CN116217216A - 可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用 - Google Patents

可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用 Download PDF

Info

Publication number
CN116217216A
CN116217216A CN202310175702.2A CN202310175702A CN116217216A CN 116217216 A CN116217216 A CN 116217216A CN 202310175702 A CN202310175702 A CN 202310175702A CN 116217216 A CN116217216 A CN 116217216A
Authority
CN
China
Prior art keywords
lanthanum ferrite
solar absorptivity
ferrite ceramic
ceramic powder
variable solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310175702.2A
Other languages
English (en)
Other versions
CN116217216B (zh
Inventor
王忠阳
陈灿
童丽萍
范同祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202310175702.2A priority Critical patent/CN116217216B/zh
Publication of CN116217216A publication Critical patent/CN116217216A/zh
Application granted granted Critical
Publication of CN116217216B publication Critical patent/CN116217216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明提供了一种可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用,所述的可变太阳吸收率铁酸镧陶瓷粉体的通式为La1‑xScxFeO3,其中,0.025≤x≤0.125,所述的可变太阳吸收率铁酸镧陶瓷粉体在25℃下对太阳波段吸收率不高于0.51、在270℃下对太阳波段吸收率不低于0.68。本发明提供的可变太阳吸收率铁酸镧陶瓷粉体或块体,为室温至270℃之间太阳吸收率变化值0.3的智能热控陶瓷材料;本发明提供的可变太阳吸收率铁酸镧陶瓷粉体或块体的制备方法,通过对铁酸镧的镧位进行钪掺杂使铁酸镧在25℃‑270℃的太阳吸收率变化增大,并通过调节钪的掺杂量使所述材料的25℃‑270℃可变太阳吸收率最大达到0.3(x=0.1),同时降低了铁酸镧体系相同温度水平下的太阳吸收率/红外发射率比值。

Description

可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用
技术领域
本发明涉及智能材料技术领域,具体地,涉及可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用。
背景技术
智能热控材料根据温度水平的变化调整自身的热物性参数从而实现对热控对象的温度控制,智能热控材料的太阳吸收率αs、红外发射率ε是两个重要的性能参数,通过改变材料的太阳吸收率,可以在不同条件下实现智能热控。
现有的智能热控材料大都从调控红外发射率入手,如钙钛矿型锰氧化物、二氧化钒等。但基于钙钛矿型锰氧化物和二氧化钒的智能热控陶瓷材料几乎已到达其自身性能极限,钙钛矿型锰氧化物需进行表面的精加工和多层膜系设计来降低其过高的太阳吸收率,而二氧化钒制备方法复杂,因此目前智能热控领域对新型材料有迫切需求,缺乏制备方法简便的可变太阳吸收率的智能热控材料。
发明内容
针对现有技术中的缺陷,本发明的目的是一种可变太阳吸收率铁酸镧陶瓷粉体及块体,通过Sc掺杂对铁酸镧材料的太阳吸收率进行调控,获得室温至270℃之间太阳吸收率变化值0.3的智能热控陶瓷材料,同时降低了铁酸镧体系相同温度水平下的太阳吸收率/红外发射率比值,在热控领域有广阔的应用前景;此外,本发明还提供了该可变太阳吸收率铁酸镧陶瓷粉体和块体的制备方法及应用。
本发明第一方面提供了一种可变太阳吸收率铁酸镧陶瓷粉体,所述的可变太阳吸收率铁酸镧陶瓷粉体的通式为La1-xScxFeO3,其中,0.025≤x≤0.125,所述的可变太阳吸收率铁酸镧陶瓷粉体在25℃下对太阳波段吸收率不高于0.51、在270℃下对太阳波段吸收率不低于0.68。
在本发明的一实施方式中,所述的可变太阳吸收率铁酸镧陶瓷粉体为正交相。
本发明第二方面提供了上述可变太阳吸收率铁酸镧陶瓷粉体的制备方法,包括以下步骤:
(1)将硝酸镧水合物、硝酸铁水合物、硝酸钪水合物溶于去离子水中,再加入络合剂,反应形成凝胶;
(2)将步骤(1)中反应形成的凝胶降温至室温,干燥,研磨,煅烧,得到可变太阳吸收率铁酸镧陶瓷粉体。
在本发明的一实施方式中,基于安全性、简便性的考虑,步骤(1)中的络合剂为柠檬酸;
步骤(1)中,硝酸铁水合物、硝酸镧水合物和硝酸钪水合物的摩尔量总和与柠檬酸的摩尔比为1:1.1;
步骤(1)中,反应温度为80℃~90℃。
在本发明的一实施方式中,步骤(2)中干燥温度为100℃;
步骤(2)中的煅烧具体步骤为:以5℃/min的升温速度升至600℃保温3小时,以5℃/min的升温速度升至800℃保温5小时,然后以5℃/min的降温速度降至500℃,自然冷却至室温;本发明中上述煅烧步骤,可以确保完全完全反应,成分均匀,粉体颗粒大小均匀。
本发明第三方面提供了采用上述制备方法制得的可变太阳吸收率铁酸镧陶瓷粉体制备可变太阳吸收率铁酸镧陶瓷块体的方法,包括以下步骤:将可变太阳吸收率铁酸镧陶瓷粉体压制成片,煅烧,得到可变太阳吸收率铁酸镧陶瓷块体。
在本发明的一实施方式中,变太阳吸收率铁酸镧陶瓷粉体压制成片后,煅烧,煅烧的具体步骤为:以5℃/min的升温速度升至550℃保温2小时,以5℃/min的升温速度升至1250℃保温5小时,然后以5℃/min的降温速度降至500℃,自然冷却至室温;本申请中上述煅烧具体步骤,可以确保块体陶瓷不过烧(过于致密,晶界消失)或欠烧(粉体颗粒间未形成结合力,块体松散不成型)。
本发明第四方面提供了上述可变太阳吸收率铁酸镧陶瓷粉体在制备智能热控材料中的应用或作为智能热控材料在智能热控领域的应用。
本发明第五方面提供了上述可变太阳吸收率铁酸镧陶瓷块体在制备智能热控材料中的应用或作为智能热控材料在智能热控领域的应用。
与现有技术相比,本发明的实施例具有如下的有益效果:
1、本发明实施例提供的可变太阳吸收率铁酸镧陶瓷粉体或块体,为室温至270℃之间太阳吸收率变化值0.3的智能热控陶瓷材料,在热控领域有广阔的应用前景。
2、本发明实施例提供的可变太阳吸收率铁酸镧陶瓷粉体或块体的制备方法,通过对铁酸镧的镧位进行钪掺杂使铁酸镧在25℃-270℃的太阳吸收率变化增大,并通过调节钪的掺杂量使所述材料的25℃-270℃可变太阳吸收率最大达到0.3(x=0.1),同时降低了铁酸镧体系相同温度水平下的太阳吸收率/红外发射率比值,在热控领域有广阔的应用前景。
3、本发明实施例提供的可变太阳吸收率铁酸镧陶瓷粉体或块体的制备方法,解决了目前缺乏调控太阳吸收率的智能热控材料的问题,提出了通过调控太阳吸收率从而实现智能热控的新思路。
4、本发明实施例提供的可变太阳吸收率铁酸镧陶瓷粉体或块体用于制备智能热控材料或直接作为智能热控材料应用,在建筑、电子和个人热管理等领域热控具有重要的应用价值。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1、实施例2、实施例3及对比例1中所制得的陶瓷块体的外观图;
图2为实施例1、实施例2、实施例3及对比例1中所制得的陶瓷粉体的XRD图谱;
图3为实施例1、实施例2、实施例3及对比例1中所制得的陶瓷块体的XRD图谱;
图4为实施例1、实施例2、实施例3及对比例1中所制得的陶瓷块体的SEM图像;其中,图4(a)为对比例1中所制得的陶瓷块体的SEM图像,图4(b)为实施例1中所制得的陶瓷块体的SEM图像,图4(c)为实施例2中所制得的陶瓷块体的SEM图像,图4(d)为实施例3中所制得的陶瓷块体的SEM图像;
图5为实施例1、实施例2、实施例3及对比例1中所制得的陶瓷块体的可见光吸收光谱;
图6为对比例1中所制得的陶瓷块体在25℃、270℃的反射率图谱;
图7为实施例1中所制得的陶瓷块体在25℃、270℃的反射率图谱;
图8为实施例2中所制得的陶瓷块体在25℃、270℃的反射率图谱;
图9为实施例3中所制得的陶瓷块体在25℃、270℃的反射率图谱。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供了一种可变太阳吸收率铁酸镧陶瓷粉体的制备方法,包括以下步骤:
分别称取La(NO3)3·6H2O(99.99%)25.3336g、Fe(NO3)3·9H2O(AR)24.4848g和Sc(NO3)3·5H2O(99.99%)0.3465g溶于去离子水中,搅拌使其混合均匀,称取柠檬酸(AR)34.7554g溶于去离子水中,加入硝酸盐溶液中,水浴恒温90℃同时通过磁力搅拌6h,形成凝胶;冷却至室温,在100℃干燥24h,研磨,以5℃/min的升温速率升至600℃煅烧3h,再以5℃/min的升温速率升至800℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到可变太阳吸收率铁酸镧陶瓷粉体。
本实施例中还提供了一种将上述所得可变太阳吸收率铁酸镧陶瓷粉体制作为可变太阳吸收率铁酸镧陶瓷块体的方法,包括以下步骤:
将上述的陶瓷粉体称取4g置于Φ30mm的模具中,使用液压机将其压成圆片,以5℃/min的升温速率升至550℃保温2h,再以5℃/min的升温速率升至1250℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到可变太阳吸收率铁酸镧陶瓷块体。
本实施例所得可变太阳吸收率铁酸镧陶瓷块体的相组成为La0.975Sc0.025FeO3
实施例2
本实施例提供了一种可变太阳吸收率铁酸镧陶瓷粉体的制备方法,包括以下步骤:
分别称取La(NO3)3·6H2O(99.99%)23.3849g、Fe(NO3)3·9H2O(AR)24.4848g和Sc(NO3)3·5H2O(99.99%)1.3860g溶于去离子水中,搅拌使其混合均匀,称取柠檬酸(AR)34.7554g溶于去离子水中,加入硝酸盐溶液中,水浴恒温90℃同时通过磁力搅拌6h,形成凝胶。冷却至室温,在100℃干燥24h,研磨,以5℃/min的升温速率升至600℃煅烧3h,再以5℃/min的升温速率升至800℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到可变太阳吸收率铁酸镧陶瓷粉体。
本实施例中还提供了一种将上述所得可变太阳吸收率铁酸镧陶瓷粉体制作为可变太阳吸收率铁酸镧陶瓷块体的方法,包括以下步骤:
将上述的陶瓷粉体称取4g置于Φ30mm的模具中,使用液压机将其压成圆片,以5℃/min的升温速率升至550℃保温2h,再以5℃/min的升温速率升至1250℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到可变太阳吸收率铁酸镧陶瓷块体。
本实施例所得可变太阳吸收率铁酸镧陶瓷块体的相组成为La0.9Sc0.1FeO3
实施例3
本实施例提供了一种可变太阳吸收率铁酸镧陶瓷粉体的制备方法,包括以下步骤:
分别称取La(NO3)3·6H2O(99.99%)22.7353g、Fe(NO3)3·9H2O(AR)24.4848g和Sc(NO3)3·5H2O(99.99%)1.7324g溶于去离子水中,搅拌使其混合均匀,称取柠檬酸(AR)34.7554g溶于去离子水中,加入硝酸盐溶液中,水浴恒温90℃同时通过磁力搅拌6h,形成凝胶。冷却至室温,在100℃干燥24h,研磨,以5℃/min的升温速率升至600℃煅烧3h,再以5℃/min的升温速率升至800℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到可变太阳吸收率铁酸镧陶瓷粉体。
本实施例中还提供了一种将上述所得可变太阳吸收率铁酸镧陶瓷粉体制作为可变太阳吸收率铁酸镧陶瓷块体的方法,包括以下步骤:
将上述的陶瓷粉体称取4g置于Φ30mm的模具中,使用液压机将其压成圆片,以5℃/min的升温速率升至550℃保温2h,再以5℃/min的升温速率升至1250℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到可变太阳吸收率铁酸镧陶瓷块体。
本实施例所得可变太阳吸收率铁酸镧陶瓷块体的相组成为La0.875Sc0.125FeO3
对比例1
本对比例提供了一种铁酸镧陶瓷粉体的制备方法,包括以下步骤:
分别称取La(NO3)3·6H2O(99.99%)25.9832g、Fe(NO3)3·9H2O(AR)24.4848g溶于去离子水中,搅拌使其混合均匀,称取柠檬酸(AR)34.7554g溶于去离子水中,加入硝酸盐溶液中,水浴恒温90℃同时通过磁力搅拌6h,形成凝胶。冷却至室温,在100℃干燥24h,研磨,以5℃/min的升温速率升至600℃煅烧3h,再以5℃/min的升温速率升至800℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到铁酸镧陶瓷粉体。
本对比例还提供了一种将上述所得铁酸镧陶瓷粉体制备为铁酸镧陶瓷块体的方法,包括以下步骤:
将上述的陶瓷粉体称取4g置于Φ30mm的模具中,使用液压机将其压成圆片,以5℃/min的升温速率升至550℃保温2h,再以5℃/min的升温速率升至1250℃煅烧5h,以5℃/min的降温速率降至500℃,冷却至室温,得到铁酸镧陶瓷块体。
本对比例所得铁酸镧陶瓷块体的相组成为LaFeO3
试验例
本试验例对实施例1-3及对比例1中所制得的陶瓷材料进行表征,,使用X射线衍射图谱(XRD,德国Bruker公司,D8 focus)表征可变太阳吸收率粉体和块体的晶体结构和物相,使用扫描电镜(SEM,TESCAN,MIRA3)表征块体陶瓷表面形貌,使用紫外-可见-近红外分光光度计系统(国产,Lamda 950)表征样品的太阳吸收率。
从可变太阳吸收率陶瓷粉体和块体的XRD图谱(图2、图3)可以确认样品为标准正交相(PDF#74-2203)。图中显示的所有峰都与铁酸镧的峰匹配得很好。随着Sc3+掺杂浓度的增加,没有发现任何新的衍射峰,包括氧化镧、三氧化二铁和氧化钪峰。说明,Sc3+进入了铁酸镧钙钛矿的晶格形成了稳定正交相。因此,各实施例和对比例中块体陶瓷的物相应如表1中所示。
表1可变太阳吸收率陶瓷块体物相组成
块体 实施例1 实施例2 实施例3 对比例1
相组成 La0.975Sc0.025FeO3 La0.9Sc0.1FeO3 La0.875Sc0.125FeO3 LaFeO3
从可变太阳吸收率陶瓷块体的扫描电镜图像(图4)可以观察到所述陶瓷块体的陶瓷晶粒以及晶粒间空隙,空隙是由于氧在烧结过程中逸出而产生的。掺杂Sc后所述陶瓷块体的空隙减少,陶瓷体更为致密,晶粒变大。
从可变太阳吸收率陶瓷块体的可见光吸收光谱(图5)可以看出实施例1-3和对比例1的样品均有较强的可见光吸收,掺杂后的吸收边缘清晰可见。
图6-图9显示出25℃、270℃下可变太阳吸收率陶瓷块体的太阳(0.25μm~2.5μm)光谱图。通过光谱计算出的太阳吸收率如表2所示。可以看出,掺杂Sc后,25℃下的太阳吸收率从0.76下降到约0.5,高温下的太阳吸收率也有一定的降低。在x=0.1的掺杂水平下,从25℃到270℃的太阳吸收率(Δαs)增量增加到0.3。说明钪掺杂可以有效提升铁酸镧材料的可变太阳吸收率范围。
表2可变太阳吸收率陶瓷块体在不同温度下的太阳吸收率
Figure BDA0004100767440000061
Figure BDA0004100767440000071
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (9)

1.一种可变太阳吸收率铁酸镧陶瓷粉体,其特征在于,所述的可变太阳吸收率铁酸镧陶瓷粉体的通式为La1-xScxFeO3,其中,0.025≤x≤0.125,所述的可变太阳吸收率铁酸镧陶瓷粉体在25℃下对太阳波段吸收率不高于0.51、在270℃下对太阳波段吸收率不低于0.68。
2.根据权利要求1所述的可变太阳吸收率铁酸镧陶瓷粉体,其特征在于,所述的可变太阳吸收率铁酸镧陶瓷粉体为正交相。
3.一种权利要求1所述的可变太阳吸收率铁酸镧陶瓷粉体的制备方法,其特征在于,包括以下步骤:
(1)将硝酸镧水合物、硝酸铁水合物、硝酸钪水合物溶于去离子水中,再加入络合剂,反应形成凝胶;
(2)将步骤(1)中反应形成的凝胶降温至室温,干燥,研磨,煅烧,得到可变太阳吸收率铁酸镧陶瓷粉体。
4.根据权利要求3所述的可变太阳吸收率铁酸镧陶瓷材料的制备方法,其特征在于,步骤(1)中的络合剂为柠檬酸;
步骤(1)中,酸铁水合物、硝酸镧水合物和硝酸钪水合物的摩尔量总和与柠檬酸的摩尔比为1:1.1;
步骤(1)中,反应温度为80℃~90℃。
5.根据权利要求3所述的可变太阳吸收率铁酸镧陶瓷材料的制备方法,其特征在于,步骤(2)中干燥温度为100℃;
步骤(2)中的煅烧具体步骤为:以5℃/min的升温速度升至600℃保温3小时,以5℃/min的升温速度升至800℃保温5小时,然后以5℃/min的降温速度降至500℃,自然冷却至室温。
6.一种利用权利要求3~5任一项所制备的可变太阳吸收率铁酸镧陶瓷粉体制备可变太阳吸收率铁酸镧陶瓷块体的方法,其特征在于,包括以下步骤:将可变太阳吸收率铁酸镧陶瓷粉体压制成片,煅烧,得到可变太阳吸收率铁酸镧陶瓷块体。
7.根据权利要求6所述的可变太阳吸收率铁酸镧陶瓷块体的制备方法,其特征在于,可变太阳吸收率铁酸镧陶瓷粉体压制成片后,煅烧,煅烧的具体步骤为:以5℃/min的升温速度升至550℃保温2小时,以5℃/min的升温速度升至1250℃保温5小时,然后以5℃/min的降温速度降至500℃,自然冷却至室温。
8.权利要求1~2任一项所述的可变太阳吸收率铁酸镧陶瓷粉体或由权利要求3~5任一项所述的制备方法制备得到的可变太阳吸收率铁酸镧陶瓷粉体在制备智能热控材料中的应用或作为智能热控材料在智能热控领域中的应用。
9.由权利要求6~7任一项所述的制备方法制备得到的可变太阳吸收率铁酸镧陶瓷块体在制备智能热控材料中的应用或作为智能热控材料在智能热控领域中的应用。
CN202310175702.2A 2023-02-28 2023-02-28 可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用 Active CN116217216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310175702.2A CN116217216B (zh) 2023-02-28 2023-02-28 可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310175702.2A CN116217216B (zh) 2023-02-28 2023-02-28 可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116217216A true CN116217216A (zh) 2023-06-06
CN116217216B CN116217216B (zh) 2024-05-14

Family

ID=86572713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310175702.2A Active CN116217216B (zh) 2023-02-28 2023-02-28 可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116217216B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631525A (zh) * 2004-11-16 2005-06-29 燕山大学 铁酸镧/锂纳米复合粉体光催化剂及其制备工艺
CN105449249A (zh) * 2015-12-15 2016-03-30 左艳波 一种具有准对称结构的片式固体氧化物燃料电池及其制作方法
CN105761940A (zh) * 2016-04-14 2016-07-13 上海大学 铁酸镧薄膜光电极及其制备方法
CN107857302A (zh) * 2017-11-15 2018-03-30 海南医学院 一种a位镁钙双掺杂铁酸镧复合氧化物材料的制备方法
JP2018104230A (ja) * 2016-12-26 2018-07-05 住友金属鉱山株式会社 ペロブスカイト型複合酸化物の製造方法
CN108597882A (zh) * 2018-03-30 2018-09-28 梧州井儿铺贸易有限公司 一种改进光阳极的染料太阳能电池
CN110624556A (zh) * 2019-10-15 2019-12-31 常州大学 一种A位Sm掺杂LaFeO3光热协同催化剂
CN113754422A (zh) * 2020-06-01 2021-12-07 厦门稀土材料研究所 一种多孔高熵铁酸稀土陶瓷材料及其制备方法与应用
CN113753959A (zh) * 2021-09-14 2021-12-07 清华大学 铁酸镧钙钛矿材料及其制备方法和应用
KR20210155311A (ko) * 2020-06-15 2021-12-22 포항공과대학교 산학협력단 페로브스카이트 산화물 복합촉매, 그의 제조방법 및 그를 이용한 수성가스 전환방법
CN115321973A (zh) * 2022-05-10 2022-11-11 北京科技大学 一种基于稀土正铁氧体的太赫兹波介质陶瓷及其构筑方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631525A (zh) * 2004-11-16 2005-06-29 燕山大学 铁酸镧/锂纳米复合粉体光催化剂及其制备工艺
CN105449249A (zh) * 2015-12-15 2016-03-30 左艳波 一种具有准对称结构的片式固体氧化物燃料电池及其制作方法
CN105761940A (zh) * 2016-04-14 2016-07-13 上海大学 铁酸镧薄膜光电极及其制备方法
JP2018104230A (ja) * 2016-12-26 2018-07-05 住友金属鉱山株式会社 ペロブスカイト型複合酸化物の製造方法
CN107857302A (zh) * 2017-11-15 2018-03-30 海南医学院 一种a位镁钙双掺杂铁酸镧复合氧化物材料的制备方法
CN108597882A (zh) * 2018-03-30 2018-09-28 梧州井儿铺贸易有限公司 一种改进光阳极的染料太阳能电池
CN110624556A (zh) * 2019-10-15 2019-12-31 常州大学 一种A位Sm掺杂LaFeO3光热协同催化剂
CN113754422A (zh) * 2020-06-01 2021-12-07 厦门稀土材料研究所 一种多孔高熵铁酸稀土陶瓷材料及其制备方法与应用
KR20210155311A (ko) * 2020-06-15 2021-12-22 포항공과대학교 산학협력단 페로브스카이트 산화물 복합촉매, 그의 제조방법 및 그를 이용한 수성가스 전환방법
CN113753959A (zh) * 2021-09-14 2021-12-07 清华大学 铁酸镧钙钛矿材料及其制备方法和应用
CN115321973A (zh) * 2022-05-10 2022-11-11 北京科技大学 一种基于稀土正铁氧体的太赫兹波介质陶瓷及其构筑方法

Also Published As

Publication number Publication date
CN116217216B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
Tok et al. Carbonate Co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles
Zhu et al. Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells
EP0670820B1 (en) Fluxed lanthanum chromite for low temperature air firing
Anas et al. Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique
Li et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics
US5286686A (en) Air-sinterable lanthanum chromite and process for its preparation
Lee et al. Synthesis and characterization of nanocrystalline MgAl 2 O 4 spinel by polymerized complex method
CN109678506B (zh) 一种氧化铒透明陶瓷的制备方法
Guo et al. Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics
CN110627122A (zh) 固相法制备vo2相变材料的方法
Li et al. Reactive 10 mol% RE2O3 (RE= Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics
Chavarría-Rubio et al. The role of lanthanum in the structural, magnetic and electronic properties of nanosized mixed manganese ferrites
EP1484282B1 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
CN116217216B (zh) 可变太阳吸收率铁酸镧陶瓷粉体及其制备方法和应用
CN107093758B (zh) 一种钼酸镧基中温固体氧化物燃料电池电解质材料及其制备方法
Lee et al. Effects of solvent and chelating agent on synthesis of solid oxide fuel cell perovskite, La0. 8Sr0. 2CrO3− δ
Farahmandjou et al. Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method
Tyagi Combustion synthesis: a soft-chemical route for functional nano-ceramics
Rendón-Angeles et al. Hydrothermal synthesis of perovskite strontium doped lanthanum chromite fine powders and its sintering
US11827569B2 (en) Yttrium aluminum garnet powder and processes for synthesizing same
JP4729700B2 (ja) Dyドープナノセリア系焼結体
EP4039647A1 (en) Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
Rahaman Sintering and grain growth of ultrafine CeO2 powders
Zhang et al. Phase transition and negative thermal expansion properties in isovalently substituted In2− xScx (MoO4) 3 ceramics
Shigyo et al. Low-temperature fabrication of BaBi 2 Nb 2 O 9 ceramics by reaction controlled sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant