CN116161949A - 一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用 - Google Patents

一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用 Download PDF

Info

Publication number
CN116161949A
CN116161949A CN202211739821.8A CN202211739821A CN116161949A CN 116161949 A CN116161949 A CN 116161949A CN 202211739821 A CN202211739821 A CN 202211739821A CN 116161949 A CN116161949 A CN 116161949A
Authority
CN
China
Prior art keywords
near infrared
luminescent material
infrared ceramic
ceramic luminescent
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211739821.8A
Other languages
English (en)
Other versions
CN116161949B (zh
Inventor
雷炳富
邹西坤
郑明涛
张学杰
张浩然
李唯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maoming Sub Center Of Guangdong Provincial Laboratory Of Modern Agricultural Science And Technology
South China Agricultural University
Original Assignee
Maoming Sub Center Of Guangdong Provincial Laboratory Of Modern Agricultural Science And Technology
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maoming Sub Center Of Guangdong Provincial Laboratory Of Modern Agricultural Science And Technology, South China Agricultural University filed Critical Maoming Sub Center Of Guangdong Provincial Laboratory Of Modern Agricultural Science And Technology
Priority to CN202211739821.8A priority Critical patent/CN116161949B/zh
Publication of CN116161949A publication Critical patent/CN116161949A/zh
Application granted granted Critical
Publication of CN116161949B publication Critical patent/CN116161949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用。该发光材料的化学通式为Ga2‑xO3:xCr3+,其中,0.005≤x≤0.1;以Ga2O3作为发光材料基质,并掺杂Cr3+实现近红外发射。其中,Ga2O3:Cr3+近红外陶瓷发光材料内量子效率高达为86%,外量子效率最高为50%,在150℃时表现为零热猝灭行为,可用于高功率LED/LD器件封装。使用本发明制备的发光材料制备的LED/LD器件能够实现对不同成熟度的荔枝进行无损检测,可精确判断荔枝的上市时间从而增大经济效益。此外,本发明提供的发光材料在其他农产品的品质检测或植物照明等方面也具有广泛的应用前景。

Description

一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用
技术领域
本发明涉及一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用,属于无机发光材料技术领域。
背景技术
近红外光是一种在780–2500nm范围内的电磁波,在近红外光谱技术中具有深的组织穿透性、低背景荧光干扰等特点,同时能够有效反映有机物分子中化学键的倍频和合频信息。因此,近红外光源在光学无损检测手段中扮演着关键角色,已被广泛应用于农业、医学、食品等领域。然而,传统近红外光源具有固有的体积大、能耗高等缺点,无法满足现代实际应用对便携式光谱仪的需求。另一方面,采用多波段多数量封装的LED矩阵光源电路复杂、成本极高,并不是理想的近红外光源。
过渡金属离子或者稀土离子掺杂的高性能近红外发光材料制备的近红外荧光转换型LED/LD器件拥有使用寿命长、光电转换效率高、体积小等优势。其中,发光效率高、成本低廉的蓝光芯片是近红外荧光转换型LED器件芯片的首选对象,有利于推广该类LED器件在便携式光谱仪中的全面普及。而高性能、可被蓝光高效激发的宽带近红外发光材料是该类LED/LD器件的核心转光材料,直接决定了近红外LED/LD器件的发光效率、光谱连续性等性能。在无机化合物中掺杂稀土离子(Pr3+、Nd3+、Tm3+、Eu2+、Yb3+、Er3+、Ho3+)或者过渡金属离子(Cr3+、Ni2+、Mn2+)能够产生近红外发射,其中能够被蓝光高效激发无机发光材料的发光中心一般为Eu2+、Mn2+与Cr3+。然而,Eu2+与Mn2+激活的宽带近红外发光材料的报道较少,光谱可调性差;相反,Cr3+能够在中间晶体场或弱晶体场环境中产生宽带近红外发射从而在众多稀土与过渡金属激活剂中脱颖而出。
尽管Cr3+掺杂在晶格中的八面体位点容易获得近红外发射,但Cr3+的近红外发光源于d-d禁阻跃迁,其吸收截面小,导致Cr3+掺杂的近红外发光材料外量子效率较低。为了提高Cr3+掺杂的近红外发光材料外量子效率,科研人员提出两种研究思路:一是提高Cr3+所在八面体晶格环境中的晶格畸变,部分程度打破d-d禁阻跃迁,增强其对蓝光的吸收效率;二是制备块体Cr3+掺杂的近红外发光材料,减少基体对光的散射,提高Cr3+对激发光的利用率。由于无法实现上述解决思路,期刊文献(DOI:10.1039/D0TC02705G,10.1021/acsami.1c05949)报道的Ga2O3:Cr3+近红外粉末发光材料内量子效率尽管达到90%以上,但是其外量子效率皆低于29%。同时,期刊文献报道的Ga2O3:Cr3+近红外粉末发光材料热猝灭温度远低于150℃,所以Ga2O3:Cr3+的光学性能无法满足器件封装的基本要求。与此同时,与期刊文献报道一样,专利申请号为202111262452.3中所述的纳米Ga2O3:Cr3+近红外粉末发光材料的最佳激发位置位于435nm左右,与蓝色InGaN芯片/蓝色LD光源(445–452nm)的发射光不匹配,极大的影响了器件封装的光学性能。同时,基于理论与科研人员对Cr3+掺杂的近红外发光材料的大量结果推测,专利202111262452.3中所述的纳米Ga2O3:Cr3+近红外粉末发光材料的外量子效率与抗热猝灭性能可能与文献报道相差无几。因此,有必要改进Ga2O3:Cr3+近红外发光材料的制备方法,优化其近红外光学性能,提高Ga2O3:Cr3+近红外发光材料的实际应用潜力。
荔枝作为一种高经济价值、营养丰富、食味鲜美的亚热带水果,深受消费者的喜爱。有大量研究表明,不同品种荔枝适合采摘的时间与成熟度存在明显的差异,而在每种品种荔枝适宜的成熟度对其果实进行采摘,这有助于采摘到最佳品质的荔枝以及提高荔枝采后的耐贮运能力。但是对于荔枝近成熟度判断还没有一种较好的检测方法。
红外光谱技术可以不损伤荔枝的情况下有效反馈荔枝内在的色素、糖分、水分等成分与含量,从而为判断荔枝果实成熟度在实时监测上的应用提供了一种新的途径。因此,开发高量子效率与低热猝灭行为的近红外发光材料对近红外光谱技术在荔枝成熟度无损检测上具有非凡的意义。
发明内容
(一)要解决的技术问题
为了解决现有技术的近红外发光材料的发光效率和热稳定性能不理想的技术问题,本发明提供一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用,同时,本发明提供了所述近红外陶瓷发光材料的应用,用于制备LED/LD器件装置,能够满足植物照明、生物检测与成像等应用需求;并演示了近红外器件在荔枝成熟度无损检测中的应用。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料,该近红外陶瓷发光材料的化学通式为Ga2-xO3:xCr3+,其中,0.005≤x≤0.1;且以Cr3+为发光中心。
优选地,当x=0.03时,该近红外陶瓷发光材料内量子效率高达86%,外量子效率最高为50%,并在150℃时表现为零热猝灭行为。
如上所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法,其包括如下步骤:
S1、按照化学通式Ga2-xO3:xCr3+中Ga与Cr元素的化学计量比称取原料,并研磨混合,得到原料混合物;其中,0.005≤x≤0.1;
S2、将混合研磨均匀的原料混合物装入坩埚并置于空气或通有还原气氛的高温炉中,进行高温煅烧,然后自然降温冷却,从而得到Ga2O3:Cr3+掺杂近红外陶瓷发光材料。
如上所述的制备方法,优选地,在步骤S1中,原料为Ga2O3和Cr2O3、C6H9O6Cr或铬粉。
如上所述的制备方法,优选地,在步骤S2中,所述高温煅烧为在1150–1450℃保温2–8小时进行第一段煅烧,并再次升温至1500–1700℃保温3–8小时进行第二段煅烧。
进一步优选地,在步骤S2中,所述高温煅烧包括第一段煅烧和第二段煅烧,第一段煅烧温度为1300–1650℃,第一段煅烧时间为2-5小时,第二段煅烧温度为1550–1600℃,第二段煅烧时间为3–8h。
如上所述的方法,优选地,在步骤S2中,所述高温煅烧为在1500–1700℃保温3–12小时。
如上所述的方法,优选地,所述还原气氛为氮氢混合气、氩氢混合气、碳粉还原或CO气氛。
如上所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料在制备近红外LED器件装置中的应用。
如上所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料在制备近红外LD器件中的应用。
如上所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料制备的LED器件装置/LD器件在荔枝成熟度无损检测中的应用。
本发明实际上是提供了一种用于荔枝成熟度无损检测的高量子效率与优异抗猝灭行为的近红外陶瓷发光材料及其制备方法。
(三)有益效果
本发明的有益效果是:
本发明提供了一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法,获得材料为高量子效率与优异抗猝灭行为的近红外陶瓷发光材料,以Ga2O3作为发光材料基质,并掺杂Cr3+实现近红外发射。其中,Ga2O3:Cr3+近红外陶瓷发光材料内量子效率高达86%,外量子效率最高为50%,在150℃时表现为零热猝灭行为,可用于高功率LED/LD器件封装。使用本发明所述的Ga2O3:Cr3+近红外陶瓷发光材料制备的LED/LD器件能够实现对不同成熟度的荔枝进行无损检测,可精确判断荔枝的上市时间从而增大经济效益。此外,所述的Ga2O3:Cr3+近红外陶瓷发光材料在其他农产品的品质检测或植物照明等方面也具有广泛的应用前景。
附图说明
图1为本发明实施例1的Ga1.97O3:0.03Cr3+近红外陶瓷发光材料与粉末发光材料的激发光谱的对比图;
图2为本发明实施例1的Ga1.97O3:0.03Cr3+近红外陶瓷发光材料与粉末发光材料的发射光谱的对比图;
图3为本发明实施例1的Ga1.97O3:0.03Cr3+近红外陶瓷发光材料与粉末发光材料的抗热猝灭性能对比图;
图4为本发明实施例1的Ga1.97O3:0.03Cr3+近红外陶瓷发光材料的微观形貌图;
图5为本发明实施例1与2的Ga1.97O3:0.03Cr3+和Ga1.98O3:0.02Cr3+近红外陶瓷发光材料的XRD图;
图6为近红外LED器件电致发光光谱。
图7为便携式荔枝成熟度检测仪简易示意图
图8为本发明近红外LD器件对成熟与未成熟的荔枝检测的荧光光谱。
具体实施方式
本发明的制备方法采用高温固相法制备Ga2O3:Cr3+近红外发光材料,高温固相反应为多种固态反应物参加的多固态反应,利用晶体中的缺陷和各种离子化学势使各种离子在高温下互扩散、迁移形成Ga2O3晶相的Ga2O3:Cr3+近红外发光材料。同时,提高原料合成温度能够降低粉粒表面能,原料不断进行物质迁移,晶界随之移动,气孔逐步排除,产生体积收缩,使坯体成为具有一定强度的瓷体。而铬源在其中作为发光中心,在制备过程中Cr3+随机占据Ga2O3中的GaO6八面体位点,进而在紫外、蓝光或红光激发下产生近红外发光。
本发明提供的一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料,其化学通式为Ga2-xO3:xCr3+,其中,0.005≤x≤0.1。
其中,化学通式为Ga2-xO3:xCr3+对应的为近红外陶瓷发光材料,能够被紫外光、蓝光和红光高效激发,其激发带从250nm延展到720nm;Cr3+为近红外发光中心,所发射的近红外波长为630–1100nm,发射峰值约为730nm。
本发明提供的一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法,其包括如下步骤:
S1:按照化学通式Ga2-xO3:xCr3+中Ga与Cr元素的化学计量比称取原料,并研磨混合,得到原料混合物;其中,0.005≤x≤0.1;
S2:将混合研磨均匀的原料混合物装入坩埚并置于空气或通有还原气氛的高温炉中,然后自然降温冷却,从而得到近红外陶瓷发光材料。
进一步优选地,还原气氛为氮氢混合气、氩氢混合气、碳粉还原或CO气氛。
进一步优选地,高温煅烧为在1150–1450℃保温2–8小时进行第一段煅烧,并再次升温至1500–1700℃保温3–8小时进行第二段煅烧。
进一步优选地,高温煅烧包括第一段煅烧和第二段煅烧,第一段煅烧温度为1300–1450℃,第一段煅烧时间为2–5h,第二段煅烧温度为1550–1650℃,第二段煅烧时间为3–8h。
进一步优选地,仅一次高温煅烧工序,在1500–1700℃保温3–12小时,然后自然降温冷却,从而得到近红外陶瓷发光材料。
如上所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料在制备近红外LED器件装置/LD器件中的应用。
具体本发明提供了一种近红外LED器件,包括LED芯片、封装基板和上述的Ga2O3:Cr3+掺杂近红外陶瓷发光材料作为转光材料,所述LED芯片的发光波长为250–720nm,LED芯片优选为GaInN或GaN半导体芯片。
具体地,近红外LED器件进行制备包括:
1)将Ga2O3:Cr3+掺杂近红外陶瓷发光材料切割直径为1-150mm的圆片或边长为1-150mm的方片;
2)使用透明硅胶将切割好的陶瓷片与LED芯片粘接。本发明还提供了一种近红外LD器件,包括LD蓝光光源、Ga2O3:Cr3+掺杂近红外陶瓷发光材料与透镜,所述LD芯片的发光波长为270–720nm,优选为445–452nm的蓝光LD光源。
具体地,近红外LD器件进行制备包括
(1)透过式封装:
1)将上述制备的Ga2O3:Cr3+掺杂近红外陶瓷发光材料陶瓷切割为:①直径1–150mm的圆片;或②边长1–150mm的方片;或③其他各类形状;
2)将切割好的陶瓷片与蓝光激光二极管及相应透镜按直线进行集成装配;
或(2)反射式封装:
1)将上述制备的Ga2O3:Cr3+掺杂近红外陶瓷发光材料陶瓷切割为:①直径1–150mm的圆片;或②边长1–150mm的方片;或③其他各类形状;2)将切割好的陶瓷片其中一面黏结在铜或铝片上,3)与蓝光/紫外光激光二极管按V字形组装。
如上所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料制备的LED器件装置/LD器件在在荔枝成熟度无损检测中的应用。具体地制备的近红外LED/LD器件为光源,测试不同成熟度荔枝在630–1000nm范围内的吸收光谱或者漫反射光谱。
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
实施例1
将Ga2O3和Cr2O3粉末按照Ga1.97O3:0.03Cr3+的化学计量比称重(即按Ga元素与Cr3+元素的物质的量为1.97:0.03进行称重),使用玛瑙研钵研磨0.5h以实现原料混合均匀。将混合原料转移至刚玉坩埚中,放置于空气高温马弗炉中于1300℃煅烧5h,并再次升温至1600℃保温8小时,然后自然降温冷却,从而得到Ga1.97O3:0.03Cr3+近红外陶瓷发光材料。
对比例1
为获得对照的Ga1.97O3:0.03Cr3+粉末发光材料,将Ga2O3和Cr2O3粉末按照Ga1.97O3:0.03Cr3+的化学计量比称重(即按Ga元素与Cr3+元素的物质的量为1.97:0.03进行称重),使用玛瑙研钵研磨0.5h以实现原料混合均匀。将混合原料转移至刚玉坩埚中,放置于空气高温马弗炉中于1300℃煅烧5h,然后自然降温冷却,从而得到Ga1.97O3:0.03Cr3+近红外粉末发光材料。
将上述实施例1获得Ga1.97O3:0.03Cr3+近红外陶瓷发光材料(使用Ceramic表示,下同)与对比例1制得作为对照的Ga1.97O3:0.03Cr3+粉末发光材料(使用Powder表示,下同)使用爱丁堡FLS-1000及其附件测试各自的光致发光光谱与抗热猝灭性能。如图1所示,实施例1获得陶瓷发光材料在蓝光区域的吸收范围更宽,且与蓝光激光二极管的发射峰位(即发射峰位为445nm、450nm或452nm,记为LD 445nm、LD 450nm或LD 452nm)更加匹配;反之,对照的Ga1.97O3:0.03Cr3+粉末发光材料的吸收最强峰位位于435nm,与商业的蓝光激光二极管最佳发射峰位匹配度低,表明实施例1获得的近红外陶瓷发光材料更适合用于蓝光LD器件。图2为陶瓷发光材料与对照粉末发光材料在450nm激发下的发射光谱,两种材料均在600–1100nm范围内表现出近红外发射,但实施例获得的陶瓷发光材料的发光强度是对照粉末发光材料的1.7倍。同时,陶瓷发光材料与对照粉末发光材料的抗热猝灭性能如图3所示,对照的Ga1.97O3:0.03Cr3+粉末发光材料的抗热猝灭温度远低于100℃,而实施例的热猝灭温度远高于200℃(图2),并在150℃时表现为零热猝灭行为。同时,在450nm激发下,利用Quantaurus-QY Plus C13534-12仪器测得Ga1.97O3:0.03Cr3+近红外陶瓷发光材料的内、外量子效率分别为86%和50%,而对照的粉末发光材料内、外量子效率分别为89%和37%。总之,无论发光性能还是LED/LD器件对发光材料的需求而言,实施例获得的近红外陶瓷发光材料均显著优于对照的粉末发光材料。图4的扫描电镜表明Ga1.97O3:0.03Cr3+陶瓷发光材料为致密的块体陶瓷。
实施例2
将Ga2O3和Cr2O3粉末按照Ga1.98O3:0.02Cr3+的化学计量比称重,使用玛瑙研钵研磨0.3h以实现原料混合均匀。将混合原料转移至刚玉坩埚中,放置于空气高温马弗炉中于1600℃煅烧8h,然后自然降温冷却,从而得到近红外陶瓷发光材料。在450nm激发下,利用Quantaurus-QY Plus C13534-12仪器测得的内外量子效率分别为87%和49%。
将实施例1制备的Ga1.97O3:0.03Cr3+材料和实施例2中制备的Ga1.98O3:0.02Cr3+材料均进行XRD表征,结果如图5所示,其中Ga1.97O3:0.03Cr3+与Ga1.98O3:0.02Cr3+陶瓷发光材料的XRD衍射峰与Ga2O3的标准卡片PDF#76-0573一致,表明本发明获得了单一纯相的Ga2O3:Cr3+近红外陶瓷发光材料。
实施例3–8
制备的操作步骤与实施例1或2相同,不同在于其化学式、煅烧温度、气氛、煅烧时间,具体见下表1。
表1实施例3–8的近红外陶瓷发光材料化学式及制备条件
Figure BDA0004032448200000091
在实施例3–8中,其各自获得材料利用爱丁堡FLS 1000对光致发光光谱进行了测试,其激发与发射光谱结果与实施例1基本一致,特征激发在紫外、蓝光与红光区域,发射范围为600–1100nm。同时,利用Quantaurus-QY Plus C13534-12仪器测得所有获得的材料其内外量子效率均高于70%和40%,表明上述获得Ga2-xO3:xCr3+近红外陶瓷发光材料均能获得一个宽带发射的近红外光谱、在紫外及可见光区域有一个宽范围的吸收光谱和高的内外量子效率。
实施例9
本实施例中选用波长为450nm的蓝光LED芯片,实施例1制备的Ga1.97O3:0.03Cr3+近红外陶瓷发光材料。将目标陶瓷发光材料用透明硅胶粘在LED芯片上,然后置于120℃干燥20分钟,焊接好电路,得到本发明的近红外LED器件。如图6为封装的LED近红外器件发光光谱,其电致发光光谱除了LED芯片提供的蓝光光质,还有本发明所述的近红外陶瓷发光材料提供的近红外发光,且近红外发射最强峰约730nm,与植物远红光光敏色素吸收峰十分匹配。因此,制备的LED器件可以用于植物照明领域。
实施例10
本实施例中选用波长为452nm的蓝光LD光源,采用实施例2制备的Ga1.98O3:0.02Cr3 +近红外陶瓷发光材料作为目标发光材料。将Ga1.98O3:0.02Cr3+近红外陶瓷发光材料切割为直径为140mm的圆片,随后将圆片陶瓷发光材料嵌入在透过式LD光源前,焊接好电路,得到本发明的近红外LD器件。相比于LED,LD亮度更高,能耗更小,使用寿命更长,重要的是可以克服LED芯片的“效率下降”问题,因此,LD器件被认为是大功率、高亮度的固态照明应用。而本发明提供的近红外陶瓷发光材料具有高量子效率与零猝灭行为满足LD器件的封装要求,受限于测试设备的限制,无法测试实际器件性能,但可预见的,LD光源与Ga1.98O3:0.02Cr3+近红外陶瓷发光材料封装的近红外器件具有较为可观近红外光学性能。
实施例11
本实施例中选用波长为452nm的蓝光LD光源,采用实施例1制备的Ga1.97O3:0.03Cr3 +近红外陶瓷发光材料作为目标发光材料。将Ga1.97O3:0.03Cr3+近红外陶瓷发光材料切割为边长为140mm的方片,随后将方片陶瓷发光材料黏结在铝块上,再将其与蓝光激光二极管按V字形组装焊接好电路,得到本发明的近红外LD器件。本实施例近红外LD器件为反射式LD器件,能够为发光材料提供高导热性的金属衬底,进而进一步降低发光材料的热猝灭行为。
实施例12
荔枝在不同成熟阶段,果皮颜色会经历青绿、黄绿、鲜红、暗红且内果皮由白变红的过程,因此果农常通过观测荔枝表皮判断荔枝的成熟度,但该方法属于非定性的判断方法,一旦判断失误会造成不可逆的经济损失。在大量的荔枝成熟度的理化参数中,通过测定糖分含量从而判断荔枝成熟度是一种科学的方法。其中,近红外光谱技术属于一种无损检测技术,能够在不破坏果实的前提下快速判断荔枝成熟度,这是由于可溶性糖(蔗糖、葡萄糖和果糖)在近红外区域存在特征吸收,即表现出第三(910nm)和第四(746nm)中C-H拉伸的泛音。基于此,本发明采用实施例13制备的LD器件,结合200-900nm的便携式光纤光谱仪搭建了一个简易的便携式荔枝成熟度检测仪对不同成熟度的荔枝检测。简易的便携式荔枝成熟度检测仪结构如图7所示,以实施例2制备Ga1.98O3:0.02Cr3+近红外陶瓷发光材料封装的LD器件(即实施例10)为近红外光源,利用便携式光纤光谱仪进行样品吸收曲线的检测,显示器为数据输出端。将目标荔枝放入样品仓,开启近红外光源,使用便携式光纤光谱仪配套软件即可实现不同成熟度荔枝的检测。利用图7的便携式荔枝成熟度检测仪对成熟(Mature表示)与不成熟荔枝样本(Immature表示)检测结果如图8所示,未成熟的荔枝在600-730nm区域内有较为明显的吸收,这主要是因为未成熟的荔枝果皮中含有更多的叶绿素,而成熟的荔枝花青素含量更高,在600-730nm区域内无明显吸收。因此,在600-730nm区域是否有特征吸收可以作为判断荔枝是否成熟的依据之一。此外,成熟荔枝在800nm以后的范围内有明显的吸收(受限于可见光探测器对近红外发射不灵敏,不同成熟度荔枝间在近红外区域吸收特征差异被缩小),这归因于糖的吸收带和碳水化合物与水的羟基的结合作用,而成熟的荔枝可溶性糖浓度不断增加,糖水比值增加,因此在740nm后的更长波段范围内出现明显的特征吸收,是荔枝成熟度判断的重要依据之一。因此,以实施例2制备Ga1.98O3:0.02Cr3+近红外陶瓷发光材料封装的LD器件为近红外光源,利用便携式光纤光谱仪进行荔枝样品吸收曲线的检测,如果检测结果显示600-730nm区域内有较为明显的吸收,表明荔枝未成熟,如果显示600-730nm区域内无明显的吸收且740nm以后的范围内有明显的吸收,表明荔枝成熟,因此本实施例说明该器件在荔枝成熟度方面检测的应用潜力。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料,其特征在于,该近红外陶瓷发光材料的化学通式为Ga2-xO3:xCr3+,其中,0.005≤x≤0.1;且以Cr3+为发光中心。
2.如权利要求1所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法,其特征在于,其包括如下步骤:
S1、按照化学通式Ga2-xO3:xCr3+中Ga与Cr元素的化学计量比称取原料,并研磨混合,得到原料混合物;其中,0.005≤x≤0.1;
S2、将混合研磨均匀的原料混合物装入坩埚并置于空气或通有还原气氛的高温炉中,进行高温煅烧,然后自然降温冷却,从而得到Ga2O3:Cr3+掺杂近红外陶瓷发光材料。
3.如权利要求2所述的制备方法,其特征在于,在步骤S1中,原料为Ga2O3和Cr2O3、C6H9O6Cr或铬粉。
4.如权利要求2所述的制备方法,其特征在于,在步骤S2中,所述高温煅烧为在1150–1450℃保温2–8小时进行第一段煅烧,并再次升温至1500–1700℃保温3–8小时进行第二段煅烧。
5.如权利要求2所述的制备方法,其特征在于,所述高温煅烧包括第一段煅烧和第二段煅烧,第一段煅烧温度为1300–1450℃,煅烧时间为2–5h,第二段煅烧温度为1550–1650℃,煅烧时间为3–8h。
6.如权利要求2所述的制备方法,其特征在于,在步骤S2中,所述高温煅烧仅一段煅烧温度,即在1500–1700℃保温3–8小时。
7.如权利要求2所述的制备方法,其特征在于,所述还原气氛为氮氢混合气、氩氢混合气、碳粉还原或CO气氛。
8.如权利要求1所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料或权利要求2-7中任一项所述制备方法获得的Ga2O3:Cr3+掺杂近红外陶瓷发光材料在制备近红外LED器件装置中的应用。
9.如权利要求1所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料或权利要求2-7中任一项所述制备方法获得的Ga2O3:Cr3+掺杂近红外陶瓷发光材料在制备近红外LD器件中的应用。
10.采用如权利要求1所述Ga2O3:Cr3+掺杂近红外陶瓷发光材料或权利要求2-7中任一项所述制备方法获得的Ga2O3:Cr3+掺杂近红外陶瓷发光材料制备的LED器件装置/LD器件在荔枝成熟度无损检测中的应用。
CN202211739821.8A 2022-12-30 2022-12-30 一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用 Active CN116161949B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211739821.8A CN116161949B (zh) 2022-12-30 2022-12-30 一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211739821.8A CN116161949B (zh) 2022-12-30 2022-12-30 一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN116161949A true CN116161949A (zh) 2023-05-26
CN116161949B CN116161949B (zh) 2024-04-16

Family

ID=86417549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211739821.8A Active CN116161949B (zh) 2022-12-30 2022-12-30 一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116161949B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739988A (zh) * 2020-06-29 2020-10-02 山东大学 一种垂直结构宽带近红外led及制备方法
CN112831321A (zh) * 2019-11-22 2021-05-25 亿光电子工业股份有限公司 荧光材料及光电子器件
US20210388262A1 (en) * 2019-03-06 2021-12-16 Grirem Advanced Materials Co.,Ltd Red light and near-infrared light-emitting material, preparation method thereof and light-emitting device
CN113861968A (zh) * 2021-10-28 2021-12-31 宁波美成生物科技有限公司 一种掺杂Cr3+的近红外纳米荧光粉及其制备方法和应用
CN114276807A (zh) * 2021-12-27 2022-04-05 北京科技大学 一种近红外荧光粉和制备方法以及使用其的近红外光源
WO2022091568A1 (ja) * 2020-10-28 2022-05-05 株式会社日立ハイテク 蛍光体、それを用いた光源、生化学分析装置、及び蛍光体の製造方法
CN115504672A (zh) * 2022-09-26 2022-12-23 江西理工大学 一种铬离子掺杂多相近红外玻璃陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388262A1 (en) * 2019-03-06 2021-12-16 Grirem Advanced Materials Co.,Ltd Red light and near-infrared light-emitting material, preparation method thereof and light-emitting device
CN112831321A (zh) * 2019-11-22 2021-05-25 亿光电子工业股份有限公司 荧光材料及光电子器件
CN111739988A (zh) * 2020-06-29 2020-10-02 山东大学 一种垂直结构宽带近红外led及制备方法
WO2022091568A1 (ja) * 2020-10-28 2022-05-05 株式会社日立ハイテク 蛍光体、それを用いた光源、生化学分析装置、及び蛍光体の製造方法
CN113861968A (zh) * 2021-10-28 2021-12-31 宁波美成生物科技有限公司 一种掺杂Cr3+的近红外纳米荧光粉及其制备方法和应用
CN114276807A (zh) * 2021-12-27 2022-04-05 北京科技大学 一种近红外荧光粉和制备方法以及使用其的近红外光源
CN115504672A (zh) * 2022-09-26 2022-12-23 江西理工大学 一种铬离子掺杂多相近红外玻璃陶瓷及其制备方法

Also Published As

Publication number Publication date
CN116161949B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
KR102391310B1 (ko) 근적외선 형광 분말 및 상기 형광 분말을 함유하는 발광 장치
JP7062693B6 (ja) 近赤外発光材料および当該材料で作製された発光装置
Liu et al. Deep red SrLaGa 3 O 7: Mn 4+ for near ultraviolet excitation of white light LEDs
CN114507517A (zh) 基于尖晶石结构的宽带近红外荧光粉及其制备方法和应用
CN112457847B (zh) 一种Mn/Cr共掺杂Li2MgAO4的近红外荧光粉及其制备方法
WO2019153760A1 (zh) 一种氮化物发光材料及包含其的发光装置
CN115558491B (zh) 一种宽带短波红外荧光粉及其制备方法和发光器件
Li et al. Investigation of enhanced far-red emitting phosphor GdAlO3: Mn4+ by impurity doping for indoor plant growth LEDs
CN111647404A (zh) 一种Cr3+激活的宽带近红外荧光粉及其制备方法
US9163175B2 (en) β-sialon and method of manufacturing thereof, and light-emitting device
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
Chen et al. Energy transfer realizes efficient NIR emitting Ca2ScTaO6: Cr3+, Yb3+ perovskite-structured phosphors
Zhang et al. Broadband near-infrared Cr 3+: β-Ga 2 O 3 fluorescent single crystal grown by the EFG method
CN116161949B (zh) 一种Ga2O3:Cr3+掺杂近红外陶瓷发光材料的制备方法及其应用
CN110408393B (zh) 一种红光及近红外发光材料和发光器件
CN114540013B (zh) 一种提升CaO:Eu2+近红外荧光粉发光强度和热稳定性的方法及其应用
CN115058247B (zh) 一种短波红外发光材料及其制备方法和应用
Wang et al. Photoluminescence evolutions and physical mechanism discussions of Sr1. 95-x (Ca/Ba) xMgSi2O7: Eu2+ phosphors
EP2615154B1 (en) METHOD FOR PRODUCING TYPE ß-SIALON
CN115558490B (zh) 一种近红外发光稀土离子掺杂荧光粉及其制备方法和应用
CN110003909A (zh) Cr3+激活的宽带发射近红外荧光粉及制备方法
CN115926791B (zh) 一种近红外荧光粉及其制备方法和发光装置
Batentschuk et al. Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds)
CN114874779B (zh) 一种荧光粉及其制备方法与应用
CN116200197A (zh) 一种近红外光致发光化合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant