CN109535333A - 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品 - Google Patents

一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品 Download PDF

Info

Publication number
CN109535333A
CN109535333A CN201811183999.2A CN201811183999A CN109535333A CN 109535333 A CN109535333 A CN 109535333A CN 201811183999 A CN201811183999 A CN 201811183999A CN 109535333 A CN109535333 A CN 109535333A
Authority
CN
China
Prior art keywords
photosensitive resin
printing
parts
weight
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811183999.2A
Other languages
English (en)
Inventor
戚慧琳
周鹏
严明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN201811183999.2A priority Critical patent/CN109535333A/zh
Publication of CN109535333A publication Critical patent/CN109535333A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • C08F283/105Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule on to unsaturated polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

本发明公开了一种光敏树脂及其制备方法和陶瓷浆料、3D打印制品,该光敏树脂包括如下原料组分:0.5~5wt%光引发剂、30~70wt%预聚物、10~90wt%稀释剂、0~5wt%消泡剂、0~5wt%流平剂。通过以上方式,本发明光敏树脂所采用原料价格低廉,可极大降低生产成本;通过严格控制原料和用量,各原料的有效搭配,所制得3D打印光敏树脂粘度较低、固化时间短;可与陶瓷粉末混合制备出固含量高、流变性高、可光固化的陶瓷浆料,符合3D打印要求。

Description

一种光敏树脂及其制备方法和陶瓷浆料、3D打印制品
技术领域
本发明涉及3D打印和光固化材料技术领域,具体涉及一种光敏树脂及其制备方法和陶瓷浆料、3D打印制品。
背景技术
陶瓷传统成型方法有很多:干压成型法、冷等静压成型法、浆料成型法和可塑成型法等。这些传统成型方法均需要通过设计模具,才能制备出一定形状、符合性能要求的陶瓷制品,整个制备流程耗时长、成本高,因此3D打印技术在陶瓷制备领域逐渐兴起。
目前陶瓷3D打印技术主要有选择性激光烧结成型技术(SLS)、熔融沉淀成型技术(FDM)、立体光固化成型技术(SLA)、喷射打印成型技术(IJP)等。由于成型方法和打印材料不同,这些打印技术都有各自的优缺点。
立体光固化成型技术,是以一种在特定波长的紫外光照射下可以进行快速固化的光敏树脂为原料,根据数字模型文件,紫外光有选择性地照射某一区域,最终形成三维模型。由于其具有尺寸精度高、表面质量优良、无需模具即可制作复杂模型、原料利用率接近100%等优点,目前,是市场占有率最高的一种3D打印技术。
陶瓷立体光固化成型3D打印技术是使用光敏树脂与陶瓷粉末制成的陶瓷光敏浆料作为打印原料。由于陶瓷浆料在实现立体光固化成型后,还需要进行脱脂、烧结等工艺来提高坯体致密度、强度等以满足性能要求。因此用于立体光固化成型的光敏树脂/陶瓷浆料需具备较高的固含量,同时陶瓷粉末要在浆料中均匀地分散,否则易造成产品开裂或密度不均。浆料还需要具备较好的流变性能,以便于打印过程中浆料快速铺平。光敏树脂与较多陶瓷粉末混合后,难以避免会导致浆料粘度较光敏树脂粘度大幅度升高,流变性能降低,不满足打印要求。目前常见一些的立体光固化成型技术打印机,其原装光敏树脂价格昂贵,且粘度较高,添加陶瓷粉末后尤甚,使用该原装光敏树脂制成的浆料不能满足打印要求。
发明内容
为了解决上述技术问题,本发明提供一种光敏树脂及其制备方法和陶瓷浆料、3D打印制品。
本发明所采用的技术方案是:一种3D打印用光敏树脂,包括如下原料组分:0.5~5wt%光引发剂、30~70wt%预聚物、10~90wt%稀释剂、0~5wt%消泡剂、0~5wt%流平剂。
优选地,所述3D打印光敏树脂包括如下原料组分:1~3wt%光引发剂、55~70wt%预聚物、27~42wt%稀释剂、0.1~1wt%消泡剂、0.1~1%流平剂。
3D打印中,紫外光能引起光聚合反应是由于光敏树脂中的光引发剂可以吸收相应波长范围的光,因此光敏树脂需要选取与3D打印机的紫外光波长相匹配的光引发剂。而目前常见的一些打印机,如Formlabs公司的Form 2打印机,其激光波长为405nm,故优选地,所述光引发剂的吸收光波长包括405nm。
进一步优选地,所述光引发剂包括光引发剂369、光引发剂819中的至少一种。
优选地,所述预聚物包括聚氨酯丙烯酸酯、环氧丙烯酸酯中的至少一种。
优选地,所述稀释剂包括二缩三丙二醇二丙烯酸酯、二丙二醇二丙烯酸酯中的至少一种。
优选地,所述消泡剂包括有机硅类消泡剂或聚醚型消泡剂。
优选地,所述流平剂包括有机硅聚丙烯酸酯或聚丙烯酸酯。
本发明还提供了一种上述3D打印用光敏树脂的制备方法,包括以下步骤:取各原料组分,混合后在40~60℃条件下避光搅拌。
另外,以上3D打印用光敏树脂可通过掺杂氧化铝、氧化锆、玻璃和琉璃等陶瓷粉末以制备陶瓷浆料。因而,本发明还提供了一种陶瓷浆料,包括陶瓷粉末和以上任一种3D打印光敏树脂。其中,陶瓷粉末包括氧化铝、氧化锆、玻璃或琉璃粉末等。陶瓷浆料的固含量一般为30~70%。另外,为了提高陶瓷浆料的分散均匀性,其中通常还包括分散剂,分散剂的用量一般为陶瓷粉末质量的0.5~2%,优选1%。
以上陶瓷浆料可应用于3D打印制备3D打印制品。因而,本发明还提供了一种3D打印制品,其原料包括以上任一种陶瓷浆料。
本发明的有益技术效果是:本发明提供一种光敏树脂及其制备方法和陶瓷浆料、3D打印制品,该光敏树脂使用的原材料价格低廉,可极大降低光敏树脂的生产成本,普及和推广3D打印技术在民用领域的应用;另外,通过严格控制原料和用量以及各原料的有效搭配,所制得3D打印光敏树脂粘度较低、固化时间短,可与陶瓷粉末混合制备出固含量高、流变性高、可光固化的陶瓷浆料,符合3D打印要求;经打印所得的3D打印制品样品精度高,表面质量高。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
按每重量份为2g,取2重量份光引发剂369、55重量份预聚物聚氨酯丙烯酸酯、42重量份稀释剂二缩三丙二醇二丙烯酸酯、0.5重量份有机硅类消泡剂、0.5重量份流平剂有机硅聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为50℃,遮光搅拌2h,得光敏树脂。使用旋转粘度计检测该光敏树脂的粘度,得其粘度为222mPa·s。通过测试1cm2的光敏树脂的表面干燥时间以表征光敏树脂的固化速度,经检测得1cm2的光敏树脂的表面干燥时间为76.02s。
实施例2
按每重量份为2g,取2重量份光引发剂819、60重量份预聚物环氧丙烯酸酯、37重量份稀释剂二丙二醇二丙烯酸酯、0.5重量份聚醚型消泡剂、0.5重量份流平剂聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为40℃,遮光搅拌3h,得光敏树脂。经检测,该光敏树脂的粘度为365mPa·s。
实施例3
按每重量份为2g,取2重量份光引发剂369、30重量份预聚物聚氨酯丙烯酸酯、35重量份预聚物环氧丙烯酸酯、32重量份稀释剂二丙二醇二丙烯酸酯、0.5重量份聚醚型消泡剂、0.5重量份流平剂聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为60℃,遮光搅拌1.5h,得光敏树脂。经检测,该光敏树脂的粘度为680mPa·s。
实施例4
按每重量份为2g,取2重量份光引发剂819、25重量份预聚物聚氨酯丙烯酸酯、45重量份预聚物环氧树脂丙烯酸酯、27重量份稀释剂二丙二醇二丙烯酸酯、0.5重量份有机硅类消泡剂、0.5重量份流平剂有机硅聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为50℃,遮光搅拌2h,得光敏树脂。经检测,该光敏树脂的粘度为990mPa·s。
实施例5
按每重量份为2g,取1重量份光引发剂369、60重量份预聚物聚氨酯丙烯酸酯、40重量份稀释剂二缩三丙二醇二丙烯酸酯、0.1重量份有机硅类消泡剂、0.1重量份流平剂有机硅聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为40℃,遮光搅拌2h,得光敏树脂。经检测,该光敏树脂的粘度为345mPa·s;检测1cm2的光敏树脂的表面干燥时间为90.94s。
实施例6
按每重量份为2g,取3重量份光引发剂369、65重量份预聚物环氧树脂丙烯酸酯、30重量份稀释剂二缩三丙二醇二丙烯酸酯、1重量份有机硅类消泡剂、1重量份流平剂有机硅聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为60℃,遮光搅拌1h,得光敏树脂。经检测,该光敏树脂的粘度为663mPa·s。
实施例7
按每重量份为2g,取3重量份光引发剂369、2重量份光引发剂819、30重量份预聚物环氧树脂丙烯酸酯、30重量份稀释剂二缩三丙二醇二丙烯酸酯、35重量份稀释剂二丙二醇二丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为50℃,遮光搅拌3h,得光敏树脂。经检测,该光敏树脂的粘度为108mPa·s。
实施例8
按每重量份为2g,取0.5重量份光引发剂369、25重量份预聚物环氧树脂丙烯酸酯、20重量份预聚物聚氨酯丙烯酸酯、45重量份稀释剂二缩三丙二醇二丙烯酸酯、5重量份聚醚型消泡剂、4.5重量份流平剂聚丙烯酸酯;一同置于烧杯中,玻璃棒搅拌,将烧杯放在磁力搅拌器上,温度设置为60℃,遮光搅拌1h,得光敏树脂。经检测,该光敏树脂的粘度为156mPa·s。
现常见的3D打印机Form 2使用的原装White V2树脂粘度为1060mPa·s,最高可打印粘度在2000mPa·s左右。但在原装树脂中添加陶瓷粉末后,浆料粘度会大幅度上升,难以符合打印要求,超出Form 2可打印粘度范围,因而需将光敏树脂的粘度降低。而本发明以上实施例通过严格选料和配比,所得光敏树脂粘度较小,以上光敏树脂可应用于制备陶瓷浆料。
实施例9
分别取琉璃粉末、分散剂和实施例1所制得的光敏树脂,置于球磨罐中,球磨12h左右,制备固含量为30%的琉璃/光敏树脂浆料,其中分散剂的用量为琉璃粉末质量的1%。用旋转粘度计测试浆料的粘度,得其粘度为532mPa·s。
实施例10
分别取琉璃粉末、分散剂和实施例5所制得的光敏树脂,置于球磨罐中,球磨12h左右,制备固含量为30%的琉璃/光敏树脂浆料,其中分散剂的用量为琉璃粉末质量的1%。用旋转粘度计测试浆料粘度,得其粘度为690mPa·s。
实施例11
分别取琉璃粉末、分散剂和实施例3所制得的光敏树脂,置于球磨罐中,球磨12h左右,制备固含量为30%的琉璃/光敏树脂浆料,其中分散剂的用量为琉璃粉末质量的1%。用旋转粘度计测试浆料粘度,得其粘度为1080mPa·s
实施例12
分别取琉璃粉末、分散剂和实施例4所制得的光敏树脂,置于球磨罐中,球磨12h左右,制备固含量为30%的琉璃/光敏树脂浆料,其中分散剂的用量为琉璃粉末质量的1%。用旋转粘度计测试浆料粘度,得其粘度为1390mPa·s
实施例13
分别取琉璃粉末、分散剂和实施例1所制得的光敏树脂,置于球磨罐中,球磨12h左右,制备不同固含量(10%、20%、30%、40%、50%)的琉璃/光敏树脂浆料,其中分散剂的用量为琉璃粉末质量的1%。用旋转粘度计测试各浆料粘度,所得结果如下表1。
表1
固含量 10% 20% 30% 40% 50%
粘度(mPa·s) 340 410 532 797 1460
另外,使用原装White V2树脂代替以上实施例1所制得的光敏树脂,采用相同的制备方法,制备不同固含量(0%、30%、40%、50%、60%)的琉璃/光敏树脂浆料;用旋转粘度计测试浆料粘度,所得结果如下表2。
表2
由表1和表2可知,相比于采用原装光敏树脂制得的陶瓷浆料,以上采用本发明实施例1光敏树脂所制得的陶瓷浆料粘度大大降低,且在高固含量下仍具有较低的粘度,流变性好,可避免脱脂烧结后产生坍塌、变形等问题,符合3D打印的要求。
以上所制得陶瓷浆料可应用于3D打印制备各种陶瓷制品。具体可通过3D打印中的SLA技术制备光敏树脂/陶瓷成型件,再经后续脱脂烧结,制得陶瓷制品。采用以上陶瓷浆料通过3D打印制备陶瓷制品,无需制备模具,对于一些外观或结构复杂的样品,制备工艺操作简单,可极大地缩短制备时间、降低成本,且相对于传统的工艺和原料,打印制得的陶瓷制品精度高,表面质量好。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所述权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

1.一种3D打印用光敏树脂,其特征在于,包括如下原料组分:0.5~5wt%光引发剂、30~70wt%预聚物、10~90wt%稀释剂、0~5wt%消泡剂、0~5wt%流平剂。
2.根据权利要求1所述的3D打印用光敏树脂,其特征在于,包括如下原料组分:1~3wt%光引发剂、55~70wt%预聚物、27~42wt%稀释剂、0.1~1wt%消泡剂、0.1~1%流平剂。
3.根据权利要求1或2所述的3D打印用光敏树脂,其特征在于,所述光引发剂的吸收光波长包括405nm。
4.根据权利要求1或2所述的3D打印用光敏树脂,其特征在于,所述预聚物包括聚氨酯丙烯酸酯、环氧丙烯酸酯中的至少一种。
5.根据权利要求1或2所述的3D打印用光敏树脂,其特征在于,所述稀释剂包括二缩三丙二醇二丙烯酸酯、二丙二醇二丙烯酸酯中的至少一种。
6.根据权利要求1或2所述的3D打印用光敏树脂,其特征在于,所述消泡剂包括有机硅类消泡剂或聚醚型消泡剂。
7.根据权利要求1或2所述的3D打印用光敏树脂,其特征在于,所述流平剂包括有机硅聚丙烯酸酯或聚丙烯酸酯。
8.权利要求1-7中任一项所述的3D打印用光敏树脂的制备方法,其特征在于,包括以下步骤:取各原料组分,混合后在40~60℃条件下避光搅拌。
9.一种陶瓷浆料,其特征在于,包括陶瓷粉末和权利要求1-7中任一项所述的3D打印用光敏树脂。
10.一种3D打印制品,其特征在于,所述3D打印制品的原料包括权利要求9所述的陶瓷浆料。
CN201811183999.2A 2018-10-11 2018-10-11 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品 Pending CN109535333A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811183999.2A CN109535333A (zh) 2018-10-11 2018-10-11 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811183999.2A CN109535333A (zh) 2018-10-11 2018-10-11 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品

Publications (1)

Publication Number Publication Date
CN109535333A true CN109535333A (zh) 2019-03-29

Family

ID=65843607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811183999.2A Pending CN109535333A (zh) 2018-10-11 2018-10-11 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品

Country Status (1)

Country Link
CN (1) CN109535333A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964154A (zh) * 2019-11-18 2020-04-07 华南协同创新研究院 一种间接3d打印辅助成型用光敏树脂材料及其制备方法和应用
CN112280241A (zh) * 2019-07-12 2021-01-29 中国科学院福建物质结构研究所 一种3d打印光敏树脂及制备方法和用途
CN113173792A (zh) * 2021-04-09 2021-07-27 上海簇睿低碳能源技术有限公司 一种适用于3d打印陶瓷的树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250422A (zh) * 2013-06-26 2014-12-31 合肥杰事杰新材料股份有限公司 一种用于3d打印的光敏树脂及其制备方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN107382327A (zh) * 2017-09-20 2017-11-24 吴江中瑞机电科技有限公司 陶瓷3d打印浆料的制备及应用
CN108250688A (zh) * 2017-10-31 2018-07-06 常州市泰英物资有限公司 一种3d打印材料用光敏树脂及其制备方法
CN108329038A (zh) * 2018-01-17 2018-07-27 龙泉市金宏瓷业有限公司 一种导向型3d打印陶瓷的成型方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250422A (zh) * 2013-06-26 2014-12-31 合肥杰事杰新材料股份有限公司 一种用于3d打印的光敏树脂及其制备方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN107382327A (zh) * 2017-09-20 2017-11-24 吴江中瑞机电科技有限公司 陶瓷3d打印浆料的制备及应用
CN108250688A (zh) * 2017-10-31 2018-07-06 常州市泰英物资有限公司 一种3d打印材料用光敏树脂及其制备方法
CN108329038A (zh) * 2018-01-17 2018-07-27 龙泉市金宏瓷业有限公司 一种导向型3d打印陶瓷的成型方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨铁军: "《产业专利分析报告(第18册) 增材制造》", 31 May 2014, 知识产权出版社 *
莫健华: "《液态树脂光固化3D打印技术》", 30 September 2016, 西安电子科技大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280241A (zh) * 2019-07-12 2021-01-29 中国科学院福建物质结构研究所 一种3d打印光敏树脂及制备方法和用途
CN112280241B (zh) * 2019-07-12 2021-12-14 中国科学院福建物质结构研究所 一种3d打印光敏树脂及制备方法和用途
CN110964154A (zh) * 2019-11-18 2020-04-07 华南协同创新研究院 一种间接3d打印辅助成型用光敏树脂材料及其制备方法和应用
CN113173792A (zh) * 2021-04-09 2021-07-27 上海簇睿低碳能源技术有限公司 一种适用于3d打印陶瓷的树脂及其制备方法

Similar Documents

Publication Publication Date Title
Schwentenwein et al. Additive manufacturing of dense alumina ceramics
Gonzalez et al. Additive manufacturing of functionally graded ceramic materials by stereolithography
CN109535333A (zh) 一种光敏树脂及其制备方法和陶瓷浆料、3d打印制品
CN106007723B (zh) 一种SiC陶瓷素坯的制造方法
Liu et al. Effect of rheological properties of the suspension on the mechanical strength of Al2O3–ZrO2 composites prepared by gelcasting
Mao et al. Gelcasting of alumina using epoxy resin as a gelling agent
CN106541129A (zh) 一种颗粒增强金属基复合材料的制备方法
Camargo et al. 3Y-TZP DLP additive manufacturing: solvent-free slurry development and characterization
CN106747360A (zh) 一种3d打印光固化陶瓷浆料的制备方法
CN106495670A (zh) 用于光固化陶瓷3d打印的胶粘剂、其制备方法和应用
CN110128116A (zh) 一种光固化用陶瓷浆料及其制备方法
CN107540352A (zh) 3d打印氧化铝增韧陶瓷浆料的制备及应用
CN110194660A (zh) 一种光固化用高固相氧化铝陶瓷浆料及其制备方法
CN106747429A (zh) 一种氧化锆增强3d打印陶瓷浆料及其制备方法
CN108275979A (zh) 一种用于光固化3d打印的陶瓷材料、陶瓷件及其制备方法
CN108911727A (zh) 一种用于3d打印的堇青石陶瓷浆料及其制备方法
CN110963788A (zh) 一种陶瓷浆料的制备方法和陶瓷器件
CN109809824A (zh) 一种光固化陶瓷浆料及快速成型方法
Lin et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions
CN112979283A (zh) 基于面曝光快速成型工艺的陶瓷浆料及其制备方法和应用
Chen et al. Fabrication of YAG ceramic tube by UV-assisted direct ink writing
Li et al. A comprehensive evaluation of vat-photopolymerization resins and alumina slurries for ceramic stereolithography
CN110951000A (zh) 一种3d打印制备透明陶瓷的工艺
CN110917044A (zh) 一种3d打印高透明度氧化锆陶瓷牙冠材料
Zhang et al. Fabrication and properties of alumina ceramics shaped by digital light processing as an additive manufacturing technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190329

RJ01 Rejection of invention patent application after publication