CN116199501B - 一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法 - Google Patents

一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法 Download PDF

Info

Publication number
CN116199501B
CN116199501B CN202310036665.7A CN202310036665A CN116199501B CN 116199501 B CN116199501 B CN 116199501B CN 202310036665 A CN202310036665 A CN 202310036665A CN 116199501 B CN116199501 B CN 116199501B
Authority
CN
China
Prior art keywords
ceramic
riving knife
photo
manufacturing
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310036665.7A
Other languages
English (en)
Other versions
CN116199501A (zh
Inventor
伍尚华
王俊晔
林坤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202310036665.7A priority Critical patent/CN116199501B/zh
Publication of CN116199501A publication Critical patent/CN116199501A/zh
Application granted granted Critical
Publication of CN116199501B publication Critical patent/CN116199501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法,涉及陶瓷劈刀制备技术领域。该方法包括步骤:S1、配制固含量为53‑58vol%的陶瓷浆料,所述陶瓷浆料组成包括改性陶瓷粉体、高折射率光敏树脂单体、光引发剂以及增塑剂;S2、将需要打印的陶瓷劈刀3D模型通过三维软件进行分层,确定每层需要曝光聚合的形状,并生成打印控制程序;S3、进行光固化打印,得到陶瓷坯体;S4、将所述陶瓷坯体并清洗干净;S5、将清洗完成的陶瓷坯体进行真空‑空气排胶、烧结,得到陶瓷劈刀零件成品。本发明采用光固化成型方式制备陶瓷劈刀,具有成型精度高,成型表面精度高的优点,可以实现陶瓷劈刀的快速成型,涉及的加工工序少,得到的陶瓷劈刀品质更优。

Description

一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法
技术领域
本发明涉及陶瓷劈刀制备技术领域,尤其涉及一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法。
背景技术
陶瓷劈刀是一种具有垂直中心孔的轴对称的陶瓷工具,属于微精密结构的陶瓷部件,具有硬度高、尺寸精度高、使用寿命长的优点。陶瓷劈刀的主要成分是氧化铝,高密度细颗粒的氧化铝陶瓷具有很强的耐磨损性能和抗氧化能力,并且易于清洁。
陶瓷劈刀作为邦定机(焊线机)的焊接工具,适用于LED、二极管、三极管、IC芯片等线路的引线键合封装。通过穿过陶瓷劈刀的导电线材,在邦定机(焊线机)和陶瓷劈刀的共同作用下,使得芯片与引脚形成良好的电子互连,阻止了外界杂质对芯片造成的腐蚀。陶瓷劈刀的运用将直接影响键合封装的质量和稳定性,因此在半导体封装领域中陶瓷劈刀的选择是至关重要的。
陶瓷劈刀的结构十分精密复杂,除了金线直径WD(Wire diameter)、金球、键合力和超声振幅外,陶瓷劈刀的关键尺寸也会影响引线键合的效果。这些关键尺寸包括尖端直径(Tip diameter,T)、内孔径(Hole size,H)、内切角直径(Chamfer diameter,CD)、内切斜面角度(Inner chamfer,IC)、锥芯角度(Chamfer angle,CA)、外倒圆半径(Outer radius,OR)、工作面角度(Face angle,FA)等。
除了结构的关键尺寸外,陶瓷劈刀本身的好坏也会影响微电子封装的质量,一些断线与翘线等都是由异形陶瓷劈刀造成的,一般异形陶瓷劈刀主要有3个方面的特征:(1)陶瓷劈刀尖端周围有划伤或凹坑;(2)陶瓷劈刀尖端内孔或者周围存在异物;(3)陶瓷劈刀尖端内孔打歪。还有一点值得提及,异形陶瓷劈刀和磨损后的陶瓷劈刀都会使其本身清洁度降低,使得键合引线连接不可靠,对金线的拉伸强度变弱。
劈刀的制作工艺主要有两种,一种是模具为主要载体的陶瓷注射成型生产方式,另一种是基于高精度数控机床生产的磨削方式,两者的主要区别在于,陶瓷注射成型生产方式的劈刀由于是一次成型,刀体表面非常光滑,没有磨削的纹路。而通过磨削方式生产的劈刀,刀体表面有明显的磨削纹路。传统成型方法需要使用昂贵的模具和机加工刀具、磨具,生产工艺复杂,加工周期长。
增材制造技术运用层层累积的思想,通过计算机三维软件将所要制造的零件模型进行分层处理,获得打印程序,再通过3D打印机逐层打印、堆叠分层得到的二维图形,最终形成三维零件实体。这种材料制造技术可以避免使用模具以及后续的机械加工过程,从而实现零件的快速制造。
目前运用于陶瓷增材制造领域的增材制造技术种类有很多,其中光固化增材制造技术具有成型精度高、表面质量好的优点,因此特别适用于陶瓷劈刀的增材制造。陶瓷光固化打印技术起源于高分子树脂光固化技术,通过光敏树脂的固化将陶瓷颗粒粘结成所需形状的陶瓷坯体,再经高温排胶、烧结处理后得到最终的陶瓷材料构件。常用的光固化成型工艺包括SLA(立体光固化成型)或DLP(数字光处理成型)。其中,SLA是将光敏树脂放置在料槽中,由紫外光源照射在光敏树脂上完成单层固化,然后移动工作台,继续固化下一层,直到模型打印完成。SLA的固化方式是逐点式固化,由点到线,由线到面,逐层累积制得陶瓷生坯。DLP与SLA不同之处在于将打印模型的二维图形直接投影到光敏树脂中进行固化成型,不再是逐点打印,提高了打印效率。
然而,陶瓷粉体和光敏树脂折射率差的增大会导致光散射和吸收更严重,使光聚合速率和光固化精度下降,导致得到的陶瓷制品性能下降。
发明内容
本发明所要解决的技术问题是降低陶瓷浆料的折射率差,提高陶瓷光固化浆料固化能力和固化精度,提供一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法。
为了解决上述问题,本发明提出以下技术方案:
第一方面,本发明提供一种基于光固化成型的氧化铝陶瓷劈刀的制造方法,包括以下步骤:
S1、配制固含量为53-58vol%的陶瓷浆料,所述陶瓷浆料组成包括改性陶瓷粉体、高折射率光敏树脂单体、光引发剂以及增塑剂;
S2、将需要打印的陶瓷劈刀3D模型通过三维软件进行分层,确定每层需要曝光聚合的形状,并生成打印控制程序;
S3、进行光固化打印,得到陶瓷坯体;
S4、将所述陶瓷坯体并清洗干净;
S5、将清洗完成的陶瓷坯体进行真空-空气排胶、烧结,得到陶瓷劈刀零件成品。
本发明能够获得光固化能力良好的固含量为53-58vol%的陶瓷浆料,高固含量的陶瓷浆料可以有效的提高陶瓷劈刀的致密性和力学性能,并且可以降低烧结后的收缩率,提高陶瓷劈刀的制备精度。
进一步地,步骤S1中,配制陶瓷浆料时,还包括将各原料混合后再通过均质机进行高速混合。均质混合时均质机转速为2000-3000r/min,均质混合时间为3分钟。均质混合后再使用真空消泡机对浆料进行除气脱泡,时间为10-20min。
其进一步地技术方案为,所述改性陶瓷粉体是由硅烷偶联剂与陶瓷粉体以1-2:100的质量比混合球磨后烘干得到,所述陶瓷粉体是由70-90质量份氧化铝粉体、20-30质量份增强相和1-10质量份的烧结助剂组成。
进一步地,改性时的球磨时间为3-5小时,球磨转速300-400r/min。
进一步地,所述氧化铝粉体为纳米级或者亚微米级氧化铝粉体。
其进一步地技术方案为,所述增强相选自ZrO2和/或Cr2O3。所述增强相为纳米级粉体。
其进一步地技术方案为,所述烧结助剂选自氧化钇、氧化钐、氧化镧中的至少一种。所述烧结助剂为纳米级粉体。
进一步地,所述硅烷偶联剂选自KH-570,陶瓷粉体经过硅烷偶联剂的表面改性后可提高陶瓷粉体在树脂浆料中的润湿性,有利于陶瓷粉体的分散,降低剪切粘度,有利于光固化打印,同时生坯强度更高。
其进一步地技术方案为,所述高折射率光敏树脂单体选自乙氧基季戊四醇四丙烯酸酯、聚乙二醇邻苯基苯醚丙烯酸酯、2-苯氧基乙基丙烯酸酯、环三羟甲基丙烷甲缩醛丙烯酸酯中的一种或多种。
优选地,所述高折射率光敏树脂单体选自0-40质量份的乙氧基季戊四醇四丙烯酸酯PPTTA(4官能度、折射率1.47/25℃)、0-60质量份的聚乙二醇邻苯基苯醚丙烯酸酯OPPEA(单官能度、折射率1.57/25℃)、0-60质量份的2-苯氧基乙基丙烯酸酯PHEA(单官能度、折射率1.51/25℃)、0-60质量份的环三羟甲基丙烷甲缩醛丙烯酸酯CTFA(单官能度、折射率1.46/25℃)。
其进一步地技术方案为,所述光引发剂选自(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
本发明使用(2,4,6-三甲基苯甲酰基)二苯基氧化膦TPO作为光引发剂,其与光敏树脂单体的质量比为1:100。
其进一步地技术方案为,所述增塑剂选自邻苯二甲酸二丁酯。
本发明使用邻苯二甲酸二丁酯DBP作为惰性分散剂(增塑剂),其与活性稀释剂光敏树脂单体的质量比为2:3。提高加入增塑剂可以有效地提高坯体韧性,保持坯体结构完整性,并且可以降低聚合应力而减少脱脂缺陷的产生,可以有效提高光固化成型制备陶瓷劈刀强度。
其进一步地技术方案为,所述步骤S3中,进行光固化打印的具体操作为:将配置好的陶瓷浆料倒入光固化打印机树脂槽,并旋转树脂槽后通过刮刀铺平形成打印所需厚度的浆料膜。将树脂盒平台下压贴合树脂槽,将树脂盒平台调平。通过打印机投影仪投影出需要成型的预设形状的紫外光至浆料上,通过光聚合交联固化反应使得浆料聚合成型并粘接在树脂盒平台上,打印完一层后树脂槽旋转一周,刮刀继续铺平浆料,树脂盒平台继续上升一层高度后继续曝光成型,如此层层累积,直到形成完整所需的陶瓷劈刀模型坯体。
其进一步地技术方案为,所述步骤S4中,使用乙醇和1,6-己二醇二丙烯酸酯HDDA混合溶液作为坯体清洗溶剂,两者的质量比为95:5。清洗时,使用空气压缩机制造的高压空气辅助清洗与超声纯水清洗相结合的方式。
其进一步地技术方案为,所述步骤S5中,进行真空-空气排胶的过程为:
先进行真空排胶:在真空排胶炉中,先从室温升温至100-160℃,保温1~2h,然后再升温至300-350℃,保温1~2h,最后升温至450~550℃,保温3~6h后随炉冷却至室温;升温速率为0.5~2℃/min;
然后进行空气排胶:在空气排胶炉中,先从室温升温至100-160℃,保温1~2h,然后再升温至300-350℃,保温1~2h,最后升温至350~450℃,保温2~6h后随炉冷却至室温;升温速率为0.5~2℃/min。
其进一步地技术方案为,所述步骤S5中,烧结的具体操作为:在空气烧结炉中,1600-1650℃温度下烧结2-6h。
第二方面,本发明提供一种氧化铝陶瓷劈刀,采用第一方面所述的基于光固化成型的氧化铝陶瓷劈刀的制造方法制得。
所采用的制造设备包括:机架、光源、承载有作为原料的陶瓷浆料的树脂槽、铺料刮刀、树脂盒平台,光源能够曝光出所需形状的紫外光区域,铺料刮刀将托盘上的陶瓷浆料铺平至所需厚度,使其在工作托盘上形成一层均匀的待打印材料层,承载有作为原料的陶瓷浆料的树脂槽可以360°旋转,树脂盒平台用于承载成型陶瓷坯体,可以上下移动。
优选地,使用乙醇和1,6-己二醇二丙烯酸酯HDDA混合溶液作为坯体清洗溶剂,两者的质量比为95:5。并使用空气压缩机制造的高压空气辅助清洗与超声纯水清洗结合。
本发明的有益效果为:
(1)本发明的陶瓷粉体以氧化锆(ZrO2)和氧化铬(Cr2O3)作为增强相,能够提高氧化铝陶瓷劈刀的强度和硬度,增加耐磨性和使用寿命;使用烧结助剂如氧化钇、氧化锆和氧化镧等作为烧结助剂,可以提高陶瓷烧结体的致密度,保证了其力学性能。
(2)本发明的陶瓷浆料所涉及的树脂单体、增塑剂及光引发剂所含化学元素主要为碳、氢、氧、氮,在高温富氧环境下,这些化学元素很容易氧化成二氧化碳、水和氮氧化物,因此经过高温煅烧烧结后其不会残留在陶瓷成品内部,从而实现高纯度氧化铝陶瓷劈刀的增材制造。
(3)本发明的陶瓷浆料采用高折射率光敏树脂单体如OPPEA,使用后有助于降低陶瓷浆料的折射率差,可以提升光固化打印的固化深度和打印精度,可以实现高精度和高致密度地陶瓷劈刀坯体成型。同时由于OPPEA的低聚合度使得其粘度较低,可以更有效地稀释分散均匀陶瓷粉体从而降低陶瓷浆料的粘度,可以提高陶瓷劈刀坯体的表面质量,无需使用分散剂。本发明配制的陶瓷浆料所采用的高折射率光敏树脂单体还可以是兼具有多官能团树脂(PPTTA)和高折射率树脂(OPPEA),这些树脂单体既能保持较高的固化深度,使得打印坯体具有较高的强度,又能有效地减少散射,使得打印精度得以提升,可以成型具有高精度、高强度的陶瓷劈刀。
(4)本发明的制备方法中,采用真空-空气两步排胶法,能够更好地排除坯体中的有机物并有效防止坯体开裂。
(5)本发明采用光固化成型方式制备陶瓷劈刀,具有成型精度高,成型表面精度高的优点,可以实现陶瓷劈刀的快速成型,从而避免使用价格昂贵的模具以及因为机加工制备陶瓷劈刀产生的微小裂纹和内部缺陷,涉及的加工工序少,得到的陶瓷劈刀品质更优。
(6)进一步地,本发明陶瓷坯体清洗所使用的混合溶剂可以有效地清洗坯体表面的陶瓷浆料,并减少由于清洗造成的坯体损伤,能够提升陶瓷劈刀表面质量和结构强度的效果。
(7)本发明提供的制造方法只需要配制陶瓷浆料(将改性陶瓷粉体与光敏树脂单体、增塑剂以及光引发剂在常温下混合),再将配好的陶瓷浆料通过紫外光照射引发聚合交联反应成型,得到坯体,最后排胶烧结得到陶瓷制品。具有节能环保的优势,而且制备过程简单。
附图说明
图1为本发明提供的制备方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,附图中类似的组件标号代表类似的组件。显然,以下将描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本发明实施例说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明实施例。如在本发明实施例说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
实施例1
参见图1,本实施例提供一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法,其具体成型制备步骤如下:
1)陶瓷粉体改性:将硅烷偶联剂KH-570与陶瓷粉体以1:100的质量比混合进行球磨,转速350r/min,球磨4小时后烘干,得到改性的陶瓷粉体。本实施例中的球磨陶瓷粉体由70质量份纳米级或者亚微米级氧化铝粉体、25质量份增强相和5质量份的烧结助剂组成。其中,增强相由以下质量份组分组成:20份氧化锆(ZrO2)和5份氧化铬(Cr2O3)。烧结助剂由以下质量份组分组成:3份的氧化钇(Y2O3)、1份的氧化钐(Sm2O3)和1份的氧化镧(La2O3)。
2)制备陶瓷浆料:将改性后的陶瓷粉体与树脂单体、光引发剂以及增塑剂混合,通过均质机进行高速混合。混合时均质机转速为2500r/min,混合时间为3分钟。混合后使用真空消泡机对浆料进行除气脱泡,时间为15min。浆料中陶瓷粉体固含量为55vol%,光敏树脂与增塑剂配比为如表一所示,光引发剂与光敏树脂质量比为1:100。
3)模型设计与分层:设计需要打印的陶瓷劈刀模型,使用3D打印软件进行分层切片,计算每层需要固化的区域二维形状,生成打印机控制程序。
4)氧化铝陶瓷劈刀坯体打印:将陶瓷浆料倒入树脂槽后调整刮刀高度铺平至需要的高度,根据浆料特性设置合适的曝光能量,打印得到氧化铝陶瓷劈刀坯体。
5)清洗坯体:将氧化铝陶瓷劈刀坯体从树脂盒上取下,首先用用棉纱蘸清洗剂擦拭,再在浸泡入清洗剂后通过高压空气清洗,最后通过超声振动去离子水清洗。本实施例中,清洗剂成分为乙醇和1,6-己二醇二丙烯酸酯HDDA按质量比为5:95的混合溶液。
6)排胶、烧结:采用真空-空气两步排胶法将陶瓷生坯中的有机物去除,随后置于空气烧结炉中,在1600℃温度下烧结4h。
实施例2
将硅烷偶联剂KH-570与陶瓷粉体以2:100的质量比混合进行球磨改性,转速350r/min,球磨4小时后烘干,得到改性的陶瓷粉体。本实施例中陶瓷粉体成分同实施例1。
其余同实施例1。
对比例1
对比例1与实施例1的区别在于光敏树脂的组成不一样,使用了折射率更低的光敏树脂PHEA与PPTTA进行搭配。
对比例2
对比例2与实施例1的区别在于光敏树脂的组成不一样,使用了折射率更低的光敏树脂CTFA与PPTTA进行搭配。
对比例3
对比例3与实施例1的区别在于不添加增塑剂。
对比例4
对比例4与实施例1的区别在于增塑剂的用量低。
对比例5
对比例5使用的增塑剂为DOP邻苯二甲酸二辛酯,添加比例同实施例1,其他成分同实施例1。
对比例6
对比例6与实施例1的区别在于光敏树脂PPTTA与OPPEA添加比例不一样,具体见表1。
对比例7
对比例7与实施例1的区别在于光敏树脂PPTTA与OPPEA添加比例不一样,具体见表1。
表1实施例1-4、对比例1-4的光敏树脂及增塑剂用量配比(重量份)
对上述实施例1-2以及对比例1-7得到的陶瓷劈刀样品进行性能测试:
利用旋转流变仪测试浆料流变性能(25℃-30s-1);利用阿基米德排水法测试样品的致密度;利用三点弯曲试验测得样品的弯曲强度;利用维氏硬度计测量样品的维氏硬度;采用扫描电镜检测样品的晶粒尺寸,结果见表2。
表2实施例1-2和对比例1-7的样品性能
根据表1成分与表2测试结果可以知道,同样是添加PPTTA与OPPEA作为光敏树脂成分,添加不同比例成分的浆料制备的样品性能不同:实施例1样品的致密度和抗弯强度的性能明显优于对比例6-7,这说明PPTTA与OPPEA的添加比例在2:3能够取得较佳的技术效果;相对于使用不同光敏树脂的对比例1-2,即使添加比例相同,实施例1在致密度、抗弯强度和硬度方面的性能最优,这说明在光敏树脂的选择上,PPTTA与OPPEA的组合能够取得较佳的技术效果。实施例1与对比例3-4相比,添加了不同比例的增塑剂DBP,可以发现添加40%DBP的实施例1性能优于对比例3-4,而对比例5使用了另一种型号的增塑剂DOP,可以发现性能相对于实施例1有明显的下降。实施例2则相对于实施例1增加了改性剂KH-570的添加量,可以发现相对于实施例1性能稍有下降。
综上所述,本发明通过调整光敏树脂的种类和用量,使用高折射率光敏树脂单体PPTTA与OPPEA,搭配特定的增塑剂DBP,能够进行氧化铝陶瓷劈刀的光固化制备,获得具有高精度、高强度、高性能的氧化铝陶瓷劈刀。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
以上所述,为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (6)

1.一种基于光固化成型的氧化铝陶瓷劈刀的制造方法,其特征在于,包括以下步骤:
S1、配制固含量为53-58vol%的陶瓷浆料,所述陶瓷浆料组成包括改性陶瓷粉体、高折射率光敏树脂单体、光引发剂以及增塑剂;
S2、将需要打印的陶瓷劈刀3D模型通过三维软件进行分层,确定每层需要曝光聚合的形状,并生成打印控制程序;
S3、进行光固化打印,得到陶瓷坯体;
S4、将所述陶瓷坯体清洗干净;
S5、将清洗完成的陶瓷坯体进行真空-空气排胶、烧结,得到陶瓷劈刀零件成品;
所述高折射率光敏树脂单体由乙氧基季戊四醇四丙烯酸酯和聚乙二醇邻苯基苯醚丙烯酸酯按质量比2:3组成;
所述增塑剂选自邻苯二甲酸二丁酯;
所述增塑剂与所述高折射率光敏树脂单体的质量比为2:3;
所述改性陶瓷粉体是由硅烷偶联剂与陶瓷粉体以1-2:100的质量比混合球磨后烘干得到,所述陶瓷粉体是由70-90质量份氧化铝粉体、20-30质量份增强相和1-10质量份的烧结助剂组成;
所述增强相选自ZrO2和/或Cr2O3
2.如权利要求1所述的基于光固化成型的氧化铝陶瓷劈刀的制造方法,其特征在于,所述烧结助剂选自氧化钇、氧化钐、氧化镧中的至少一种。
3.如权利要求1所述的基于光固化成型的氧化铝陶瓷劈刀的制造方法,其特征在于,所述光引发剂为(2,4,6-三甲基苯甲酰基)二苯基氧化膦。
4.如权利要求1所述的基于光固化成型的氧化铝陶瓷劈刀的制造方法,其特征在于,所述步骤S5中,进行真空-空气排胶的过程为:
先进行真空排胶:在真空排胶炉中,先从室温升温至100-160℃,保温1~2h,然后再升温至300-350℃,保温1~2h,最后升温至450~550℃,保温3~6h后随炉冷却至室温;升温速率为0.5~2℃/min;
然后进行空气排胶:在空气排胶炉中,先从室温升温至100-160℃,保温1~2h,然后再升温至300-350℃,保温1~2h,最后升温至350~450℃,保温2~6h后随炉冷却至室温;升温速率为0.5~2℃/min。
5.如权利要求1所述的基于光固化成型的氧化铝陶瓷劈刀的制造方法,其特征在于,所述步骤S5中,烧结的具体操作为:在空气烧结炉中,1600-1650℃温度下烧结2-6h。
6.一种氧化铝陶瓷劈刀,其特征在于,采用权利要求1-5任一项所述的基于光固化成型的氧化铝陶瓷劈刀的制造方法制得。
CN202310036665.7A 2023-01-10 2023-01-10 一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法 Active CN116199501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310036665.7A CN116199501B (zh) 2023-01-10 2023-01-10 一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310036665.7A CN116199501B (zh) 2023-01-10 2023-01-10 一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法

Publications (2)

Publication Number Publication Date
CN116199501A CN116199501A (zh) 2023-06-02
CN116199501B true CN116199501B (zh) 2024-05-31

Family

ID=86510626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310036665.7A Active CN116199501B (zh) 2023-01-10 2023-01-10 一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法

Country Status (1)

Country Link
CN (1) CN116199501B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874306B (zh) * 2023-07-21 2024-09-27 湖南省新化县长江电子有限责任公司 一种高耐磨水封陶瓷片的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747360A (zh) * 2017-01-18 2017-05-31 武汉纺织大学 一种3d打印光固化陶瓷浆料的制备方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN108726997A (zh) * 2018-06-07 2018-11-02 山东大学 一种氧化铝高固相含量光敏陶瓷3d打印膏料及其制备方法
CN111606719A (zh) * 2020-04-30 2020-09-01 西安增材制造国家研究院有限公司 一种光固化3d打印陶瓷浆料及其制备方法
CN112939581A (zh) * 2021-02-02 2021-06-11 广东工业大学 一种氧化锆增韧氧化铝刀具及其制备方法
CN113024243A (zh) * 2021-03-05 2021-06-25 西安增材制造国家研究院有限公司 应用于3d打印的光固化陶瓷浆料、制备方法及3d打印方法
WO2021248813A1 (zh) * 2020-06-09 2021-12-16 基迈克材料科技(苏州)有限公司 氧化铝陶瓷及其制备方法
CN114292091A (zh) * 2021-12-27 2022-04-08 南充三环电子有限公司 一种氧化铝陶瓷浆料及其制备方法和应用
CN114524676A (zh) * 2022-02-25 2022-05-24 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747360A (zh) * 2017-01-18 2017-05-31 武汉纺织大学 一种3d打印光固化陶瓷浆料的制备方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN108726997A (zh) * 2018-06-07 2018-11-02 山东大学 一种氧化铝高固相含量光敏陶瓷3d打印膏料及其制备方法
CN111606719A (zh) * 2020-04-30 2020-09-01 西安增材制造国家研究院有限公司 一种光固化3d打印陶瓷浆料及其制备方法
WO2021248813A1 (zh) * 2020-06-09 2021-12-16 基迈克材料科技(苏州)有限公司 氧化铝陶瓷及其制备方法
CN112939581A (zh) * 2021-02-02 2021-06-11 广东工业大学 一种氧化锆增韧氧化铝刀具及其制备方法
CN113024243A (zh) * 2021-03-05 2021-06-25 西安增材制造国家研究院有限公司 应用于3d打印的光固化陶瓷浆料、制备方法及3d打印方法
CN114292091A (zh) * 2021-12-27 2022-04-08 南充三环电子有限公司 一种氧化铝陶瓷浆料及其制备方法和应用
CN114524676A (zh) * 2022-02-25 2022-05-24 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法

Also Published As

Publication number Publication date
CN116199501A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN116199501B (zh) 一种基于光固化成型的氧化铝陶瓷劈刀及其制造方法
CN114380583B (zh) 一种陶瓷材料的制备方法
CN105330266B (zh) 一种齿状异形陶瓷的制备方法
CN106175950B (zh) 一种数字化面投影成形陶瓷牙冠桥制备方法
CN109437893A (zh) 一种高固含量/低粘度光固化氧化锆陶瓷浆料及其制备方法
CN111116205A (zh) 光敏树脂基碳源/碳化硅陶瓷浆料、制备多孔碳/碳化硅坯体的方法、结构件及制备方法
CN109896862A (zh) 一种复杂形状的β-SiAlON陶瓷及其制备方法
CN114368972B (zh) 可见光3d打印光固化陶瓷浆料、制备方法及打印方法
CN107949551A (zh) 基于平版印刷制造的金刚石复合材料
CN113511901B (zh) 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用
CN110668824A (zh) 一种光固化3d打印氮化硅陶瓷前驱体、其制备及成形方法
Wu et al. Realization of complex-shaped and high-performance alumina ceramic cutting tools via Vat photopolymerization based 3D printing: A novel surface modification strategy through coupling agents aluminic acid ester and silane coupling agent
Homa et al. A novel additive manufacturing technology for high‐performance ceramics
CN101032832A (zh) 激光三维加工陶瓷坯体方法与装置
TWI297002B (zh)
Wang et al. Photopolymerization-based three-dimensional ceramic printing technology
CN114436658A (zh) 一种光固化碳化硅陶瓷浆料及其制备方法与应用
CN114524676A (zh) 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷的制备方法
Jiao et al. Development and optimization of PZT suspensions with high solid loading and low viscosity for stereolithography-based additive manufacturing
CN109535333A (zh) 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品
CN117697919A (zh) 一种利用直写式3d打印技术制备复相陶瓷的方法
CN112174652A (zh) 一种光固化二氧化硅陶瓷浆料及其制备方法与应用
CN112047730B (zh) 一种光固化硅藻土陶瓷膏料的制备方法
CN111433268A (zh) 高度负载的无机填充的水性树脂体系
CN114102451B (zh) 一种天然生漆陶瓷复合金刚石工具及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant