Vaxinnate Corporation Compositions that include hemagglutinin, methods of making and methods of use thereof
US20100143393A1 (en) 2006-05-11 2010-06-10 Gale Smith Novel influenza m2 vaccines
EP2029755A1 (en) 2006-05-22 2009-03-04 Plant Bioscience Limited Bipartite system, method and composition for the constitutive and inducible expression of high levels of foreign proteins in plants
BRPI0713671A2 (pt) * 2006-06-16 2013-12-03 Dow Agrosciences Llc Sequências de dna, vetores e proteínas de hemaglutinina de influenza aviária
US8697088B2 (en) 2007-05-25 2014-04-15 Novavax, Inc. VLPs derived from cells that do not express a viral matrix or core protein
US20110008837A1 (en) 2007-06-15 2011-01-13 Marc-Andre D-Aoust Modifying glycoprotein production in plans
CA2615372A1 (en) * 2007-07-13 2009-01-13 Marc-Andre D'aoust Influenza virus-like particles (vlps) comprising hemagglutinin
MX2010007962A (es) 2007-11-27 2010-11-10 Medicago Inc Particulas tipo virus de influenza recombinante (vlp) producidas en plantas transgenicas que expresan hemaglutinina.
GB0800272D0 (en) 2008-01-08 2008-02-13 Plant Bioscience Ltd Protein expression systems
KR101956910B1 (ko) 2008-01-21 2019-03-12 메디카고 인코포레이티드 헤마글루티닌을 발현하는 트랜스제닉 식물에서 생산된 재조합 인플루엔자 바이러스-유사 입자(VLPs)
US8771703B2 (en) 2008-07-08 2014-07-08 Medicago Inc. Soluble recombinant influenza antigens
MX370690B (es) * 2008-07-18 2019-12-19 Medicago Inc Epitopo de inmunizacion de nuevo virus de la influenza.
WO2010025285A1 (en) 2008-08-27 2010-03-04 Arizona Board Of Regents For And On Behalf Of Arizona State University A dna replicon system for high-level rapid production of vaccines and monoclonal antibody therapeutics in plants
WO2010117786A1 (en) * 2009-03-30 2010-10-14 Mount Sinai School Of Medicine Of New York University Influenza virus vaccines and uses thereof
US10272148B2 (en) 2009-06-24 2019-04-30 Medicago Inc. Chimeric influenza virus-like particles comprising hemagglutinin
FR2947875B1 (fr) 2009-07-10 2011-07-08 Raymond A & Cie Dispositif de fixation a elements de fixation multiples dont l'un est flottant
WO2011011390A1 (en) 2009-07-20 2011-01-27 Novavax, Inc. Purified recombinant influenza virus ha proteins
PL2480658T3 (pl) 2009-09-22 2017-12-29 Medicago Inc. Sposób otrzymywania VLP pochodzenia roślinnego
JP2013520167A (ja) 2010-02-18 2013-06-06 テクノヴァックス,インコーポレイテッド 万能ウイルス様粒子(vlp)インフルエンザワクチン
CA2813078A1 (en) 2010-10-04 2012-04-12 Massachusetts Institute Of Technology Hemagglutinin polypeptides, and reagents and methods relating thereto
TWI526539B (zh) 2010-12-22 2016-03-21 苜蓿股份有限公司 植物中生產類病毒顆粒(vlp)的方法及以該方法生產之vlp
PL220281B1 (pl) 2011-09-23 2015-09-30 Inst Biochemii I Biofizyki Polskiej Akademii Nauk Szczepionka DNA, sposób indukowania odpowiedzi immunologicznej, przeciwciała specyficznie rozpoznające białko hemaglutyniny H5 wirusa grypy i zastosowanie szczepionki DNA
CA2850407C (en) 2011-09-30 2021-11-23 Medicago Inc. Increasing virus-like particle yield in plants
US11390878B2 (en) * 2011-09-30 2022-07-19 Medicago Inc. Increasing protein yield in plants
JP6205359B2 (ja) 2012-07-23 2017-09-27 有限会社生物資源研究所 ワクチン
EP2978848B1 (en) 2013-03-28 2020-05-06 Medicago Inc. Influenza virus-like particle production in plants

Also Published As

Publication number Publication date
JP2014530006A (ja) 2014-11-17
US20150104480A1 (en) 2015-04-16
DK2760882T3 (da) 2023-07-03
EP2760882A1 (en) 2014-08-06
CN103930435A (zh) 2014-07-16
EP2760882B1 (en) 2023-05-24
RU2014116371A (ru) 2015-11-10
BR112014007474A2 (pt) 2017-04-04
EP3626733A1 (en) 2020-03-25
AU2012315421C1 (en) 2019-12-05
NZ622731A (en) 2016-04-29
CA2850407A1 (en) 2013-04-04
JP6248040B2 (ja) 2017-12-13
ES2951259T3 (es) 2023-10-19
AU2012315421B2 (en) 2017-10-19
TW201329235A (zh) 2013-07-16
IN2014CN03077A (zh) 2015-07-03
KR101974017B1 (ko) 2019-04-30
MY184072A (en) 2021-03-17
EP2760882A4 (en) 2015-06-10
SG11201400712VA (en) 2014-04-28
PL2760882T3 (pl) 2023-09-11
EP3626733B1 (en) 2024-01-24
HK1200179A1 (zh) 2015-07-31
AU2012315421A1 (en) 2014-04-10
RU2682752C2 (ru) 2019-03-21
HUE062759T2 (hu) 2023-12-28
ZA201403059B (en) 2019-07-31
MX358883B (es) 2018-08-31
IL231587A0 (en) 2014-05-28
SI2760882T1 (sl) 2023-10-30
MX2018006627A (es) 2020-11-12
CA2850407C (en) 2021-11-23
US11155581B2 (en) 2021-10-26
FI2760882T3 (fi) 2023-07-17
SG10201708052XA (en) 2017-11-29
HRP20230695T1 (hr) 2023-12-22
KR20140068260A (ko) 2014-06-05
TWI700368B (zh) 2020-08-01
IL231587B (en) 2020-06-30
PT2760882T (pt) 2023-08-07
WO2013044390A1 (en) 2013-04-04
MX2014003776A (es) 2014-08-21

Similar Documents

Publication Publication Date Title
US11085049B2 (en) Influenza virus-like particle production in plants
US10272148B2 (en) Chimeric influenza virus-like particles comprising hemagglutinin
US9546375B2 (en) Influenza virus immunizing epitope
US11155581B2 (en) Increasing virus-like particle yield in plants
US11390878B2 (en) Increasing protein yield in plants
RU2569195C9 (ru) Химерные вирусоподобные частицы, содержащие гемагглютинин, сходные с частицами вируса гриппа

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240327

Address after: Quebec

Applicant after: Aramis Biotechnology Co.

Country or region after: Canada

Address before: Kaisan ohokkatsu

Applicant before: MEDICAGO Inc.

Country or region before: Canada