CN116206946A - 一种大尺寸高热导率衬底的制备方法 - Google Patents

一种大尺寸高热导率衬底的制备方法 Download PDF

Info

Publication number
CN116206946A
CN116206946A CN202211096206.XA CN202211096206A CN116206946A CN 116206946 A CN116206946 A CN 116206946A CN 202211096206 A CN202211096206 A CN 202211096206A CN 116206946 A CN116206946 A CN 116206946A
Authority
CN
China
Prior art keywords
substrate
sio
bonding
layer
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211096206.XA
Other languages
English (en)
Inventor
王新强
王�琦
梁智文
张国义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Institute of Opto Electronics Peking University
Original Assignee
Dongguan Institute of Opto Electronics Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Institute of Opto Electronics Peking University filed Critical Dongguan Institute of Opto Electronics Peking University
Priority to CN202211096206.XA priority Critical patent/CN116206946A/zh
Publication of CN116206946A publication Critical patent/CN116206946A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开一种大尺寸高热导率衬底的制备方法,包括以下步骤:准备基础衬底和高导热衬底;在基础衬底上进行离子注入,将基础衬底依次分为功能衬底薄层、离子掩埋层和分离层;在功能衬底薄层上键合第一SiO2介质层;在高导热衬底上键合第二SiO2介质层;将基础衬底的第一SiO2介质层面和高导热衬底的第二SiO2介质层面键合,形成键合体;对键合体进行加热处理,将功能衬底薄层从基础衬底上分离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。本发明实现大尺寸均匀复合衬底材料制备,解决现有氮化物光电器件散热及复合衬底应力过高的问题。

Description

一种大尺寸高热导率衬底的制备方法
技术领域
本发明涉及第三代半导体材料制备技术领域,尤其涉及一种大尺寸高热导率衬底的制备方法。
背景技术
目前第三代半导体材料材料基本在常规衬底上生长,例如硅、蓝宝石、碳化硅,氮化镓衬等衬底。传统衬底主要缺点为热导率比较差,在高功率大电流领域应用中,半导体光电器件的结温比较高导致性能恶化,给可靠性带来了不良的影响。由于散热问题,第三代半导体材料与光电器件的性能远达不到理论值,为了实现较好的光电器件性能及较高的可靠性,必须解决解决散热瓶颈问题。
然而,第三代半导体材料中,金刚石材料是自然界中导热率最高的材料,目前的多晶金刚石热导率已达2000W/m·K,但其大尺寸衬底不好制备。
现有技术中,采用键合方式将GaN单晶材料与多晶金刚石膜层强行绑定在一块,技术难度较大,也有报导氮化物外延所用衬底,通过键合的方法把金属片等热导率相对较高材料键合在一起的方法增加氮化物外延衬底的散热。但现在传统键合工艺制备的复合衬底具备较大的应力,主要是由于转移的材料较厚和与高热导率衬底有晶体和热失配等,以致在后面的高温生长容易引起翘曲、龟裂等问题。采用在高热导率衬底上制备二维材料作为氮化物生长的种子层,例如石墨烯和二硫化钼等二维材料,但此类技术有一个缺点,二维材料很难规模化应用,而且尺寸比较小,不合适量产。
因此,需要提供一种高导热比和合适用于氮化物材料外延的大尺寸衬底材料。
发明内容
本发明的目的在于提供一种大尺寸高热导率衬底的制备方法,解决现有用于氮化物生长的复合衬底的尺寸小、应力过高、散热差的问题。
为实现上述目的,本发明采用的技术方案是:一种大尺寸高热导率衬底的制备方法,其特征在于:包括以下步骤:
准备基础衬底和高导热衬底;
在所述基础衬底上进行离子注入,将所述基础衬底依次分为功能衬底薄层、离子掩埋层和分离层;
在所述功能衬底薄层上键合第一SiO2介质层;
在所述高导热衬底上键合第二SiO2介质层;
将所述基础衬底的第一SiO2介质层面和所述高导热衬底的第二SiO2介质层面键合,形成键合体;
对所述键合体进行加热处理,将所述功能衬底薄层从所述基础衬底上剥离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。
具体地,所述基础衬底的材料为蓝宝石、碳化硅、单晶硅中的一种。
具体地,所述基础衬底为8英寸的单晶硅衬底。
具体地,所述高导热衬底为8英寸的氮化铝陶瓷基板。
具体地,所述离子注入的加速电压为200KV,注入量为1×1020-5×1020ions/cm3,注入深度为100-300nm。
具体地,所述离子注入的注入深度为200nm。
具体地,所述在功能衬底薄层上键合第一SiO2介质层的具体步骤为:将进行离子注入后的基础衬底放入PECVD设备,通入硅烷和氧气,硅烷和氧气的流量比1:2,制备温度为200℃,在所述功能衬底薄层上沉积厚度为100nm的第一SiO2介质层。
具体地,所述在高导热衬底上键合第二SiO2介质层的具体步骤为:将所述高导热衬底放入PECVD设备,通入硅烷和氧气,硅烷和氧气的流量比1:2,制备温度为200℃,在所述高导热衬底上沉积厚度为100nm的第二SiO2介质层。
具体地,所述将基础衬底的第一SiO2介质层面和高导热衬底的第二SiO2介质层面键合的具体步骤为:将所述基础衬底的第一SiO2介质层面和所述高导热衬底的第二SiO2介质层面进行贴合,然后放入键合机进行键合,键合的压力为6T,温度为500℃,键合时间为5小时,形成键合体。
具体地,所述对键合体进行加热处理的具体步骤为:将所述键合体放进加热炉里面,在700℃加热处理,所述基础衬底中离子掩埋层的离子变成了气体,所述离子掩埋层裂开,将所述功能衬底薄层和所述分离层分离,分离层从键合体上剥离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底
本发明有益效果是:
本发明制备高散热外延所用衬底是利用大尺寸的高导热氮化铝陶瓷基板与传统外延衬底结合,能解决第三代氮化物材料复合衬底应力过高,尺寸小器件散热差的问题,使氮化物材料及器件在工作过程中始终处于较低的结温状态,提高其可靠性及应用性。首先,氮化铝陶瓷基板成本很低,容易实现大尺寸,同样尺寸条件下,比现有的单晶衬底的成本降低50%以上。其次,离子注入的方法剥离技术能精确控制薄层深度,剥离薄层,解决现有剥离转移较厚薄膜的应力问题,优于第三代传统激光剥离技术。
附图说明
图1本发明实施例1的工艺流程图。
图中:1-在基础衬底上进行离子注入,2-在功能衬底薄层上键合第一SiO2介质层步骤,3-在高导热衬底上键合第二SiO2介质层,4-形成键合体,5-形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供一种大尺寸高热导率衬底的制备方法,包括以下制备步骤:
在基础衬底上进行离子注入,将基础衬底依次分为功能衬底薄层、离子掩埋层和分离层;
在功能衬底薄层上键合第一SiO2介质层;
在高导热衬底上键合第二SiO2介质层;
将基础衬底的第一SiO2介质层面和高导热衬底的第二SiO2介质层面键合,形成键合体;
对键合体进行加热处理,将功能衬底薄层从基础衬底上剥离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。
具体地,所述基础衬底的材料为蓝宝石、碳化硅、单晶硅中的一种。
具体地,所述基础衬底为8英寸的单晶硅衬底。
具体地,所述高导热衬底为8英寸的氮化铝陶瓷基板。
具体地,所述离子注入的加速电压为200KV,注入量为1×1020-5×1020ions/cm3,注入深度为100-300nm。
具体地,所述离子注入的注入深度为200nm。
具体地,所述在功能衬底薄层上键合第一SiO2介质层的具体步骤为:将进行离子注入后的基础衬底放入PECVD设备,通入硅烷和氧气,硅烷和氧气的流量比1:2,制备温度为200℃,在功能衬底薄层上沉积厚度为100nm的一SiO2介质层。
具体地,所述在高导热衬底上键合第二SiO2介质层的具体步骤为:将高导热衬底放入PECVD设备,通入硅烷和氧气,硅烷和氧气的流量比1:2,制备温度为200℃,在高导热衬底上沉积厚度为100nm的第二SiO2介质层。
具体地,所述将基础衬底的第一SiO2介质层面和高导热衬底的第二SiO2介质层面键合的具体步骤为:将基础衬底的第一SiO2介质层面和高导热衬底的第二SiO2介质层面进行贴合,然后放入键合机进行键合,键合的压力为6T,温度为500℃,键合时间为5小时,形成键合体。
具体地,所述对键合体进行加热处理的具体步骤为:将键合体放进加热炉里面,在700℃加热处理,基础衬底中离子掩埋层的离子变成了气体,离子掩埋层裂开,将功能衬底薄层和分离层分离,分离层从键合体上剥离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。
实施例1
1、首先在8英寸的单晶硅衬底(111)上进行H离子注入,离子注入的加速电压为200KV,注入量为5×1020ions/cm3,注入的深度为200nm,在单晶硅衬底离表面200nm处形成一层H离子掩埋层,即H离子掩埋层到单晶硅衬底表面的距离是200nm,H离子注入将单晶硅衬底依次分为功能衬底薄层、离子掩埋层和分离层。
2、把具备H离子掩埋层的单晶硅衬底放入PECVD进行二氧化硅键合介质制备,通入硅烷和氧气,硅烷的流量是20sccm,氧气的流量是40sccm,制备温度为200℃,在功能衬底薄层上沉积厚度为100nm的第一SiO2介质层。
3、将8英寸高热导率氮化铝陶瓷基板放入PECVD设备,通入硅烷和氧气,硅烷的流量是20sccm,氧气的流量是40sccm,制备温度为200℃,在高热导率氮化铝陶瓷基板上沉积厚度为100nm的第二SiO2介质层。
4、将单晶硅衬底的第一SiO2介质层面和高热导率氮化铝陶瓷基板的第二SiO2介质层面进行贴合,然后放入键合机进行键合,键合的压力为6T,温度为500℃,键合时间为5小时,形成键合体。
5、将键合体放进加热炉里面,在700℃加热处理,单晶硅衬底中离子掩埋层的离子变成了氢气,离子掩埋层裂开,将功能衬底薄层和分离层分离,分离层从键合体上剥离,从而从单晶硅衬底上撑开剥离出一层200nm的薄层硅材料,形成8英寸的200nm硅材料/二氧化硅(200nm)/氮化铝陶瓷基板的复合衬底,即大尺寸高热导率衬底。
进一步地,此复合衬底结构材料利用化学抛光的方法把薄层硅材料的剥离面进行抛光,去掉50nm,实现表面粗糙度小于1nm的硅衬底表面,从而达到外延的需求。
经过以上制程,8英寸的150nm硅材料/二氧化硅(200nm)/氮化铝陶瓷基板完成制备,因为扮演外延成核的硅材料只有150nm,其复合衬底的应力非常小、远小于现有方法所制备的复合衬底,有利用于后期的外延应力调控工艺。把所制备的高热导率复合衬底放进MOCVD中进行microled等方面应用的外延材料制备,氮化物光电器件散热性能好。
经检测,最终获得的8英寸的150nm硅材料/二氧化硅(200nm)/氮化铝陶瓷基板复合衬底的热导率达到160W/m·K,远高于硅材料的80W/m·K,由于比较薄的基础衬底材料,其应力趋近于氮化铝基板的本身应力状态,不存在复合结构的应力状态。
实施例2
1、首先在8英寸的碳化硅衬底上进行H离子注入,离子注入的加速电压为200KV,注入量为1×1020ions/cm3,注入的深度为300nm,在碳化硅衬底离表面300nm处形成一层H离子掩埋层,即H离子掩埋层到碳化硅衬底表面的距离是300nm,H离子注入将碳化硅衬底依次分为功能衬底薄层、离子掩埋层和分离层。
2、把具备H离子掩埋层的碳化硅衬底放入PECVD进行二氧化硅键合介质制备,通入硅烷和氧气,硅烷的流量是30sccm,氧气的流量是60sccm,制备温度为200℃,在功能衬底薄层上沉积厚度为100nm的第一SiO2介质层。
3、将8英寸高热导率氮化铝陶瓷基板放入PECVD设备,通入硅烷和氧气,硅烷的流量是30sccm,氧气的流量是60sccm,制备温度为200℃,在高热导率氮化铝陶瓷基板上沉积厚度为100nm的第二SiO2介质层。
4、将碳化硅衬底的第一SiO2介质层面和高热导率氮化铝陶瓷基板的第二SiO2介质层面进行贴合,然后放入键合机进行键合,键合的压力为6T,温度为500℃,键合时间为5小时,形成键合体。
5、将键合体放进加热炉里面,在700℃加热处理,碳化硅衬底中离子掩埋层的离子变成了氢气,离子掩埋层裂开,将功能衬底薄层和分离层分离,分离层从键合体上剥离,从而从碳化硅衬底上撑开剥离出一层300nm的薄层碳化硅材料,形成8英寸的300nm碳化硅/二氧化硅(200nm)/氮化铝陶瓷基板的复合衬底,即大尺寸高热导率衬底。
进一步地,此复合衬底结构材料利用化学抛光的方法把薄层碳化硅材料的剥离面进行抛光,去掉100nm,实现表面粗糙度小于1nm的碳化硅衬底表面,从而达到外延的需求。
经过以上制程,8英寸的200nm碳化硅/二氧化硅(200nm)/氮化铝陶瓷基板完成制备,因为扮演外延成核的碳化硅材料只有200nm,其复合衬底的应力非常小、远小于现有方法所制备的复合衬底,有利用于后期的外延应力调控工艺。把所制备的高热导率复合衬底放进MOCVD中进行microled等方面应用的外延材料制备,氮化物光电器件散热性能好。
经检测,最终获得的8英寸的200nm碳化硅/二氧化硅(200nm)/氮化铝陶瓷基板复合衬底的热导率达到210W/m·K,由于碳化硅衬底比较贵,利用此方法制备的复合衬底成本约为传统碳化硅衬底的十分之一左右。由于比较薄的基础衬底材料,其应力趋近于氮化铝基板的本身应力状态,不存在复合结构的应力状态。
实施例3
1、首先在8英寸的蓝宝石衬底上进行H离子注入,离子注入的加速电压为200KV,注入量为3×1020ions/cm3,注入的深度为100nm,在蓝宝石衬底离表面100nm处形成一层H离子掩埋层,即H离子掩埋层到蓝宝石衬底表面的距离是100nm,H离子注入将蓝宝石衬底依次分为功能衬底薄层、离子掩埋层和分离层。
2、把具备H离子掩埋层的蓝宝石衬底放入PECVD进行二氧化硅键合介质制备,通入硅烷和氧气,硅烷的流量是30sccm,氧气的流量是60sccm,制备温度为300℃,在功能衬底薄层上沉积厚度为100nm的第一SiO2介质层。
3、将8英寸高热导率氮化铝陶瓷基板放入PECVD设备,通入硅烷和氧气,硅烷的流量是30sccm,氧气的流量是60sccm,制备温度为300℃,在高热导率氮化铝陶瓷基板上沉积厚度为100nm的第二SiO2介质层。
4、将蓝宝石衬底的第一SiO2介质层面和高热导率氮化铝陶瓷基板的第二SiO2介质层面进行贴合,然后放入键合机进行键合,键合的压力为6T,温度为500℃,键合时间为5小时,形成键合体。
5、将键合体放进加热炉里面,在700℃加热处理,蓝宝石衬底中离子掩埋层的离子变成了氢气,离子掩埋层裂开,将功能衬底薄层和分离层分离,分离层从键合体上剥离,从而从蓝宝石衬底上撑开剥离出一层100nm的薄层蓝宝石材料,形成8英寸的100nm蓝宝石/二氧化硅(200nm)/氮化铝陶瓷基板的复合衬底,即大尺寸高热导率衬底。
进一步地,此复合衬底结构材料利用化学抛光的方法把薄层蓝宝石材料的剥离面进行抛光,去掉50nm,实现表面粗糙度小于1nm的蓝宝石衬底表面,从而达到外延的需求。
经过以上制程,8英寸的50nm蓝宝石/二氧化硅(200nm)/氮化铝陶瓷基板完成制备,因为扮演外延成核的蓝宝石材料只有50nm,其复合衬底的应力非常小、远小于现有方法所制备的复合衬底,有利用于后期的外延应力调控工艺。把所制备的高热导率复合衬底放进MOCVD中进行microled等方面应用的外延材料制备,氮化物光电器件散热性能好。
经检测,最终获得的8英寸的50nm蓝宝石/二氧化硅(200nm)/氮化铝陶瓷基板复合衬底的热导率达到170W/m·K,远高于蓝宝石衬底50W/m·K的热导率。由于比较薄的基础衬底材料,其应力趋近于氮化铝基板的本身应力状态,不存在复合结构的应力状态。
根据上述说明书的揭示,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

1.一种大尺寸高热导率衬底的制备方法,其特征在于:包括以下步骤:
准备基础衬底和高导热衬底;
在所述基础衬底上进行离子注入,将所述基础衬底依次分为功能衬底薄层、离子掩埋层和分离层;
在所述功能衬底薄层上键合第一SiO2介质层;
在所述高导热衬底上键合第二SiO2介质层;
将所述基础衬底的第一SiO2介质层面和所述高导热衬底的第二SiO2介质层面键合,形成键合体;
对所述键合体进行加热处理,将所述功能衬底薄层从所述基础衬底上剥离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。
2.根据权利要求1所述的大尺寸高热导率衬底的制备方法,其特征在于:所述基础衬底的材料为蓝宝石、碳化硅、单晶硅中的一种。
3.根据权利要求2所述的大尺寸高热导率衬底的制备方法,其特征在于:所述基础衬底为8英寸的单晶硅衬底。
4.根据权利要求3所述的大尺寸高热导率衬底的制备方法,其特征在于:所述高导热衬底为8英寸的氮化铝陶瓷基板。
5.根据权利要求1所述的大尺寸高热导率衬底的制备方法,其特征在于:所述离子注入的加速电压为200KV,注入量为1×1020-5×1020ions/cm3,注入深度为100-300nm。
6.根据权利要求5所述的大尺寸高热导率衬底的制备方法,其特征在于:所述离子注入的注入深度为200nm。
7.根据权利要求1所述的大尺寸高热导率衬底的制备方法,其特征在于:所述在功能衬底薄层上键合第一SiO2介质层的具体步骤为:将进行离子注入后的基础衬底放入PECVD设备,通入硅烷和氧气,硅烷和氧气的流量比1:2,制备温度为200℃,在所述功能衬底薄层上沉积厚度为100nm的第一SiO2介质层。
8.根据权利要求1所述的大尺寸高热导率衬底的制备方法,其特征在于:所述在高导热衬底上键合第二SiO2介质层的具体步骤为:将所述高导热衬底放入PECVD设备,通入硅烷和氧气,硅烷和氧气的流量比1:2,制备温度为200℃,在所述高导热衬底上沉积厚度为100nm的第二SiO2介质层。
9.根据权利要求1所述的大尺寸高热导率衬底的制备方法,其特征在于:所述将基础衬底的第一SiO2介质层面和高导热衬底的第二SiO2介质层面键合的具体步骤为:将所述基础衬底的第一SiO2介质层面和所述高导热衬底的第二SiO2介质层面进行贴合,然后放入键合机进行键合,键合的压力为6T,温度为500℃,键合时间为5小时,形成键合体。
10.根据权利要求1所述的大尺寸高热导率衬底的制备方法,其特征在于:所述对键合体进行加热处理的具体步骤为:将所述键合体放进加热炉里面,在700℃加热处理,所述基础衬底中离子掩埋层的离子变成了气体,所述离子掩埋层裂开,将所述功能衬底薄层和所述分离层分离,分离层从键合体上剥离,形成功能衬底薄层/SiO2介质层/高导热衬底的复合衬底。
CN202211096206.XA 2022-09-08 2022-09-08 一种大尺寸高热导率衬底的制备方法 Pending CN116206946A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211096206.XA CN116206946A (zh) 2022-09-08 2022-09-08 一种大尺寸高热导率衬底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211096206.XA CN116206946A (zh) 2022-09-08 2022-09-08 一种大尺寸高热导率衬底的制备方法

Publications (1)

Publication Number Publication Date
CN116206946A true CN116206946A (zh) 2023-06-02

Family

ID=86510104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211096206.XA Pending CN116206946A (zh) 2022-09-08 2022-09-08 一种大尺寸高热导率衬底的制备方法

Country Status (1)

Country Link
CN (1) CN116206946A (zh)

Similar Documents

Publication Publication Date Title
WO2021233305A1 (zh) 氮化物外延片及其制备方法和半导体器件
TWI736554B (zh) SiC複合基板之製造方法
CN110690105B (zh) 基于六方氮化硼和氮化铝在金刚石衬底上生长氮化镓的方法
WO2013013419A1 (zh) 一种在绝缘基底上制备石墨烯纳米带的方法
CN110144567B (zh) 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法
CN106960781A (zh) 一种氮化镓薄膜及其制备方法和石墨烯薄膜及其制备方法
CN106206258B (zh) 在硅衬底上形成GaN层的方法以及GaN衬底
US8506707B1 (en) Substrate surface modifications for compositional gradation of crystalline materials and associated products
CN212967721U (zh) 具有2D材料中间层的硅上氮化镓GaN-on-Si外延基板
CN116732607A (zh) 氮化物外延结构、外延生长方法及其应用
CN104733522A (zh) AlGaN/GaN HEMT压力传感器工艺实现方法
CN207116374U (zh) 一种氮化镓薄膜和石墨烯薄膜
US7763529B2 (en) Method of fabricating silicon carbide (SiC) layer
WO2022019799A1 (ru) Гетероэпитаксиальная структура с алмазным теплоотводом
CN114892264B (zh) 氮化镓衬底、氮化镓单晶层及其制造方法
CN116206946A (zh) 一种大尺寸高热导率衬底的制备方法
CN107785304B (zh) 以氮化物薄膜为绝缘埋层的soi材料及其制备方法
CN112201567B (zh) 用于氮化物材料外延的高导热衬底的制备方法
CN110828292A (zh) 基于复合衬底的半导体器件及其制备方法
KR20180131926A (ko) 그래핀을 포함하는 반도체 소자 및 그 제조방법
WO2020019312A1 (zh) 多层复合半导体基板结构及其制备方法
CN115160025B (zh) 一种制备基于金刚石表面终端的异质结的方法
RU2802796C1 (ru) Гетероэпитаксиальная структура с алмазным теплоотводом для полупроводниковых приборов и способ ее изготовления
CN113594110B (zh) 一种半导体器件及其制备方法
CN118028974B (zh) 大尺寸单晶六方氮化硼的外延生长方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination