CN116144706A - 成对的二分免疫受体多核苷酸的高通量克隆及其应用 - Google Patents

成对的二分免疫受体多核苷酸的高通量克隆及其应用 Download PDF

Info

Publication number
CN116144706A
CN116144706A CN202310093858.6A CN202310093858A CN116144706A CN 116144706 A CN116144706 A CN 116144706A CN 202310093858 A CN202310093858 A CN 202310093858A CN 116144706 A CN116144706 A CN 116144706A
Authority
CN
China
Prior art keywords
cells
cell
tcrs
tcr
polynucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310093858.6A
Other languages
English (en)
Inventor
陈曦
伊利·波特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Root Path Genomics Inc
Original Assignee
Root Path Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Root Path Genomics Inc filed Critical Root Path Genomics Inc
Publication of CN116144706A publication Critical patent/CN116144706A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001111Immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/20Vector systems having a special element relevant for transcription transcription of more than one cistron
    • C12N2830/205Vector systems having a special element relevant for transcription transcription of more than one cistron bidirectional
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/7051T-cell receptor (TcR)-CD3 complex

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本文提供了组合物和高通量克隆编码二分免疫受体同源对的融合的二分免疫受体多核苷酸的方法。本文还提供了融合的二分免疫受体多核苷酸的各种应用、包含融合的二分免疫受体多核苷酸的表达载体或包含融合的二分免疫受体多核苷酸或表达载体的细胞。

Description

成对的二分免疫受体多核苷酸的高通量克隆及其应用
本申请是申请日为2019年08月12日、申请号为201980067485.7、发明名称为“成对的二分免疫受体多核苷酸的高通量克隆及其应用”的中国专利申请(其对应PCT申请的申请日为2019年08月12日、申请号为PCT/US2019/046170)的分案申请。
相关领域的交叉申请
本申请要求2018年8月13日提交的美国临时专利申请62/718,227、2018年8月31日提交的美国临时专利申请62/725,842、2018年9月18日提交的美国临时专利申请62/732,898、2019年3月14日提交的美国临时专利申请62/818,355和2019年3月26日提交的美国临时专利申请62/823,831的权益,每个申请通过参考全部并入本文。
背景技术
T细胞受体(TCR)负责识别抗原主要组织相容性复合体,从而引发抗炎应答的发生。存在许多T细胞子集,包括细胞毒性T细胞和辅助T细胞。细胞毒性T细胞(也称为CD8+T细胞)可杀死异常的细胞,例如病毒感染细胞或肿瘤细胞。辅助T细胞(也称为CD4+T细胞)辅助其他免疫细胞的激活和成熟。细胞毒性T细胞和辅助T细胞在识别特异性靶抗原后都能发挥其功能,这能引发其各自的应答。T细胞的抗原特异性可由在T细胞表面表达的TCR来限定。T细胞受体是由两个多肽链(最常见的为α与β链)构成的异质二聚体蛋白质,但少量的T细胞能表达γ和β链。TCR的特异性氨基酸序列以及所得到的三维结构可限定TCR的抗原特异性和亲和力。任何单个T细胞的TCR链的氨基酸和编码DNA序列在生物体的整个TCR谱中几乎都是唯一的或是丰度很低的,因为有大量可能的TCR序列存在。这种大的序列多样性是在T细胞发育过程中通过多种细胞机制实现的并且是免疫系统能够对多种潜在抗原作出应答的能力的一个关键方面。
分析TCR谱可有助于更好地理解免疫系统特征以及更好地理解疾病的病因和进展,特别是具有未知抗原诱因的疾病的病因和进展。TCR谱的极端多样性和TCR的二分性质代表了一个重大的分析挑战。高通量测序可以允许更大的测序深度和更准确地定量TCR克隆型丰度,尽管比光谱分型花费更大。然而,高通量测序仍易受PCR偏倚和测序错误的影响,其后果是克隆型丰度会被严重扭曲并且不存在的克隆型会被记录,从而错误地增加了观察到的多样性。此外,从克隆、功能研究和治疗用途等下游应用的测序数据中筛选和/或合成TCR链的同源对会很耗时。并且TCR链的筛选、合成的同源对的文库很小或多样性低。
发明内容
本文提供了高通量克隆可用于各种应用的天然成对的TCR的组合物和方法。本文提供的组合物和方法可超越测序和合成并提供编码TCR同源对的融合核酸分子以直接表达在宿主细胞中。所述组合物和方法还可应用于其他二分免疫受体(bipartiteimmunoreceptor),如B细胞受体(BCR)。
根据一方面,本文提供了一种组合物,其包含多个融合的T细胞受体(TCR)多核苷酸,其中所述多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸包含:第一核酸序列和第二核酸序列,其中(1)第一核酸序列编码第一TCR肽链的第一可变结构域(variabledomain),其中第一可变结构域包括CD2和CD3,和(2)第二核酸序列编码第二TCR肽链的第二可变结构域,其中第二可变结构域包括CDR2和CDR3;其中每个融合的TCR多核苷酸的第一和第二核酸序列编码来自免疫细胞的第一和第二TCR肽链的同源对;其中所述多个融合的TCR多核苷酸包含来自至少5、10或20个不同V基因的V区域。在一些实施方案中,第一TCR肽链是T细胞受体(TCR)α肽链,第二TCR肽链是TCRβ肽链。在一些实施方案中,第一TCR肽链是TCRγ肽链、第二TCR肽链是TCRδ肽链。在一些实施方案中,第一可变结构域还包括CDR1,和/或第二可变结构域还包括CDR1。在一些实施方案中,第一TCR肽链的第一可变结构域是第一全长可变结构域,包括FR1、CDR1、FR2、CDR2、FR3和CDR3,和/或第二TCR肽链的第二可变结构域是第二全长可变结构域,包括FR1、CDR1、FR2、CDR2、FR3和CDR3。在一些实施方案中,第一核酸序列还编码第一TCR肽链的第一恒定结构域(constant domain)或其一部分和/或第二核酸序列还编码第二TCR肽链的第二恒定结构域或其一部分。在一些实施方案中,第一恒定结构域是第一胞外结构域,和/或第二恒定结构域是第二胞外结构域。在一些实施方案中,第一恒定结构域包括第一TCR链的第一胞外结构域、第一铰链区、第一跨膜区和第一细胞质尾区,和/或第二恒定结构域包括第二TCR肽链的第二胞外结构域、第二铰链区、第二跨膜区和第二细胞质尾区。在一些实施方案中,多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸的长度为至少800、至少900、至少1000或至少1500个碱基对,多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸的长度为至少1000、至少1500或至少2000个碱基对。在一些实施方案中,从免疫细胞中获得或释放第一核酸序列和第二核酸序列。
在一些实施方案中,免疫细胞分离自样品。在一些实施方案中,从受试者中获得样品。在一些实施方案中,免疫细胞是淋巴细胞。在一些实施方案中,淋巴细胞是T细胞。在一些实施方案中,T细胞是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助T细胞、天然杀伤T细胞或其组合。在一些实施方案中,T细胞是CD4+T细胞或CD8+T细胞。在一些实施方案中,体外扩增免疫细胞。在一些实施方案中,样品是血液细胞样品、骨髓样品、脐带血样品、腹水样品、胸腔积液样品、脑脊髓样品、精液样品、唾液样品、尿液样品、粪便样品或其组合。在一些实施方案中,样品是从脑、肝、肺、肾、前列腺、卵巢、脾、淋巴结、扁桃体、甲状腺、胰腺、心脏、骨骼肌、肠、喉、食管、胸腺、胃、肿瘤、感染部位或其组合中获得的组织样品。在一些实施方案中,受试者是哺乳动物。在一些实施方案中,哺乳动物是人、狗、猫、小鼠或大鼠。在一些实施方案中,受试者是健康的受试者或患病的受试者。在一些实施方案中,免疫细胞通过标志物分离自样品。在一些实施方案中,标志物是细胞表面标志物。在一些实施方案中,细胞表面标志物是CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB、CD137、CD3、CD28、CD4、CD8、CD45RA和CD45RO、GITR、FoxP3或其组合。在一些实施方案中,标志物是细胞因子。在一些实施方案中,细胞因子是IFN-γ、TNF-αt、IL-17A、IL-2、IL-3、IL-4、GM-CSF、IL-10、IL-13、颗粒酶B、穿孔素或其组合。
在一些实施方案中,多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸还包含启动子。在一些实施方案中,启动子是组成型或可诱导型的。在一些实施方案中,启动子是四环素反应性启动子。在一些实施方案中,启动子是病毒启动子。在一些实施方案中,启动子是β-肌动蛋白启动子、SV40早期启动子、SV40晚期启动子、免疫球蛋白启动子、巨细胞病毒启动子、逆转录病毒启动子、友脾病灶形成病毒启动子、疱疹病毒TK启动子、劳斯肉瘤病毒启动子、小鼠乳腺肿瘤病毒启动子、金属硫蛋白启动子、腺病毒晚期启动子、痘苗7.5K启动子或烯醇化酶启动子。在一些实施方案中,框内融合第一核酸和第二核酸以使第一可变结构域和第二可变结构域的表达受到一个启动子的控制。在一些实施方案中,多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸还包含编码蛋白酶切割位点的序列。在一些实施方案中,蛋白酶切割位点是细胞蛋白酶切割位点或病毒蛋白酶切割位点。在一些实施方案中,蛋白酶切割位点是肠激酶切割位点、因子Xa切割位点、凝血酶切割位点、肾素切割位点、胶原酶切割位点、胰蛋白酶切割位点、半胱天冬酶切割位点、弗林蛋白酶切割位点、PC5/6蛋白酶切割位点;PACE蛋白酶切割位点、LPC/PC7蛋白酶切割位点、因子Xa蛋白酶切割位点、genenase I切割位点、MMP蛋白酶切割位点或KEX2蛋白酶切割位点。在一些实施方案中,蛋白酶切割位点是病毒2A蛋白酶切割位点、病毒3C蛋白酶切割位点、传染性胰腺坏死病毒(IPNV)VP4蛋白酶切割位点、烟草蚀刻病毒(TEV)蛋白酶切割位点或芜菁花叶病毒切割位点的核包含蛋白a(N1a)。在一些实施方案中,多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸包含编码自切割肽的序列。在一些实施方案中,自切割肽是内含肽、刺猬肽(hedgehog peptide)或2A肽。在一些实施方案中,至少20个不同的V基因包括至少10个不同的TRAV基因和/或至少10个不同的TRBV基因。在一些实施方案中,TRAV基因和TRBV基因是人或小鼠TRAV基因和TRBV基因。
在一些实施方案中,至少10个不同的TRAV基因选自人TRAV1-1、TRAV1-2、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8-1、TRAV8-2、TRAV8-3、TRAV8-4、TRAV8-6、TRAV9-1、TRAV9-2、TRAV10、TRAV12-1、TRAV12-2、TRAV12-3、TRAV13-1、TRAV14、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20、TRAV21、TRAV22、TRAV23、TRAV24、TRAV25、TRAV26-1、TRAV26-2、TRAV27、TRAV29、TRAV30、TRAV34、TRAV35、TRAV36、TRAV38-1、TRAV38-2、TRAV39、TRAV40、TRAV41。在一些实施方案中,至少10个不同的TRBV基因选自人TRBV2、TRBV3-1、TRBV4-1、TRBV4-2、TRBV4-3、TRBV5-1、TRBV5-4、TRBV5-5、TRBV5-6、TRBV5-8、TRBV6-1、TRBV6-2、TRBV6-3、TRBV6-4、TRBV6-5、TRBV6-6、TRBV6-8、TRBV6-9、TRBV7-2、TRBV7-3、TRBV7-4、TRBV7-6、TRBV7-7、TRBV7-8、TRBV7-9、TRBV9、TRBV10-1、TRBV10-2、TRBV10-3、TRBV11-1、TRBV11-2、TRBV11-3、TRBV12-3、TRBV12-4、TRBV12-5、TRBV13、TRBV14、TRBV15、TRBV16、TRBV18、TRBV19、TRBV20-1、TRBV24-1、TRBV25-1、TRBV27、TRBV28、TRBV29-1和TRBV30。
在一些实施方案中,至少20个不同的V基因包括至少20个不同的V基因亚组。在一些实施方案中,至少20个不同的V基因亚组包括至少10个不同的TRAV基因亚组和/或至少10个不同TRBV基因亚组。在一些实施方案中,至少10个不同的TRAV基因亚组选自人TRAV1、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8、TRAV9、TRAV10、TRAV12、TRAV13、TRAV14、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20、TRAV21、TRAV22、TRAV23、TRAV24、TRAV25、TRAV26、TRAV27、TRAV29、TRAV30、TRAV34、TRAV35、TRAV36、TRAV38、TRAV39、TRAV40和TRAV41亚组。在一些实施方案中,至少10个不同的TRBV基因亚组选自人TRBV2、TRBV3、TRBV4、TRBV5、TRBV6、TRBV7、TRBV9、TRBV10、TRBV11、TRBV12、TRBV13、TRBV14、TRBV15、TRBV16、TRBV18、TRBV19、TRBV20、TRBV24、TRBV25、TRBV27、TRBV28、TRBV29和TRBV30。
在一些实施方案中,至少10个不同的TRAV基因选自小鼠TRAV1、TRAV2、TRAV3-1、TRAV3-3、TRAV3-4、TRAV3D-3、TRAV3N-3、TRAV4-2、TRAV4-3、TRAV4-4、TRAV4D-2、TRAV4D-3、TRAV4D-4、TRAV4N-3、TRAV4N-4、TRAV5-1、TRAV5-2、TRAV5-4、TRAV5D-2、TRAV5D-4、TRAV5N-2、TRAV5N-4、TRAV6-1、TRAV6-2、TRAV6-3、TRAV6-4、TRAV6-5、TRAV6-6、TRAV6-7、TRAV6D-3、TRAV6D-4、TRAV6D-5、TRAV6D-6、TRAV6D-7、TRAV6N-5、TRAV6N-6、TRAV6N-7、TRAV7-1、TRAV7-2、TRAV7-3、TRAV7-4、TRAV7-5、TRAV7-6、TRAV7D-2、TRAV7D-3、TRAV7D-4、TRAV7D-5、TRAV7D-6、TRAV7N-4、TRAV7N-5、TRAV7N-6、TRAV8-1、TRAV8-2、TRAV8D-1、TRAV8D-2、TRAV8N-2、TRAV9-1、TRAV9-2、TRAV9-3、TRAV9-4、TRAV9D-1、TRAV9D-2、TRAV9D-3、TRAV9D-4、TRAV9N-2、TRAV9N-3、TRAV9N-4、TRAV10、TRAV10D、TRAV10N、TRAV11、TRAV11D、TRAV11N、TRAV12-1、TRAV12-2、TRAV12-3、TRAV12D-1、TRAV12D-2、TRAV12D-3、TRAV12N-1、TRAV12N-2、TRAV12N-3、TRAV13-1、TRAV13-2、TRAV13-3、TRAV13-4、TRAV13-5、TRAV13D-1、TRAV13D-2、TRAV13D-3、TRAV13D-4、TRAV13N-1、TRAV13N-2、TRAV13N-3、TRAV13N-4、TRAV14-1、TRAV14-2、TRAV14-3、TRAV14D-1、TRAV14D-2、TRAV14D-3、TRAV14N-1、TRAV14N-2、TRAV14N-3、TRAV15-1、TRAV15-2、TRAV15D-1、TRAV15D-2、TRAV15N-1、TRAV15N-2、TRAV16、TRAV16D、TRAV16N、TRAV17、TRAV18、TRAV19、TRAV20和TRAV21。
在一些实施方案中,至少10个不同的TRBV基因选自小鼠TRBV1、TRBV2、TRBV3、TRBV4、TRBV5、TRBV8、TRBV9、TRBV10、TRBV12-1、TRBV12-2、TRBV13-1、TRBV13-2、TRBV13-3、TRBV14、TRBV15、TRBV16、TRBV17、TRBV19、TRBV20、TRBV21、TRBV23、TRBV24、TRBV26、TRBV29、TRBV30和TRBV31。在一些实施方案中,至少10个不同的TRAV基因亚组选自TRAV1、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8、TRAV9、TRAV10、TRAV11、TRAV12、TRAV13、TRAV14、TRAV15、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20和TRAV21亚组。在一些实施方案中,至少10个不同的TRBV基因亚组选自小鼠TRBV1、TRBV2、TRBV3、TRBV4、TRBV5、TRBV8、TRBV9、TRBV10、TRBV12、TRBV13、TRBV14、TRBV15、TRBV16、TRBV17、TRBV19、TRBV20、TRBV21、TRBV23、TRBV24、TRBV26、TRBV29、TRBV30和TRBV31亚组。
在一些实施方案中,使所述多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸环化。在一些实施方案中,所述多个融合的TCR多核苷酸包含至少100、至少200、至少500、至少1,000、至少10,000、至少100,000至少1,000,000或至少10,000,000个不同的序列。
根据另一方面,本文提供了多个载体,每个载体包含来自免疫细胞的融合的TCR多核苷酸。在一些实施方案中,所述多个载体包括至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个载体。在一些实施方案中,所述多个载体是自扩增RNA复制子、质粒、噬菌体、转座子、粘粒、病毒或病毒体。在一些实施方案中,所述多个载体是TC-83α病毒复制子的衍生物,所述衍生物已筛选或工程化为减少宿主细胞I型干扰素的生产,延长表达时长,增加蛋白质生产水平和/或表达除二分免疫受体以外的具有治疗有益效果的另外的试剂。在一些实施方案中,所述多个载体是病毒载体。在一些实施方案中,病毒载体源自逆转录病毒、慢病毒、腺病毒、腺相关病毒、疱疹病毒、痘病毒、α病毒、痘苗病毒、乙型肝炎病毒、人乳头瘤病毒或其伪型。在一些实施方案中,多个载体是非病毒载体。在一些实施方案中,非病毒载体是纳米颗粒、阳离子脂质、阳离子聚合物、金属纳米聚合物、纳米棒、脂质体、胶束、微泡、细胞穿透肽或脂质球。
本文还提供了多个TCR,每个TCR由来自本文公开的组合物的不同的融合的TCR多核苷酸或来自本文公开的多个载体的不同的融合的TCR多核苷酸编码,其中所述多个TCR包括至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个TCR。
本文还提供了多个宿主细胞,每个宿主细胞包含来自本文公开的组合物中的不同的融合的TCR多核苷酸、本文公开的多个载体中的不同载体或者本文公开的多个TCR中的不同的TCR。在一些实施方案中,所述多个宿主细胞是T细胞或B细胞。在一些实施方案中,T细胞是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助T细胞、自然杀伤T细胞或其组合。在一些实施方案中,T细胞是CD4+T细胞或CD8+T细胞。在一些实施方案中,所述多个宿主细是自体细胞。在一些实施方案中,所述多个宿主细胞是同种异体细胞。在一些实施方案中,所述多个宿主细胞从供体中获得。在一些实施方案中,供体是人。在一些实施方案中,供体是健康的供体或患病的供体。在一些实施方案中,所述多个宿主细胞从样品中获得。在一些实施方案中,样品是血液样品、骨髓样品、脐血样品、腹水样品、胸腔积液样品、脑脊液样品、精液样品、痰样品、尿液样品、粪便样品或其组合。在一些实施方案中,样品是从脑、肝、肺、肾、前列腺、卵巢、脾、淋巴结、扁桃体、甲状腺、胰腺、心脏、骨骼肌、肠、喉、食管、胸腺、胃、肿瘤、感染部位或其组合中获得的组织样品。在一些实施方案中,所述多个宿主细胞是细胞系细胞。在一些实施方案中,细胞系细胞是CHO-K1细胞;HEK293细胞;Caco2细胞;U2-OS细胞;NIH3T3细胞;NSO细胞;SP2细胞;CHO-S细胞;DG44细胞;K-562细胞,U-937细胞;MRC5细胞;IMR90细胞;Jurkat细胞;HepG2细胞;HeLa细胞;HT-1080细胞;HCT-116细胞;Hu-h7细胞;Huvec细胞;或Molt 4细胞。在一些实施方案中,所述多个宿主细胞是转基因细胞。
在一些实施方案中,使编码TCRα肽链、TCRβ肽链、TCRγ肽链、TCRδ肽链、BCR重肽链或BCR轻肽链的内源性基因下调或失活。在一些实施方案中,使另一内源性基因下调或失活,其中另一内源性基因选自PD1、CTLA-4、LAG3、Tim3、BTLA、BY55、TIGIT、B7H5、LAIR1、SIGLEC10、2B4或其任意组合。在一些实施方案中,所述多个宿主细胞中的每个工程化为表达另外的试剂以增强宿主细胞的功能。在一些实施方案中,所述功能是细胞毒性功能、促炎功能或抗炎功能。在一些实施方案中,所述另外的试剂是细胞因子。在一些实施方案中,细胞因子是促炎细胞因子。在一些实施方案中,细胞因子是抗炎细胞因子。在一些实施方案中,细胞因子是肿瘤坏死因子α(TNFα);白细胞介素(IL)-1α;白细胞介素-1β;白细胞介素-2;白细胞介素-5;白细胞介素-6;白细胞介素-8;白细胞介素-15;白细胞介素-18;干扰素(IFN-γ);血小板活化因子(PAF);单核细胞趋化蛋白1和2(MCP-1,MCP-2);巨噬细胞移动抑制因子(MIF);CXCL8;CXCL9;CXCL10;高迁移率族盒蛋白1(HMGB-1)、白细胞介素-1ra、白细胞介素-4、白细胞介素-10、白细胞介素-11、白细胞介素-13,转化生长因子β(TGF-β),IL-16或其任意组合。
根据另一方面,本文提供了一种组合物,其包含多个载体,所述多个载体中的每个载体包含具有第一核酸序列和第二核酸序列的融合的T细胞受体(TCR)多核苷酸,其中(1)第一核酸序列编码第一TCR肽链的第一可变结构域,其中第一可变结构域包括CDR1、CDR2和CDR3,和(2)第二核酸序列编码第二TCR肽链的第二可变结构域,其中第二可变结构域包括CDR1、CDR2和CDR3;其中每个融合的TCR多核苷酸的第一和第二核酸序列编码来自免疫细胞的第一和第二TCR肽链的同源对;并且其中所述多个融合的TCR多核苷酸包含来自至少20个不同V基因的V区域。在一些实施方案中,所述多个载体包含至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000或至少1,000,000个不同的同源对。在一些实施方案中,所述多个载体包含至少约5、10、50、100、250、500、750、1000、1500、2000、2500、5000、7500或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多个不同的同源对。在一些实施方案中,所述多个载体包含至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同的序列。在一些实施方案中,至少20个不同的V基因包含至少10个不同的TRAV基因亚组和/或至少10个不同的TRBV基因亚组。
根据另一方面,本文提供了一种组合物,其包括多个水凝胶颗粒或珠,所述多个水凝胶颗粒或珠中的每个水凝胶颗粒或珠包含:第一核酸分子及其编码第一免疫受体肽链的第一可变结构域的第一扩增产物,其中第一可变结构域包括CDR3,和第二核酸分子及其编码第二免疫受体肽链的第二可变结构域的第二扩增产物,其中第二可变结构域包括CDR3,其中第一扩增产物和第二扩增产物嵌入或包埋在具有聚合或胶凝化的多个聚合物和/或单体的基质内,其中第一扩增产物和第二扩增产物的扩散受到限制。
根据另一方面,本文体提供了一种组合物,其包括多个水凝胶颗粒或珠,所述多个水凝胶颗粒或珠中的每个水凝胶颗粒或珠包含第一核酸分子及其编码第一免疫受体肽链的第一可变结构域的第一引物延伸产物,其中第一可变结构域包括CDR3,和第二核酸分子及其编码第二免疫受体肽链的第二可变结构域的第二引物延伸产物,其中第二可变结构域包括CDR3,其中第一引物延伸产物和第二引物延伸产物嵌入或包埋在具有聚合或胶凝化的多个聚合物和/或单体的基质内,其中第一引物延伸产物和第二引物延伸产物的扩散受到限制。
在一些实施方案中,第一和第二引物延伸产物包含具有预设计序列的接头。在一些实施方案中,接头不与第一或第一核酸杂交或互补。在一些实施方案中,接头包含模板转换寡核苷酸的序列或反向互补序列。在一些实施方案中,第一和第二引物延伸产物是逆转录(RT)产物。在一些实施方案中,第一和第二引物延伸产物是第二链合成(SSS)产物。在一些实施方案中,RT产物与扩散限制剂连接。在一些实施方案中,SSS产物与扩散限制剂连接。在一些实施方案中,SSS产物与扩散限制剂间接连接。在一些实施方案中,第一和第二引物延伸产物是第一和第二扩增产物。在一些实施方案中,第一扩增产物和/或第二扩增产物与扩散限制剂连接。在一些实施方案中,第一扩增产物和/或第二扩增产物通过捕获剂与扩散限制剂连接。在一些实施方案中,捕获剂包含寡核苷酸,该寡核苷酸具有与第一扩增产物和/或第二扩增产物的衔接子序列互补的序列。
在一些实施方案中,扩散限制剂是聚合物。在一些实施方案中,聚合物是聚丙烯酰胺、聚乙二醇或多糖。在一些实施方案中,扩散限制剂是颗粒。在一些实施方案中,所述颗粒的直径大于基质的孔径。在一些实施方案中,扩散限制剂是基质。在一些实施方案中,第一多核苷酸分子和第二核酸分子是从细胞中释放出来的。在一些实施方案中,细胞是单个细胞。在一些实施方案中,细胞是淋巴细胞。在一些实施方案中,细胞是T细胞或B细胞。在一些实施方案中,T细胞是CD3+T细胞、CD28+T细胞、CD4+T细胞、CD8+T细胞、CD45RA+T细胞、CD45RO+T细胞或其任意组合。在一些实施方案中,B细胞是浆母细胞、浆细胞、淋巴浆细胞样细胞、记忆性B细胞、滤泡性B细胞、边缘区B细胞、B-1细胞、B-2细胞或调节性B细胞。在一些实施方案中,第一免疫受体肽链是TCRα肽链,第二免疫受体肽链是TCRβ肽链。在一些实施方案中,第一免疫受体肽链是TCRγ肽链,第二免疫受体肽链是TCRδ肽链。在一些实施方案中,第一免疫受体肽链是免疫球蛋白重肽链,第二免疫受体肽链是免疫球蛋白轻肽链。在一些实施方案中,第一免疫受体肽链和第二免疫受体肽链是二分免疫受体的同源对。在一些实施方案中,第一扩增产物和第二扩增产物连接,形成连续的多核苷酸链。在一些实施方案中,第一扩增产物和/或第二扩增产物包含第一核酸分子和/或第二核酸分子的至少100、至少500、至少1000、至少10000或更多个拷贝。在一些实施方案中,第一或第二核酸受到扩散限制。在一些实施方案中,第一核酸分子和/或第二核酸分子是脱氧核糖核酸或核糖核酸。在一些实施方案中,第一核酸分子和/或第二核酸分子是单链核酸或双链核酸。在一些实施方案中,第一核酸分子还编码第一恒定结构域和/或第二核酸分子还编码第二恒定结构域。在一些实施方案中,第一恒定结构域是第一胞外恒定结构域,和/或第二恒定结构域是第二胞外恒定结构域。在一些实施方案中,第一恒定结构域包括第一胞外恒定结构域、第一交联区、第一跨膜区和第一细胞质尾区,和/或第二恒定结构域包括第二胞外恒定结构域、第二交联区、第二跨膜区和第二细胞质尾区。
在一些实施方案中,所述多个水凝胶颗粒或珠包括至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个水凝胶颗粒或珠。在一些实施方案中,所述多个水凝胶颗粒或珠包含至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同的二分免疫受体同源对。在一些实施方案中,聚合物是多糖、聚丙烯酰胺或其组合。在一些实施方案中,多糖是琼脂糖、透明质酸、羧甲基纤维素、壳聚糖、淀粉、葡聚糖或海藻酸盐。在一些实施方案中,单体是丙烯酰胺或甲基丙烯酰胺单体。在一些实施方案中,聚合或胶凝化的多个聚合物和/或单体包括琼脂糖和聚丙烯酰胺的混合物。在一些实施方案中,聚合或胶凝化的多个聚合物和/或单体交联。在一些实施方案中,第一可变结构域和/或第二可变结构域还包括CDR1、CDR2或其组合。在一些实施方案中,每个水凝胶颗粒或珠是琼脂糖凝胶颗粒。
根据另一方面,本文提供了一种组合物,其包括多个至少5个水凝胶颗粒,其中每个所述至少5个水凝胶颗粒包含多核苷酸,所述多核苷酸包括(a)包含编码第一免疫受体肽链的序列的第一多核苷酸和(b)包含编码第二免疫受体肽链的序列的第二多核苷酸,其中第一和第二免疫受体肽链中的每个包含唯一的同源免疫受体成对链,其中至少5个水凝胶颗粒中的单个水凝胶颗粒的第一多核苷酸和第二多核苷酸来自单个细胞,并且(ii)彼此连接;并且其中第一多核苷酸和第二多核苷酸从水凝胶颗粒中的扩散受到限制。在一些实施方案中,第一多核苷酸或第二多核苷酸是DNA。在一些实施方案中,DNA是扩增产物。在一些实施方案中,第一多核苷酸和第二多核苷酸共价连接。在一些实施方案中,第一多核苷酸和第二多核苷酸通过磷酸二酯键连接。在一些实施方案中,第一多核苷酸或第二多核苷酸与扩散限制剂连接。
根据另一发面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个所述至少5个水凝胶颗粒包含(a)第一RNA,所述第一RNA包含编码第一免疫受体肽链的序列和(b)第二RNA,所述第二RNA包含编码第二免疫受体肽链的序列,其中第一和第二免疫受体肽链中的每个包含唯一的同源免疫受体成对链,其中所述至少5个水凝胶颗粒中的单个水凝胶颗粒的每个第一多核苷酸和第二多核苷酸来自单个细胞,并且其中(1)每个第一RNA与包含第一RNA的反向互补序列的第一cDNA杂交和(2)每个第二RNA与包含第二RNA的反向互补序列的第二cDNA杂交;并且其中来自水凝胶颗粒的第一cDNA和第二cDNA受到限制。在一些实施方案中,第一cDNA或第二cDNA还包含不与第一RNA或第二RNA杂交或互补的序列。在一些实施方案中,第一cDNA或第二cDNA还包含模板转换寡核苷酸的反向互补序列。在一些实施方案中,第一cDNA或第二cDNA与扩散限制剂连接。
根据另一方面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个所述至少5个水凝胶颗粒包含(a)第一多核苷酸,所述第一多核苷酸包含编码第一免疫受体肽链的序列和(b)第二多核苷酸,所述第二多核苷酸包含编码第二免疫受体肽链的序列,其中每个第一和第二免疫受体肽链包含唯一的同源免疫受体成对链,其中所述至少5个水凝胶颗粒中的单个水凝胶颗粒的每个第一多核苷酸和第二多核苷酸来自单个细胞,并且其中(1)每个第一多核苷酸与第一引物杂交和(2)每个第二多核苷酸与第二引物杂交;并且其中第一引物和第二引物从水凝胶颗粒中的扩散受到限制。
在一些实施方案中,第一引物或第二引物是逆转录引物。在一些实施方案中,第一引物或第二引物是扩增引物。在一些实施方案中,第一多核苷酸或第二多核苷酸是RNA。在一些实施方案中,第一多核苷酸或第二多核苷酸是DNA。在一些实施方案中,第一引物或第二引物与扩散限制剂连接。
根据另一方面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个所述至少5个水凝胶颗粒包含(a)第一DNA,所述第一DNA包含编码第一免疫受体肽链的序列,和(b)第二DNA,所述第二DNA包含编码第二免疫受体肽链的序列,其中第一和第二免疫受体肽链中的每个包括唯一的同源免疫受体成对链,其中所述至少5个水凝胶颗粒中的单个水凝胶颗粒的每个第一DNA和第二DNA来自单个细胞,并且其中(1)每个第一DNA与包含编码第一免疫受体链的序列的反向互补序列的第一多核苷酸杂交和(2)每个第二DNA与包含编码第二免疫受体链的序列的反向互补序列的第二多核苷酸杂交;并且其中第一多核苷酸和第二多核苷酸从水凝胶颗粒中的扩散受到限制。
在一些实施方案中,第一DNA或第二DNA是cDNA。在一些实施方案中,第一DNA或第二DNA是基因组DNA。在一些实施方案中,第一多核苷酸或第二多核苷酸是RNA。在一些实施方案中,RNA是信使RNA。在一些实施方案中,第一多核苷酸和第二多核苷酸从水凝胶颗粒中的扩散受到限制。在一些实施方案中,第一多核苷酸或第二多核苷酸是扩增产物。在一些实施方案中,扩增产物包含不与第一或第二DNA杂交或互补的接头。在一些实施方案中,所述接头进一步与捕获剂杂交。在一些实施方案中,捕获剂与扩散限制剂连接。在一些实施方案中,扩散限制剂是聚合物或颗粒。在一些实施方案中,第一和第二免疫受体肽链是TCRα和TCRβ肽链、TCRγ和TCRδ肽链或BCR重和轻肽链。在一些实施方案中,单个细胞是免疫细胞。在一些实施方案中,免疫细胞是T细胞或B细胞。
根据另一方面,本文提供了一种制备融合的二分免疫受体多核苷酸文库的方法,其包括:(a)生成多个容器,每个容器包括(1)细胞,其中所述细胞包含编码二分免疫受体的第一肽链的第一核酸和编码二分免疫受体的第二肽链的第二核酸和(2)多个可聚合或可胶凝聚合物和/或单体;以及(b)将所述多个可聚合或可胶凝聚合物和/或单体聚合或胶凝化,形成多个硬化颗粒,所述多个硬化颗粒中的每个硬化颗粒具有由聚合或胶凝化的多个聚合物和/或单体构成的基质,其中所述多个硬化颗粒中的每个硬化颗粒包括第一核酸的第一引物延伸产物和第二核酸的第二引物延伸产物;其中所述第一引物延伸产物和所述第二引物延伸产物嵌入或包埋在基质内,并且其中所述第一引物延伸产物和所述第二引物延伸产物的扩散受到限制。
在一些实施方案中,第一和第二引物延伸产物是逆转录(RT)产物、第二链合成(SSS)产物或扩增产物。在一些实施方案中,第一和/或第二引物延伸产物包含衔接子序列。在一些实施方案中,衔接子序列不与第一或第二核酸分子杂交或互补。在一些实施方案中,第一和第二引物延伸产物编码可变结构域。在一些实施方案中,可变结构域包括CDR1、CDR2和CDR3。在一些实施方案中,第一和/或第二引物延伸产物还编码恒定结构域。
在一些实施方案中,所述方法还包括裂解细胞以释放第一核酸和第二核酸。在一些实施方案中,所述方法还包括逆转录第一核酸和第二核酸。在一些实施方案中,使用RT引物进行逆转录。在一些实施方案中,RT引物与扩散限制剂连接,其中扩散限制剂限制RT引物在基质内的扩散。在一些实施方案中,所述方法还包括进行模板转换反应或SSS反应。在一些实施方案中,所述方法还包括扩增第一核酸和第二核酸以生成第一和第二扩增产物。在一些实施方案中,对于每个第一或第二核酸来说,使用第一扩增引物和第二扩增引物进行扩增。在一些实施方案中,第一扩增引物与扩散限制剂连接,其中扩散限制剂限制第一扩增引物在基质内的扩散。
在一些实施方案中,所述方法还包括清洗多个硬化颗粒。在一些实施方案中,所述方法还包括清洗多个硬化颗粒以使试剂从多个硬化颗粒中扩散出来。在一些实施方案中,所述试剂包含RT引物、扩增引物、模板转换引物、SSS引物或其任意组合。在一些实施方案中,所述方法还包括反复清洗多个硬化颗粒。在一些实施方案中,所述方法还包括在清洗步骤后在油中乳化多个硬化颗粒,从而形成另外的多个容器,所述另外的多个容器中的每个容器包括多个硬化颗粒中的单个硬化颗粒。在一些实施方案中,第一和第二引物延伸产物与扩散限制剂连接。在一些实施方案中,扩散限制剂是聚合物。在一些实施方案中,聚合物是聚丙烯酰胺、聚乙二醇或多糖。在一些实施方案中,扩散限制剂是颗粒。在一些实施方案中,颗粒的直径大于基质的孔径。在一些实施方案中,扩散限制剂是基质。在一些实施方案中,第一和第二引物延伸产物通过捕获剂与扩散限制剂连接。在一些实施方案中,捕获剂包括固定化部分。在一些实施方案中,固定化部分将捕获剂与扩散限制剂连接。
在一些实施方案中,固定化部分包括反应性基团。在一些实施方案中,捕获剂还包括靶向部分。在一些实施方案中,靶向部分是捕获寡核苷酸。在一些实施方案中,第一扩增引物包含与捕获寡核苷酸杂交的寡核苷酸序列。在一些实施方案中,第一和第二扩增产物包含与捕获寡核苷酸杂交的寡核苷酸序列,从而将第一和第二扩增产物与捕获剂连接并且从而与扩散限制剂连接。在一些实施方案中,反应性基团是琥珀酰亚胺酯、酰胺、丙烯酰胺、酰基叠氮化物、酰基卤化物、酰基腈、醛、酮、烷基卤化物、烷基磺酸盐、酸酐、芳基卤化物、氮杂环丙烷、硼酸盐、碳二亚胺、重氮烷、环氧化物、卤代乙酰胺、卤代铂、卤代三嗪、亚胺酯、异氰酸酯,异硫氰酸酯、马来酰亚胺、磷酰胺、硅卤化物、磺酸酯、磺酰卤化物、胺、苯胺、硫醇、醇、苯酚、杂环、羟胺、羧酸、乙二醇或杂环。在一些实施方案中,所述方法还包括将第一扩增产物与第二扩增产物连接以在多个另外的容器中的每个容器内形成融合的二分免疫受体多核苷酸,从而生成具有多个融合的二分免疫受体多核苷酸的融合的二分免疫受体多核苷酸文库。在一些实施方案中,第一扩增产物和第二扩增产物通过连接反应(ligation)或PCR来连接。在一些实施方案中,第一扩增产物和第二扩增产物通过磷酸二酯键连接,形成连续的多核苷酸。在一些实施方案中,第一扩增产物和第二扩增产物是框内连接。
在一些实施方案中,所述方法还包括从另外的多个容器中释放融合的二分免疫受体多核苷酸。
在一些实施方案中,所述方法还包括使多个融合的二分免疫受体多核苷酸中的每个融合的二分免疫受体多核苷酸环化。在一些实施方案中,所述方法还包括将多个融合的二分免疫受体多核苷酸中的每个融合的二分免疫受体多核苷酸插入载体中。在一些实施方案中,载体是自扩增RNA复制子、质粒、噬菌体、转座子、粘粒、病毒或病毒体。在一些实施方案中,载体是病毒载体。在一些实施方案中,病毒载体源自逆转录病毒、慢病毒、腺病毒、腺相关病毒、疱疹病毒、痘病毒、α病毒、痘苗病毒、乙型肝炎病毒、人乳头瘤病毒或其伪型。在一些实施方案中,载体是非病毒载体。在一些实施方案中,非病毒载体是纳米颗粒、阳离子脂质、阳离子聚合物、金属纳米聚合物、纳米棒、脂质体、胶束、微泡、细胞穿透肽或脂球。在一些实施方案中,二分免疫受体是T细胞受体(TCR)或B细胞受体(BCR)。在一些实施方案中,TCR包含TCRα肽链和TCRβ肽链或TCRγ肽链和TCRδ肽链;BCR包含重肽链和轻肽连。在一些实施方案中,细胞是免疫细胞。在一些实施方案中,免疫细胞是淋巴细胞。在一些实施方案中,淋巴细胞是T细胞或B细胞。在一些实施方案中,T细胞是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助T细胞、自然杀伤T细胞或其组合。在一些实施方案中,T细胞是CD4+T细胞或CD8+T细胞。在一些实施方案中,B细胞是浆母细胞、浆细胞、淋巴浆细胞样细胞、记忆B细胞、滤泡B细胞、边缘区B细胞、B-1细胞、B-2细胞或调节性B细胞。在一些实施方案中,免疫细胞分离自肿瘤组织或血液样品。在一些实施方案中,所述方法还包括将融合的二分免疫受体多核苷酸递送至宿主细胞中。在一些实施方案中,融合的二分免疫受体多核苷酸文库包含至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同的融合二分免疫受体序列。在一些实施方案中,第一肽链和第二肽链是二分免疫受体的同源对。在一些实施方案中,容器是液滴。在一些实施方案中,液滴是油包水液滴。在一些实施方案中,硬化颗粒是水凝胶颗粒。在一些实施方案中,聚合物是多糖、聚丙烯酰胺或其组合。在一些实施方案中,多糖是琼脂糖、透明质酸、羧甲基纤维素、壳聚糖或海藻酸盐。在一些实施方案中,单体是丙烯酰胺或甲基丙烯酰胺单体。在一些实施方案中,聚合或胶凝化的多个聚合物和/或单体包括琼脂糖和聚丙烯酰胺的混合物。在一些实施方案中,聚合或胶凝化的多个聚合物和/或单体交联。在一些实施方案中,聚合或胶凝化的多个可聚合或可胶凝聚合物和/或单体包括使用引发剂。在一些实施方案中,引发剂是UV光或化学品。在一些实施方案中,聚合或胶凝化多个可聚合或可胶凝聚合物和/或单体包括降低容器的温度。
根据另一方面,本文提供了一种在液体中进行的方法,其包括:(a)使与核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;(b)用包含第一引物和第二引物的引物组扩增第一延伸产物或其反向互补链,从而形成第一扩增产物;(c)在液体中生成聚合物基质以形成水凝胶颗粒,从而限制第一扩增产物的扩散;以及(d)清洗水凝胶颗粒,从而从水凝胶颗粒中去除第二引物。在一些实施方案中,第一引物或第一扩增产物与扩散限制剂连接。
根据另一方面,本文提供了一种在液体中进行的方法,其包括:(a)使与核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;(b)在液体中生成聚合物基质以形成是水凝胶颗粒,从而限制第一延伸产物或其反向互补链的扩散;(c)清洗水凝胶颗粒;以及(d)用包含第一引物和第二引物的引物组扩增第一延伸产物或其反向互补链,从而形成第一扩增产物。
在一些实施方案中,第一寡核苷酸或第一延伸产物与扩散限制剂连接。在一些实施方案中,该方法还包括使与另一核酸分子杂交的第二寡核苷酸延伸。在一些实施方案中,核酸分子和另一核酸分子编码免疫受体的第一肽链和第二肽链,其中第一肽链和第二肽链是免疫受体的同源对。在一些实施方案中,扩散限制剂是聚合物或颗粒。在一些实施方案中,聚合物是聚丙烯酰胺、聚乙二醇或多糖。在一些实施方案中,颗粒的直径大于聚合物基质的孔径。在一些实施方案中,扩散限制剂是聚合物基质。在一些实施方案中,核酸分子是DNA或RNA。在一些实施方案中,核酸分子是基因组DNA。在一些实施方案中,核酸分子是信使RNA。在一些实施方案中,第一寡核苷酸是逆转录(RT)引物。在一些实施方案中,所述方法还包括用模板转换寡核苷酸使RT引物延伸,从而生成具有模板转换寡核苷酸的反向互补序列的第一延伸产物。在一些实施方案中,所述方法还包括使用具有衔接子序列的第二链合成(SSS)引物合成第一延伸产物的反向互补链。在一些实施方案中,衔接子序列不与核酸分子或第一延伸产物杂交或互补。在一些实施方案中,第一延伸产物包含衔接子序列。在一些实施方案中,核酸分子编码免疫受体的肽链。在一些实施方案中,所述方法还包括在清洗水凝胶颗粒之后或期间使试剂与水凝胶颗粒接触,以使试剂扩散至水凝胶颗粒中。在一些实施方案中,试剂是寡核苷酸或酶。在一些实施方案中,酶是聚合酶。在一些实施方案中,所述方法还包括在清洗后在油中乳化水凝胶颗粒。
根据另一方面,本文提供了一种在液体中进行的方法,其包括:(a)形成多个液滴,其中所述多个液滴中的至少2个液滴包括单个细胞;(b)使与来自单个细胞的第一核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;和使与来自单个细胞的第二核酸分子杂交的第二寡核苷酸延伸,从而形成第二延伸产物;(c)用包含第一引物和第二引物的第一引物组扩增第一延伸产物或其反向互补链,从而形成第一组扩增产物;和用包含第三引物和第四引物的第二引物组扩增第二延伸产物或其反向互补链,从而形成第二组扩增产物;以及(d)将第一组扩增产物中的扩增产物与第二组扩增产物中的扩增产物连接,其中连接包括在不存在第二和第四引物的情况下在液体中进行连接。
根据另一方面,本文提供了一种在液体中进行的方法,其包括:(a)形成多个液滴,其中所述多个液滴中的至少2个液滴包括单个细胞;(b)使与来自单个细胞的第一核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;和使与来自单个细胞的第二核酸分子杂交的第二寡核苷酸延伸,从而形成第二延伸产物;(c)用包含第一引物和第二引物的第一引物组扩增第一延伸产物或其反向互补链,从而形成第一组扩增产物;和用包含第三引物和第四引物的第二引物组扩增第二延伸产物或其反向互补链,从而形成第二组扩增产物;(d)去除第二和第四引物;和将第一组扩增产物中的扩增产物与第二组扩增产物中的扩增产物连接。
在一些实施方案中,每个液滴包含多个可聚合或胶凝化聚合物和/或单体。在一些实施方案中,所述方法还包括在液体中生成聚合物基质以形成水凝胶颗粒,从而限制第一组扩增产物和第二组扩增产物的扩散。在一些实施方案中,所述方法还包括清洗水凝胶颗粒,从而从水凝胶颗粒中去除第二引物和第四引物。在一些实施方案中,连接包括在第一和第二组扩增产物上生成粘性末端。在一些实施方案中,使用USER酶在扩增产物上生成粘性末端。在一些实施方案中,连接包括使第一和第二组扩增产物杂交。在一些实施方案中,连接包括将第一和第二组扩增产物连接。在一些实施方案中,第一引物和第三引物是同一引物。在一些实施方案中,第一引物、第三引物、第一组扩增产物或第二组扩增产物与扩散限制剂连接。
根据另一方面,本文提供了一种在液体中进行的方法,其包括:(a)形成多个液滴,其中多个滴液中的至少两个液滴包含单个细胞;(b)使与来自单个细胞的第一核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;并且使与来自单个细胞的第二核酸分子杂交的第二寡核苷酸延伸,从而形成第二延伸产物;(c)在液体中形成聚合物基质,形成水凝胶颗粒,从而限制第一延伸产物和第二延伸产物的扩散;(d)用包含第一引物和第二引物的第一引物组扩增第一延伸产物或其反向互补链,从而形成第一组扩增产物;并且用包含第三引物和第四引物的第二引物组扩增第二延伸产物或其反向互补链,从而形成第二组扩增产物;以及(e)将第一组扩增产物中的扩增产物与第二组扩增产物中的扩增产物连接。
在一些实施方案中,该方法还包括在(c)后清洗水凝胶颗粒。在一些实施方案中,该方法还包括使试剂与水凝胶颗粒接触,以使试剂扩散至水凝胶颗粒中。在一些实施方案中,寡核苷酸包含第一引物组和/第二引物组。在一些实施方案中,酶是聚合酶、连接酶、USER酶或其组合。在一些实施方案中,该方法还包括在清洗后在油中乳化水凝胶颗粒。在一些实施方案中,第一寡核苷酸或第二寡核苷酸与扩散限制剂连接。在一些实施方案中,第一寡核苷酸或第二寡核苷酸是RT引物。在一些实施方案中,该方法还包括使用第二链(SSS)引物来合成第一和/或第二延伸产物的反向互补链。在一些实施方案中,SSS引物包含衔接子序列。在一些实施方案中,衔接子序列不与第一和/或第二延伸产物杂交或互补。在一些实施方案中,该方法还包括用模板转换寡核苷酸延伸RT引物。在一些实施方案中,单个细胞是免疫细胞。在一些实施方案中,免疫细胞是T细胞或B细胞。在一些实施方案中,第一核酸分子和第二核酸分子是DNA或RNA。在一些实施方案中,DNA是基因组DNA。在一些实施方案中,RNA是信使RNA。在一些实施方案中,第一核酸分子编码免疫受体的第一肽链,第二核酸分子编码免疫受体的第二肽链。在一些实施方案中,第一肽链和第二肽链是免疫受体的同源对。在一些实施方案中,第一肽链或第二肽链包含可变结构域。在一些实施方案中,可变结构域包括CDR1、CDR2、CDR3或其组合。在一些实施方案中,第一肽链或第二肽链包含恒定结构域。在一些实施方案中,第一肽链或第二肽链包含跨膜区和/或细胞质尾。在一些实施方案中,免疫受体是B细胞受体。在一些实施方案中,免疫受体是T细胞受体。在一些实施方案中,扩散限制剂是聚合物或颗粒。在一些实施方案中,聚合物是聚丙烯酰胺、多糖或聚乙二醇。在一些实施方案中,颗粒的直径大于水凝胶颗粒的孔径。在一些实施方案中,扩散限制剂是聚合物基质。在一些实施方案中,连接包括在第一和第二组扩增产物上生成粘性末端。在一些实施方案中,在扩增产物上生成粘性末端包括使用USER酶。在一些实施方案中,连接包括将第一和第二组扩增产物杂交。在一些实施方案中,连接包括连接第一和第二组扩增产物。
根据另一方面,本文提供了一种方法,其包括:(a)获得宿主细胞群,该群中的每个宿主细胞表达具有天然配对的TCRα和β肽链的TCR或具有天然配对的BCR重和轻肽链的BCR;富集(i)来自该群中的宿主细胞亚群,或(ii)来自该群的宿主细胞亚群的被表达TCR或BCR,其中宿主细胞亚群或宿主细胞亚群的被表达TCR或BCR与靶抗原或靶MHC-抗原复合物结合;以及(b)向表达靶抗原或靶MHC-抗原复合物的受试者中施用从步骤(b)中富集的宿主细胞亚群或该亚群的被表达TCR或BCR。
在一些实施方案中,获得包括使用本文所述方法中的任意一种。在一些实施方案中,(b)包括使宿主细胞亚群或被表达TCR或BCR与靶抗原或靶MHC-抗原复合物接触。在一些实施方案中,MHC是MHC四聚体。在一些实施方案中,(c)包括通过注射进行施用。在一些实施方案中,注射包括静脉注射、皮下注射、皮内注射或肌肉注射。在一些实施方案中,靶抗原是新生抗原或肿瘤相关抗原。
根据另一方面,本文提供了一种方法,其包括:(1)提供多个至少1,000个细胞,至少1,000个细胞中的每个细胞包含TCRα链和TCRβ链;(2)提供多个至少1,000个隔室,至少1,000个隔室中的每个隔室包含固体支持物,其中固体支持物包括:(a)第一多核苷酸,其包含第一共同序列、第二共同序列和在第一共同序列和第二共同序列之间编码TCRα链的蛋白编码序列,和(b)第二多核苷酸,其包含第三共同序列、第四共同序列和在第三共同序列和第四共同序列之间编码TCRβ链的蛋白编码序列,其中每个隔室中的TCRα链和TCRβ链是存在于多个细胞中的至少一个中的同源对,从而提供各自编码TCRα链的第一多个蛋白编码序列和各自编码TCRβ链的第二多个蛋白编码序列;以及(3)将每个隔室中的第一多核苷酸和第二多核苷酸在物理上连接。在一些实施方案中,第一多个蛋白编码序列包括至少10个TRAV亚组,第二多个蛋白编码序列包括至少10个TRBV亚组。在一些实施方案中,至少1,000个隔室中的每个隔室包含来自多个至少1,000个细胞中的细胞。在一些实施方案中,隔室是孔、微孔或液滴。在一些实施方案中,固体支持物是珠、水凝胶颗粒或者是孔或微孔的表面。在一些实施方案中,第一共同序列、第二共同序列、第三共同序列或第四共同序列在多个至少1,000个隔室中相同。
根据另一方面,本文提供了一种组合物,其包含多个至少1,000个隔室,至少1,000个隔室中的每个隔室包括固体支持物,其中固体支持物包含:(a)第一多核苷酸,其包含第一共同序列、第二共同序列以及编码第一和第二共同序列之间的TCRα链的蛋白编码序列,和(b)第二多核苷酸,其包含第三共同序列、第四共同序列以及编码第三和第四共同序列之间的TCRβ链的蛋白编码序列,其中(i)每个隔室中的TCRα链和TCRβ链是同源对,(ii)多个隔室中的多个第一共同序列具有相同的序列并且与第一引物杂交或互补,(iii)多个隔室中的多个第二共同序列具有相同的序列并且与第二引物杂交或互补,(iv)多个隔室中的多个第三共同序列具有相同的序列并且与第三引物杂交或互补和(v)多个隔室中的多个第四共同序列具有相同的序列并且与第四引物杂交或互补。
在一些实施方案中,每个隔室还包含第一引物、第二引物、第三引物和第四引物。在一些实施方案中,第一引物的浓度是至少1nM,第二引物的浓度是至少1nM,第三引物的浓度是至少1nM,第四引物的浓度是至少1nM。在一些实施方案中,第二共同序列与每个隔室中的第四共同序列或其反向互补序列杂交或互补。
根据另一方面,本文提供了一种组合物,其包含多个至少1,000个隔室,至少1,000个隔室中的每个隔室包含:(a)第一全部或部分单链多核苷酸,其包含5’端的第一共同序列、第3’端的第二共同序列以及编码第一和第二共同序列之间的TCRα链的蛋白编码序列,和(b)第二全部或部分单链多核苷酸,其包含5’端的第三共同序列、第3’端的第四共同序列以及编码第三和第四共同序列之间的TCRβ链的蛋白编码序列,其中(i)TCRα链和TCRβ链是同源对,和(ii)第二共同序列与第四共同序列杂交。在一些实施方案中,第一共同序列、第二共同序列、第三共同序列或第四共同序列在多个至少1,000个隔室中相同。在一些实施方案中,每个隔室还包含固体支持物。在一些实施方案中,固体支持物是珠或水凝胶颗粒。
根据另一方面,本文提供了一种鉴定靶反应性T细胞受体(TCR)的方法,其包括:(a)提供表达多个TCR的多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对;(b)将多个T细胞分配至多个隔室,其中每个隔室包含多个T细胞中的单个T细胞;(c)在每个隔室内,将编码单个T细胞的TCR的同源对的第一TCR链的第一多核苷酸和编码单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)第一多核苷酸和第二多核苷酸是单个T细胞的内源性核酸的转录产物或扩增产物或者(ii)第一多核苷酸和第二多核苷酸不是使用亚磷酰胺化学合成的;(d)生成包含多个融合的多核苷酸的多个载体,多个载体中的每个载体包含多个融合的多核苷酸中的融合的多核苷酸;(e)将多个载体递送至多个细胞中,其中多个细胞中的每个细胞包含多个载体中的至少一个载体;(f)在多个细胞中表达来自多个载体的多个融合的多核苷酸,其中多个细胞的子集表达多个靶反应性TCR;(g)使多个细胞与一个或多个靶抗原接触,其中表达多个靶反应性TCR的多个细胞的子集与一个或多个靶抗原结合;以及(h)鉴定多个细胞的子集的多个靶反应性TCR中的靶反应性TCR。
根据另一方面,本文提供了一种鉴定靶反应性T细胞受体(TCR)的方法,其包括:(a)提供表达多个TCR的多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对;(b)将多个T细胞分配至多个隔室,其中每个隔室包含多个T细胞中的单个T细胞;(c)在每个隔室内,将编码单个T细胞的TCR的同源对的第一TCR链的第一多核苷酸和编码单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)第一多核苷酸和第二多核苷酸是单个T细胞的内源性核酸的转录产物或扩增产物或者(ii)第一多核苷酸和第二多核苷酸不是使用亚磷酰胺化学合成的;(d)将多个融合的多核苷酸递送至多个细胞中,其中多个细胞中的每个细胞包含多个融合的多核苷酸中的至少一个融合的多核苷酸;(e)在多个细胞中表达来自多个载体的多个融合的多核苷酸,其中多个细胞的子集表达多个靶反应性TCR;(f)使多个细胞与一个或多个靶抗原接触,其中表达多个靶反应性TCR的多个细胞的子集与一个或多个靶抗原结合;以及(g)鉴定多个细胞的子集的多个靶反应性TCR中的靶反应性TCR。
在一些情况下,该方法还包括在递送前生成包含多个融合的多核苷酸的多个载体,多个载体中的每个载体包含多个融合的多核苷酸中的融合的多核苷酸。在一些情况下,多个细胞是多个受体细胞。在一些情况下,内源性核酸是脱氧核糖核酸(DNA)或核糖核酸(RNA)。在一些情况下,DNA是基因组DNA。在一些情况下,RNA是信使RNA。在一些情况下,接触还包括使细胞群与呈递一个或多个靶抗原的一个或多个细胞接触。在一些情况下,一个或多个细胞是一个或多个肿瘤细胞、肿瘤球体、肿瘤裂解物脉冲的抗原呈递细胞(APC)或工程化为呈递一个或多个靶抗原的APC。在一些情况下,与编码靶抗原的DNA或RNA的DNA或RNA递送(例如,转染或电穿孔)工程化为呈递一个或多个靶抗原的一个或多个APC。在一些情况下,接触还包括使细胞群与肿瘤组织接触。在一些情况下,一个或多个靶抗原与主要组织相容性复合体(MHC)复合。在一些情况下,MHC是MHC四聚体。在一些情况下,第一TCR链是TCRα链,第二TCR链是TCRβ链。在一些情况下,第一TCR链是TCRγ链,第二TCR链是TCRδ链。在一些情况下,多个细胞是细胞系细胞。在一些情况下,细胞系细胞是CHO-K1细胞;HEK293细胞;Caco2细胞;U2-OS细胞;NIH 3T3细胞;NSO细胞;SP2细胞;CHO-S细胞;DG44细胞;K-562细胞,U-937细胞;MRC5细胞;IMR90细胞;Jurkat细胞;HepG2细胞;HeLa细胞;HT-1080细胞;HCT-116细胞;Hu-h7细胞;Huvec细胞;或Molt 4细胞。在一些情况下,多个细胞分离自来自受试者的样品。在一些情况下,多个T细胞分离自来自受试者的样品。在一些情况下,样品是肿瘤组织、血液样品,外周血单核细胞(PBMC)样品或其组合。在一些情况下,肿瘤组织最多为约2000mm3。在一些情况下,血液样品包含外周血核细胞(PBMC)。在一些情况下,多个T细胞是肿瘤浸润性T细胞或外周T细胞。在一些情况下,多个T细胞包括CD8+T细胞、CD4+T细胞、耗尽型T细胞、调节性T细胞或其任意组合。在一些情况下,该方法还包括分离多个细胞的子集中的至少一个细胞。在一些情况下,通过FACS分离多个细胞的子集中的至少一个细胞。在一些情况下,基于标志物分离多个细胞的子集中的至少一个细胞。在一些情况下,标志物是细胞表面标志物或细胞因子。在一些情况下,细胞表面标志物是CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB、CD137、CD3、CD28、CD4、CD8、CD45RA、CD45RO、GITR、FoxP3或其组合。在一些情况下,细胞因子是IFN-γ、TNF-α、IL-17A、IL-2、IL-3、IL-4、GM-CSF、IL-10、IL-13、颗粒酶B、穿孔素或其组合。在一些情况下,该方法还包括(i)向受试者施用多个细胞的子集中的至少一个细胞或者(ii)向受试者施用包含所鉴定的靶反应性TCR的自体或同种异体细胞。在一些情况下,自体或同种异体细胞包含编码所鉴定的靶向反应性TCR的多核苷酸。在一些情况下,编码所鉴定的靶反应性TCR的多核苷酸是融合的多核苷酸或其扩增产物,或者包含编码融合的多核苷酸的第一TCR链和第二TCR链的序列。
根据另一方面,本文提供了一种鉴定多个靶反应性T细胞受体(TCRs)的方法,其包括:(a)提供表达多个TCR的多个细胞,多个细胞中的每个细胞表达多个TCR中的TCR,其中多个TCR包含至少50个不同的同源对和包含来自多个V基因的V区,并且其中多个TCR对多个细胞来说具有外源性;(b)使多个细胞与一个或多个靶抗原接触,其中表达多个靶反应性TCR的多个细胞的子集与一个或多个靶抗原接触;以及(c)鉴定多个细胞的子集中的至少2个细胞,所述至少2个细胞表达多个靶反应性TCR中的至少两个靶特异性TCR,从而鉴定出多个靶反应性TCR中的至少两个靶反应性TCR。
在一些情况下,多个V基因包括至少10个不同的V基因。在一些实施方案中,多个细胞是多个基因工程化的细胞。在一些情况下,多个细胞不分离自患者。在一些情况下,多个细胞分离自来自受试者的样品。在一些情况下,样品是组织样品,血液样品、PBMC样品或其组合。在一些情况下,多个细胞不包括耗尽型T细胞。在一些情况下,多个TCR包含至少100个不同的同源对。在一些情况下,该方法还包括分离多个细胞的子集中的至少两个细胞。在一些情况下,(b)包括使多个细胞与呈递一个或多个靶抗原的一个或多个细胞接触。在一些情况下,一个或多个细胞是一个或多个肿瘤细胞、肿瘤球体、肿瘤裂解物脉冲的抗原呈递细胞(APC)或工程化为呈递一个或多个靶抗原的APC。在一些情况下,工程化为呈递一个或多个靶抗原的一个或多个APC包含编码靶抗原的DNA或RNA。在一些情况下,(b)包括使多个细胞与肿瘤组织接触。在一些情况下,(b)包括使多个细胞与和主要组织相容性复合物(MHC)复合的一个或多个靶抗原接触。在一些情况下,MHC是MHC四聚体。在一些情况下,一个或多个靶抗原的序列或身份是未知的。在一些情况下,该方法还包括向受试者施用多个细胞的子集中的至少两个细胞中的至少一个。在一些情况下,多个细胞中的每个细胞包含报告基因,调节所述报告基因以在细胞的TCR与一个或多个靶抗原中的靶抗原结合时发送信号。在一些情况下,多个细胞是细胞系细胞。在一些情况下,多个TCR包含至少100个不同的VJ组合。
根据另一方面,本文提供了一种治疗受试者中癌症的方法,其包括:(a)提供表达多个TCR的多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对;(b)将多个T细胞分配至隔室,其中每个隔室包含多个T细胞中的单个T细胞;(c)在每个隔室内,将编码单个T细胞的TCR的同源对的第一TCR链的第一多核苷酸和编码单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)第一多核苷酸和第二多核苷酸是单个T细胞的内源性核酸的转录产物或扩增产物或(ii)第一多核苷酸和第二多核苷酸不是使用亚磷酰胺化学合成的;(d)将多个融合苷酸递送至多个细胞中,其中多个细胞中的每个细胞包含多个融合的多核苷酸中的至少一个融合的多核苷酸;(e)在多个细胞中表达多个融合的多核苷酸,其中多个细胞的子集表达来自多个融合多个苷酸的子集的多个反应性TCR;(f)从多个融合的多核苷酸的子集中鉴定出多个靶反应性TCR;(g)将多个融合的多核苷酸的子集中的一个或多个融合的多核苷酸或其衍生物递送至多个受体细胞中,其中多个受体细胞中的每个细胞包含多个融合的多核苷酸的子集中的一个或多个融合的多核苷酸或其衍生物中的至少一个;以及(h)(i)向受试者施用多个受体细胞中的至少一个受体细胞或者(ii)向受试者施用多个受体细胞中的至少两个受体细胞,其中至少两个受体细胞表达不同的TCR。
在一些情况下,多个T细胞是肿瘤浸润性T细胞或外周T细胞。在一些情况下,多个T细胞包括CD8+T细胞、CD4+T细胞、耗尽型T细胞、调节性T细胞或其任意组合。在一些情况下,多个T细胞被体外激活和/或扩增。在一些情况下,在多个载体中递送多个融合的多核苷酸,其中多个载体中的每个载体包含多个融合的多核苷酸中的融合的多核苷酸。在一些情况下,该方法还包括在(d)中进行递送之前生成多个载体。在一些情况下,(f)中的鉴定包括使多个细胞与一个或多个靶抗原接触,其中表达多个靶反应性TCR的多个细胞的子集与一个或多个靶抗原结合。在一些情况下,一个或多个靶抗原由一个或多个肿瘤细胞或抗原呈递细胞(APC)呈递。在一些情况下,一个或多个APC(i)由一个或多个靶抗原脉冲或者(ii)包含编码靶抗原的DNA或RNA。在一些情况下,一个或多个抗原中的每个抗原与主要组织相容性复合物(MHC)复合。在一些情况下,MHC是MHC四聚体。在一些情况下,该方法还包括在(g)进行递送之前分离多个细胞的子集中的一个或多个细胞。在一些情况下,该方法还包括从受试者中分离表达多个TCR的多个T细胞。在一些情况下,在分离多个T细胞后最多约60天、50天、40天、30天、20天或更少进行施用。在一些情况下,多个受体细胞是同种异体细胞、自体细胞或细胞系细胞。在一些情况下,多个细胞是基因工程化的细胞或细胞系细胞。在一些情况下,该方法还包括在(h)之前扩增多个受体细胞。在一些情况下,衍生物包含一个或多个融合的多核苷酸的序列。在一些情况下,衍生物是一个或多个融合的多核苷酸的扩增产物或合成产物。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从表达多个T细胞受体(TCR)的受试者中分离多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对,其中多个TCR包括多个肿瘤反应性TCR;(b)从多个TCR中鉴定多个肿瘤反应性TCR;(c)将编码多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中多个受体细胞中的每个受体细胞包含编码多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核酸苷酸;(d)在多个受体细胞中表达多个肿瘤反应性TCR或其子集;以及(e)(i)向受试者施用多个受体细胞中的至少一个受体细胞或者(ii)向受试者施用多个受体细胞中的至少两个受体细胞,其中在(a)中分离多个T细胞后的最多约60天、50天、40天、30天、20天或更少天进行施用。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从表达多个T细胞受体(TCR)的受试者中分离多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对,其中多个TCR包括多个肿瘤反应性TCR;(b)从多个TCR中鉴定多个肿瘤反应性TCR;(c)将编码多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中受体细胞中的每个受体细胞包含编码多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核苷酸;(d)在多个受体细胞中表达多个肿瘤反应性TCR或其子集;以及(e)(i)向受试者施用多个受体细胞中的至少一个受体细胞或者(ii)向受试者施用多个受体细胞中的至少两个受体细胞,其中至少两个受体细胞表达不同的TCR,其中从受试者中分离多个T细胞到向受试者施用多个受体细胞中的至少一个或至少两个受体细胞,受试者的肿瘤在超过约60天、50天、40天、30天、20天或更少天内未进展。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从表达多个T细胞受体(TCR)的受试者中分离多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对,其中多个TCR包括多个肿瘤反应性TCR;(b)鉴定多个肿瘤反应从多个TCR中鉴定多个肿瘤反应性TCR;(c)将编码多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中多个受体细胞中的每个受体细胞包含编码多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核酸苷酸;(d)在多个受体细胞中表达多个肿瘤反应性TCR或其子集;以及(e)(i)向受试者施用多个受体细胞中的至少一个受体细胞或者(ii)向受试者施用多个受体细胞中的至少两个受体细胞,其中至少两个受体细胞表达不同的TCR,其中(i)肿瘤的大小已增加了低于约50%、30%、40%、20%、15%、10%、5%或2%,或者(ii)从分离多个T细胞到施用多个受体细胞中的至少一个或至少两个受体细胞,受试者中肿瘤细胞的数量未增加约2倍、3倍、4倍、5倍或更多。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从表达多个T细胞的受试者中分离多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对,其中多个TCR包括多个肿瘤反应性TCR;(b)鉴定多个肿瘤反应从多个TCR中鉴定多个肿瘤反应性TCR;(c)将编码多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中多个受体细胞中的每个受体细胞包含编码多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核苷酸;(d)在多个受体细胞中表达多个肿瘤反应性TCR或其子集;以及(e)(i)向受试者施用多个受体细胞中的至少一个受体细胞或者(ii)向受试者施用多个受体细胞中的至少两个受体细胞,其中至少两个受体细胞表达不同的TCR,其中从分离多个T细胞到施用多个受体细胞中的至少一个或至少两个受体细胞,肿瘤不会进展到新的阶段。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从表达多个T细胞受体(TCR)受试者中分离多个T细胞,其中多个T细胞中的每个T细胞表达多个TCR中的TCR的同源对,其中多个TCR包括多个肿瘤反应性TCR;(b)鉴定多个肿瘤反应从多个TCR中鉴定多个肿瘤反应性TCR;(c)将编码多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中多个受体细胞中的每个受体细胞包含编码多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核苷酸,其中(i)多核苷酸是内源性核酸的转录产物或扩增产物或者(ii)多核苷酸不是使用亚磷酰胺化学合成的;(d)在多个受体细胞中表达多个肿瘤反应性TCR或其子集;以及(e)(i)向受试者施用多个受体细胞中的至少两个受体细胞,其中至少两个受体细胞表达不同的TCR。
在一些情况下,该方法不包括使用亚磷酰胺化学合成编码多个肿瘤反应性TCR或其子集的多核苷酸。在一些情况下,多个T细胞是肿瘤浸润性T细胞或外周T细胞。在一些情况下,多个T细胞包括CD8+T细胞、CD4+T细胞、耗尽型T细胞、调节性T细胞或其任意组合。在一些情况下,多个受体细胞是同种异体T细胞、自体T细胞或细胞系细胞。在一些情况下,该方法还包括在(b)之前在多个报告子细胞中表达多个TCR。在一些情况下,表达包括通过病毒载体递送表达多个TCR的核酸序列。在一些情况下,病毒载体是慢病毒载体。在一些情况下,多个报告子细胞中的每个报告子细胞包含报告基因。在一些情况下,在(b)中,进行鉴定包括使多个TCR与一个或多个靶抗原或者呈递一个或多个靶抗原的细胞或组织接触。在一些情况下,一个或多个靶抗原由一个或多个肿瘤细胞或抗原呈递细胞(APC)呈递。在一些情况下,一个或多个APC包含编码靶抗原的DNA或RNA。在一些情况下,一个或多个靶抗原与MHC复合。在一些情况下,MHC是MHC四聚体。在一些情况下,多个TCR中的多个肿瘤反应性TCR包含TCR的至少2、5、10、15或20个不同的同源对。在一些情况下,多个肿瘤反应性TCR中的每个TCR对不同表位或不同蛋白具有特异性。在一些情况下,多个肿瘤反应性TCR中的每个TCR包含不同的(i)TCRαCDR3序列、(ii)TCRβCDR3可变结构域序列、(iii)TCRα可变结构域序列、(iv)TCRβ可变结构域序列,或者(v)包含TCRα和TCRβ可变结构域序列组合。在一些情况下,多个肿瘤反应性TCR与来自受试者的肿瘤细胞结合但不与来自受试者的健康细胞结合或者与来自受试者的健康细胞结合,其中对健康细胞的亲和力比对肿瘤细胞至少低10倍。在一些情况下,在(e)中施用的多个受体细胞所包括的细胞比(a)中分离的多个T细胞多至少10、至少20、至少50、至少100、至少500、至少1,000、至少5,000、至少10,000、至少100,000或至少1,000,000倍。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从表达T细胞受体(TCR)群的受试者中分离T细胞群,其中T细胞群包括最多约10,000个细胞;(b)从TCR群中鉴定多个肿瘤反应性TCR;以及(c)向受试者施用表达多个肿瘤反应性TCR或其子集的多个细胞,其中多个肿瘤反应性TCR或其子集包含至少2个不同的同源对。
根据另一方面,本文提供了一种治疗受试者中肿瘤的方法,其包括:(a)从TCR群中鉴定多个肿瘤反应性T细胞受体(TCR),其中TCR群包含TCR的至少50个不同的同源对;以及(b)向受试者施用表达多个肿瘤反应性TCR或其子集的多个细胞,其中多个肿瘤反应性TCR或其子集包含至少50个不同的同源对中的至少5、至少10、至少15或至少20个不同的同源对,其中多个肿瘤反应性TCR对多个细胞具有外源性。在一些情况下,多个肿瘤反应性TCR或其子集包括至少5个TCR,并且其中至少5个TCR中的每个TCR(1)对不同的表位或不同的蛋白质具有特异性或者(2)包含不同的(i)TCRαCDR3序列、(ii)TCRβCDR3可变结构域序列、(iii)TCRα可变结构域序列、(iv)TCRβ可变结构域序列,或(v)TCRα和TCRβ可变结构域序列组合。
在一些情况下,该方法还包括:在(a)之前,从受试者中分离表达TCR群的T细胞群。在一些情况下,至少50个不同的同源对包含来自至少5、10、15或20个不同的V基因的V区。在一些情况下,鉴定包括通过标志物分离多个肿瘤反应性TCR。在一些情况下,表达多个肿瘤反应性TCR或其子集的多个细胞是多个同种异体细胞、自体细胞或细胞系细胞。在一些情况下,多个同种异体细胞表达与抑制性天然杀伤(NK)细胞受体结合的蛋白质。在一些情况下,该蛋白质是B2M-HLA-E或B2M-HLA-G融合蛋白。
根据另一方面,本文提供了一种鉴定靶特异性T细胞受体(TCR)的方法,其包括:(a)使来自第一样品的多个T细胞与包含来自受试者的肿瘤细胞的第二样品或第三样品接触,其中第三样品衍生自第二样品,并且其中第三样品包含:(i)来自第二样品的肿瘤细胞或编码靶抗原的核酸和MHC的靶抗原,(ii)在MHC中呈递靶抗原的细胞,或(iii)包含MHC和由核酸编码的蛋白产物的细胞,并且其中多个T细胞的子集与和MHC复合的靶抗原结合;(b)分离第一样品的多个T细胞的子集或其一部分;(c)将多个T细胞的子集或其一部分分配至多个隔室,其中每个隔室包含多个T细胞的子集或其一部分中的单个T细胞;以及(d)在每个隔室内,鉴定编码单个T细胞的TCR的同源对的第一TCR链的第一多核苷酸和编码单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸,从而生成一个或多个配对的多核苷酸。
在一些情况下,进行鉴定包括将编码单个T细胞的TCR的同源对的第一TCR链的第一多核苷酸和编码单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸物理上连接。在一些情况下,一个或多个配对的多核苷酸是一个或多个融合的多核苷酸。在一些情况下,鉴定包括对编码单个T细胞的TCR的同源对的第一TCR链的第一多核苷酸和编码单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸测序。
在一些情况下,第一多核苷酸和第二多核苷酸不是使用亚磷酰胺化学合成的。在一些情况下,第一多核苷酸和第二多核苷酸是单个T细胞的内源性核酸的转录产物或扩增产物。在一些情况下,第一样品或第二样品分离自受试者。在一些情况下,第一样品和第二样品分离自同一受试者。在一些情况下,第一样品和第二样品分离自不同的样品。在一些情况下,第一样品或第二样品是组织样品、血液样品、PBMC样品或其组合。在一些情况下,组织样品是肿瘤组织或健康组织。在一些情况下,通过核心活检、细针活检或单采从受试者中分离第一样品或第二样品。在一些情况下,分离包括通过标志物分离多个T细胞的子集或其一部分。在一些情况下,标志物是细胞表面标志物或细胞因子。在一些情况下,细胞表面标志物是CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB、CD137、CD3、CD28、CD4、CD8、CD45RA、CD45RO、GITR、FoxP3或其组合。在一些情况下,呈递靶抗原的细胞是肿瘤细胞、抗原呈递细胞、人造APC或其任意组合。在一些情况下,APC或aAPC用靶抗原脉冲。在一些情况下,包含由核酸编码的蛋白产物是与核酸或其衍生物递送(例如,转染或电穿孔)的APC或aAPC。在一些情况下,进一步向APC或aAPC递送编码MHC的其他核酸。在一些情况下,核酸或其衍生物是DNA或RNA。在一些情况下,呈递靶抗原的细胞或包含由核酸编码的蛋白产物的细胞分离自受试者或者是细胞系细胞。在一些情况下,呈递靶抗原的细胞或包含由核酸编码的蛋白产物的细胞分离自从其中分离出第一样品和第二样品的同一受试者。在一些情况下,该方法还包括生成包含一个或多个融合的多核苷酸的一个或多个载体,一个或多个载体中的每个载体包含一个或多个融合的多核苷酸中的融合的多核苷酸。在一些情况下,该方法还包括将一个或多个载体递送至多个细胞中,其中多个细胞中的每个细胞包含一个或多个载体中的至少一个载体。在一些情况下,该方法还包括在多个细胞中表达一个或多个融合的多核苷酸,其中多个细胞的子集表达多个靶反应性TCR。在一些情况下,该方法还包括使多个细胞与一个或多个靶抗原接触,其中表达多个靶反应性TCR的多个细胞的子集与一个或多个靶抗原结合。在一些情况下,该方法还包括鉴定多个靶反应性TCR中的一个或多个靶反应性TCR。在一些情况下,该方法还包括将编码一个或多个靶反应性TCR的多核苷酸递送至多个受体细胞中。在一些情况下,该方法还包括向受试者施用多个受体细胞中的一个或多个细胞。
根据另一方面,本文提供了一种药物组合物,其包含受体细胞,该受体细胞包含编码由本文所述方法鉴定的靶反应性或肿瘤反应性TCR的序列。
根据另一方面,本文提供了一种方法,其包括向有需要的受试者施用本文所述的药物组合物。在一些情况下,以约1x109个细胞至约1x1011个细胞的剂量施用受体细胞。
根据以下详细描述,本公开的其他方面和优点对于本领域技术人员将变得显而易见,其中,仅示出和描述了本公开的说明性实施方案。将会认识到,本公开内容能够具有其他和不同的实施方案,并且其若干细节能够在各种明显的方面进行修改,而所有这些都不脱离本公开内容。因此,附图和描述本质上应被认为是说明性的,而不是限制性的。
通过引用合并
本说明书中提及的所有出版物,专利和专利申请都以相同的程度通过引用并入本文,就好像每个单独的出版物,专利或专利申请被明确地并单独地指出通过引用并入一样。在通过引用并入的出版物和专利或专利申请与说明书中包含的公开内容相抵触的范围内,该说明书旨在取代和/或优先于任何此类矛盾的材料。
附图说明
在所附权利要求中具体阐述了本发明的新颖特征。通过参考下面的详细描述,可以更好地理解本发明的特征和优点,所述详细描述阐述了示例性实施方案,在其中利用了本发明的原理,以及附图(本文也称为“图”(“figure”,“Fig.”,和“FIGURE”))。其中:
图1示出了产生融合二分免疫受体多核苷酸和免疫受体表达载体的一般概念的示例方案。可以同时处理多源免疫受体表达细胞(例如,显示了三个T细胞)。对于每个细胞,将二分免疫受体的两个基因的序列(例如,分别命名为TRA 1和TRB 1的T细胞受体α基因座基因TRA和T细胞受体β基因座基因TRB)融合以产生编码两条链的融合DNA分子,其可以称为融合二分免疫受体基因(步骤1)。融合的二分免疫受体多核苷酸可以混合到一个容器中,如试管中(步骤2)。融合DNA分子可以制成免疫受体表达载体(步骤3)。
图2示出了,使用三个T细胞(如图所示的T细胞1,T细胞2和T细胞3)为例,产生融合二分免疫受体多核苷酸的单细胞反应器的概念的示例方案。(a)每个细胞可以放置在单细胞反应器中。(b)可以在各自的单细胞反应器中裂解细胞以释放编码两条链的mRNA分子(例如,来自T细胞1的TRA和TRB,分别命名为TRA 1和TRB 1)。(c)然后可以将每个mRNA分子转化为DNA分子并进行扩增。(d)可以通过连接每条链的扩增产物来产生融合DNA分子(例如,融合二分免疫受体多核苷酸)。由于单细胞反应器之间存在阻隔,可以最大程度地减少来自不同细胞的TRA和TRB的错配(例如,TRA 1与TRB 2融合)。
图3示出了,使用TCR为例,融合二分免疫受体多核苷酸的可能的不同取向。虚线箭头表明了蛋白编码序列的有义链的方向。在本实施例中,有义链的5′端表示“头”,有义链的3′端表示“尾”。
图4A示出了以尾对尾的取向融合TRA和TRB的示例策略。
图4B示出了以尾对尾的取向融合TRA和TRB的示例策略。
图5A示出了以TRA到TRB的顺序在头对尾取向上融合TRA和TRB的示例策略。
图5B示出了以TRA到TRB的顺序在头对尾取向上融合TRA和TRB的示例策略。
图5C示出了以TRA到TRB的顺序在头对尾取向上融合TRA和TRB的示例策略。
图6A示出了将尾对尾融合的二分免疫受体多核苷酸转化成具有双向启动子的表达免疫受体的载体的示例方法。
图6B示出了将尾对尾融合的二分免疫受体多核苷酸转化为具有双向启动子的表达免疫受体的载体的示例方法。
图7A示出了将尾对尾融合的二分免疫受体多核苷酸转化成表达双顺反子免疫受体的载体的示例性方法。
图7B示出了将尾对尾融合的二部分免疫受体多核苷酸转化成表达双顺反子免疫受体的载体的示例方法。
图7C示出了将尾对尾融合的二部分免疫受体多核苷酸转化成表达双顺反子免疫受体的载体的示例方法。
图7D示出了将尾对尾融合的二部分免疫受体多核苷酸转化成表达双顺反子免疫受体的载体的示例方法。
图8A示出了将头对尾融合的二分免疫受体多核苷酸转化成表达双顺反子免疫受体的载体的示例方法。
图8B示出了将头对尾融合的二部分免疫受体多核苷酸转化为表达双顺反子免疫受体的载体的示例方法。
图8C示出了将头对尾融合的二分免疫受体多核苷酸转化为表达双顺反子免疫受体的载体的示例性方法。
图9A示出了以尾对尾的取向融合TRA和TRB的示例策略。
图9B示出了以尾对尾的取向融合TRA和TRB的示例策略。
图10A示出了以头对尾取向融合TRA和TRB的示例策略。
图10B示出了以头对尾取向融合TRA和TRB的示例策略。
图11A示出了液滴形成的实施例,其中水相包含细胞和引物修饰的琼脂糖。
图11B示出了形成的液滴的实施例。亮点表示细胞核被染料染色,较大的球体表示琼脂糖珠。
图12示出了实施例8中所述的用于OE-PCR的乳剂的示例图像。放大视图示出了一些液滴,这些液滴包含琼脂糖珠截留的含有接头的TCRα链和β链多核苷酸。
图13示出了用于测序文库构建和测序的示例方案。在该图中,(p)表示部分,(f)表示全长。
图14示出了示例性测序数据,其示出了配对的读取计数矩阵(M0)。
图15A示出了示例测序数据,其显示了TRA和TRB克隆的占优配对(dominantpairing)。
图15B示出了示例测序数据,其显示了TRA和TRB克隆的占优配对。
图15C示出了示例测序数据,其显示了TRA和TRB克隆的占优配对。
图15D示出了示例测序数据,其显示了TRA和TRB克隆的占优配对。
图15E示出了示例测序数据,其显示了TRA和TRB克隆的占优配对。
图15F示出了示例测序数据,其显示了TRA和TRB克隆的占优配对。
图16A示出了示例测序数据,其显示了映射至如由A1,A2或A3指示的最前1、2或3个TRB配对伴侣的TRA克隆的读段的按克隆的分数。
图16B示出了示例测序数据,其显示了映射至如由B1,B2或B3指示的最前1、2或3个TRA配对伴侣的TRB克隆的读段的按克隆的分数。
图17A示出了示例测序数据,其示出了检测到的占优配对的数目。
图17B示出了示例测序数据,其显示了由占优配对贡献的读段的分数。
图18示出了在没有关于抗原的先验知识的情况下选择肿瘤反应性(或肿瘤特异性)TCR的示例方案。
图19示出了选择肿瘤反应性(或肿瘤特异性)TCR并使用表达TCR的受体细胞以治疗受试者的肿瘤的示例方案。
具体实施方式
虽然本文已经示出和描述了本发明的各种实施方案,但对于本领域技术人员容易理解的是,这样的实施方案只是以示例的方式提供的。本领域技术人员在不脱离本发明的情况下可以想到多种变化、改变和替代。应当理解,可以采用本文所述的本发明实施方案的各种替代方案。
在本公开内容中,单数的使用包括复数,除非另有特别说明。此外,除非另外说明,否则使用“或”也表示“和/或”。同样,“包含”(“comprise”、“comprises”、“comprising”)、“包括”(“include”、“includes”和“including”)是非限制性的。
定义
术语“约”或“近似”是指在特定值的可接受误差范围内,如本领域普通技术人员所确定的,该误差将部分取决于该值如何测量或确定,即测量系统的局限性。例如,按照本领域的实践,“约”可以表示在1个或多于1个标准偏差内。或者,“约”可以表示给定值的至多20%、至多10%、至多5%或至多1%的范围。或者,特别是关于生物系统或过程,该术语可以指在数值的一个数量级内,优选地在数值的5倍以内,更优选地在数值的2倍以内。在本申请和权利要求书中描述了特定值的情况下,除非另有说明,否则应假设术语“约”表示该特定值在可接受的误差范围内。
术语“免疫受体”是指免疫细胞产生以识别其靶的受体蛋白或受体蛋白复合物。靶可以是抗原或其一部分(例如,表位)。抗原可以是蛋白质或肽。靶可以是MHC结合的肽。免疫受体的示例包括B细胞受体(BCR)、抗体(与“免疫球蛋白”互换使用)和T细胞受体(TCR)。
术语“免疫受体链”是指起免疫受体亚基作用的多肽。免疫受体链的示例包括免疫球蛋白(Ig)的重链、免疫球蛋白的轻链、TCR的α链、TCR的β链、TCR的γ链、TCR的δ链。
术语“二分免疫受体”是指由两个基因编码的多肽形成的免疫受体。在细胞中,这两个基因可以位于染色体的不同位点上,或不同的染色体上。这两个基因可以是重排基因,如V(D)J重排基因。V(D)J重排基因可以通过称为V(D)J重组的机制产生,该机制发生在原发性淋巴器官中,并且以几乎随机的方式重排变量(V)、连接(J),并且在一些情况下,多样性(D)基因片段。二分免疫受体的示例包括,但不限于,BCR(由重排重链基因和重排轻链基因编码)、抗体(由重排重链基因和重排轻链基因编码)和TCR(由重排TRA基因和重排的TRB基因编码,或由重排的TRG基因和重排的TRD基因编码)。
术语“基因”是指可能被转录和/或翻译的核酸序列(该定义包括5′和3′中的调控元件,以及内含子,如果存在)孤独基因和假基因也是“基因”概念的示例。通常,V、D和J基因指种系中的基因片段,这些种系基因序列可以在IMGT数据库中找到。V(D)J重组后,重排基因中的V、D和J基因片段分别称为V区、D区和J区。重排基因中的V区、D区和J区分别来自种系中的V基因、D基因或J基因。
术语“源免疫受体表达细胞”是指免疫受体表达细胞,其免疫受体可以被克隆到免疫受体表达的载体中。如果免疫受体是二分免疫受体,这些细胞可以在本文所述的方法中作为输入细胞,以产生融合的二分免疫受体多核苷酸,这些多核苷酸反过来可以被转化为免疫受体表达的载体。例如,源免疫受体表达细胞可以是表达源BCR的细胞、表达源抗体的细胞或表达源TCR的细胞。
术语“融合的二分免疫受体多核苷酸”是指包含二分免疫受体的两个基因(包括重排基因)的编码序列的连续多核苷酸分子,其中所述编码序列可以是编码免疫受体链的全部或部分序列。例如,融合的二分免疫受体多核苷酸可以是融合的BCR多核苷酸、融合的抗体多核苷酸或融合的TCR多核苷酸。
术语“表达免疫受体的载体”是指多核苷酸载体(如质粒或病毒载体),其(1)包含融合的二分免疫受体多核苷酸,并且(2)可用于在宿主细胞(例如,本文所述的受体细胞)中表达免疫受体。例如,表达免疫受体的载体可以是表达BCR的载体、表达抗体的载体或表达TCR的载体。
术语“受体细胞”是指可以在其中功能性引入表达免疫受体的载体的细胞。短语“功能性引入”是指在表达免疫受体的载体中编码的免疫受体可以在受体细胞中表达。受体细胞的示例包括,但不限于,CD45+细胞、T细胞、B细胞、巨噬细胞、自然杀伤(NK)细胞、干细胞、细菌细胞、酵母细胞和细胞系。
术语“免疫受体程序化受体细胞”是指经工程化以携带表达免疫受体的载体以表达免疫受体的受体细胞。在适当的情况下,短语“免疫受体程序化受体细胞”中的“免疫受体”一词可以被“BCR”、“抗体”或“TCR”取代。在适当的情况下,短语“免疫受体程序化受体细胞”中的短语“受体细胞”可以被作为受体细胞,例如“CD45+细胞”、“T细胞”、“B细胞”、“巨噬细胞”、“NK细胞”、“干细胞”、“HeLa细胞”、“CHO细胞”、“细菌细胞”和“酵母细胞”的细胞类型取代。例如,免疫受体程序化受体细胞可以是TCR编程的T细胞、BCR编程的B细胞或抗体编程的CHO细胞。
如本文所用,术语“工程化的”及其语法等同项可以指核酸(例如,生物体基因组内的核酸)或多肽的一种或多种改变。一种或多种改变可以包括基因的修饰、添加和/或缺失。工程化的细胞可以指具有添加、缺失和/或改变基因的细胞。
术语“多克隆免疫受体程序化受体细胞”是指具有一种以上表达的不同免疫受体的免疫受体程序化受体细胞群。一种以上表达的不同免疫受体中的每一种可以与不同的表位、不同的抗原或由不同的MHC呈递的表位反应。在多克隆免疫受体程序化受体细胞群中表达的不同免疫受体的总数可以超过100、1,000、10,000、100,000或1,000,000。在一些情况下,在多克隆免疫受体程序化受体细胞群中表达的不同免疫受体的总数可以是至少50、至少100、至少150、至少200、至少250、至少300、至少500、至少1,000、至少2,000、至少5,000、至少10,000、至少50,000、至少100,000、至少500,000、至少1,000,000、至少5,000,000或更多。
序列的结构域水平描述:在本公开内容中,多核苷酸序列可以在结构域水平描述。每个结构域名可以对应于特定的多核苷酸序列。例如,结构域“A”可以具有5’-TATTCCC-3’的序列,结构域“B”可以具有5’-AGGGAC-3’的序列,并且结构域“C”可以具有5’-GGGAAGA-3’的序列。在这种情况下,具有结构域A、B和C连接序列的多核苷酸可以写为[A|B|C}。符号“[”表示5’端,符号“}”表示3’端,并且符号“|”分隔结构域名。具有“X”序列的ssDNA或ssDNA的一部分可以称为[X}。星号表示序列互补性。例如,结构域[X*}是域[X}的反补。符号ds[X}可以用于描述由[X}和[X*}形成的双链DNA。在一些情况下,尤其是在不需要区分dsDNA和ssDNA的情况下,其单链具有序列[X}的dsDNA也可以宽泛地称为[X}。具有与[X}相同的序列的单链RNA分子或片段(除了用U取代T以外)也可以称为[X}。根据上下文,域名可以指确切的序列或描述DNA或结构域的一般功能。例如,[RBS}可以用于描述核糖体结合位点,尽管[RBS}的确切序列可以不同。括号可以用于对结构域的连接进行分组,并且反补操作(以“*”表示)可以通过在右括号后面添加“*”来应用于连接。例如,[(X|Y)*}与[Y*|X*}相同。
术语“多核苷酸”、“核酸”和“寡核苷酸”是可以互换使用的。它们可以指任何长度的核苷酸的聚合形式,即脱氧核糖核苷酸或核糖核苷酸,或其类似物。多核苷酸可以包括一个或多个选自腺苷(A)、胞嘧啶(C)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)或其变体的核苷酸。核苷酸通常包括核苷和至少1、2、3、4、5、6、7、8、9、10或更多个磷酸酯(PO3)基团。核苷酸可以包括核碱基、五碳糖(核糖或脱氧核糖)以及一个或多个磷酸酯基团。多核苷酸可以具有任何三维结构,并且可以发挥各种功能。以下是多核苷酸的非限制性示例:基因或基因片段的编码或非编码区、从连锁分析定义的位点、外显子、内含子、信使RNA(mRNA)、转移RNA(tRNA)、核糖体RNA(rRNA)、短干扰RNA(siRNA)、短发夹RNA(shRNA)、微小RNA(miRNA)、环状RNA、核酶、cDNA、重组多核苷酸、支链多核苷酸、质粒、载体、任何序列的分离DNA、任何序列的分离RNA、核酸探针和引物。多核苷酸可以包含一个或多个修饰的核苷酸,如甲基化的核苷酸和核苷酸类似物。如果存在,可以在聚合物组装之前或之后对核苷酸结构进行修饰。核苷酸的序列可以被非核苷酸成分打断。多核苷酸可以在聚合后进一步修饰,如通过与标记组分缀合。
多核苷酸可以包括一种或多种核苷酸变体,包括非标准核苷酸、非天然核苷酸、核苷酸类似物和/或修饰的核苷酸。修饰的核苷酸的示例包括,但不限于二氨基嘌呤、5-氟尿嘧啶、5-溴尿嘧啶、5-氯尿嘧啶、5-碘尿嘧啶、次黄嘌呤、黄嘌呤、4-乙酰胞嘧啶、5-(羧羟甲基)尿嘧啶、5-羧甲基氨甲基-2-硫尿苷、5-羧甲基氨甲基尿嘧啶、二氢尿嘧啶、β-D-半乳糖基肌苷、肌苷、N6-异戊烯腺嘌呤、1-甲基鸟嘌呤、1-甲基肌苷、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、5-甲基胞嘧啶、N6-腺嘌呤、7-甲基鸟嘌呤、5-甲基氨甲基尿嘧啶、5-甲氧基氨甲基-2-硫尿嘧啶、β-D-甘露糖基肌氨酸、5′-甲氧基羧甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲硫基-D46-异戊烯腺嘌呤、尿嘧啶-5-氧乙酸(v)、wybutoxosine、假尿嘧啶、queosine、2-硫胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4-硫尿嘧啶、5-甲基尿嘧啶、尿嘧啶-5-氧乙酸甲酯、尿嘧啶-5-氧乙酸(v)、5-甲基-2-硫尿嘧啶、3-(3-氨基-3-N-2-羧丙基)尿嘧啶、(acp3)w、2,6-二氨基嘌呤等。在一些情况下,核苷酸可以包括其磷酸酯基团的修饰,包括对三磷酸酯基团的修饰。这种修饰的非限制性示例包括更长长度的磷酸酯链(例如,具有4、5、6、7、8、9、10或更多磷酸酯部分的磷酸酯链)和硫醇基团(例如,α-硫代三磷酸酯和β-硫代三磷酸酯)的修饰。核酸分子还可在碱基基团(例如,通常可用于与互补核苷酸形成氢键的一个或多个原子和/或通常不能与互补核苷酸形成氢键的一个或多个原子)、糖基或磷酸酯主链修饰。核酸分子还可以含有胺修饰的基团,如氨基烯丙基1-dUTP(aa-dUTP)和氨己基丙烯酰胺-dCTP(aha-dCTP),以允许胺反应性基团,如N-羟基琥珀酰亚胺酯(NHS)的共价附接。本公开内容的寡核苷酸中的标准DNA碱基对或RNA碱基对的替代物可以提供更高的密度(每立方毫米),更高的安全性(抵抗天然毒素的偶然或有目的合成),在光编程聚合酶中更容易区分,或较低的二级结构。这种替代碱基对与天然和突变聚合酶相容,用于从头合成和/或扩增合成。
术语“肽”是氨基酸的聚合物,并且其通过酰胺键连接在一起,或者被称为“多肽”。在本说明书的上下文中,应理解,氨基酸可以是L-光学异构体或D-光学异构体。肽是两个或更多个氨基酸单体长,并且通常可以超过20个氨基酸单体长。多肽可以是线性非结构化或以三维结构折叠。结构化多肽可以是蛋白质。在一些情况下,肽是新抗原肽。在一些情况下,肽是肿瘤相关抗原肽。
术语“新抗原”是指产生于肿瘤特异性突变的一类肿瘤抗原,该突变改变了基因组编码蛋白的氨基酸序列。
如本文所用,术语“序列”及其语法等同项可以指多肽序列或多核苷酸序列。多核苷酸序列可以是DNA或RNA;可以是线性、圆形或分支的;可以是单链或双链。序列可以突变。序列可以具有任何长度,例如,长度在2至1,000,000个或更多个氨基酸或核苷酸之间(或介于两者之间或以上的任何整数值),例如,在约100至约10,000个核苷酸之间或在约200至约500个氨基酸或核苷酸之间。核酸的序列可以涵盖实际序列和序列的反向互补序列。
本文使用的术语“容器”是指其中可以发生生化反应(例如,靶蛋白和抗体结合、核酸杂交和引物延伸)的隔室(例如,微流通道、孔、管或液滴)。术语“容器”和“隔室”可以互换使用。容器或隔室可以是固体壁的(当容器或隔室的边界是固体,如玻璃、塑料或聚二甲基硅氧烷(PDMS)),或液体壁的(当容器或隔室的边界是液体,如油)。固体壁容器可以含有一个固体支架,它是连接所有容器的连续固体。隔室的体积可以大至1mL,或小至1皮升。在一些实施方案中,多个隔室的隔室中值大小为1至10皮升、10至100皮升、100皮升至1纳升、1至10纳升、10至100纳升、100纳升至1微升、1至10微升、10至100微升或100至1000微升。隔室中水性内含物的体积可以小于或约等于隔室的体积。在一些实施方案中,隔室中的水性内含物的中值体积为1微升或更小。容器可以包含多种可聚合或可胶凝的聚合物和/或单体。多种可聚合或可胶凝的聚合物和/或单体可以在聚合或胶凝时形成水凝胶或硬化基质,从而形成硬化颗粒。硬化颗粒可以是珠。硬化颗粒可以是多孔颗粒。硬化颗粒可以是水凝胶颗粒。水凝胶颗粒可以由凝胶状聚合物,如交联聚丙烯酰胺、交联PEG、琼脂糖或海藻酸盐制成。硬化颗粒经处理或刺激后可以熔化。例如,琼脂糖颗粒可以通过高温熔化。交联剂中具有二硫键的聚丙烯酰胺颗粒可以通过用还原剂如β硫醇基乙醇或DTT处理来熔化。
术语“液滴”是指一定体积的液体。“乳液”是指第一液体的微小液滴在第二液体中的分散体,其中第一液体不溶于或不混溶第二液体。乳液的示例包括油包水乳液、水包油包水乳液或脂质层(脂质体)的水乳液。如本文所用:“油包水乳液”是指油包水混合物,其中油形成连续相并且水为不连续的液滴。在一些实施方案中,液滴的大小可以是均匀的,也可以是不均匀的。在一些实施方案中,多个液滴中的液滴中值直径可以为约0.001μm至约1mm。在一些实施方案中,多个液滴中的液滴中位体积的范围可以为0.01纳升至1微升。
术语“颗粒”是指任何构型的不溶材料,包括球形、线状、刷状和许多不规则形状。颗粒可以是多孔的,内部具有规则或随机的通道。示例包括二氧化硅、纤维素、琼脂糖珠、聚苯乙烯(固体、多孔和多样的(derivitized))珠、可控孔玻璃、凝胶珠、溶胶、生物细胞、亚细胞颗粒、微生物(原生动物、细菌、酵母、病毒等)胶束、脂质体、环糊精、两相系统(例如蜡中的琼脂糖珠)等,以及其他可以截留或封装材料的结构。
如本文所用,术语“分区(partition)”可以是动词或名词。当作为动词(例如,分配(“to partition”或“partitioning”))时,该术语通常是指种类或样品在容器之间的划分(例如,细分),可用于将一部分(或细分)与另一部分隔离。这些容器使用名词“分区”来指代。分配可以,例如,使用微流控、分区、涡旋等进行。分区可以是,例如,孔、微孔、孔洞、液滴(例如,乳液中的液滴)、乳液的连续相、试管、斑点、胶囊、珠、稀释溶液中的珠表面或任何其他合适的容器,用于将样品的一部分与另一部分隔离。分区也可以包括另一个分区。可以通过使用微流控或通过物理搅拌水相和油相的混合物,任选地在表面活性剂的存在下,产生油包水乳液。
术语“可聚合或可胶凝的聚合物和/或单体”是指能够通过聚合或非聚合机理形成基质的任何聚合物或单体。适用于本公开内容的可聚合或可胶凝的聚合物是可溶于或分散于水性液体中的那些聚合物。可聚合或可胶凝的聚合物包括能够通过可交联基团与合适的交联剂交联的那些聚合物。“可聚合的”可以包含“可交联的”的含义。聚合可以是单体形成聚合物的过程,也可以是由线性聚合物形成交联聚合物的过程。可聚合的聚合物可以是大分子单体。如本文所用,术语“大分子单体”是指具有可以参与进一步聚合的官能团的任何聚合物或低聚物。
术语“基质”、“框架”和“聚合物框架”可以互换使用,并且是指在容器内形成的聚合物网络。
术语“固体支持物”、“支持物”、“固相支持物”、“基底”和其他语法等同项是指任何可以被修饰以含有适合分子附着或缔合的单个位点的材料。它们可以是一种或一组具有刚性或半刚性表面的材料。可能的基底包括,但不限于,玻璃和改性或功能化玻璃、塑料(包括丙烯酸、聚苯乙烯以及苯乙烯与其他材料的共聚物、聚丙烯、聚乙烯、聚丁烯、聚氨酯、聚四氟乙烯等)、多糖、尼龙或硝化纤维、树脂、二氧化硅或二氧化硅基材料,包括硅和改性硅、碳、金属、无机玻璃、塑料、光纤束和各种其他聚合物。固体支持物或基底可以是多孔板。在一些实施方案中,固体支持物的至少一个表面可以是基本上平坦的,尽管在一些实施方案中,物理分离用于不同分子或与例如,孔、凸起区域、销、蚀刻沟槽等的反应的区域可能是有用的。在一些实施方案中,固体支持物可以采取珠、树脂、颗粒、凝胶、微球或其他几何构型的形式。
术语“富集”、“分离”、“分隔”、“分选”、“纯化”、“选择”或其等同项可以互换使用,并且是指从样品中获得具有给定性质的子样品。例如,它们可以指获得含有至少约30%、40%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%所需细胞谱系或具有某种细胞表型的所需细胞的细胞群或细胞样品,例如,表达某种细胞标志物或不表达该细胞表型特征的某种细胞标志物基因。
概述
免疫受体,例如,B细胞受体(BCR)和T细胞受体(TCR),可以由多个亚基或链形成。BCR(以及BCR的可溶形式,即抗体)分子可以由重链(H链)的两个相同拷贝和轻链(L链)的两个相同拷贝形成。TCR分子可以由α链(α链或TCRα链,由TRA基因/序列编码)和β链(β链或TCRβ链,由TRB基因/序列编码)或γ链(γ链或TCRγ链,由TRG基因/序列编码)和δ链(δ链或TCRδ链,由TRD基因/序列编码)形成。这些免疫受体链可以具有可变结构域(例如,由重排的VDJ或VJ区域编码)。可变结构域的一部分可以是高变的。高变区可以包括互补决定区(CDR),例如,CDR1、CDR2和CDR3。在一些情况下,在一个B细胞内,仅可以表达一个功能性H链序列和一个功能性L链序列。在一些情况下,在一个T细胞内,仅可以表达一个功能性α链序列和一个功能性β链序列。在一些情况下,在一个T细胞中,仅可以表达一个功能性γ链序列和一个功能性δ链序列。
这些免疫受体的克隆可以用于进一步的功能研究和应用。然而,这些免疫受体的二分性质可以使它们难以使用常规技术进行操作。例如,如果裂解100个T细胞,则可能能够测序和/或克隆100个TCRα链和100个TCRβ链,但可能很难知道源TCR表达细胞中的哪个TCRα链与哪个TCRβ链配对。从这100个T细胞中,如果可以获得100个物理融合的DNA分子,每个分子都包含编码TCRα链的第一序列和编码TCRβ链的第二序列,则可以更有价值(图1,步骤1)。然后可以在一种来源的TCR表达细胞中共表达TCRα链和TCRβ链。这种融合分子可以测序以获得配对的TRA和TRB序列。此外,这些融合分子可以进一步工程化并插入载体主链(例如,质粒主链)中,以创建表达载体(图1,步骤3),以便配对的TRA和TRB序列可以在新的宿主细胞中表达,所述宿主细胞如本文所述被称为受体细胞,以产生免疫受体程序化受体细胞。在这种情况下,第一序列可以包含TCRα链的所有三个CDR序列,并且第二序列可以包含TCRβ链的所有三个CDR序列。类似的操作可以在B细胞群上进行。这些表达免疫受体的载体可以用于多种应用,如TCR-T治疗、抗体治疗、抗体工程以及识别特定抗原或一组抗原的TCR或抗体的鉴定。
融合免疫受体链的产生可以在单细胞反应器中进行。单细胞反应器可以是液滴或水凝胶颗粒。使用本文所述的单细胞反应器的组合物和方法可以使融合的二分免疫受体多核苷酸群高通量克隆,并生成融合的二分免疫受体多核苷酸、表达免疫受体的载体或免疫受体程序化受体细胞的文库,所述文库含有至少约1,000、10,000、100,000、1,000,000或10,000,000个二分免疫受体唯一同源对。
T细胞受体(TCR)
本文所述的免疫受体可以是T细胞受体(TCR)。本文提供的组合物和方法可以用于产生融合的TCR多核苷酸,其包含编码TCRα链的第一核酸序列和编码TCRβ链的第二核酸序列,或编码TCRγ链的第一核酸序列和编码TCRδ链的第二核酸序列。融合的TCR多核苷酸可以进一步包含启动子和/或可以插入载体中以便在受体细胞中表达。
TCR可以用于赋予T细胞识别与各种癌症或传染性生物有关的抗原的能力。TCR由α(α)链和β(β)链或γ(γ)和δ(δ)链构成。构成这些链的蛋白质由DNA编码,DNA采用独特的机制来产生TCR的巨大多样性。这种多亚基免疫识别受体与CD3复合物缔合,并结合由MHC I类和MHC II类蛋白在抗原呈递细胞(APC)表面呈递的肽。TCR与APC上抗原肽的结合可以是T细胞激活的中心事件,该事件发生在T细胞与APC接触点的免疫突触处。
TCR可以在MHC I类分子的背景下识别T细胞表位。MHC I类蛋白可以在高等脊椎动物的所有有核细胞中表达。MHC I类分子是由46-kDa重链组成的异二聚体,其与12-kDa轻链β-2微球蛋白非共价结合。在人类中,有几个MHC等位基因,例如,HLA-A2、HLA-A1、HLA-A3、HLA-A24、HLA-A28、HLA-A31、HLA-A33、HLA-A34、HLA-B7、HLA-B45和HLA-Cw8。在一些实施方案中,MHC I类等位基因是HLA-A2等位基因,其在一些人群中由约所述人群的50%表达。在一些实施方案中,HLA-A2等位基因可以是HLA-A*0201、*0202、*0203、*0206或*0207基因产物。在一些情况下,不同人群之间亚型的频率可以不同。例如,在一些实施方案中,超过95%的HLA-A2阳性高加索人群是HLA-A*0201,而据报告在中国人群中该频率约为23%HLA-A*0201、45%HLA-A*0207、8%HLA-A*0206和23%HLA-A*0203。
在一些实施方案中,TCR可以在MHC II类分子的情况下识别T细胞表位。MHC II类蛋白可以在APC的子集中表达。在人类中,存在几种MHC II类等位基因,例如,DR1、DR3、DR4、DR7、DR52、DQ1、DQ2、DQ4、DQ8和DPI。在一些实施方案中,MHC II类等位基因是HLA-DRB 1*0101、HLA-DRB*0301、HLA-DRB*0701、HLA-DRB*0401或HLA-DQB1*0201基因产物。
类似于B细胞表达的免疫球蛋白-膜结合的免疫球蛋白通常被称为B细胞受体(BCR)-TCR链由可变结构域(或可变区)和恒定结构域(或恒定区)构成。全长恒定结构域/区可以包含细胞外部分(在本文中称为“细胞外恒定结构域”)、铰链区、跨膜区和细胞质尾。在各种实施方案中,恒定结构域可以是全长恒定结构域或其一部分,例如,细胞外恒定结构域。TCRα和δ链的可变结构域由许多可变(V)和连接(J)基因编码,而TCRβ和γ链则由多样性(D)基因编码。在VDJ重组过程中,每个基因片段的一个随机等位基因与其他等位基因重组,形成功能可变结构域。具有恒定基因片段的可变结构域的重组可以产生功能性TCR链转录。此外,可以在基因片段之间的连接位点添加和/或删除随机核苷酸。此过程可以导致强组合(取决于哪些基因区将重组)和连接多样性(取决于要添加/删除哪些核苷酸以及多少核苷酸),导致较大且高度可变的TCR库,从而可以确保鉴定大量抗原。额外的多样性可以通过α和β或γ和δ链的配对(也称为“装配”)实现,以形成功能性TCR。通过重组、随机插入、删除和取代,少量编码T细胞受体的基因有可能产生1015至1020个TCR克隆型。如本文所用,“克隆型”是指携带相同免疫受体的免疫细胞群。例如,克隆型是指携带相同TCR的T细胞群或携带相同BCR(或抗体)的B细胞群。在免疫受体多样性的背景下,“多样性”是指群体中免疫受体(例如,TCR、BCR和抗体)克隆型的数量。如本文所用,“同源对组合”是指免疫细胞内二分免疫受体的两条链(例如,TCRα和TCRβ,TCRγ和TCRδ,或重链和轻链)的天然组合。两条链的相同同源对组合可以产生相同的TCR。例如,具有相同克隆型的T细胞具有TCRα和TCRβ链的相同同源对组合。克隆型的较高多样性可以表明同源对组合的较高多样性。
每个TCR链在其结构中含有三个高变环,称为互补决定区(CDR1-3)。CDR1和2由V基因编码,并且可以是TCR与MHC复合体相互作用所必需的。然而,CDR3由V和J或D和J基因之间的连接区编码,因此可以高度可变。CDR3可以是TCR与肽抗原直接接触的区域。CDR3可以作为确定T细胞克隆型的感兴趣区域。单个T细胞所有TCR的总和称为TCR库或TCR谱。TCR库可以随疾病的发作和进展而改变。因此,确定不同疾病条件下的免疫库状态,如癌症、自身免疫、炎症性和感染性疾病可以对疾病的诊断和预后有用。
TCR可以是全长TCR,及其抗原结合部分或抗原结合片段(也称为MHC-肽结合片段)。在一些实施方案中,TCR是完整或全长TCR。在一些实施方案中,TCR是抗原结合部分,它小于全长TCR,但与结合至MHC分子上的特异性抗原性肽结合,即MHC-肽复合物。TCR的抗原结合部分或片段可以仅含有全长或完整TCR的结构域的一部分,但仍能够结合完整TCR所结合的表位(例如,MHC-肽复合物)。在一些情况下,TCR的抗原结合部分或片段含有TCR的可变结构域,如TCR的可变α链和可变β链,足以形成结合特异性MHC-肽复合物的结合位点,如通常每条链含有三个互补决定区。包括具有作为抗原结合域或与抗原结合域同源的结合域的多肽或蛋白质。
B细胞受体(BCR)和抗体
本文所述的免疫受体可以是B细胞受体(BCR)。在一些实施方案中,本文所述的免疫受体是抗体(或免疫球蛋白)。本文提供的组合物和方法可以用于产生融合的BCR或抗体多核苷酸,其包含编码重链的第一核酸序列和编码轻链的第二核酸序列。融合的二分BCR或抗体多核苷酸可以进一步包含启动子和/或可以插入载体中以便在受体细胞中表达。
BCR由与一对信号传导蛋白相关的质膜结合抗体组成。与BCR结合的抗原可以刺激B细胞分化为抗体分泌细胞。BCR可以在B细胞的克隆选择及其分化为抗体分泌浆细胞中发挥重要作用。成熟的B细胞可以同时具有BCR的免疫球蛋白M(IgM)和IgD同种型,两者都可以与信号传导亚基Igα和Igβ相关,但它们的膜结合重链同种型不同。
完整的免疫球蛋白或抗体通常可以由四个多肽组成:重链(H)多肽的两个相同拷贝和轻链(L)多肽的两个相同拷贝。在哺乳动物中,抗体分为五个同种型:IgG、IgM、IgA、IgD和IgE。这些同种型在其生物特性、功能位置和处理不同抗原的能力方面有所不同。目前的重链类型定义了抗体的种类。有五种类型的哺乳动物Ig重链,用希腊字母表示:α、δ、ε、γ和μ。这些链分别在IgA、IgD、IgE、IgG和IgM抗体中发现。重链的大小和组成各不相同;α和γ含有约450个氨基酸,而μ和ε具有约550个氨基酸。每条重链可以含有一个N端可变(VH)区和三个C端恒定(CH1、CH2和CH3)区,并且每条轻链可以含有一个N端可变(VL)区和一个C端恒定(CL)区。免疫球蛋白轻链可以根据其恒定结构域的氨基酸序列分区为两种不同的类型之一,即κ(κ)或λ(λ)。在典型的免疫球蛋白中,每条轻链可以通过二硫键连接至重链,并且两条重链可以通过二硫键彼此连接。在一些实施方案中,提供的重链、轻链和/或抗体剂具有包括一个或多个二硫键的结构。在一些实施方案中,一个或多个二硫键在IgG4免疫球蛋白的预期位置是或包括二硫键。轻链可变结构域可以与重链的可变结构域对齐,并且轻链恒定结构域可以与重链的第一恒定结构域对齐。重链的其余恒定结构域可以彼此对齐。
每对轻链和重链的可变结构域可以形成抗体的抗原结合位点。
抗体可以包含抗原结合片段(Fab)和可结晶区片段(Fc)。Fc区可以与细胞表面受体相互作用,后者可以使抗体激活免疫系统。在IgG、IgA和IgD抗体同种型中,Fc区由两个相同的蛋白质片段组成,这些片段来自抗体两条重链的第二和第三恒定结构域;IgM和IgE Fc区在每个多肽链中含有三个重链恒定结构域(CH域2-4)。IgG的Fc区带有高度保守的N-糖基化位点。Fc片段的糖基化对于Fc受体介导的活性可能是必需的。附着于该位点的N-聚糖主要是复杂类型的岩藻糖基化双触角结构。抗体片段的示例包括,但不限于,(1)Fab片段,其是由VL、VH、CL和CH1域组成的单价片段,(2)F(ab′)2段,其是包含通过铰链区由二硫键连接的两个Fab片段的二价片段,(3)由抗体单臂的VL和VH域组成的Fv片段,(4)Fab′片段,其由使用温和的还原条件破坏F(ab′)2片段的二硫键而产生,(5)二硫键稳定的Fv片段(dsFv),以及(6)单结构域抗体(sdAb),它是特异性结合抗原的抗体单可变结构域(VH或VL)多肽。
尽管轻链和重链的恒定结构域可以不直接参与抗体与抗原的结合,但恒定结构域可以影响可变结构域的取向。恒定结构域也可以表现出各种效应子功能,如通过与效应子分子和细胞相互作用而参与抗体依赖性补体介导的裂解或抗体依赖性细胞毒性。
抗体也可以包括嵌合抗体、人源化抗体和重组抗体、从转基因非人动物产生的人抗体,以及使用富集技术从文库选择的抗体。
抗体可以是在脊椎动物的血液或其他体液中发现的蛋白质,免疫系统使用它来识别和中和异物,如细菌和病毒。抗体可以包括单克隆抗体、多克隆抗体、多特异性抗体(例如,双特异性抗体和多反应性抗体)和抗体片段。因此,抗体可以包括,但不限于,任何特异性结合成员、免疫球蛋白类和/或同种型(例如,IgG1、IgG2、IgG3、IgG4、IgM、IgA、IgD、IgE和IgM);以及与其生物相关的片段或其特异性结合成员,包括但不限于Fab、F(ab′)2、Fv和scFv(单链或相关实体)。抗体片段是通过重组DNA技术,或通过完整抗体的酶促或化学切割产生的。除“双特异性”或“双功能”抗体以外的抗体理解为具有相同的结合位点。单克隆抗体可以从基本均质的抗体群体中获得,即,除了可以以少量存在的可能自然发生的突变以外,组成该群体的各个抗体是相同的。多克隆抗体可以是包括针对不同决定因子(表位)的不同抗体的制剂。
许多免疫受体的可变结构域(例如,TCRα链、TCRβ链、抗体重链、抗体轻链)可以具有相同的一般结构,每个域包含四个框架(FW或FR)区,由三个互补决定区(CDR)连接。如本文所用,术语“框架区”可以指位于可变区内的相对保守的氨基酸序列,其位于高变或互补决定区(CDR)之间。在典型的免疫球蛋白或TCR链中,每个可变结构域可以有四个框架区,分别称为FR1、FR2、FR3和FR4。框架区域形成β片,其提供可变结构域的结构框架。在典型的免疫球蛋白或TCR链中,每个可变结构域可以有三个互补决定区(CDR),分别称为CDR1、CDR2和CDR3。CDR形成抗体的“高变区”,可以负责抗原结合。
单细胞反应器
本文提供了产生融合的二分免疫受体多核苷酸的文库的组合物和方法。融合的二分免疫受体多核苷酸可以包含两个V(D)J重排基因的编码序列,其编码来自单个细胞的二分免疫受体。单细胞反应器可以用于从单细胞产生融合的二分免疫受体多核苷酸。图2描述了本文所述方法的示例方案。通过使用单细胞反应器(概念上由图2中的阴影结构示出),可以最小化来自不同细胞的编码不同免疫受体链的核酸分子之间的接触(即,细胞间序列接触),所述接触可能导致配对错误。例如,如图2所示,编码TCRα链1的核酸分子(TRA 1)可以不接触编码TCRβ链2的核酸分子(TRB 2)。
如该示例方案所示,单细胞反应器可以是容器,其中来自单个生物颗粒(例如,单个细胞)的感兴趣分子可以与试剂或彼此反应。单细胞反应器可以包含两个组件:(1)可以将来自单个细胞的感兴趣分子与之结合的固体支持物,以及(2)发生生化反应的水性内含物。单细胞反应器中的感兴趣分子可以发生反应,在此过程中,来自不同细胞的感兴趣分子不会相互接触或混合。感兴趣分子可以是细胞中存在的核酸、蛋白质或其他分子。核酸可以是DNA、RNA、mRNA、miRNA、tRNA等。核酸可以编码免疫受体或免疫受体链。
在一些情况下,可以对固体支持物进行批处理。例如,固体支持物可以是珠,在这种情况下,许多珠可以浸入连续体积的水溶液中,从而所有珠上的所有分子都可以接触到水溶液中的反应物。例如,固体支持物可以是在较大的固体表面上形成的固体微孔的表面。在这种情况下,整个固体表面可以浸入在连续体积的水溶液中,以便所有微孔上的所有分子都可以接触到水溶液中的反应物。
单细胞反应器:形状和形式
单细胞反应器可以具有屏障,其中该屏障限制不同单细胞反应器的内容物彼此接触。
当单细胞反应器具有屏障时,单细胞反应器可以是容器。在这种情况下,单细胞反应器可以是固体壁的或液体壁的。屏障可以是油屏障、固体屏障或其他屏障。例如,单细胞反应器的屏障可以是管、孔、微孔或油包水液滴。在一些情况下,单细胞反应器是乳液中的油包水液滴。使用油包水液滴作为单细胞反应器可以提供超高的通量,因为可以在几分钟至几小时内产生数百万或更多的这种液滴。油包水液滴的产生可通过涡旋或使用微流控芯片如流聚焦微流控芯片来实现。
在一些实施方案中,使用微流控装置被动地形成乳液。这些方法可以包括挤压、滴落、喷射、尖端流化、尖端多重断裂或类似方法。被动微流控液滴的生成可以通过改变两种不同流体的竞争力来调节,以控制颗粒的数量、大小和直径。这些力可以是两种溶液混合时的毛细力、粘度和/或惯性力。
在一些实施方案中,通过主动控制微流控芯片形成乳液。在主动控制中,液滴的生成可以通过施加外力,如电、磁或向心力来控制。控制微流控芯片中的液滴主动操作的流行方法是通过调节两种混合溶液(如油和水)的流体速度来改变内力。
标准分子生物反应,如反转录和聚合酶链反应(PCR),可以在油包水乳液中进行。可以将表面活性剂添加至水相或油相中以稳定乳液。
在一些情况下,单细胞反应器不具有屏障。例如,水凝胶颗粒(例如,直径为~100微米的琼脂糖颗粒)可以包含聚合物基质,来自单个细胞的感兴趣分子稳定地附着在该聚合物基质上。水凝胶的水性内含物可以包含可与感兴趣分子反应的反应物。在一些实施方案中,因为感兴趣分子稳定地附着于水凝胶颗粒的聚合物基质,因此来自不同细胞的感兴趣分子不会彼此接触或混合。
作为另一个示例,无孔颗粒(例如,直径为~10微米的聚苯乙烯颗粒)可以包括表面,来自单个细胞的感兴趣的分子被稳定地附着在该表面上。固体颗粒可以浸入包含与颗粒表面上的感兴趣分子反应的反应物的溶液中。在这种情况下,颗粒及其周围的溶液组成单细胞反应器。在一些情况下,这种无孔颗粒可以进一步包含在容器中。例如,单细胞反应器可以是乳液液滴中被液体包围的珠,或孔中被液体包围的珠。
单细胞反应器:固体支持物-常规
各种类型的固体支持物和各种附着化学可以用于提供固体支持物,来自单个细胞的感兴趣分子可以稳定地与该固体支持物结合。本公开内容不仅限于任何特定类型的固体支持物材料或构型。
固体支持物可以是平坦的或平面的,或者可以具有基本不同的构象。例如,固体支持物可以颗粒、珠、线、沉淀、凝胶、溶胶-凝胶、片、管、球、容器、毛细管、垫、切片、薄膜、板、量油尺、载玻片等形式存在。磁珠或颗粒,如磁性乳胶珠和氧化铁颗粒,是固体基底的示例。
可以形成固体支持物的示例材料包括玻璃或其他陶瓷、塑料、聚合物、金属、准金属、合金、复合材料、有机物等。例如,固体支持物可以包括选自:硅、二氧化硅、石英、玻璃、可控孔玻璃、碳、氧化铝、二氧化钛、氧化钽、锗、氮化硅、沸石和砷化镓的材料。许多金属,如金、铂、铝、铜、钛及其合金等也是作为固体支持物的选择。此外,许多陶瓷和聚合物也可以作为固体支持物。可作为固体支持物的聚合物包括,但不限于,以下:聚苯乙烯;聚四氟乙烯(PTFE);聚偏二氟乙烯;聚碳酸酯;聚甲基丙烯酸甲酯;聚乙烯基乙烯;聚乙烯亚胺;聚醚醚酮;聚甲醛(POM);聚乙烯酚;聚丙交酯;聚甲基丙烯酰亚胺(PMI);聚丁烯砜(PAS);聚丙烯;聚乙烯;聚甲基丙烯酸羟乙酯(HEMA);聚二甲基硅氧烷;聚丙烯酰胺;聚酰亚胺和嵌段共聚物。阵列的基底包括硅、二氧化硅、玻璃和聚合物。固体支持物可以由单一材料(例如,玻璃)、材料混合物(例如,共聚物)或多层不同材料(例如,涂有单层小分子的金属、涂有BSA的玻璃等)组成。
固体支持物的构型可以是任何合适的形式,例如,可以包含珠、球、颗粒、细粒、凝胶、溶胶-凝胶、自组装单层(SAM)或表面(可以是平坦的,或可以具有形状特征)。固体支持物可以包括半固体支持物。固体支持物的表面可以是平面的、基本平面的或非平面的。固体支持物可以是多孔的或无孔的,并且可以具有溶胀或非溶胀特性。固体支持物可以以孔、凹陷或其他容器、容器、特征或位置的形式配置。多个固体支持物可以被配置为在各个位置的阵列,为试剂的自动递送寻址,或通过包括通过激光或其他照明和CCD的扫描,共聚焦或偏转光收集的检测手段。
在一些实施方案中,固体支持物为珠形式(与颗粒同义)。珠可以由任何基底材料制成,包括生物、非生物、有机、无机、聚合物、金属或任何这些材料的组合。可以对珠的表面或内部进行化学修饰,并对其进行任何类型的处理或涂层,例如,含有允许与工具分子发生结合相互作用的反应性基团的涂层。
在一些实施方案中,固体支持物可以是细胞。该细胞可以是源免疫受体表达细胞(例如,具有TRA基因/mRNA和TRB基因/mRNA的源T细胞)可以是固体支持物。细胞可以使用甲醛、多聚甲醛、戊二醛或类似的固定剂或其组合来固定。固定后,可以使用洗涤剂如Triton-X100使细胞渗透。固定和渗透的细胞可以被认为是多孔颗粒、颗粒和固体支持物。由于细胞是固定的,因此其含有TRA和TRB的DNA(基因组DNA的一部分)和mRNA可以在细胞中扩散受限或稳定地附着在细胞上。由于细胞是渗透的并且是多孔的,因此可以将试剂如逆转录酶、DNA聚合酶、引物、模板转换寡核苷酸(TSO)扩散到细胞中,以接触DNA或RNA(例如,TRA和TRBmRNA),进行反应,如反转录、引物延伸和模板转换。
在一些实施方案中,珠可以以促进其快速分离和/或纯化的方式生产。例如,可以通过施加磁场来操纵磁珠,以将磁珠与板孔内的液相快速隔离。
单细胞反应器:固体支持物-水凝胶
固体支持物可以包含水凝胶。固体支持物可以是水凝胶颗粒。可以使用现有方法将水凝胶制成水凝胶颗粒。例如,可以将水凝胶的溶胶态或前体制成油包水乳液。水性液滴可以变成凝胶状态(例如,通过前体的聚合,或通过降低热可逆水凝胶如琼脂糖的温度)来产生“油中水凝胶”乳液。前体的聚合可以通过光或通过在油相中添加引发剂或促进剂(例如,TEMED)来引发。该乳液可以破乳以产生悬浮在水溶液中的水凝胶颗粒。
在一些实施方案中,水凝胶是可逆水凝胶,其可在凝胶相和溶液(溶胶)相之间可逆。在一些实施方案中,可逆水凝胶的凝胶相和溶胶相之间的转变由温度控制(即,热控制或热可逆)。例如,热控制可逆(或热可逆)水凝胶可以是琼脂糖水凝胶。可逆水凝胶的有用特性可以是,在溶胶相中,捕获剂、附着在捕获剂上的分子以及其他感兴趣的分子可以自由扩散,从而使某些反应更有效。
还有其他方法来提供热敏性或热可逆性水凝胶,例如,通过使用热响应性聚合物。温度敏感性聚合物可以通过将疏水性嵌段聚合后接枝到亲水性嵌段,或通过共聚产生两亲性二嵌段(AB)、三嵌段(ABA或BAB型)或多嵌段共聚物来合成。A是类似PEG的亲水性嵌段(也称为聚环氧乙烷(PEO)),而B是疏水性嵌段,如聚酯、聚环氧丙烷(PPO)(也称为聚丙二醇)(PPG))或聚(N-异丙基丙烯酰胺)(PNIPAm)。两亲性嵌段共聚物在水中自组装形成胶束,所述胶束在低温下具有亲水性嵌段的壳和疏水性嵌段的核,并且在高温下胶束的缔合引发胶凝。热响应性聚合物溶液变成凝胶的温度称为胶凝温度。泊洛沙姆(ABA型PEO-PPO-PEO聚合物),商业上称为
Figure BDA0004071139730000581
(BSAF)或/>
Figure BDA0004071139730000582
(ICI),可用于形成热敏水凝胶。在室温下,/>
Figure BDA0004071139730000583
水溶液自组装形成胶束,并且由于胶束在体温下缔合而发生胶凝。分别使用光气或六亚甲基二异氰酸酯(HDI)作为偶联剂,通过偶联PEO和PPO链段或/>
Figure BDA0004071139730000584
可以制备多嵌段共聚物。脂肪族酯,如聚(ε-己内酯)(PCL)和聚(乳酸)(PLA),可以通过辛酸亚锡(Sn(oct)2)作为催化剂,通过相应的ε-己内酯(CL)和乳酸(LA)单体的开环聚合(ROP)偶联至/>
Figure BDA0004071139730000591
的末端,以制备可水解降解的/>
Figure BDA0004071139730000592
水凝胶。通过在对甲苯磺酸酐(p-TSA)催化剂存在下,/>
Figure BDA0004071139730000593
与二(乙二醇)二乙烯基醚(DEGDVE)反应,可以生成基于酸不稳定缩醛键的/>
Figure BDA0004071139730000594
多嵌段共聚物。
基于PEG与脂肪族酯如PLA、PCL、聚乙醇酸(PGA)和聚[(R)-3-羟基丁酸酯](PHB)的热可逆水凝胶可以使用。例如,ABA型PEG-聚(D,L-丙交酯-共-乙交酯)-PEG(PEG-PLGA-PEG)三嵌段共聚物形成了可水解降解的水凝胶。共聚物可以通过两步合成。首先,单甲氧基PEG-PLGA(MPEG-PLGA)的二嵌段共聚物可以在Sn(oct)2作为催化剂存在下,通过D,L-丙交酯(DLLA)和乙交酯(GA)在MPEG上的ROP合成,并且随后,可以通过使用HDI偶联剂将二嵌段MPEG-PLGA共聚物彼此偶联来制备三嵌段PEG-PLGA-PEG共聚物。共聚物溶液可以在低温下存在,但在37℃时会变成凝胶(溶胶-凝胶转变)。通过DLLA和GA在PEG上的ROP反应,而不需要偶联剂,可以合成具有侧接中心PEG嵌段的PLGA嵌段的BAB型三嵌段共聚物(PLGA-PEG-PLGA)。PLGA-PEG-PLGA表现出与PEG-PCLA-PEG相似的溶胶-凝胶转变趋势。这些水凝胶的胶凝和降解可以通过改变疏水和亲水嵌段的分子量、疏水嵌段的组成、聚合物浓度和添加剂来定制。PLGA-PEG-PLGA的胶凝行为可以通过引入各种端基(即,羟基、乙酰基、丙酰基和丁酰基)来调节。
PNIPAm在室温下可溶于水溶液,但在32℃(相变温度)以上由于其从卷曲到球的转变而析出。将PNIPAm与其他聚合物混合可以导致共聚物响应温度升高而在水溶液中呈现溶胶-凝胶相转变。自由基聚合可用于将NIPAm与其他甲基丙烯酸酯或丙烯酸酯单体/聚合物混合,以生成基于PNIPAm的聚合物。例如,PNIPAm-聚(2-甲基-丙烯酰氧基乙基磷酰胆碱)-PNIPAm(PNIPAm-MPC-PNIPAm)共聚物可以通过原子转移自由基聚合(ATRP)合成。NIPAm的ATRP可以分为两步:(1)制备大分子引发剂;(2)将NIPAm添加至大分子引发剂中以形成嵌段共聚物。当温度升高到32℃以上时,由于网络形成过程中聚合物链之间的疏水相互作用,聚合物溶液可以形成凝胶。
随着温度的升高,热响应性聚磷腈也可以在水溶液中表现出溶胶-凝胶相变。这些聚合物可以通过多步合成来制备。首先,可以使用氯化铝(AlCl3)作为催化剂,通过六氯环三磷腈的熔化聚合反应来合成二氯磷腈聚合物。然后,可以将亲水性PEG嵌段和疏水性嵌段缀合至二氯磷苯聚合物主链上,以获得水凝胶大分子单体。疏水性嵌段可以是二肽、三肽和寡肽或单修饰氨基酸(例如,L-异亮氨酸乙酯(IleOEt)、D,L-亮氨酸乙酯(LeuOEt)、L-缬氨酸乙酯(ValOEt))。
由MPEG和聚(富马酸丙烯酯)(PPF)组成的ABA型三嵌段共聚物可以产生热敏凝胶,该凝胶可以通过PPF上不饱和双键的交联进一步稳定。
将对映体PEG-P(L-丙交酯)-PEG(PEG-PLLA-PEG)和PEG-P(D-丙交酯)-PEG(PEG-PDLA-PEG)三嵌段共聚物混合可以诱导溶胶-凝胶转变。当温度升至37℃时水凝胶可以形成,而在高于70℃时它们可以变成溶液。同样,可以通过对映体PEG-(PLLA)8和PEG-(PDLA)8星形嵌段以及PEG-(PLLA)2和PEG-(PDLA)2三嵌段共聚物的立体络合形成水凝胶。
除了合成聚合物的自组装以外,用合成分子化学修饰的天然材料也可以在水性介质中自组装以形成水凝胶。例如,壳聚糖,一种从天然丰富的几丁质部分脱乙酰基而得到的多糖,可以用于水凝胶的形成。当与几种聚合物结合时,壳聚糖可以形成物理水凝胶。例如,PEG-醛可以通过席夫碱反应与壳聚糖偶联,然后用氰基硼氢化钠(NaBH3CN)还原,生成PEG-g-壳聚糖。所得接枝聚合物在低温下为溶液,并且可以在约37℃的温度下转变为凝胶。胶凝可以归因于聚合物链之间的疏水相互作用,这导致壳聚糖链片段缔合和PEG迁移率降低。同样,
Figure BDA0004071139730000601
-g-壳聚糖在加热时也表现出热可逆的溶胶-凝胶转变。
聚丙烯酰胺可以是水凝胶的聚合物框架。聚丙烯酰胺凝胶可以由液滴中的单体(例如,丙烯酰胺)和交联剂(例如,双丙烯酰胺)聚合,这提供了一些优点,如低粘度和易于以高固定效率固定捕获剂。
聚合物的自组装可以提供制备物理交联水凝胶的简单方法。由于分子内和分子间的作用力,如氢键和疏水相互作用,某些聚合物会发生自组装。这些聚合物的水溶液在响应外部刺激如pH和温度而自组装时,经历溶胶-凝胶转变。热响应性聚合物的自组装是通过简单改变温度来制造水凝胶的方法。
此外,可以考虑几种基于多糖的聚合物,如海藻酸盐和琼脂糖。海藻酸盐可以容易地衍生化,这为固定捕获剂提供了许多选择(参见,例如,Pawer和Edgar,Biomaterials 33(2012),3279)。即使当聚合物没有衍生化时,仍然能够在捕获剂和聚合物框架之间实现稳定的物理缔合。例如,大颗粒(例如,微米大小的链霉亲和素包被的珠)可以被捕获在未衍生化的聚合物框架中,并且捕获剂可以与大颗粒的表面或内部形成稳定的物理缔合。
对于一些聚合物,胶凝作用可以逆转。即,水凝胶颗粒可以从凝胶状态转变为流体状态。换言之,凝胶可以被熔化。这在一些情况下,如从水凝胶颗粒中回收靶分子或DNA可能是有用的。例如,聚丙烯酰胺凝胶中的双丙烯酰胺可以用交联剂,如DATD(二烯丙基-酒石二酰胺)、DHEBA(二羟基乙烯-双丙烯酰胺)和BAC(双丙烯酰基胱胺)取代。这些交联剂可以被几种还原剂或氧化剂裂解。海藻酸盐凝胶易被EDTA熔化,而琼脂糖凝胶则可以被高温熔化。
单细胞反应器:固体支持物-水凝胶:引发的胶凝和硬化颗粒
在一些情况下,包含可聚合或可胶凝聚合物和/或单体的水溶液可以通过聚合或非聚合机理形成基质转化为水凝胶。此过程称为胶凝。当这种水溶液是隔室的内容物时,通过胶凝过程形成的水凝胶可以是水凝胶颗粒。由隔室的水相中的内容物形成的水凝胶颗粒(例如,微孔或油包水液滴)被称为硬化颗粒。
通过聚合机理形成的基质的示例包括,但不限于,聚丙烯酰胺。聚丙烯酰胺可以是由丙烯酰胺和双丙烯酰胺单体形成的基质。聚合反应可以是由自由基催化的乙烯基加成。反应可以通过TEMED引发,TEMED从过硫酸铵(APS)诱导自由基形成。自由基将电子转移至丙烯酰胺/双丙烯酰胺单体,使它们自由基化,并使它们彼此反应形成聚丙烯酰胺链。在不存在双丙烯酰胺的情况下,丙烯酰胺可以聚合为长链,而不是多孔凝胶。双丙烯酰胺可以使丙烯酰胺链交联并引起多孔凝胶基质的形成。通过改变丙烯酰胺与双丙烯酰胺的比例,可以控制凝胶的交联量,从而控制其孔径和随后的分离性能。通过非聚合机理形成的基质的示例包括,但不限于,琼脂糖凝胶。琼脂糖可以是多糖。琼脂糖的单体单元可以是D-半乳糖和3,6-脱水-L-吡喃半乳糖的二糖。在低于一定温度(胶凝温度),例如35℃的水溶液中,这些聚合物链可以通过非共价相互作用,如氢键和静电相互作用保持在多孔凝胶结构中。加热溶液,以将温度升高至胶凝温度以上,可以打破这些非共价相互作用并分离链。然后,随着溶液冷却,这些非共价相互作用可以重新建立,并形成凝胶。因此,琼脂糖凝胶可以通过氢键和静电相互作用由胶凝作用形成。胶凝和熔化温度可以根据琼脂糖的类型而变化。来自石花菜属(Gelidium)的标准琼脂糖的胶凝温度为34-38℃(93-100°F),并且熔化温度为90-95℃(194-203°F),而来自江蓠属(Gracilaria)的标准琼脂糖则由于其较高的甲氧基取代基,胶凝温度为40-52℃(104-126°F),并且熔化温度为85-90℃(185-194°F)。熔化和胶凝温度可以取决于凝胶的浓度,特别是在小于1%的低凝胶浓度下。因此,通常在特定的琼脂糖浓度下给定胶凝和熔化温度。天然琼脂糖可以含有不带电荷的甲基,并且甲基化程度可以与胶凝温度成正比。然而,合成甲基化可以具有相反的效果,增加的甲基化可以降低胶凝温度。通过化学修饰可获得具有不同熔化和胶凝温度的经各种化学修饰的琼脂糖。
当在液滴中制备聚丙烯酰胺水凝胶颗粒时,聚合引发剂可以是过硫酸铵(APS)或水溶性光引发剂。在APS作为引发剂的情况下,促进剂四甲基乙二胺(TEMED)可以添加至载体油中。例如,可以将2.5mL的载体油和10μL的TEMED混合,以形成含有TEMED的载体油。如果使用APS和含有TEMED的载体油,则可以将所得乳液在65℃下孵育过夜,以引发聚丙烯酰胺水凝胶的聚合。可以使用其他水溶性光引发剂。在一些情况下,光引发剂可以用365nm UV(对于核酸而言被认为是安全的)激发。除LAP以外,还存在其他几种选择,如(a)可以合成的4-[2-(4-吗啉代)苯甲酰基-2-二甲氨基]-丁基苯磺酸钠(MBS),如通过Kojima等人,ChemMater 10(1998):3429描述的方法制备,以及(b)由2,2-二甲氧基-2-苯基苯乙酮和甲基化-β-环糊精形成的分子配合物(DMPA:MβCD配合物),如可以通过Ayub等人,AdvancedMaterials Research 1125(2015):84描述的方法制备。
在将海藻酸盐作为聚合物框架的情况下,可以通过将钙离子直接递送至微流控装置中的液滴,或通过释放光笼钙来引发胶凝。在琼脂糖作为聚合物框架的情况下,可以通过降低温度来引发胶凝。
在将生物颗粒分布到多个分区并且释放靶核酸后,可以使分区内的单体和交联剂聚合,以形成支持水凝胶的交联聚合物网络。可以使用几种方法来引发这种聚合。示例方法可以是使用过硫酸铵(APS)和N,N,N′,N′-四甲基乙烷-1,2-二胺(TEMED)。可以将APS包括在水相中(例如,在液滴中),并且可以将TEMED添加至分区油中。产生液滴后,可以将乳液加热(例如,在65℃)延长的时间段(例如,过夜),这引发聚合。然而,在某些应用中,这种过程可以在其他方面造成困难,如维持靶核酸的质量。因此,在一些情况下,更快地引发聚合反应并进行较温和的处理是可取的。可以选择长波长UV(例如,>360nm)光引发。长波长UV通常被认为对大多数生物分子(包括蛋白质和核酸)是安全的。方便的基于LED的光源可以适用于至少360nm、361nm、362nm、363nm、364nm、365nm或更高的照明。
许多分子或分子络合物可以是与长波长UV相容的水溶性光引发剂,例如,苯基-2,4,6-三甲基苯甲酰基次膦酸锂和镁(TMPPL和TMMPM)。它们是有效的水溶性光引发剂,可用于水溶液中适当单体如丙烯酰胺和甲基丙烯酰胺的自由基聚合。TMPPL(也称为LAP)可用于引发生物相容性水凝胶的形成。同样,通过磺化2-苄基-2-(二甲氨基)-1-(4-吗啉代苯基)-1-丁酮(BDMB),4-[2-(4-吗啉代)苯甲酰基-2-二甲氨基]-丁基苯磺酸钠(MBS)可以作为水溶性长波长UV光引发剂。水不溶性光引发剂也可以以水溶性形式配制,如通过与甲基化-β-环糊精(MβCD)络合。例如,可以使用与MβCD络合的2,2-二甲氧基-2-苯基苯乙酮(DMPA)作为水溶性光引发剂。
单细胞反应器:固体支持物的附着化学-常规
感兴趣的分子可以以非特异性方式如通过静电相互作用或物理截留附着于固体支持物。例如,由聚苯乙烯制成的固相可逆固定化(SPRI)珠被磁铁矿层包围,磁铁矿层进一步被羧基分子包覆,可以在“拥挤剂”聚乙二醇(PEG)和盐(例如,20%PEG,2.5M)存在下稳定地结合多核苷酸。同样,二氧化硅珠可以在胍存在下稳定地结合多核苷酸。各种带正电的珠已被描述为结合多核苷酸。作为截留的示例,当固体支持物是水凝胶并且感兴趣的分子的流体动力学半径大于水凝胶的孔径时,感兴趣的分子可以通过截留而附着在基于水凝胶的固体支持物上。
对于更具特异性的附着,可以使用捕获剂。捕获剂可以是介导感兴趣的分子(例如,感兴趣的多核苷酸)与固体支持物的稳定附着的化学组合物。捕获剂可以通过多种功能介导稳定附着,如与靶分子结合,作为引物以在靶核酸分子上延伸,与靶分子反应。
单细胞反应器:固体支持物的附着化学-常规:捕获剂
本文提供的组合物或方法可以包含捕获剂。捕获剂可以起锚定物的作用,以固定或捕获单细胞反应器内的感兴趣的分子(与靶分子同义)。一方面,捕获剂可以结合靶分子。另一方面,捕获剂可以与固体支持物缔合,以限制其自身的扩散,从而限制靶分子的扩散。在一些实施方案中,捕获剂与水凝胶框架内的扩散限制剂连接。靶分子可以是核酸模板或其拷贝,例如,编码免疫受体链的核酸或其拷贝。
捕获剂可以包含两个部分:靶向部分和固定部分。固定部分可以负责将捕获剂附着至固体支持物,该固体支持物包括无孔固体支持物和多孔固体支持物如水凝胶。在水凝胶的情况下,固定部分可以附着至支持水凝胶或扩散限制剂的聚合物框架(例如,基质)。靶向部分可以负责与核酸模板或其拷贝进行稳定的相互作用。捕获剂可以是一个分子,其中靶向部分和固定部分是同一分子的两个部分并共价结合。捕获剂可以是一个以上的分子,其中靶向部分和固定部分可以通过连接子共价连接或非共价连接。例如,固定部分可以是与聚合物框架连接的第一多核苷酸,并且靶向部分可以包含可以与第一多核苷酸杂交的第二多核苷酸。应当理解,捕获剂的靶向部分和固定部分之间的相互作用类型没有限制。
在一些实施方案中,捕获剂包含靶向部分。在一些实施方案中,靶向部分是多核苷酸、多肽或化学基团。在一些实施方案中,多核苷酸是引物或寡核苷酸适体。在一些实施方案中,引物是逆转录引物。在一些实施方案中,逆转录引物包含聚脱氧胸苷核苷酸序列。在一些实施方案中,多肽是抗体或其片段或肽适体。在一些实施方案中,化学基团是反应性基团。在一些实施方案中,反应性基团与核酸模板的核碱基形成共价键。在一些实施方案中,反应性基团是NHS酯、马来酰亚胺基团或Label-IT连接子和反应性基团。在一些实施方案中,核碱基是鸟嘌呤。
例如,当多核苷酸是感兴趣的分子时,靶向部分可以是与靶多核苷酸杂交的寡核苷酸。靶向部分可以是与细胞中所有mRNA种类杂交的逆转录引物。靶向部分可以是具有与特定感兴趣的DNA或RNA杂交的特异性或设计序列的引物。
取决于应用和靶分子,靶向部分可以是引物(可以通过聚合酶或逆转录酶延伸)、非共价稳定结合靶分子的亲和剂,或与靶分子形成共价键的结合剂。在一些情况下,靶向部分可以是通过碱基配对结合其靶多核苷酸分子(例如,编码免疫受体链或其拷贝的多核苷酸)的寡核苷酸。
在一些实施方案中,靶向部分是ACO,其可以与引物上的衔接子序列(例如,ARS)杂交,从而将引物连接至固体支持物。在一些情况下,靶向部分是作为引物的寡核苷酸,例如,RT引物或PCR引物。来自引物的延伸产物也可以通过捕获剂连接至固体支持物。
捕获剂可以包含固定部分。固定部分可以将捕获剂连接至固体支持物。捕获剂可以包含连接子或通过连接子附着至固体支持物。连接子可以预先形成(例如,PEG连接子)或由捕获剂上的第一反应性基团和固定在固体支持物上的第二反应性基团形成。
固定部分可以是NHS酯、生物素、马来酰亚胺基团、硫醇基团、叠氮化物基团、亲和素或链霉亲和素、单链多核苷酸、生物素基团、甲基丙烯酸基团或其反应产物。固定部分可以包含反应性基团。
反应性基团的示例包括琥珀酰亚胺酯、酰胺、丙烯酰胺、酰基叠氮化物、酰卤、酰基腈、醛、酮、卤代烷、烷基磺酸盐、酸酐、芳基卤化物、氮丙啶、硼酸酯、碳二亚胺、重氮烷、环氧化物、卤乙酰胺、卤铂、卤三嗪、酰亚胺酯、异氰酸酯、异硫氰酸酯、马来酰亚胺、亚磷酰胺、甲硅烷基卤化物、磺酸酯、磺酰卤、胺、苯胺、硫醇、醇、苯酚、肼、羟胺、羧酸、二醇和杂环。
在一些实施方案中,固定部分上的反应性基团是亲电部分,其可以与固体支持物上的亲核部分反应,反之亦然。亲核部分或亲电部分都可以附着至固定部分或固体支持物上。这些亲电部分包括,但不限于,例如,羰基、磺酰基、醛基、酮基、受阻酯基、硫酯基、稳定的亚胺基、环氧基、氮丙啶基等。
可以在本公开内容中使用的反应性基团化学物质不限于以上所列出的。例如,在其他实施方案中,第一和第二反应性基团之间的反应可以通过亲偶极的反应进行。例如,第一反应性基团可以是叠氮化物,并且第二反应性基团可以是炔烃。可替代地,第一反应性基团可以是炔烃,并且第二反应性基团可以是叠氮化物。涉及含有叠氮化物或炔烃的多核苷酸的环加成反应可以在室温下在水性条件下通过在还原剂的存在下添加Cu(II)(例如,以催化量的CuSO4的形式),以将Cu(II)原位催化量还原为Cu(I)来进行。还原剂包括抗坏血酸盐、金属铜、奎宁、对苯二酚、维生素K、谷胱甘肽、半胱氨酸、Fe2+、Co2+和施加的电势。可以在本公开内容中使用的其他反应性化学物质包括但不限于施陶丁格连接反应和烯烃复分解化学(参见,例如,Mahal等人,(1997)Science 276:1125-1128)。
在一些实施方案中,捕获剂(或感兴趣的分子)和固体支持物之间的附着是非共价附着。例如,具有合适酸性基团的捕获剂(或感兴趣的分子)可以与带有羟基或其他带负电荷基团的固体支持物形成强缔合。在该系统的其他变体中,可以将彼此具有强亲和力的其他类型的部分掺入至捕获剂(或感兴趣的分子)和固体支持物上的反应性基团中。例如,捕获剂(或感兴趣的分子)可以通过合适的反应基团与生物素偶联,而固体支持物可以被亲和素包被,导致捕获剂(或感兴趣的分子)与固体支持物之间极强的非共价结合。
单细胞反应器:固体支持物的附着化学-水凝胶
当固体支持物包含水凝胶时,捕获剂的固定部分可以附着至支持水凝胶或扩散限制剂的聚合物框架(例如,基质)。
使用本文所述的用于一般固体支持物的化学物质,可以使固定部分与聚合物框架(例如水凝胶框架)上的反应性基团或扩散限制剂反应。在某些情况下,捕获剂和聚合物框架之间的相互作用可以是可逆的,因此如果需要,捕获剂可以从框架释放。例如,当固定部分包含链霉亲和素并且聚合物框架包含生物素时,链霉亲和素和生物素之间的相互作用可以通过在变性剂(如甲酰胺)存在下并在加热下添加过量的游离生物素来逆转。又例如,当固定部分和聚合物框架之间的相互作用是通过核酸杂交时,可以通过升高温度以使核酸双链体解链来逆转该相互作用。
在一些实施方案中,固定部分可以通过共价键或非共价相互作用使基质或聚合物框架缔合。固定部分可以包含(a)掺入聚合物框架中的化学物质,(b)直接与聚合物框架稳定相互作用的化学物质或蛋白质,或(c)间接与聚合物框架稳定相互作用的化学物质或蛋白质。(a)的示例可以是甲基丙烯酸基团,其可以共聚至聚丙烯酰胺凝胶中。(b)的示例可以是NHS酯,其可以与伯胺基反应以形成稳定的共价相互作用。如果聚合物框架含有伯胺基,则该示例可以适用。(b)的另一个示例可以是马来酰亚胺,其可以与硫醇基反应形成稳定的共价相互作用。如果聚合物框架含有硫醇基,则该示例可以适用。(b)的另一个示例是硫醇基,其可以与含C-C双键的基团(如马来酰亚胺和丙烯酸酯)反应以形成稳定的共价相互作用。如果聚合物框架含有含C-C双键的基团,则该示例可以适用。(b)的另一个示例可以是叠氮基,其可以与炔基反应以形成稳定的共价相互作用。如果聚合物框架含有炔基,则该示例可以适用。(b)的另一个示例可以是亲和素或链霉亲和素,其可以与生物素相互作用以形成稳定的非共价相互作用。如果聚合物框架含有生物素基团,则该示例可以适用。(b)的另一个示例可以是单链DNA多核苷酸,其可以与反向互补序列的单链多核苷酸相互作用,以形成稳定的非共价相互作用。如果聚合物框架含有单链多核苷酸,则该示例可以适用。(c)的示例可以是生物素。如果聚合物含有生物素,并且水凝胶进一步含有链霉亲和素四聚体,则该示例可以适用。在这种情况下,链霉亲和素的一种单体可以与生物素稳定地相互作用,作为固定部分,而同一链霉亲和素的另一种单体可以与聚合物上的生物素稳定地相互作用。以这种方式,固定部分可以间接与聚合物稳定地相互作用。
为了将核酸分子截留在水凝胶中,可以将核酸分子固定在水凝胶的基质内,以防止核酸分子扩散出水凝胶。可以通过捕获剂实现固定化,该捕获剂直接或间接与核酸分子结合,并与水凝胶的基质相互作用。在一些实施方案中,捕获剂连接至核酸模板。在一些实施方案中,捕获剂连接至核酸模板的拷贝。捕获剂可以通过共价键或非共价相互作用与基质结合。
当固体支持物包含水凝胶时,可以将水凝胶功能化,以将捕获探针(或靶向部分)附着至水凝胶框架。产生用固定的或扩散受限的捕获剂(例如,ACO)修饰的水凝胶可以是产生功能化的水凝胶的一个示例。在一些实施方案中,捕获剂连接至聚合物框架。在一些实施方案中,捕获剂连接至扩散限制剂(见下文)。生成功能化的水凝胶可以用于限制水凝胶中感兴趣的核酸,以使感兴趣的核酸以及与感兴趣的核酸结合的其他分子(1)不在水凝胶内或外扩散,或(2)可以以受控方式在水凝胶内或外扩散。在一些实施方案中,水凝胶为水凝胶颗粒的形式。
当固体支持物是由可聚合单体或可胶凝聚合物制成的水凝胶时,固定部分可以是与聚合物和/或单体共聚的化学物质,与聚合物和/或单体稳定相互作用的化学物质或蛋白质,或直接扩散限制剂,或与聚合物和/或单体或扩散限制剂间接稳定相互作用的化学物质或蛋白质。
水凝胶颗粒可以通过直接修饰水凝胶颗粒的构建嵌段实现功能化。构建嵌段是可聚合或可胶凝的聚合物和/或单体,其能够通过聚合或非聚合机理形成水凝胶或硬化基质。例如,当水凝胶颗粒由构建嵌段的聚合形成时,捕获剂可以附着至构建嵌段。因此,在聚合过程中,捕获剂可以被共聚合至聚合物框架中。可替代地,可以将中间分子(例如,连接子)附着至可用于固定工具分子的构建嵌段。水凝胶颗粒的构建嵌段可以是单体。单体可以是丙烯酰胺、乙酸乙烯酯、乙烯醇、甲基丙烯酰胺或丙烯酸。该策略的示例是将AcryditeTM修饰的寡核苷酸共聚至聚丙烯酰胺水凝胶中。在该示例中,寡核苷酸是捕获探针的示例。该策略的另一个示例是将“功能化的丙烯酸酯/丙烯酰胺”共聚至聚丙烯酰胺水凝胶中。功能化的丙烯酸酯/丙烯酰胺可以含有缀合缀合柄,工具分子可以通过缀合化学如胺-NHS酯反应、点击化学等附着至其上。在该示例中,缀合缀合柄可以作为中间分子。功能化的丙烯酸酯/丙烯酰胺的示例可以是3-甲基丙烯酸叠氮丙酯(AzPMA),其中叠氮基是捕获剂可以通过点击化学附着至其上的缀合缀合柄。功能化的丙烯酸酯/丙烯酰胺的另一个示例是N-(3-氨基丙基)-甲基丙烯酰胺,其中伯胺基(在3-氨基丙基侧链上)是捕获剂可以通过NHS酯附着至其上的缀合缀合柄。
水凝胶颗粒可以通过修饰框架而不是构建嵌段来功能化。在形成水凝胶颗粒后,可以修饰水凝胶颗粒的框架,使得捕获剂可以被附着。例如,琼脂糖水凝胶颗粒的多羟基特性可以解释其反应性,因此羟基官能团可以部分或全部衍生。通过这种方式,一些新的化学功能可以沿琼脂糖凝胶的聚合物链接枝,如胺、羧基、磺酸盐、氰基和二氯三嗪基。例如,乙醛琼脂糖可以通过将水凝胶框架的伯羟基与缩水甘油醚化以引入二醇,随后再用高碘酸钠氧化生成乙醛基来制备。含丙烯酸的水凝胶上羧基的修饰也可以容易地进行,例如,使用EDC化学法。
大多数用于将小分子、肽、寡核苷酸和蛋白质偶联至水凝胶框架的标准技术都可以适用于此。常用的衍生化的示例包括羧基或胺基,但也可以使用其他官能团。可以在聚合过程中通过使用合适的单体引入环氧连接子,而醛或硫醇基团可以在水性条件下的后聚合步骤后引入。点击化学可以用于功能化。点击化学反应和用于点击化学反应的合适的反应基团包括,但不限于末端炔烃、叠氮化物、环张力炔烃、二烯、二烯亲和物、烷氧基胺、羰基、膦、酰肼、硫醇和烯烃。例如,在一些实施方案中,叠氮化物和炔烃在点击化学反应中使用。
可聚合或可胶凝的聚合物或单体的功能化可以用于允许特定靶的特异性捕获。在某些情况下,可以将所需的官能团直接添加至预聚物混合物中并允许其共聚。这种方法的可行性可以取决于所选生物分子的稳定性或取决于某些化学基团对聚合条件的交叉反应性。然而,少量具有羧基或胺官能团的共聚单体在聚合步骤中可以使用,以使水凝胶在合成后的阶段进一步功能化。这种方法可以用于不能承受聚合反应条件的分子的缀合。
单细胞反应器:固体支持物的附着化学-水凝胶:扩散限制剂
在一些情况下,捕获剂可以固定在扩散限制剂上,以便将捕获剂截留在水凝胶中。
扩散限制剂可以是在水凝胶内或外的扩散受到限制的试剂(例如,化学组成)。扩散限制剂可以具有大于水凝胶颗粒的孔径的流体力学半径。扩散限制剂可以是颗粒或聚合物。该颗粒可以是磁珠。该聚合物可以是聚丙烯酰胺、聚丙烯酸或PEG。
扩散限制剂可以是扩散限制聚合物。扩散限制剂可以是直接缀合在捕获剂上的长聚合物链,从而使缀合的捕获剂足够大,以被聚合物框架缠结。例如,捕获剂可以与多条长PEG链缀合,使得捕获剂与靶分子的扩散在框架内受到限制。在一些实施方案中,长聚合物链可以是聚丙烯酰胺链。在其他一些情况下,扩散限制剂可以是大颗粒(例如微米大小的链霉亲和素包被的珠)。大颗粒可以大于水凝胶的孔径,使得当捕获剂与大颗粒结合时,捕获剂被截留在水凝胶的框架内。
限制扩散的聚合物可以是PEG分子或聚丙烯酰胺分子。限制扩散的聚合物可以参与或可以不参与形成支持水凝胶的机械完整性的框架。
扩散限制剂可以包含一种或多种高分子量聚合物(例如,分子量为3350、8000和20,000的聚乙二醇),其可以导致比水凝胶的孔径更大的流体力学半径,或可以例如通过与水凝胶的聚合物框架缠结而被截留在水凝胶中。聚合物(或链)的总分子量可以为从5kDa至1000kDa。在一些情况下,聚合物的总分子量可以为5kDa至10kDa、从10kDa至15kDa、从15kDa至20kDa、从20kDa至25kDa、从25kDa至30kDa、从30kDa至35kDa、从35kDa至40kDa、从40kDa至45kDa或从45kDa至50kDa。在一些情况下,聚合物的总分子量可以为从50kDa至100kDa、从100kDa至150kDa、从150kDa至200kDa、从200kDa至250kDa、从250kDa至300kDa、从300kDa至350kDa、从350kDa至400kDa、从400kDa至450kDa或从450kDa至500kDa。在一些情况下,聚合物的总分子量可以为从500kDa至600kDa、从600kDa至700kDa、从700kDa至800kDa、从800kDa至900kDa、从900kDa至1000kDa、从1000kDa至1500kDa、从1500kDa至2000kDa、从2000kDa至3000kDa或从3000kDa至5000kDa。该聚合物可以是线性聚丙烯酰胺聚合物。在一些情况下,聚合物的总分子量可以为至少约2kDa、3kDa、4kDa、5kDa、6kDa、7kDa、8kDa、9kDa、10kDa、15kDa、20kDa或更多。线性聚丙烯酰胺聚合物不可用于形成水凝胶的框架。例如,线性聚丙烯酰胺聚合物可以在琼脂糖凝胶的胶凝温度以上与含水形式的琼脂糖混合,并且在将温度降低至胶凝温度以下时,琼脂糖可以经历胶凝以形成聚合物框架,该聚合物框架可以将线性聚丙烯酰胺聚合物捕获在框架内。在一些实施方案中,丙烯酰胺单体可以在聚合过程中以水性形式与琼脂糖混合。本文所述用于将捕获剂附着至交联聚丙烯酰胺水凝胶的化学物质也可以用于将工具分子附着至线性聚丙烯酰胺聚合物。
扩散限制剂可以是大颗粒。大颗粒的大小可以大于水凝胶的孔径。可以选择大颗粒,并相应地调整水凝胶的孔径。大颗粒的大小(以直径表示)可以为从0.5μm至5μm。在一些情况下,大颗粒的大小可以为从0.5μm至1μm、从1μm至1.5μm、从1.5μm至2μm、从2μm至2.5μm、从2.5μm至3μm、从3μm至3.5μm、从3.5μm至4μm、从4μm至4.5μm或从4.5μm至5μm。在其他一些情况下,大颗粒的大小可以为从5μm至10μm、从10μm至20μm、从20μm至30μm、从30μm至40μm或从40μm至50μm。在一些情况下,大颗粒的大小可以为至少约1μm、5μm、10μm、20μm或更大。
单细胞反应器:感兴趣的分子
在一些实施方案中,单细胞反应器包含感兴趣的分子。在一些实施方案中,感兴趣的分子是感兴趣的核酸。在一些实施方案中,感兴趣的分子附着至固体支持物。在一些实施方案中,感兴趣的核酸附着至固体支持物。在一些实施方案中,单细胞反应器可以包含第一核酸和第二核酸。在一些实施方案中,单细胞反应器可以包含第一核酸和第二核酸附着的固体支持物。附着可以是稳定的附着。附着可以是可逆附着。
第一和/或第二核酸可以是编码免疫受体或免疫受体链的mRNA。第一和/或第二核酸可以是编码免疫受体或免疫受体链的mRNA的逆转录产物(即cDNA产物)。逆转录产物可以是模板转换的逆转录产物。第一和/或第二核酸可以进一步包含衔接子序列。单细胞反应器可以进一步包含第一核酸和第二核酸的拷贝。在一些情况下,第一和第二核酸分子的拷贝附着至固体支持物。
在各种实施方案中,单细胞反应器包含融合的二分免疫受体多核苷酸。在一些实施方案中,融合的二分免疫受体多核苷酸结合至捕获剂或固体支持物。在一些实施方案中,融合的二分免疫受体多核苷酸是脱氧核糖核酸(DNA)、核糖核酸(RNA)或其组合。融合的二分免疫受体多核苷酸可以是修饰的DNA,例如,甲基化的DNA。在一些实施方案中,单细胞反应器可以进一步包含融合的二分免疫受体多核苷酸的多个拷贝。
在一些实施方案中,感兴趣的核酸是编码TCRα链、TCRβ链、TCRγ链、TCRδ链、重链或轻链的核酸分子。在一些实施方案中,感兴趣的核酸是融合的二分免疫受体多核苷酸或其拷贝。
在一些实施方案中,核酸模板的拷贝是延伸的引物(或引物延伸产物)。核酸模板的拷贝可以包括具有相同核酸模板序列或核酸模板反向互补序列的合成产物。在一些实施方案中,核酸模板的拷贝是延伸的正向或反向引物。在一些实施方案中,核酸模板的拷贝是延伸逆转录(RT)引物。在一些实施方案中,核酸模板的拷贝是延伸的扩增引物。如本文所用,“延伸的引物”或“引物延伸产物”是指在模板依赖性核酸合成过程中经历了引物延伸的引物,包括但不限于核酸扩增、第二链合成和逆转录。为了固定或捕获核酸模板或其拷贝,引物可以具有与核酸模板不杂交或互补的衔接子序列。衔接子序列可以与捕获剂连接,其中捕获剂进一步与框架内的扩散限制剂连接。在一些实施方案中,衔接子序列与捕获剂的序列杂交。在一些实施方案中,引物的衔接子序列可以是与模板可杂交或互补的部分连续的核酸序列。衔接子序列本身可以不与模板杂交或互补。在一些实施方案中,引物的衔接子序列可以通过化学连接子连接至与模板可杂交或互补的部分。可以使用各种化学连接子,如六乙二醇。
单细胞反应器:水相中的反应物
单细胞反应器的水相可以包含使用核酸作为底物的酶。这些酶的示例包括DNA聚合酶、RNA聚合酶、逆转录酶、限制酶、核酸内切酶、核酸外切酶、USER混合物中的酶(NewEngland Biolabs)、连接酶。
单细胞反应器的水相可以包含引物。因此,单细胞反应器可以包含引物和核酸模板(例如,编码免疫受体链的核酸序列),其中引物可以在水相中,并且核酸模板可以附着至固体支持物。引物可以是用于进行模板依赖性核酸合成的任何引物,包括但不限于逆转录(RT)引物和扩增引物。在一些实施方案中,第一引物和/或第二引物与容器中的核酸模板分隔。在一些实施方案中,正向引物和/或反向引物与容器中的核酸模板分隔。
单细胞反应器的水相可以包含模板转换寡核苷酸(TSO),其可用于将共同序列(也称为衔接子序列)附着至逆转录产物的3′端。
单细胞反应器:按顺序添加试剂
在一些实施方案中,可以使不同的试剂以限定的顺序而不是同时接触来自相同细胞的靶分子。同样,在一些实施方案中,可以在下一个反应发生之前除去一些试剂或反应副产物。例如,可以添加裂解缓冲液以裂解细胞(图2,分图(b)),并且可以添加逆转录酶和热稳定的DNA聚合酶,以逆转录(RT)和PCR扩增mRNA(图2,分图(c))。在这种情况下,裂解缓冲液可以抑制RT和/或PCR,并且可能需要在RT-PCR步骤之前将其除去。本公开内容的一些方面提供了实现这些目标的方法。
在本公开内容中,新试剂的添加和/或旧试剂、副产物和废弃物的去除统称为“试剂交换”。在需要交换试剂的情况下,在试剂交换过程中,可能需要最小化可以导致交叉污染的细胞间序列接触(例如,来自第一个细胞的序列与来自第二个细胞的另一个序列接触)。固体支持物的使用可以有助于最小化细胞间序列接触。例如,孔或微孔可以作为单细胞反应器,并且在这种情况下,编码免疫受体的mRNA、cDNA或扩增的DNA分子可以通过序列特异性或非序列特异性相互作用附着至孔或微孔的表面。例如,可以通过本文提供的各种化学方法将作为捕获剂的寡核苷酸(例如,“亲和捕获寡核苷酸(ACO)”)修饰到表面上。同时,一些或全部的RT和PCR引物可以附加有寡核苷酸,该寡核苷酸的序列与捕获的寡核苷酸互补,任选地通过柔性连接子(例如,乙二醇间隔子,如PEG6的PEG4)。在本文所述的一些示例中,所附加的寡核苷酸被称为“亲和保留序列(ARS)”。ACO或ARS的长度可以为约从5至约10、从约10至约15、从约15至约20、从约20至约30或从约30至约50个核苷酸。ACO或ARS的长度可以为至少约5、10、15、20、25、30或更多。捕获的ACO:ARS相互作用可以被其他共价或非共价相互作用,如生物素-链霉亲和素相互作用取代。可替代地,一些或全部RT或PCR引物可以直接附着至表面,例如,通过在引物上的反应性基团和表面形成的化学键。
例如,油包水液滴的水相可以含有单体或聚合物,其在引发时可以形成水凝胶颗粒(即,硬化颗粒)。ACO可以结合至或截留在水凝胶颗粒中,从而可以限制ACO在水凝胶颗粒之内或之外的扩散。ACO可以与扩散限制剂连接。例如,ACO可以与作为水凝胶颗粒框架的聚合物共价或非共价连接。ACO也可以附着至截留在水凝胶框架中的颗粒或聚合物。这样,RT和PCR引物可以附加ARS(任选地通过柔性连接子)以最小化细胞间序列接触,而其他试剂、副产物和废弃物可以扩散到水凝胶颗粒中或从中扩散出来。可替代地,一些或全部RT或PCR引物可以直接附着至聚合物框架或扩散限制剂。当水凝胶框架足够致密时,大分子如mRNA、mRNA:cDNA杂交和PCR产物可以太大而无法扩散出水凝胶颗粒(例如,1kb dsDNA在4%琼脂糖凝胶中可能无法自由扩散),这些分子可以被截留在聚合物框架中,而与聚合物框架或扩散限制剂没有任何特异性反应。从某种意义上说,在这些情况下,这些大分子本身受扩散限制。捕获核酸模板或其拷贝和生物颗粒的方法在美国专利申请62/609,756和62/674,214中描述,其每一个通过引用整体并入本文。
扩散限制剂可以是当靶分子附着至试剂时被阻止自由扩散和/或可以起到限制靶分子自由扩散的作用。当分子,例如(i)直接或间接附着在具有固体支持物的单细胞反应器表面时,或(ii)直接或间接附着到聚合物框架或水凝胶内的扩散限制剂,或(iii)截留在水凝胶中时,靶分子可以在单细胞反应器内受扩散限制。
在一些情况下,试剂、副产物和废弃物可以不受扩散限制,而是可以扩散进氢颗粒或从氢颗粒中扩散出来。在一些情况下,为了提高扩散效率,可将水凝胶颗粒转变成溶胶相。
在一些其他情况下,水凝胶颗粒中的反应可以需要将温度升高至高于热可逆凝胶的熔点(例如,在PCR期间)。水凝胶颗粒可以被重新乳化,这可以通过简单地将水凝胶颗粒和载体油混合并搅拌混合物(例如,通过涡旋和通过甩油)或通过使用微流控芯片来完成。新形成的“油中凝胶”液滴也可作为单细胞反应器。在一些实施方案中,尽管固体支持物可以暂时失去其机械完整性(例如,热可逆水凝胶颗粒如琼脂糖颗粒可以在引物结合靶所必需的高温下熔化)或靶分子(例如,编码免疫受体的多核苷酸)可以会暂时从固体支持体上解离(例如,如果DNA杂交介导了靶分子与固体支持体的结合),一旦温度降低,固体支持体可以会再次形成(例如,琼脂糖可以凝胶),目标分子可以会重新附着在固体支持物上。在一些实施方案中,隔室中大于50%、大于60%、大于70%、大于80%或大于90%的体积被热可逆颗粒占据。在这种情况下,在将熔化颗粒与隔室中的其他水性内含物混合之后,可胶凝聚合物的稀释度可被限制为小于约2倍、1.7倍、1.5倍、1.3倍、1.2倍或更少。因此,稀释的可胶凝聚合物仍可以在适当的实验温度(例如,室温或4℃)下形成凝胶。
在一些实施方案中,以下循环为:(1)在乳液中进行反应,(2)形成凝胶(例如,通过冷却),(3)破乳,(4)基于扩散的试剂交换,和(5)再乳化可以重复多次。在一些情况下,可在破乳后洗涤水凝胶颗粒。
作为该方法的一个示例,可以在水凝胶颗粒(由冷却后由含有琼脂糖的油包水液滴形成)中的同一细胞中捕获编码免疫受体的DNA或RNA,使“油中凝胶”中的乳化液,并通过在缓冲液中洗涤水凝胶颗粒来进行基于扩散的试剂交换。可以在本文所述的方法期间的任何步骤进行试剂交换,例如,在捕获编码免疫受体的核酸之后,在逆转录之后,在预扩增步骤后或在需要进行试剂交换时需要其他步骤。例如,可以捕获编码免疫受体的RNA,进行逆转录和/或第二链合成(以添加衔接子序列),然后进行试剂交换以扩散扩增引物和试剂。又例如,可以捕获编码免疫受体的RNA,进行逆转录和/或第二链合成(以添加衔接子序列),进行预扩增步骤,然后进行试剂交换以扩散其他扩增引物和试剂。在一些情况下,水凝胶颗粒可以被重新乳化以进行进一步的反应。在重新乳化之后,每个重新乳化的水凝胶颗粒可以被油包封或被油包围。在一些情况下,重新乳化的水凝胶颗粒在被油包封或被油包围时可以会融化。例如,重新乳化的水凝胶颗粒可以在高于水凝胶颗粒的胶凝温度的温度下进行的反应期间熔化。
编码免疫受体的多核苷酸修饰的固体支持物
本公开内容提供了多个用编码免疫受体的多核苷酸修饰的固体支持物。在一些实施方案中,固体支持物(例如,微孔的珠或微孔壁)含有来自一个细胞的靶多核苷酸(称为“单细胞性”的特征)。靶多核苷酸可以是编码免疫受体的多核苷酸。免疫受体可以是TCR或BCR。
提供这样的多个固体支持物可以涉及将表达免疫受体的细胞或其细胞核(或表达源免疫受体的生物颗粒,或称为生物颗粒)分区到多个隔室。
可通过以下方式提供多个固体支持物,每个固体支持物都被来自单个生物颗粒的编码第一和第二免疫受体的多核苷酸修饰:(1)将多个生物颗粒分区到多个隔室中,其中每个隔室(a)还包含一种或多种预先形成的固体支持物,或(b)可以变成可以作为固体支持物的硬化颗粒,(2)在每个隔室中溶解生物颗粒或以其他方式释放编码免疫受体链的靶DNA或mRNA分子,(3)将靶DNA或mRNA分子附着至固体支持物。
在一些实施方案中,捕获剂可以是引物。引物可以使用编码免疫受体的多核苷酸为模板来延伸。因此,连接至固体支持物的编码第一和第二免疫受体的多核苷酸可以是引物延伸产物。引物可以识别编码免疫受体的多核苷酸的C区域(多核苷酸上编码恒定结构域的区域)、J区域或V区域。引物可以是正向引物(具有免疫受体的有义序列的一部分)或反向引物(具有免疫受体的反义序列的一部分)。捕获剂可以附着到预先形成的固体支持物或硬化颗粒上。可以通过向隔室中添加裂解缓冲液或提高温度来裂解隔室中的细胞。裂解可以导致编码免疫受体的多核苷酸的释放,该多核苷酸可以与捕获剂结合。隔室也可以包含DNA聚合酶或逆转录酶。在这种情况下,可以使用编码免疫受体的多核苷酸作为模板来延伸与编码免疫受体的多核苷酸结合的引物,从而形成引物延伸产物。隔室还可以包含模板转换寡核苷酸(TSO)。在一些实施方案中,捕获剂可以包含TSO。在TSO的存在下,反转录产物可以在其3′端以与TSO互补的序列延伸。每个区室的内容物可以包含两个本文所述的引物,每个引物被设计为结合一个编码二分免疫受体链的多核苷酸之一。例如,每个区室的内容物可以包含两种引物,一种设计成结合编码TCRα链的多核苷酸,另一种设计成结合编码TCRβ链的多核苷酸。
引物延伸产物可以在一个或两个末端上具有共同的序列。可设计引物以结合编码免疫受体的序列的C区。由于C区的序列是恒定的,因此一种类型的免疫受体链(例如IgG、IgA、IgM、IgK、IgL、TCRα、TCRβ)可以只需要一种类型的引物。例如,一种引物可用于从一项实验中使用的所有细胞中捕获编码TCRα链的多核苷酸。因此,引物的序列可以被认为是通用序列。由于C区在有义链上重排的V(D)J区的下游,所以该共同序列称为下游共同序列。如果mRNA是靶多核苷酸,则可以使用靶向C区的引物。如果隔室中存在TSO和具有模板转换功能的逆转录酶,则可以用[TSO*}扩展RT产物的3′端。由于TSO序列在所有隔室中可以是恒定的,因此在所有细胞中都可以是恒定的,因此TSO序列也是常见的序列。由于它位于有义链上V(D)J区的上游,因此被称为上游公共序列。由于TSO序列可以任意设计并且不必结合靶序列的任何部分,因此TSO序列也称为衔接子序列。在这个示例中,引物延伸产物在V(D)J区的上游和下游具有共同的序列,并且这些共同的序列可以用于进一步的扩增和融合反应。
当DNA作为模板时,可以为每个J区或V区设计一组引物。由于J区域和V区域不是恒定的,因此可以在组中每个引物的5′端附加一个附加的衔接子序列。衔接子序列可以是下游公共序列(例如,当引物设计成结合J区时)或上游公共序列(例如,当引物设计成结合V区时)。
分区生物颗粒(例如,细胞、细胞核、外来体等)的方法包括,例如,基于微流控的方法和基于非微流控的方法(例如,涡旋)。本公开内容提供了包括将源生物颗粒分区至多个隔室的方法,以使得在一些隔室中隔室中仅一个生物颗粒。在一些实施方案中,至少约50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%的隔室包含零个或只有一个生物颗粒。在一些实施方案中,至少约50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%的隔室包含零个或仅一个引物递送颗粒。
所采用的分区或隔室的数量可以根据应用而变化。例如,分区或隔室的数量可以是约5、10、50、100、250、500、750、1000、1500、2000、2500、5000、7500或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多。分区或隔室的数量可以是至少约1、5、10、50,100、250、500、750、1000、1500、2000、2500、5000、7500或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多。分区或隔室的数量可以少于5、10、50,100、250、500、750、1000、1500、2000、2500、5000、7500或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多。分区或隔室的数量可以是约5-10000000、5-5000000、5-1000000、10-10000、10-5000、10-1000、1000-6000、1000-5000、1000-4000、1000-3000或1000-2000。
分区为多个隔室的生物颗粒的数量可以是约1、2、3、4、5、10、50,100、250、500、750、1000、1500、2000、2500、5000、7500、或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多。分区为多个隔室的生物颗粒的数量可以至少约为1、5、10、50,100、250、500、750、1000、1500、2000、2500、5000、7500或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多。分区为多个隔室的生物颗粒的数量可以少于2、5、10、50,100、250、500、750、1000、1500、2000、2500、5000、7500或10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、300000、400000、500000、600000、700000、800000、900000、1000000、2000000、3000000、4000000、5000000、10000000、20000000或更多。分区为多个隔室的生物颗粒的数量约为5-10000000、5-5000000、5-1000000、10-10000、10-5000、10-1000、1000-6000、1000-5000、1000-4000、1000-3000或1000-2000。
在一些实施方案中,隔室是标准微孔板中的孔,其中通过分选辅助分离。在一些实施方案中,分选仪是荧光激活细胞分选仪(FACS)。此外,与Fluidigm C1相同,可将分区与在独立的微流控腔室内自动生成文库结合起来。在一些实施方案中,分区是亚纳升孔,并且颗粒被半透膜密封。
在将单个生物颗粒分区到单独的隔室中后,可以操纵该生物颗粒以释放其成分。例如,可以裂解单个细胞或细胞核以将其DNA、RNA、蛋白质和/或肽释放到隔室中,以进行进一步分析。在一些实施方案中,DNA或RNA可以是编码免疫受体的多核苷酸。
根据某些方面,可以将诸如细胞等的生物颗粒与裂解剂(例如,细胞裂解试剂)一起分区,以释放该分隔物中的细胞内容物。在这种情况下,裂解剂可以与细胞悬浮液接触,同时,或在即将细胞引入分区连接/液滴产生区之前,例如,通过通道连接上游的一个或多个另外通道,使其与细胞悬浮液接触。裂解剂的示例包括生物活性试剂,例如用于裂解不同细胞类型,例如,革兰氏阳性或阴性细菌、植物、酵母、哺乳动物等的裂解酶,如溶菌酶、脱色肽酶、溶葡萄球菌素、拉贝酶、kitalase、裂解酶和可从例如,Sigma-Aldrich,Inc.(密苏里州圣路易斯)获得的多种其他裂解酶,以及其他市售裂解酶。其他裂解剂可以附加地或替代地与细胞共同分区,以使细胞内容物释放到分区中。例如,在一些情况下,可以使用基于表面活性剂的裂解溶液裂解细胞,尽管对于基于表面活性剂会干扰稳定乳液的基于乳液的系统而言,这些溶液可能不太理想。在一些情况下,裂解溶液可以包括非离子表面活性剂,例如,TritonX-100和吐温20。在一些情况下,裂解溶液可以包括离子表面活性剂,例如,肌氨酰和十二烷基硫酸钠(SDS)。同样,在某些情况下,也可以使用采用其他方法的裂解方法,例如,电穿孔、热、声或机械细胞破碎,例如,基于非乳液的分区,如可以在液滴分区之外或代替液滴分区的细胞包封,其中包封的任何孔径都足够小,以在细胞破裂后保留所需大小的核酸片段。
除了与上述细胞共同分区的裂解剂,其他试剂也可以与细胞共同分区,包括,例如,DNase和RNase失活剂或抑制剂,如蛋白酶K、螯合剂,如EDTA,以及用于去除或以其他方式减少阴性活性或不同细胞裂解物成分对核酸后续加工的影响的其他试剂。此外,在包封细胞的情况下,可将细胞暴露于适当的刺激下以从共分区的微胶囊中释放细胞或其内含物。例如,在一些情况下,化学刺激可以与封装的细胞一起被共分区,以允许微胶囊的降解以及细胞或其内容物释放到更大的分区中。
另外的试剂也可以与细胞共分区,如核酸内切酶以使细胞的DNA片段化,DNA聚合酶和用于扩增细胞核酸片段的dNTP。其他试剂还可以包括逆转录酶,包括具有末端转移酶活性的酶、引物和寡核苷酸,以及可用于模板转换的开关寡核苷酸(在本文中也称为“开关寡核苷酸”或“模板开关寡核苷酸”或“TSO”)。在一些情况下,模板转换可用于增加cDNA的长度。在模板转换的一个示例中,可以从模板的逆转录产生cDNA,如细胞mRNA,其中具有末端转移酶活性的逆转录酶可以向cDNA中增加未被模板编码的其他核苷酸,例如聚C,如在cDNA的末端。开关寡核苷酸可以包括与额外的核苷酸互补的序列,例如,聚G。cDNA上额外的核苷酸(例如,聚C)可以与与开关寡核苷酸上额外的核苷酸(例如,聚G)互补的序列杂交,从而逆转录酶可以将开关寡核苷酸作为模板以进一步扩展cDNA。开关寡核苷酸可以包含脱氧核糖核酸、核糖核酸、包括锁定核酸(LNA)的修饰核酸或任何组合。
尽管上述试剂可以与细胞或其他生物颗粒共分区,但是没有必要将这些试剂共分区。由于本文所述的方法允许硬化颗粒的形成并将靶分子截留在硬化颗粒内,因此在形成硬化颗粒后,可以通过将试剂与合并的硬化颗粒直接混合在试管中来执行各种步骤。来自单个细胞的靶分子仍将保持其特性,而无需与来自不同单个细胞的靶分子混合。例如,可以在合并硬化颗粒后添加裂解剂。又例如,可以在合并硬化颗粒后添加用于逆转录的试剂。应该理解,具有截留的靶部分的硬化颗粒允许进行大量的各种操作。
在各种实施方案中,可以将生物颗粒与包含可聚合或可胶凝的聚合物和/或单体的溶液共分区。在一些实施方案中,生物颗粒与可聚合或可胶凝的聚合物共分区。在一些实施方案中,生物颗粒与可聚合或可胶凝单体共分区。在一些实施方案中,生物颗粒与可聚合或可胶凝的聚合物和单体的混合物共分区。聚合物可以是相同的化学物质或不同的化学物质。单体可以是相同的化学物质或不同的化学物质。在一些实施方案中,溶液还包含引发胶凝过程所必需的试剂。在一些实施方案中,溶液还包含引发形成硬化颗粒(例如,水凝胶颗粒)的聚合过程所必需的试剂。
在本文提供的反应之后,可以回收预形成的固体支持物和硬化颗粒,使得它们可以浸入水溶液中以进一步操作。
当将固体壁隔室的水性内含物转化为硬化颗粒时,通过使固体支架变形,溶解固体支架,使用离心力驱动硬化颗粒通过容器的开口或其组合,可以从隔室中去除硬化颗粒。
在一些实施方案中,隔室是液体壁的(例如,油包水液滴)。在这种情况下,可以通过聚结隔室,例如,通过使油包水乳化液反乳化而从隔室中除去硬化颗粒。可以使用破乳液如全氟辛醇和氯仿来实现破乳。破乳方法可以取决于所用的载体油。对于氟碳油,可以通过在HFE-7500油(20%-100%PFO)中添加20%-100%(体积/体积)的1H,1H,2H,2H-全氟辛醇来使乳化剂破乳。对于矿物油,可以使用苯酚/氯仿/异戊醇(25∶24∶1;vol/vol/vol;Fisher,目录号BP17521)将乳液乳化。破乳也可以通过非化学方法实现,如使用手持抗静电枪,并在细胞滤网顶部用水溶液洗涤。
衔接子添加
本公开内容提供了获得多个固体支持物的方法,每个固体支持物都被来自单个生物颗粒的编码第一和第二免疫受体的多核苷酸修饰。在一些实施方案中,第一和第二多核苷酸同时具有上游共同序列(例如,TSO序列)和下游共同序列(例如,结合C区的引物的序列)。在这种情况下,这些固体支持物可直接用于预扩增或融合。
在其他情况下,第一或第二多核苷酸在重排的V(D)J序列的上游或下游可以具有零个或只有一个共同序列。在这种情况下,可以添加另外的公共序列。另外的公共序列可以是衔接子序列。可以通过引物延伸来添加衔接子序列,其中引物在其5′端包含衔接子序列。在一些实施方案中,可以使用一组引物,其中所有引物共享相同的衔接子序列。组的每个引物可以识别源免疫受体表达细胞的免疫受体库中可以存在的不同V区。组的每个引物可以识别源免疫受体表达细胞的免疫受体库中可以存在的不同J区域。在实施例部分中提供了使用一组靶向V区的引物添加上游衔接子序列的示例。
为了进行这些引物延伸反应,同时保持单个细胞性(即,确保连接至固体支持物的编码免疫受体的多核苷酸来自一个细胞),可以使用单细胞反应器。
当第一和第二多核苷酸的机械强度和附着力可以承受引物延伸反应的温度时,可以将固体支持物浸入连续体积的包含引物和酶的水溶液中。否则,可以将固体支持物重新分区为多个隔室,其中大部分隔室中的每个隔室包含不超过一个的固体支持物。在这种情况下,隔室还可以包含引物和用于引物延伸反应的酶。
当固体支持物是颗粒时,可以用与分区生物颗粒的相同方法来重新分区固体支持物,除了用固体支持物(例如,颗粒)代替生物颗粒。当固体支持物是水凝胶颗粒时,酶和引物可以扩散到水凝胶颗粒中,并且可以使用本文所述的其他方法将水凝胶颗粒重新乳化。
使用本文描述的方法,可以提供多个固体支持物,每个固体支持物都被来自单个生物颗粒的第一和第二免疫受体编码多核苷酸修饰,其中第一和第二免疫受体编码多核苷酸具有上游公共序列和下游公共序列。
配对的二分免疫受体多核苷酸的融合
本文提供了产生包含第一核酸序列和第二核酸序列的融合的二分免疫受体多核苷酸的组合物和方法。第一核酸序列可以编码第一免疫受体链,第二核酸序列可以编码第二免疫受体链。第一免疫受体链和第二免疫受体链可以形成功能性免疫受体受体。编码第一免疫受体链和第二免疫受体链的核酸序列可以来自单个细胞。第一免疫受体链和第二免疫受体链可以来自从细胞(例如,免疫细胞)获得的免疫受体的同源配对组合(或天然配对的组合)。第一和/或第二核酸序列可以编码免疫受体的全长可变结构域(例如,包括所有三个CDR:CDR1、CDR2和CDR3)。第一和/或第二核酸序列可编码部分可变结构域,其包含一个或多个选自CDR1、CDR2和CDR3的CDR。第一和/或第二核酸序列可以进一步编码免疫受体的恒定结构域。恒定结构域可以是全长恒定结构域,或细胞外恒定结构域,或全长恒定结构域的任何部分。在一些情况下,融合的二分免疫受体多核苷酸的长度为至少600、至少700、至少800、至少900、至少1000、至少1200、至少1500或更多个核苷酸(或碱基对)。在一些情况下,融合的二分免疫受体多核苷酸的长度为至少1000、至少1500、至少2000、至少2500或更多个核苷酸(或碱基对)。在一些情况下,融合的二分免疫受体多核苷酸的长度为从600至1000或从1500至3000个核苷酸(或碱基对)。
在单细胞反应器内,可以使用各种方法,如连接反应和基于PCR的方法来融合编码二分免疫受体的两条肽链的序列。如本文所用,“融合”是指链接或物理链接。编码二分免疫受体的两条肽链的序列可以来自单个细胞(或如本文所述的表达单个来源的免疫受体的细胞)。可以基于表达的mRNA的性质,在通过执行RT-PCR从基因组DNA或从mRNA复制或扩增靶核酸进行选择。使用基因组DNA作为模板可以不需要逆转录步骤,但可以有扩增非功能性受体的风险,而使用mRNA作为模板可以受益于更高的拷贝数,并可以捕获功能性表达的受体。编码二分免疫受体的两条肽链的两种核酸的物理融合可以通过多种机制发生。例如,物理融合可以通过标准的重叠扩展PCR(SOE-PCR)(也称为融合PCR、交叉PCR或重叠扩展PCR,缩写为OE-PCR)来实现,其中两个PCR引物具有互补序列,因此两个扩增子可以作为引物,并且彼此融合。该方法的一个优点是可以设计重叠序列,使得融合的构建体立即处于可用的scFv格式。再例如,可以通过类似于SOE-PCR的机制实现融合,其中将标签掺入PCR引物中。在这种情况下,标签可以含有loxP位点,因此可以在Cre介导的重组后发生融合。物理融合也可以通过包括平端连接和粘端连接的连接反应来实现。
预扩增
在融合反应之前,可以扩增编码每个二分免疫受体肽链的靶核酸,称为“预扩增”。预扩增可以包括两个步骤,包括制备步骤和扩增步骤。在制备过程中,可以进行一个或多个反应,以便在扩增前将具有共同序列(例如,衔接子序列)的寡核苷酸添加至靶核酸。例如,制备过程可以包括使用具有衔接子序列的引物进行靶核酸的核酸合成,以产生具有衔接子的新合成产物。衔接子可以不与靶核酸杂交或互补。如本文所用,“可杂交的”是指在给定条件下在两条核酸链之间形成稳定的碱基配对。衔接子可以包含预定序列,并可用于结合引物进行扩增。在一些情况下,在制备程序之后,新合成的产物包含两个衔接子序列,每个末端具有一个衔接子序列。
以上各节描述了提供多个固体支持物的通用方法,每个固体支持物都被来自单个生物颗粒的第一和第二免疫受体编码多核苷酸修饰,其中第一和第二免疫受体编码多核苷酸均具有上游共有序列和下游公共序列。提供这种多个支持物可以是执行准备过程的结果。
在一些情况下,靶核酸是DNA(例如,基因组DNA),并且制备过程可以包括使用具有第一衔接子序列的第一引物和具有第二衔接子序列的第二引物以产生DNA的拷贝。第一衔接子序列和第二衔接子序列可以是预先设计的或人工的序列。第一引物和第二引物之一可用于将DNA的拷贝连接至水凝胶颗粒的聚合物框架。两种衔接子序列均可用于结合引物以进一步扩增。二分免疫受体的靶核酸可以是可以含有内含子的基因组DNA。可以将引物设计为合成(或复制)不含内含子的区域,例如,可以将引物设计为仅合成(或复制)TCR链的可变结构域,因为内含子通常位于J区和C区之间。
在一些情况下,二分免疫受体的靶核酸是mRNA。并且在这种情况下,可以在通过PCR扩增之前进行RT步骤。RT引物可以是受扩散限制的。在一些情况下,RT引物可以不受扩散限制。RT引物可以是捕获剂的靶向部分。例如,如果单细胞反应器是水凝胶颗粒,则RT引物可以直接或间接连接到聚合物框架上。可以使用本文所述的将捕获剂固定在表面或固体支持物或框架上的各种方法将RT引物连接到聚合物框架。RT引物可以与扩散限制剂连接。作为RT步骤的结果,可以将RT产物(cDNA或扩展的RT引物)直接或间接连接到聚合物框架上(或可以进行扩散限制)。在RT步骤中,可以使用模板转换寡核苷酸(TSO)的模板进行转换。在一些情况下,在RT步骤中进行模板转换步骤,并且模板转换的RT产物连接至聚合物框架或受扩散限制。TSO可作为衔接子序列,可用于在扩增过程中结合引物。RT引物可以是聚T或与恒定结构域的序列可杂交或互补的序列。在其他一些情况下,可以不进行模板转换,而在RT步骤之后进行第二链合成(SSS)步骤。在SSS步骤中,可以使用一组具有共同衔接子序列的引物。
在预扩增中,扩增产物(或扩增子)可以编码免疫受体肽链的所有CDR序列。有多种方法来扩增包含编码免疫受体肽链的核酸的所有CDR序列(例如DNA和mRNA)的序列。非限制性示例在本文描述。例如,可以在RT期间进行模板转换反应。如果在RT期间使用TSO进行模板转换,并且cDNA通过与TSO基本具有相同序列的正向引物和识别免疫受体多核苷酸的C区,整个V区和V(D)J连接子可以被扩增,包括免疫受体链的CDR1、CDR2和CDR3序列(例如,图4A,箭头(1)-(2))。可替代地,如果在RT期间不进行模板转换,则可以设计正向引物以识别免疫受体链的FR1(即,CDR1上游的框架1)片段上或上游的序列。该正向引物可以用于SSS或PCR中(例如,图5A和5B,箭头(1)-(3))。
免疫受体的V基因可以是多种多样的。因此,为了扩增给定生物体(例如,人)中给定免疫细胞类型(例如,T细胞或B细胞)中的免疫受体链,可以设计一组10至100个引物(称为“V基因引物”)。在一些情况下,一组至少2、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95个或更多的引物可以设计以靶向(例如,扩增)至少2、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95或更多个不同的V基因。在一些情况下,给定生物体中给定免疫细胞类型中所有可能免疫受体链均被扩增。
在人类中,TRA可以有超过40个功能性V基因,包括TRAV1-1、TRAV1-2、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8-1、TRAV8-2、TRAV8-3、TRAV8-4、TRAV8-6、TRAV9-1、TRAV9-2、TRAV10、TRAV12-1、TRAV12-2、TRAV12-3、TRAV13-1、TRAV13-2、TRAV14、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20、TRAV21、TRAV22、TRAV23、TRAV24、TRAV25、TRAV26-1、TRAV26-2、TRAV27、TRAV29、TRAV30、TRAV34、TRAV35、TRAV36、TRAV38-1、TRAV38-2、TRAV39、TRAV40和TRAV41。在这些V基因中,其中一些可以分类为同一亚组,并在紧接“TRAV”之后用相同的亚组编号表示,而在“-”符号后用不同的编号表示。例如,TRAV1-1和TRAV1-2来自同一亚组。如本文所用,“组”是一组共享相同“基因类型”(例如,V、D、J或C类型),并且潜在地参与相同“链类型”的多肽合成的基因。通过扩展,一组包括相关的假基因和孤独基因。“亚组”是指在给定物种中属于同一组的一组基因,并且它们在核苷酸水平(在V、D和J的种系构型中)具有至少75%的同一性。
在人类中,TRB可以有40多个功能性V基因,包括TRBV2、TRBV3-1、TRBV4-1、TRBV4-2、TRBV4-3、TRBV5-1、TRBV5-4、TRBV5-5、TRBV5-6、TRBV5-8、TRBV6-1、TRBV6-2、TRBV6-3、TRBV6-4、TRBV6-5、TRBV6-6、TRBV6-8、TRBV6-9、TRBV7-2、TRBV7-3、TRBV7-4、TRBV7-6、TRBV7-7、TRBV7-8、TRBV7-9、TRBV9、TRBV10-1、TRBV10-2、TRBV10-3、TRBV11-1、TRBV11-2、TRBV11-3、TRBV12-3、TRBV12-4、TRBV12-5、TRBV13、TRBV14、TRBV15、TRBV16、TRBV18、TRBV19、TRBV20-1、TRBV24-1、TRBV25-1、TRBV27、TRBV28、TRBV29-1和TRBV30。可以在IMGT数据库中找到其他物种,例如,小鼠的V基因。
在一些情况下,用于预扩增的V基因引物的数量很少(例如,当扩增BCR或抗体基因时,可以仅需要约5、6、8或10个V基因引物)。在这种情况下,这些引物可用于多重PCR。在一些情况下,预扩增中使用的V基因引物数量很多(例如,在扩增TCR基因时,可以需要约50、80、100或更多个V基因引物)。在这种情况下,可以设计连接到每个V基因引物5′端的通用衔接子序列,并且这些引物(称为“含衔接子的V基因引物”)可用于与cDNA杂交,并进行单周期引物延伸。该步骤是指SSS步骤,例如,如图5A所示。在SSS步骤后,可以使用一个常见的引物对——靶向衔接子的正向引物和靶向C区的反向引物——来扩增可能的免疫受体链。为了融合和随后的操纵,每条链可以使用不同的衔接子。例如,第一衔接子序列可以用于TRA链,第二衔接子序列可以用于TRB链。在一些实施方案中,V基因引物可以具有蛋白质编码序列的前15至40个碱基的序列(以ATG开始)。在这种情况下,PCR产物可以包含V基因和VDJ连接的完整编码序列。这种含衔接子的V基因引物的一些示例是如图5A和实施例部分所示的[AdptA|CDSTRA}和[AdptB|CDSTRB}。可以将含衔接子的V基因引物的引物与阻断剂寡核苷酸杂交,以保护其3′端。阻断剂寡核苷酸可以是两条或更多条分开的寡核苷酸链。
当在SSS或PCR中应用10至100个引物时,维持序列特异性可以是具有挑战性的。然而,可以使用多种方法来提高SSS或PCR杂交的特异性,包括但不限于使用添加剂,如DMSO和甜菜碱,使用化学修饰如LNA或核糖核苷酸(后者可用于与RNase H依赖性PCR结合使用),使用竞争性寡核苷酸,如在阴阳探针(Yin-Yang probe)或脚趾探针(toehold probe)中。
在进行制备步骤之后,可以产生各自包含固体支持物的多个单细胞反应器,并且可以进行如OE-PCR(参见实施例6)的一步融合反应。在OE-PCR中,外部引物(例如,图9B的pTSO)可以以比内部引物(例如,图9B的引物1R和2R)更高的浓度使用。指数扩增阶段后,外部引物可以驱动线性扩增,导致从外部引物延伸的单链延伸产物的积累。这些单链延伸产物的3′端具有重叠,其序列由内部引物决定,因此可以彼此杂交。杂交产物可以进一步扩展以产生双链融合产物。
在一些实施方案中,可以执行扩增程序以在单细胞反应器中扩增编码免疫受体的多核苷酸,而不产生融合产物。为此,可以在制备过程中准备多个单细胞反应器,每个单细胞反应器包含单个固体支持物,第一对引物通过结合其上游和下游共同序列来扩增编码第一免疫受体的多核苷酸(例如,对于TCRα链)以及第二对引物通过结合其上游和下游共同序列来扩增编码第二免疫受体的多核苷酸(例如,对于TCRβ链)。
预扩增产物可以是扩散受限的。例如,该基于PCR的预扩增的引物可以是捕获剂。例如,引物可以附加[ARS}。[ARS}可以通过柔性连接子,如PEG连接子或Spacer18与引物序列相连。这些引物的非限制性示例包括图4A和图4B1中的ARS-pTSO,以及图5B中的ht1F、ht2R。
扩增程序后,可以提供多个固体支持物,每个固体支持物都用编码第一免疫受体的多核苷酸(例如,编码TCRα链)的第一多个扩增产物和编码第二免疫受体的多核苷酸(例如,编码TCRβ链)的第二多个扩增产物修饰,其中第一和第二编码免疫受体的多核苷酸形成天然对。
重叠设计
编码二分免疫受体的两条肽链的两种核酸可以以几种取向,例如,头对头、头对尾和尾对尾(图3)融合。如本文所述,“头”是指有义核酸链的“5′端”,并且“尾”是指有义核酸链的“3′端”。在一些情况下,取向是头对尾的,可以控制融合的顺序(例如,TRA后接TRB,或者TRB后接TRA)。为了实现这种可控性,可以进行序列依赖性融合。为此,可以将重叠序列工程化为两条链的扩增产物。如本文所述,融合TCR的TRA和TRB多核苷酸作为描述不同策略的示例。该策略可以应用于BCR链融合、抗体链融合和TCRγδ链融合。
尾对尾设计
图4A和图4B描绘了TCR免疫受体的TRA和TRB的尾对尾融合的示例。为了扩增TRA片段,可以将识别TRA的C区的引物(即TRAC)作为反向引物。识别TRAC的引物的序列可以表示为[TRAC-5A*}。可以将[OL-2*}表示的~10-nt序列附加到[TRAC-5A*}的5′端以形成引物,该引物表示为“1R”,其序列为[OL-2*|TRAC-5A*}。同样,为了扩增TRB区段,可以将识别TRB的C区的引物(即TRBC)作为反向引物。识别TRBC的引物的序列表示为[TRBC-5A*}。可以将[OL-1}表示的~10-nt序列附加到[TRBC-5A*}的5′端以形成引物,我们将其称为“2R”,其序列为[OL-1|TRBC-5A*}。在此设计中,[OL-1*]是[TRAC-5A*}的前~10个碱基,并且[OL-2}是[TRBC-5A*}的前~10个碱基。因此,TRA扩增产物的有义链的最后~20个碱基可以具有[OL-1|OL-2}的序列,并且TRB扩增产物的有义链的最后~20个碱基可以具有[OL-2*|OL-1*}的序列。在使用5′至3′核酸外切酶(例如,Gibson Assembly)、3′至5′核酸外切酶(例如,不依赖序列和连接酶的克隆或SLIC)或USER酶混合物(例如,USER友好的DNA重组或USERec)产生长粘性端后,可以通过连接反应融合两端。组装方法的其他示例包括,但不限于,环状聚合酶延伸克隆(CPEC)和无缝连接克隆提取物(SLiCE)组装。可替代地,可以通过重叠PCR将这两端融合。实施例1中进一步提供了将TRA和TRB尾对尾融合的策略的详细描述。
头对尾设计
图5A-图5C描绘了TCR免疫受体的TRA和TRB多核苷酸头对尾融合的示例。如本文所述,含衔接子的V基因引物可用于在SSS期间向V基因序列添加衔接子序列。为了进行行头对尾融合,可以将分别由[AdptA}和[AdptB}表示的两个不同的衔接子序列作为TRA和TRB的衔接子序列。为了按照TRA的顺序进行头对尾融合,然后是TRB,可以将具有[TRAC-5A*]序列的反向TRA引物后面附加名为[htOL-2*}的序列,以形成一个以“ht1R”表示的引物,其序列为[htOL-2*|TRAC-5A*}。同时,可以将名为[htOL-1}的序列添加到具有序列[AdptB}的引物上,以形成一个名为“ht2F”的新引物,其序列为[htOL-1|AdptB}。此引物“ht2F”可以作为扩增TRB的正向引物。在此设计中,[htOL-1*}可以是[TRAC-5A*}的~10个碱基,而[htOL-2}可以是[AdptB}的前~10个碱基。TRA和TRB的扩增产物可以通过多种策略融合,如在单细胞反应器中进行连接反应和重叠PCR,其中将具有来自单个细胞的免疫受体编码序列的扩增产物连接至固体支持物,并每个单细胞反应器中只有一个固体支持物。在这些单细胞反应器中,可以使用本文提供的方法(例如,熔化固体支持物)使扩增产物自由扩散。例如,在使用5′至3′核酸外切酶(例如,Gibson Assembly)、3′至5′核酸外切酶(例如,不依赖序列和连接酶的克隆或SLIC)或USER酶混合物(例如,USER友好的DNA重组或USERec)产生长粘性端后,可以通过连接反应融合两端。组装方法的其他示例包括,但不限于,环状聚合酶延伸克隆(CPEC)和无缝连接克隆提取物(SLiCE)组装。在实施例2中进一步详细介绍了以头对尾相接的方式将TRA和TRB融合的策略,并按TRA后接TRB的顺序进行融合。
免疫受体表达载体
融合的二分免疫受体多核苷酸可以插入表达载体中以便在宿主细胞中表达,在本发明中称为“受体细胞”。融合的二分免疫受体多核苷酸可以线性或环状核酸链的形式递送到受体细胞中。融合的二分免疫受体多核苷酸可以作为表达载体递送到受体细胞中。在一些情况下,可以通过电穿孔将融合的二分免疫受体多核苷酸或载体递送到受体细胞中。在一些情况下,融合的二分免疫受体多核苷酸或载体可以通过载体如阳离子聚合物递送。
二分免疫受体的两条链可以从载体,如质粒、转座子(例如,Sleeping Beauty,Piggy Bac)和病毒载体(例如,腺病毒载体、AAV载体、逆转录病毒载体和慢病毒载体)表达。载体的其他示例包括穿梭载体、噬菌粒、粘粒和表达载体。质粒载体的非限制性示例包括pUC、pBR322、pET、pBluescript及其变体。此外,载体可以包含另外的表达控制序列(例如,增强子序列、科扎克序列、聚腺苷酸化序列、转录终止序列等)、选择标记序列(例如,抗生素抗性基因)、复制起点等。在一些情况下,载体是被引入受体细胞中从而产生转化的受体细胞的核酸分子。载体可以包括允许其在受体细胞中复制的核酸序列,如复制起点。载体还可以包括一个或多个可选择的标记基因和其他遗传元件。载体可以是表达载体,其包括根据本发明可操作地连接至允许融合基因表达的序列的融合二分免疫受体多核苷酸。载体可以是病毒或非病毒载体,如逆转录病毒载体(包括慢病毒载体),包括其复制能力、复制缺陷和无肠形式的腺病毒载体、腺相关病毒(AAV)载体、猿猴病毒40(SV-40)载体、牛乳头状瘤载体、爱泼斯坦-巴尔载体、疱疹载体、牛痘载体、莫洛尼鼠白血病载体、哈维鼠肉瘤病毒载体、鼠乳腺肿瘤病毒载体、劳斯肉瘤病毒载体和非病毒质粒。杆状病毒载体可适于在昆虫细胞中表达。
在一些实施方案中,载体是自扩增RNA复制子,也称为自复制(m)RNA(self-replicating(m)RNA、self-replication(m)RNA)、自扩增(m)RNA或RNA复制子。自扩增RNA复制子是可以自我复制的RNA。在一些实施方案中,自扩增RNA复制子可以在细胞内部复制自身。在一些实施方案中,自扩增RNA复制子编码RNA聚合酶和感兴趣的分子。RNA聚合酶可以是RNA依赖性RNA聚合酶(RDRP或RdRp)。自扩增RNA复制子还可以编码蛋白酶或RNA加帽酶。在一些实施方案中,自扩增RNA复制子载体属于或来源于被称为α病毒的披膜病毒科病毒,其可以包括东部马脑炎病毒(EEE)、委内瑞拉马脑炎病毒(VEE)、大沼泽地病毒、Mucambo病毒、Pixuna病毒、西部马脑炎病毒(WEE)、辛德比斯病毒、86号南非Arbo病毒、塞姆利基森林病毒、米德尔堡病毒、基孔肯雅病毒、Onyong-nyong病毒、罗斯河病毒、巴马森林病毒、格塔病毒、Sagiyama病毒、贝巴鲁病毒、马亚罗病毒、乌纳病毒、Aura病毒、Whataroa病毒、Babanki病毒、Kyzylagach病毒、高地J病毒、摩根堡病毒、恩杜姆病毒、Buggy Creek病毒以及国际病毒分类委员会(ICTV)分类的任何其他病毒作为α病毒。在一些实施方案中,自扩增RNA复制子是或包含来自减毒形式的α病毒,如VEE TC-83疫苗株的部分。在一些实施方案中,自扩增RNA复制子载体是病毒的减毒形式,其允许表达感兴趣的分子(包括两部分免疫受体和其他试剂,如标题为“受体细胞的另外基因组工程化”,以及“由受体细胞表达的另外试剂”的部分所述)对细胞没有细胞病变或凋亡作用。在一些实施方案中,已经对宿主细胞、靶细胞或生物体中的特异性功能(例如延长或增加的二分免疫受体表达)在体外、体内、离体或在二氧化硅中工程改造或选择自扩增RNA复制子载体。例如,可以基于不同时间点的一个或多个感兴趣的分子(编码在自扩增RNA复制子或宿主基因组中)的表达水平选择具有自扩增RNA复制子不同变体的宿主细胞群。在一些实施方案中,选择或工程化的自扩增RNA复制子已被修饰,以减少宿主细胞或生物体的I型干扰素应答、先天抗病毒应答或适应性免疫应答,从而导致RNA复制子的蛋白表达持续更长的时间或以更高的表达水平表达宿主细胞、靶细胞或生物体中的水平。在一些实施方案中,该优化的自扩增RNA复制子序列从具有所需表型性状(例如,感兴趣的分子的更高或更持久的表达,或与野生型菌株或疫苗菌株相比,对载体的先天抗病毒免疫应答降低)的单个细胞或细胞群中获得的。在一些实施方案中,在用包含自扩增RNA复制子的治疗剂处理后,含有期望或选择的自扩增RNA复制子序列的细胞,是从具有有益应答特征(例如,精英应答者或完全缓解的受试者)的受试者(例如,人类或动物)获得的。在一些实施方案中,自扩增RNA复制子载体可以表达另外的试剂,如标题为“受体细胞额外的基因组工程”和“受体细胞表达的另外的试剂”的部分中所述。在一些实施方案中,另外的试剂包括细胞因子,如IL-2、IL-12、IL-15、IL-10、GM-CSF、TNFα、颗粒酶B或其组合。在一些实施方案中,另外的试剂能够通过直接影响免疫受体的表达或通过调节宿主细胞表型(例如,诱导细胞凋亡或扩增)来调节二分免疫受体的表达。在一些实施方案中,自扩增RNA复制子可以包含一个或多个亚基因组序列,以产生一个或多个亚基因组多核苷酸。在一些实施方案中,亚基因组多核苷酸作为功能性mRNA分子,用于通过细胞翻译机制进行翻译。可以通过自扩增RNA复制子上定义的序列元件(例如,亚基因组启动子或SGP)的功能产生亚基因组多核苷酸,其指导聚合酶从亚基因组产生亚基因组多核苷酸。顺序。在一些实施方案中,SGP被RNA依赖性RNA聚合酶(RDRP或RdRp)识别。在一些实施方案中,多个SGP序列存在于单个自扩增RNA复制子上,并且可以位于编码二分免疫受体、二分免疫受体的成分或另外的试剂的亚基因组序列的上游。在一些实施方案中,可以修饰SGP序列的核苷酸长度或组成,以改变亚基因组多核苷酸的表达特征。在一些实施方案中,不同的SGP序列位于自扩增RNA复制子上,使得相应的亚基因组多核苷酸的比例不同于其中SGP序列相同的情况。在一些实施方案中,不同的SGP序列指导二分免疫受体和另外的试剂(例如,细胞因子)的产生,使得它们以相对于彼此的比例产生,导致二分免疫受体的表达增加,靶细胞增加或更快地扩增,而对靶细胞或宿主没有细胞毒作用,或减弱针对RNA复制子的先天性或适应性免疫应答。在一些实施方案中,亚基因组序列和SGP序列相对于彼此的位置以及基因组序列本身可以用于改变亚基因组多核苷酸相对于彼此的比例。在一些实施方案中,编码二分免疫受体的SGP和亚基因组序列可以位于编码另外的试剂的SGP和亚基因组区域的下游,使得二分免疫受体的表达相对于另外的试剂基本增加。在一些实施方案中,已经选择或工程化RNA复制子或SGP以表达最佳量的细胞因子,使得细胞因子促进T细胞的扩增或增强二分免疫受体的治疗效果,但不引起严重的副作用,如细胞因子释放综合征、细胞因子风暴或神经毒性。
在一些实施方案中,本文提供了包含编码TCRα链和TCRβ链的融合的二分免疫受体多核苷酸的载体。在一些实施方案中,本文提供了包含编码TCRγ链和TCR(5链的融合的二分免疫受体多核苷酸的载体。在一些实施方案中,本文提供了包含编码BCR或抗体重链和BCR或抗体轻链的融合的二分免疫受体多核苷酸的载体。在一些实施方案中,载体是自扩增RNA复制子、质粒、噬菌体、转座子、粘粒、病毒或病毒体。在一些实施方案中,载体是病毒载体。在一些实施方案中,载体来源于逆转录病毒、慢病毒、腺病毒、腺相关病毒、疱疹病毒、痘病毒、α病毒、痘苗病毒、乙型肝炎病毒、人乳头瘤病毒或其伪型。在一些实施方案中,载体是非病毒载体。在一些实施方案中,可以将非病毒载体配制为纳米颗粒、阳离子脂质、阳离子聚合物、金属纳米聚合物、纳米棒、脂质体、胶束、微泡、细胞穿透肽或脂球。
两条链的表达可以由两个启动子或一个启动子驱动。在一些情况下,使用两个启动子。在一些情况下,两个启动子,以及它们各自的两条链的蛋白质编码序列,可以头对头、头对尾或尾对尾的取向排列。在一些情况下,使用一个启动子。可以将两个蛋白质编码序列在框架内连接,从而可以使用一个启动子表达两条链。并且在这种情况下,两个蛋白质编码序列可以头对尾排列,并且可以与核糖体结合位点(例如,内部核糖体结合位点或IRES)、蛋白酶切割位点或自加工切割位点(如编码2A肽的序列)连接,以促进双顺反子表达。在一些情况下,两条链可以与肽连接子连接,以便两条链可以表达为单链多肽。每条表达的链可以包含完整的可变结构域序列,包括重排的V(D)J基因。每条表达的链可以包含完整的可变结构域序列,包括CDR1、CDR2和CDR3。每条表达的链可以包含完整的可变结构域序列,包括FRi、CDR1、FR2、CDR2、FR3和CDR3。在一些情况下,每条表达的链可以进一步包含恒定结构域序列。
为了产生表达载体,可以需要将另外的序列添加至融合的免疫受体基因。这些另外的序列包括载体主链(例如,载体在靶细胞或临时宿主(如大肠杆菌)中复制所需的元件)、启动子、IRES、编码自切割肽的序列、终止子、辅助基因(如有效载荷)以及免疫受体多核苷酸的部分序列(如编码恒定结构域的部分序列)。
蛋白酶切割位点包括,但不限于,肠激酶切割位点:(Asp)4Lys;Xa因子切割位点:Ile-Glu-Gly-Arg;凝血酶切割位点,例如,Leu-Val-Pro-Arg-Gly-Ser;肾素切割位点,例如,His-Pro-Phe-His-Leu-Val-Ile-His;胶原酶切割位点,例如,X-Gly-Pro(其中X是任何氨基酸);胰蛋白酶切割位点,例如,Arg-Lys;病毒蛋白酶切割位点,如病毒2A或3C蛋白酶切割位点,包括,但不限于,来自小核糖核酸病毒的蛋白酶2A切割位点,甲型肝炎病毒3C切割位点、人鼻病毒2A蛋白酶切割位点、小核糖核酸病毒3蛋白酶切割位点;以及半胱氨酸蛋白酶切割位点,例如,被激活的半胱氨酸蛋白酶-3识别并切割的DEVD,其中切割发生在第二个天冬氨酸残基之后。在一些实施方案中,本公开内容提供了包含蛋白酶切割位点的表达载体,其中蛋白酶切割位点包括细胞蛋白酶切割位点或病毒蛋白酶切割位点。在一些实施方案中,第一蛋白质切割位点包含弗林蛋白酶识别的位点;IPNV的VP4;烟草蚀刻病毒(TEV)蛋白酶;鼻病毒的3C蛋白酶;PC5/6蛋白酶;PACE蛋白酶,LPC/PC7蛋白酶;肠激酶Xa因子蛋白酶;凝血酶合成酶I;MMP蛋白酶;芜菁花叶病毒的核内含蛋白a(N1a);登革热4型黄病毒的NS2B/NS3、黄热病病毒的NS3蛋白酶;花椰菜花叶病毒的ORF V;KEX2蛋白酶;CB2;或2A。在一些实施方案中,蛋白质切割位点是病毒内部可切割的信号肽切割位点。在一些实施方案中,病毒内部可裂解的信号肽切割位点包括来自丙型流感病毒、丙型肝炎病毒、汉坦病毒、黄病毒或风疹病毒的位点。
包含在本公开内容的载体中的合适的IRES元件可以包含能够与真核核糖体结合的RNA序列。在一些实施方案中,本公开内容的IRES元件是至少约250个碱基对、至少约350个碱基对或至少约500个碱基对。本公开内容的IRES元件可以来源于生物体的DNA,所述生物体包括但不限于病毒、哺乳动物和果蝇。在一些情况下,衍生IRES元件的病毒DNA包括,但不限于,小核糖核酸病毒互补DNA(cDNA)、脑心肌炎病毒(EMCV)cDNA和脊髓灰质炎病毒cDNA。衍生IRES元件的哺乳动物DNA的示例包括,但不限于,编码免疫球蛋白重链结合蛋白(BiP)的DNA和编码碱性成纤维细胞生长因子(bFGF)的DNA。衍生IRES元件的果蝇DNA的示例包括,但不限于,来自黑腹果蝇的触角足突变(Antennapedia)基因。脊髓灰质炎病毒IRES元件的另外示例包括,例如,脊髓灰质炎病毒IRES、脑心肌炎病毒IRES或甲型肝炎病毒IRES。黄病毒IRES元件的示例包括丙型肝炎病毒IRES、GB病毒BIRES或瘟病毒IRES,包括但不限于牛病毒性腹泻病毒IRES或经典猪瘟病毒IRES。
自加工切割位点的示例包括,但不限于,内含子序列;修饰的内含子;刺猬(hedgehog)序列;其他hog家族序列;2A序列,例如,来自口蹄疫病毒(FMDV)的2A序列;及其每一种的变体。
用于重组免疫球蛋白或其他蛋白质表达的载体可以包括任何数量的启动子,其中该启动子是组成型的、可调节的或可诱导的、细胞类型特异性的、组织特异性的或物种特异性的。进一步的示例包括四环素响应性启动子。载体可以是适于在其中表达重组融合基因的宿主细胞的复制子,也可以包含在细菌细胞中具有功能的复制子,例如,大肠杆菌。例如,启动子可以是组成型或诱导型的,例如,其中诱导与特定的细胞类型或特定的成熟水平有关。可替代地,许多病毒启动子可以是合适的。启动子的示例包括β-肌动蛋白启动子、SV40早期和晚期启动子、免疫球蛋白启动子、人巨细胞病毒启动子、逆转录病毒启动子、延伸因子1A(EF-1A)启动子、磷酸甘油酸激酶(PGK)启动子和Friend脾脏聚焦形成病毒启动子。启动子可以与增强子关联或不关联,其中增强子可以与特定启动子自然关联或与不同启动子关联。
受体细胞是基因表达的宿主细胞,可以是,但不限于动物细胞,特别是哺乳动物细胞,或者可以是微生物细胞(细菌、酵母或真菌)或植物细胞。宿主细胞的示例包括昆虫培养的细胞,如节食夜蛾(Spodoptera frugiperda)细胞;酵母细胞,如酿酒酵母(Saccharomyces cerevisiae)或毕赤酵母(Pichia pastoris);真菌,如里氏木霉(Trichoderma reesei)、黄曲霉(Aspergillus)、金担子菌(Aureobasidum)和青霉菌(Penicillium)种;以及哺乳动物细胞,如CHO(中国仓鼠卵巢)、BHK(仓鼠肾)、COS、293、3T3(小鼠)、Vero(非洲绿猴)细胞和各种转基因动物系统,包括但不限于,猪、小鼠、大鼠、绵羊、山羊、牛,也可以使用。杆状病毒载体,特别是AcNPV载体可用于本公开内容的单个ORF免疫受体表达和切割,例如在昆虫细胞系中,在多面体蛋白启动子或其他强启动子的调控控制下表达单个ORF。用于哺乳动物细胞的启动子可以是组成型的(疱疹病毒TK启动子;SV40早期启动子;劳斯肉瘤病毒(Rous sarcoma virus)启动子;巨细胞病毒启动子;小鼠乳腺肿瘤病毒启动子),也可以是受调控的(例如,金属硫蛋白启动子)。载体可以基于感染特定哺乳动物细胞的病毒,例如,逆转录病毒、牛痘和腺病毒及其衍生物。启动子包括,但不限于,巨细胞病毒、晚期腺病毒和牛痘7.5K启动子。烯醇酶是组成型酵母启动子的示例,醇脱氢酶是调节型启动子的示例。
特定启动子、转录终止序列和其他任选序列,如编码组织特异性序列的序列的选择,可以通过在其中进行表达的细胞的类型来确定。它们可以是细菌、酵母、真菌、哺乳动物、昆虫、鸡或其他动物细胞。
从表达免疫受体的载体表达的免疫受体可以是其天然形式或可以是工程化形式。在一些情况下,工程化形式是单链抗体片段或单链TCR片段。例如,柔性连接子可以将抗体的重链的可变结构域和轻链的可变结构域连接,从而形成单链抗体片段(即,scFv)。在一些情况下,工程化形式是TCR-CAR。实施例3、4和5提供了进一步将功能序列(例如,恒定结构域编码序列、P2A连接子和启动子)融合至融合的二分免疫受体多核苷酸,以产生表达免疫受体的载体的方法。这些方法还可用于将功能序列(例如,连接子CD28 TM域)引入融合的二分免疫受体多核苷酸中,以产生表达这些工程化形式的免疫受体的表达免疫受体的载体。
源免疫受体表达细胞
使用本文所述的方法可以产生融合的二分免疫受体多核苷酸的源免疫受体表达的细胞可以是多种细胞类型,来自各种生物,并从各种组织或器官分离出来。可以从各种样品中获得源免疫受体表达细胞。源免疫受体表达细胞可以产生免疫受体,例如BCR、TCR和抗体。源免疫受体表达细胞可以是免疫细胞。免疫细胞是指功能上参与先天和/或适应性免疫应答的启动和/或执行的造血起源细胞。源免疫受体表达细胞可以是淋巴细胞,例如,肿瘤浸润淋巴细胞(TIL)。
宿主源免疫受体表达细胞的原始位点可以影响融合的二分免疫受体多核苷酸的库的特性,并因此影响所得的表达免疫受体的载体和经免疫受体程序化受体细胞的库。这种库的特征的一个方面可以是基因使用多样性。
在一些情况下,库可以包含大于2、大于5、大于10、大于50、大于100、大于500、大于1,000、大于5,000、大于10,000、大于50,000、或超过100,000个V(D)J组合。在一些情况下,库可以包含大于2个、大于5个、大于10个、大于50个、大于100个、大于500个、大于1,000个、大于5,000个、大于10,000个、大于50,000个或大于100,000个不同的V(D)J组合。这是因为源免疫受体表达细胞的多克隆群体可以具有高度多样化的V、D和J基因用途,从而导致高度多样化的V(D)J组合。
融合的二分免疫受体多核苷酸或表达免疫受体的载体的VJ组合可以由两条免疫受体链所使用的V基因和J基因定义。融合的二分免疫受体多核苷酸或表达免疫受体的载体的V(D)J组合可以由两条免疫受体链使用的V基因、D基因和J基因定义。例如,TRAV8-4/TRAJ45/TRBV29-1/TRBJ1-5可以定义成对的TCR的特定VJ重组。给定免疫受体链的编码序列,可以使用如V-Quest和MiXCR等计算工具推导V(D)J组合。
应注意,两个不同的融合的二分免疫受体多核苷酸(或两个不同的表达免疫受体的载体)可以共享相同的V(D)J重组,但是具有不同的序列,这可以是因为(1)在V(D)期间J重组随机插入和缺失可以发生在V-D、D-J和V-J连接处,并且(2)可以通过诱变和基因合成人工产生序列变异,并且可以在基因合成过程中引入可变序列。例如,两个融合的TCR基因可以具有相同的VJ重组,但具有不同的CDR3序列。融合的二分免疫受体多核苷酸或表达载体可以包含来自源免疫受体表达细胞的第一免疫受体链和第二免疫受体链的同源对组合(或细胞中的天然对组合)。多个融合的二分免疫受体多核苷酸或表达载体可以包含来自多个表达免疫受体的细胞的第一免疫受体链和第二免疫受体链的多个同源对组合。源免疫受体表达细胞可以具有不同的克隆型,因此可以导致融合的二分免疫受体多核苷酸或表达载体的多克隆群。将表达多克隆免疫受体的载体递送到多个受体细胞中可以产生免疫受体程序化受体细胞的多克隆群,其表达至少100、至少1,000、至少10,000、至少100,000、至少1,000,000、至少10,000,000,或至少100,000,000个或更多不同的免疫受体(或免疫受体的不同同源对组合)。每个不同的免疫受体在融合的二分免疫受体多核苷酸中可以具有唯一的序列。
该多克隆特征可以将融合的二分免疫受体多核苷酸文库、表达载体的文库和使用本公开内容中描述的方法获得的免疫受体程序化受体细胞的多克隆群与先前报告的对应物区分开。例如,可以从一个或少数几个免疫受体链编码序列、免疫受体域编码序列或融合的二分免疫受体多核苷酸开始,并使用诱变或易错PCR产生大量这些起始序列的变异,从而产生融合的二分免疫受体多核苷酸的大型文库。因此,这些文库可以包含一个或少数V(D)J基因组合。相反,使用本公开内容中描述的方法获得的融合的二分免疫受体多核苷酸文库、表达载体的文库和免疫受体程序化受体细胞的多克隆群可以包含大于约1,000、大于约5,000、大于约10,000、大于约50,000、大于约100,000、大于约500,000、大于约1,000,000、大于约5,000,000或大于约10,000,000的序列,并且可以包含大于约1,000、大于约5,000、大于约10,000,大于约50,000、大于约100,000、大于约500,000、大于约1,000,000、大于约5,000,000或大于约10,000,000的VJ或VDJ组合。在一些情况下,使用本公开内容中描述的方法获得的融合的二分免疫受体多核苷酸文库、表达载体的文库和免疫受体程序化受体细胞的多克隆群可以包含至少100、至少200、至少500、至少1,000、至少2,000、至少5,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000VJ或VDJ组合。此外,使用本公开内容中描述的方法获得的融合的二分免疫受体多核苷酸文库、表达载体的文库和免疫受体程序化受体细胞的多克隆群体可以包含至少10、至少15、至少20或更多个不同的TRAV(TCRα链的V基因)亚组,和/或至少10、至少15、至少20或更多个不同的TRBV(TCRβ链的V基因)亚组。
样品
可以从各种样品中获得或分离源免疫受体表达细胞。源免疫受体表达细胞可以是从各种样品中获得或分离的免疫细胞。样品可以从本文所述的各种来源或受试者获得。受体细胞也可以从本文描述的样品获得。
在某些实施方案中,可以从受试者或宿主的血液样品或其他生物样品中分离源免疫受体表达细胞,所述受试者或宿主如人或其他动物,如已经免疫或患有感染、癌症、自身免疫性疾病或任何其他疾病的人或其他动物,以鉴定具有潜在临床意义的病原体、肿瘤和/或疾病特异性抗体或TCR。例如,人可以被诊断出患有疾病,表现出疾病的症状,未被诊断出患有疾病或不表现出疾病的症状。例如,人可以是暴露于和/或可以产生针对传染源(例如,病毒、细菌、寄生虫、病毒等)、抗原或疾病的有用抗体或TCR的人。例如,动物可以是暴露于和/或产生可以针对传染源(例如,病毒、细菌、寄生虫、病毒等)、抗原或疾病的有用抗体或TCR的动物。来自被免疫宿主的某些免疫细胞可以针对一种或多种靶抗原和/或一种或多种未知抗原产生抗体或TCR。在本公开内容中,可以通过任何合适的方法来富集淋巴细胞池以获得所需的免疫细胞,例如使用荧光激活细胞分选(FACS)、磁性激活细胞分选(MACS)、淘选或其他筛选方法,以从样品中产生多个免疫细胞。
免疫细胞可以来自干细胞。干细胞可以是成年干细胞、胚胎干细胞、更特别是非人类干细胞、脐带血干细胞、祖细胞、骨髓干细胞、诱导性多能干细胞、全能干细胞或造血干细胞。代表性的人类干细胞可以是CD34+细胞。分离的免疫细胞可以是树突细胞、杀伤性树突细胞、肥大细胞、自然杀伤(NK)细胞、NK T细胞、B细胞或选自选自炎性T淋巴细胞、细胞毒性T淋巴细胞、调节性T淋巴细胞或辅助性T淋巴细胞的T细胞。T细胞可以是CD4+ T淋巴细胞、CD8+ T淋巴细胞或CD4+CD8+ T淋巴细胞。
在一些实施方案中,源免疫受体表达细胞可以是从未免疫的人或非人供体分离的免疫细胞。抗体或TCR结合位点的序列多样性可以不直接在种系中编码,但可以从V基因片段以组合方式进行组装。免疫可以引发任何免疫细胞产生结合免疫原的VH-VL或Va-Vβ或Vγ-Vδ组合,从而增殖(克隆扩增)或分泌相应的抗体。然而,使用来自未免疫受试者的脾细胞和/或免疫细胞或其他外周血淋巴细胞可以提供可能的抗体或TCR库的更好表示,并且还允许使用任何方法构建后续的BCR或抗体或TCR文库动物种类。
在一些情况下,可以从外周血样品中获得源免疫受体表达细胞。外周血细胞可以富集特定细胞类型(例如,单核细胞;红细胞;CD4+细胞;CD8+细胞;免疫细胞;T细胞、NK细胞等)。外周血细胞也可以选择性地去除特定的细胞类型(例如,单核细胞;红细胞;CD4+细胞;CD8+细胞;免疫细胞;T细胞、NK细胞等)。样品可以包含至少约5、10、100、250、500、750、1000、2500、5000、10000、25000、50000、75000、10000、250000、500000、750000、1000000、2500000、5000000、7500000或10000000个表达不同BCR(或抗体)或TCR的亚群或单个免疫细胞。
在一些情况下,源免疫受体表达细胞可以从包含实体组织的组织样品获得,非限制性示例包括来自脑、肝、肺、肾、前列腺、卵巢、脾、淋巴结的组织(包括扁桃体)、甲状腺、胸腺、胰腺、心脏、骨骼肌、肠、喉、食道和胃。其他非限制性来源包括骨髓、脐带血、感染部位的组织、腹水、胸腔积液、脾组织和肿瘤。在一些实施方案中,可以使用T细胞系。在一些实施方案中,细胞可以从健康供体、诊断为癌症的患者或诊断为感染的患者中获得。在一些实施方案中,细胞是呈现不同表型特征的混合细胞群的一部分。
源免疫受体表达细胞可以是肿瘤浸润淋巴细胞(TIL),例如,肿瘤浸润T细胞。可以从患有癌症的器官中分离出TIL。可以从患有癌症的器官中分离一个或多个细胞,该器官可以是脑、心脏、肺、眼睛、胃、胰腺、肾脏、肝脏、肠道、子宫、膀胱、皮肤、头发、指甲、耳朵、腺体、鼻子、嘴、嘴唇、脾脏、牙龈、牙齿、舌头、唾液腺、扁桃体、咽、食道、大肠、小肠、直肠、肛门、甲状腺、胸腺、骨头、软骨、腱、韧带、肾上膜、骨骼肌肉、平滑肌、血管、血液、脊髓、气管、输尿管、尿道、下丘脑、垂体、幽门、肾上腺、卵巢、输卵管、子宫、阴道、乳腺、睾丸、精囊、阴茎、淋巴、淋巴结或淋巴管。一个或多个TIL可以来自脑、心脏、肝脏、皮肤、肠、肺、肾、眼睛、小肠或胰腺。TIL可以来自胰腺、肾脏、眼睛、肝脏、小肠、肺或心脏。一个或多个细胞可以是胰岛细胞,例如,胰岛β细胞。在一些情况下,TIL可以来自胃肠道癌症。可以采用多种方法来准备TIL培养。例如,可以从非癌性组织或坏死区域修剪肿瘤。然后可以将肿瘤破碎成约2-3mm的长度。在一些情况下,肿瘤的大小可以为从约0.5mm至约5mm、从约1mm至约2mm、从约2mm至约3mm、从约3mm至约4mm或从约4mm至约5mm。然后,可以利用培养基和细胞刺激剂,如细胞因子在体外培养肿瘤片段。在一些情况下,IL-2可用于从肿瘤片段中扩增TIL。IL-2的浓度可以为约6000IU/mL。IL-2的浓度也可以为约2000IU/mL、3000IU/mL、4000IU/mL、5000IU/mL、6000IU/mL、7000IU/mL、8000IU/mL、9000IU/mL,或高达约10000IU/mL。一旦TIL扩增,就可以对其进行体外测定以确定肿瘤反应性。例如,可以通过FAC对TIL进行CD3、CD4、CD8和CD58表达的评估。TIL也可以进行共培养、细胞毒性、ELISA或ELISPOT分析。在一些情况下,可以将TIL培养物冷冻保存或快速扩增。可以从发育阶段的供体分离细胞,如TIL,所述供体包括,但不限于,胎儿、新生儿、青年和成人。
一个或多个样品可以来自一个或多个来源。一个或多个样品可以来自两个或更多个来源。一个或多个样品可以来自一个或多个受试者。一个或多个样品可以来自两个或更多个受试者。一个或多个样品可以来自同一受试者。一个或多个受试者可以来自同一物种。一个或多个受试者可以来自不同的物种。一个或多个受试者可以是健康的。一个或多个受试者可以受到疾病、病症或病况的影响。
可以从有条件的受试者中获取样品。在一些实施方案中,从其采集样品的受试者可以是患者,例如,癌症患者或怀疑患有癌症的患者。受试者可以是哺乳动物,例如,人,并且可以是雄性或雌性。在一些实施方案中,雌性是怀孕的。样品可以是肿瘤活检。例如,活检可以由医疗保健提供者(包括医生、医生助理、护士、兽医、牙医、手治疗师、护理人员、皮肤科医生、肿瘤科医生、肠胃科医生或外科医生)执行。
受试者可以患有表达靶抗原的疾病。例如,疾病可以是癌症,包括B细胞淋巴瘤、急性淋巴细胞白血病(ALL)、慢性淋巴细胞性白血病、急性骨髓性白血病、肾上腺皮质癌(adrenocortical carcinoma)、肾上腺皮质癌(adrenal cortex cancer)、艾滋病相关癌症、肛门癌、阑尾癌、星形细胞瘤、非典型畸胎瘤样/横纹肌样瘤、基底细胞癌、胆管癌、肝外癌、膀胱癌、骨癌(包括尤文氏肉瘤和骨肉瘤以及恶性纤维组织细胞瘤)、脑瘤、乳腺癌、布基特淋巴瘤、类癌(胃肠道)、原发灶不明的转移癌、中枢神经系统、淋巴瘤、原发性、子宫颈癌、胆管癌、慢性淋巴细胞性白血病(cll)、慢性粒细胞白血病(cml)、慢性骨髓增生性肿瘤、结直肠癌、皮肤T细胞淋巴瘤、原位导管癌(dcis)、子宫内膜癌、食道癌、尤文氏肉瘤、性腺外生殖细胞瘤、眼癌、眼内黑素瘤、视网膜母细胞瘤、输卵管癌、骨纤维组织细胞瘤、恶性肿瘤和骨肉瘤、胆囊癌、胃(胃)癌、胃肠道类癌肿瘤、胃肠道间质瘤(gist)、生殖细胞肿瘤、性腺外、卵巢、睾丸、妊娠滋养细胞疾病、神经胶质瘤、毛状细胞白血病、神经胶质瘤、毛状细胞白血病、头颈癌、肝细胞(肝)癌、组织细胞增生症、朗格汉斯细胞、霍奇金淋巴瘤、下咽癌、眼内黑色素瘤、胰岛细胞瘤、胰腺神经内分泌肿瘤、卡波济肉瘤、肾脏、朗格汉斯细胞组织细胞增生症、喉癌、白血病、嘴唇和口腔癌、肝癌(原发性)、肺癌、淋巴瘤、巨球蛋白血症(瓦尔登斯特伦病
Figure BDA0004071139730001051
)、男性乳腺癌、骨和骨肉瘤的恶性纤维组织细胞瘤、黑素瘤、黑素瘤、眼内(眼)、默克尔细胞癌、间皮瘤、恶性肿瘤、转移性鳞状颈隐匿性原发癌、口腔癌、多发性骨髓瘤/浆细胞瘤、蕈样真菌病、骨髓增生异常综合症、骨髓增生异常/骨髓增生性肿瘤和慢性骨髓增生性肿瘤、骨髓性白血病(慢性)(cml)、骨髓性白血病(急性)(AML)、鼻腔和鼻旁窦癌、鼻咽癌、神经母细胞瘤、非霍奇金淋巴瘤。非小细胞肺癌、口腔癌、唇和口腔癌及口咽癌、骨肉瘤和骨恶性纤维组织细胞瘤、卵巢癌、胰腺癌和胰腺神经内分泌肿瘤(胰岛细胞瘤)、副神经节瘤、鼻旁窦和鼻腔癌、甲状旁腺癌、阴茎癌、咽癌、嗜铬细胞瘤、垂体瘤、浆细胞瘤/多发性骨髓瘤、妊娠和乳腺癌、原发性中枢神经系统(CNS)淋巴瘤、原发性腹膜癌、前列腺癌、直肠癌、肾细胞(肾)癌、视网膜母细胞瘤、唾液腺癌、肉瘤、尤因肉瘤、卡波济肉瘤、骨肉瘤、横纹肌肉瘤、子宫肉瘤、塞泽里氏综合症、皮肤癌、小细胞肺癌、小肠癌、软组织肉瘤、鳞状细胞癌、鳞状上皮癌伴隐匿性原发、转移、胃(胃)癌、T细胞淋巴瘤、皮肤癌、睾丸癌、喉癌、胸腺瘤和胸腺癌、甲状腺癌、肾盂和输尿管移行细胞癌、输尿管和肾盂移行细胞癌、尿道癌、子宫癌、子宫内膜和子宫肉瘤、阴道癌、外阴癌、瓦尔登斯特伦巨球蛋白血症或肾胚胎瘤。
在一些实施方案中,样品是流体,如血液、唾液、淋巴液、尿液、脑脊髓液、精液、痰液、粪便或组织匀浆。在一些实施方案中,样品是唾液。在一些实施方案中,样品是全血。在一些实施方案中,为了获得足够量的用于测试的多核苷酸,抽取至少约0.001、0.005、0.01、0.05、0.1、0.5、1、2、3、4、5、10、20、25,30、35、40、45或50mL的血液体积。在一些情况下,可以将血液收集到包含镁螯合剂的设备中,该设备包括但不限于EDTA,并保存在4℃下。任选地,可以添加钙螯合剂,包括但不限于EGTA。在一些情况下,将细胞裂解抑制剂添加到血液中,细胞裂解抑制剂包括但不限于甲醛、甲醛衍生物、福尔马林、戊二醛、戊二醛衍生物、蛋白质交联剂、核酸交联剂、蛋白质和核酸交联剂、伯胺反应性交联剂、硫醇基反应性交联剂、硫醇基加成或二硫化物还原、碳水化合物反应性交联剂、羧基反应性交联剂、光反应性交联剂或可裂解的交联剂。在一些实施方案中,可以使用酶处理(如蛋白酶消化)从起始材料中去除非核酸材料。
多个样品可以包括至少2、3、4、5、10、20、30、40、50、60、70、80、90或100或更多样品。多个样品可以包括至少约100、200、300、400、500、600、700、800、900或1000或更多个样品。多个样品可以包括至少约1000、2000、3000、4000、5000、6000、7000、8000个样品,9000或10,000个样品,或100,000个样品或1,000,000个或更多样品。多个样品可以包括至少约10,000个样品。
第一样品可以包含一个或多个细胞,第二样品可以包含一个或多个细胞。第一样品的一个或多个细胞可以与第二样品的一个或多个细胞具有相同的细胞类型。第一样品的一个或多个细胞可以是与多个样品中的一个或多个不同细胞不同的细胞类型。
可以并存获得多个样品。可以同时获得多个样品。可以顺序获得多个样品。可以在数年的过程中获得多个样品,例如,100年、10年、5年、4年、3年、2年或1年获得一个或多个不同样品。可以在获得一个或多个不同样品的约一年内获得一个或多个样品。可以在获得一个或多个不同样品的12个月、11个月、10个月、9个月、8个月、7个月、6个月、4个月、3个月、2个月或1个月内获得一个或多个样品。可以在获得一个或多个不同样品的30天、28天、26天、24天、21天、20天、18天、17天、16天、15天、14天、13天、12天、11天、10天、9天、8天、7天、6天、5天、4天、3天、2天或1天内获得一个或多个样品。可以在获得一个或多个不同样品的约24小时、22小时、20小时、18小时、16小时、14小时、12小时、10小时、8小时、6小时、4小时、2小时或1小时内获得一个或多个样品。可以在获得一个或多个不同样品的约60秒、45秒、30秒、20秒、10秒、5秒、2秒或1秒内获得一个或多个样品。可以在获得一个或多个不同样品的不到一秒钟的时间内获得一个或多个样品。
T细胞的来源
T细胞可以从受试者(例如,原代T细胞)获得。在一些情况下,源TCR表达细胞从受试者获得。T细胞可以从本文描述的任何样品获得。在一些情况下,受体T细胞从受试者获得。术语“受试者”旨在包括其中可以引发免疫应答的活生物体(例如,哺乳动物)。受试者的示例包括人、狗、猫、小鼠、大鼠及其转基因物种。T细胞可以从多种来源获得,包括外周血单核细胞、骨髓、淋巴结组织、脐带血、胸腺组织、感染部位的组织、腹水、胸腔积液、脾组织和肿瘤。在某些方面,可以使用T细胞系。T细胞可以是辅助T细胞、细胞毒性T细胞、记忆T细胞、调节性T细胞、自然杀伤性T细胞、αβT细胞或γδT细胞。在本公开内容的某些方面,可以使用多种技术,如FicollTM分离,从从受试者收集的单位血液中获得T细胞。来自个体循环血液的细胞可以通过单采血液分离术获得。血液分离设备产品可以包含淋巴细胞,包括T细胞、单核细胞、粒细胞、B细胞、其他有核白细胞、红细胞和血小板。可以洗涤通过单采血液分离术收集的细胞以除去血浆部分,并将细胞置于适当的缓冲液或培养基中以用于随后的处理步骤。在一些情况下,可用磷酸盐缓冲液(PBS)洗涤细胞。洗涤溶液可以缺乏钙或镁或其他二价阳离子。在缺乏钙的情况下,初始激活步骤可以导致激活作用增强。洗涤步骤可以根据制造商的说明,通过使用如半自动“流动”离心机(例如,Cobe 2991细胞处理器,BaxterCytoMate或Haemonetics Cell Saver 5)的方法来完成。洗涤后,可将细胞重悬于多种生物相容的缓冲液中,例如,无钙、无镁的PBS、PlasmaLyte A或具有或不具有缓冲液的其他盐溶液。可替代地,可以除去单采血液分离术样品的不需要的成分,并将细胞直接重悬浮在培养基中。
在一个方面,通过裂解红细胞并耗尽单核细胞,例如通过PERCOLLTM梯度离心或逆流离心淘析,从外周血淋巴细胞或组织中分离出T细胞。当从组织分离T细胞时(例如,从肿瘤组织分离肿瘤浸润的T细胞),在裂解红细胞或耗尽单核细胞之前,将组织切碎或破碎以离解细胞。可以通过阳性或阴性选择技术进一步分离T细胞的特定亚群,如CD3+、CD28+、CD4+、CD8+、CD45RA+和CD45RO+T细胞。例如,可以通过与抗CD3/抗CD28(例如,3×28)缀合的珠(如DYNABEADSTM M-450 CD3/CD28 T)孵育足以进行阳性选择所需T细胞的时间段来分离T细胞。在一方面,该时间段为约30分钟。在另一方面,时间段在30分钟至36小时或更长的范围内,以及其间的所有整数值。在另一方面,该时间段至少或等于约1、2、3、4、5或6小时。在另一方面,时间段是10至24小时。在一方面,孵育时间段为约24小时。在与其他细胞类型相比T细胞很少的任何情况下,如从肿瘤组织或免疫受损的个体中分离肿瘤浸润淋巴细胞(TIL)的情况下,可以使用更长的孵育时间来分离T细胞。此外,使用更长的孵育时间可以提高捕获CD8+ T细胞的效率。因此,通过简单地缩短或延长允许T细胞结合抗CD3/抗CD28珠的时间和/或通过增加或降低珠与T细胞的比例,可以在培养开始时或过程中其他时间点选择是否支持T细胞亚群。此外,通过增加或减少珠或其他表面上抗CD3和/或抗CD28抗体的比例,可以在培养开始时或在其他所需时间点选择是否支持T细胞亚群。在一些情况下,可以使用多轮选择。在某些方面,可以执行选择程序,并且可以在激活和扩增过程中使用“未选择的”细胞(可以不结合抗CD3/抗CD28珠的细胞)。“未选中的”细胞也可以进行进一步的选择。
通过阴性选择富集T细胞群可以通过针对阴性选择的细胞所特有的表面标志物的抗体的组合来实现。一种示例方法是通过负磁性免疫粘附或流式细胞术进行的细胞分选和/或选择,该方法使用针对存在于阴性选择的细胞上的细胞表面标志物的单克隆抗体的混合物。例如,为了通过阴性选择富集CD4+细胞,单克隆抗体混合物通常包括针对CD14、CD20、CD11b、CD16、HLA-DR和CD8的抗体。在某些方面,富集或阳性选择通常表达CD4+、CD25+、CD62Lhi、GITR+和FoxP3+的调节性T细胞可以是有用的。可替代地,在某些方面,通过抗C25缀合的珠或其他类似的选择方法来消除T调节细胞。
在一个实施方案中,可以选择表达IFN-γ、TNF-α、IL-17A、IL-2、IL-3、IL-4、GM-CSF、IL-10、IL-13、颗粒酶B和穿孔素,或其他合适的分子,例如其他细胞因子和转录因子,如T-bet、Eomes、Tcf1(人中的TCF7)中的一种或多种的T细胞群。筛选细胞表达的方法可以例如,通过PCT公开号:WO 2013/126712中描述的方法来确定。
为了通过阳性或阴性选择分离所需的细胞群,可以改变细胞和表面(例如,颗粒如珠)的浓度。在某些方面,可以减小珠和细胞混合在一起的体积(例如,增加细胞的浓度),以确保细胞和珠的最大接触。例如,一方面,使用20亿个细胞/mL的浓度。在另一方面,使用了10亿个细胞/mL的浓度。在另一方面,使用大于1亿个细胞/mL。在另一方面,使用至少约10、15、20、25、30、35、40、45或5000万个细胞/mL的细胞浓度。在一些方面,使用至少约75、80、85、90、95或1亿个细胞/mL的细胞浓度。在一些方面,可以使用至少约1.25或1.5亿个细胞/mL的细胞浓度。使用高浓度可以导致细胞产量增加、细胞激活和细胞扩增。此外,使用高浓度的细胞可以更有效地捕获可以弱表达感兴趣靶抗原的细胞,如CD28阴性T细胞,或者从存在许多肿瘤细胞的样品(例如,白血病血液、肿瘤组织等)。这种细胞群可以有治疗价值。例如,使用高浓度的细胞可以更有效地选择可以具有较弱的CD28表达的CD8+ T细胞。
在一些情况下,可以使用较低浓度的细胞。通过显著稀释T细胞和表面的混合物,可以使颗粒和细胞之间的相互作用最小化。这可以选择表达大量期望抗原的细胞与颗粒结合。例如,与稀释浓度的CD8+T细胞相比,CD4+ T细胞可以表达更高水平的CD28,并且可以更有效地被捕获。在一些方面,所用细胞的浓度为至少约5×105/mL、5×106/mL或更高。在其他方面,所使用的浓度可以为约1×105/mL至1×106/mL,以及介于两者之间的任何整数值。在其他方面,可以在旋转器上以2-10℃或在室温下以不同的速度将细胞孵育不同的时间长度。
用于刺激的T细胞也可以在洗涤步骤后冷冻。冷冻和随后的解冻步骤可通过去除细胞群中的粒细胞和某种程度上的单核细胞而提供更均匀的产物。在去除血浆和血小板的洗涤步骤之后,可以将细胞悬浮在冷冻溶液中。虽然许多冷冻溶液和参数在这种情况下可以有用,但可以使用的一种方法涉及使用包含20%DMSO和8%人血清白蛋白的PBS,或包含10%右旋糖酐40%和5%葡萄糖,20%人血清白蛋白和7.5%DMSO或31.25%Plasmalyte-A,31.25%葡萄糖5%,0.45%NaCl,10%右旋糖酐40和5%葡萄糖,20%人血清白蛋白和7.5%DMSO的培养基或其他含有Hespan和PlasmaLyte A的合适细胞冷冻培养基。然后可以将细胞冷冻至-80℃并储存在液氮储罐的气相中。细胞可以立即在-20℃或在液氮中通过不受控制的冷冻来冷冻。在某些方面,如本文所述解冻和洗涤冷冻保存的细胞,并在激活之前使其在室温下静置一小时。
在本公开内容的上下文中还考虑到在可以需要扩增细胞(例如,表达用于T细胞疗法的TCR的工程化的细胞)之前的时间段从受试者收集血液样品或血液分离术产品。这样,可以在任何必要的时间点收集待扩增细胞的来源,并将所需的细胞(如T细胞)分离并冷冻,以用于以后的T细胞疗法中,从而从中受益于许多疾病或状况T细胞疗法,如本文所述。在一些情况下,血液样品或单采血液采血术通常来自健康受试者。在某些方面,从具有患病风险但尚未患病的一般健康的受试者中获取血液样品或单采血液分离术,分离并冷冻感兴趣的细胞以供以后使用。在某些方面,可以将T细胞扩增、冷冻并在以后的时间使用。在某些方面,如本文所述在诊断出特定疾病后不久但在任何治疗之前从患者收集样品。在另一方面,在任何数量的相关治疗方式之前(包括但不限于治疗剂,如那他珠单抗、依法珠单抗、抗病毒剂、化疗、放疗、免疫抑制剂,如环孢菌素、硫唑嘌呤、甲氨蝶呤、霉酚酸酯和FK506、抗体或其他免疫消融剂,如CAMPATH、抗CD3抗体、cytoxan、氟达拉滨、环孢菌素、FK506、雷帕霉素、霉酚酸、类固醇、FR901228和辐射)从受试者的血液样品或单采血液分离术中分离细胞。
在本公开内容的另一方面,在治疗后直接从患者获得T细胞,所述治疗使受试者具有功能性T细胞。在这方面,已经观察到,在某些癌症治疗后,特别是在损害免疫系统的药物治疗后,在患者通常可以从治疗中恢复的期间中,在治疗后不久,获得的T细胞的质量可能达到最佳或改善了其离体扩增的能力。因此,在本公开内容的上下文中,预期在该恢复阶段期间收集血细胞,包括T细胞、树突状细胞或造血谱系的其他细胞。此外,在某些方面,动员(例如,用GM-CSF动员)和调理方案可以用于在受试者中产生其中特定细胞类型的重新聚集、再循环、再生和/或扩增是有利的状态,尤其是在治疗后确定的时间范围。示例性的细胞类型包括T细胞、B细胞、树突状细胞和免疫系统的其他细胞。
除了从受试者获得的原代T细胞外,作为源细胞或受体细胞的T细胞可以是细胞系细胞,如细胞系T细胞。细胞系T细胞的示例包括,但不限于,Jurkat、CCRF-CEM、HPB-ALL、K-T1、TALL-1、MOLT 16/17和HUT 78/H9。
T细胞可以从体外培养获得。通过与组织或细胞接触,可以在体外激活或扩增T细胞。请参见“激活和扩增”部分。例如,可以将从患者外周血中分离出的T细胞与存在肿瘤抗原的细胞(如肿瘤细胞、肿瘤组织、肿瘤球囊、肿瘤溶解物脉冲的APC或载有肿瘤mRNA的APC)共培养。呈递肿瘤抗原的细胞可以被APC脉冲或工程化,以表达确定的抗原、一组确定的抗原或一组未确定的抗原(如肿瘤裂解物或总肿瘤mRNA)。例如,在呈递确定的抗原的情况下,APC可以表达具有已知序列的一种或多种编码一个或多个短表位(例如,长度为7至13个氨基酸)的小基因。APC还可以从包含编码两个或更多个表位的序列的载体表达两个或更多个小基因。在呈递未定义抗原的情况下,可以用肿瘤溶解产物或总肿瘤mRNA脉冲APC。可以在共培养之前辐射呈递肿瘤抗原的细胞。共培养可以在包含可提供共刺激信号或细胞因子的试剂(例如,抗CD28抗体)的培养基中。这种共培养可以刺激和/或扩增肿瘤抗原反应性T细胞。可以使用本文所述的细胞表面标志物(例如,CD25、CD69、CD137)选择或富集这些细胞。使用这种方法,可以从患者的外周血中预富集肿瘤抗原反应性T细胞。使用本文所述的方法,这些预富集的T细胞可以作为输入,以获得融合的(或物理连接的)TCR。在一些情况下,预富集的T细胞可以作为输入,以接受任何其他方法来鉴定TCR的同源对,例如,通过使用单细胞条形码进行测序。预富集的T细胞(例如,CD137+)可以包含在共培养期间获得标志物(例如,CD137)表达的T细胞,并且还可以包含在抽血时已经表达标志物的T细胞。然而,后一种人群可以是肿瘤反应性的。这种方法可以提供一种更简便的替代方法来隔离所述的TIL。
免疫受体程序化受体细胞
可以将如本文所述的包含融合的二分免疫受体多核苷酸的表达载体引入新的宿主细胞(在本公开内容中称为“受体细胞”),以产生免疫受体程序化受体细胞。为了不同的目的,可以将不同类型的免疫受体引入不同类型的受体细胞。例如,可以将抗体引入多种原代细胞(例如,B细胞)或细胞系(例如,HeLa细胞、CHO细胞)进行表达。例如,可以将TCR引入T细胞以赋予T细胞新的特异性。免疫受体程序化受体细胞可以使用新引入的免疫受体来感测(例如,识别或结合)靶分子或细胞。例如,靶分子可以是抗原或其片段。靶分子可以是肽。靶分子可以是表位。
受体细胞的来源
受体细胞可以如“样品”部分中所述从样品获得。作为受体细胞的T细胞可以来自“T细胞的来源”部分中所述的来源。受体细胞可以是T细胞、B细胞、NK细胞、巨噬细胞、嗜中性粒细胞、粒细胞、嗜酸性粒细胞、红细胞、血小板、干细胞、iPSC或间充质干细胞。此外,受体细胞可以是细胞系细胞。该细胞系可以是致瘤的或人工永生化的细胞系。细胞系的示例包括,但不限于,CHO-K1细胞;HEK293细胞;Caco2细胞;U2-OS细胞;NIH 3T3细胞;NSO细胞;SP2细胞;CHO-S细胞;DG44细胞;K-562细胞,U-937细胞;MRC5细胞;IMR90细胞;Jurkat细胞;HepG2细胞;HeLa细胞;HT-1080细胞;HCT-116细胞;Hu-h7细胞;Huvec细胞;和Molt 4细胞。受体细胞可以是自体T细胞或同种异体T细胞。受体细胞可以是基因修饰或工程化的细胞。
激活和扩增
无论是在将表达免疫受体的载体转移至T细胞之前还是之后,通常可以使用,例如,在美国专利6,352,694;6,534,055;6,905,680;6,692,964;5,858,358;6,887,466;6,905,681;7,144,575;7,067,318;7,172,869;7,232,566;7,175,843;5,883,223;6,905,874;6,797,514;6,867,041;和美国专利申请公开号20060121005中所述的方法来激活和扩增T细胞。T细胞可以在体外或体内扩增。
T细胞可以通过与刺激CD3 TCR复合物的试剂和T细胞表面的共刺激分子接触以产生T细胞的激活信号来扩增。例如,可以使用化学物质如钙离子载体A23187、佛波醇12-肉豆蔻酸酯13-乙酸酯(PMA),或有丝分裂凝集素,例如植物血凝素(PHA)为T细胞产生激活信号。作为非限制性示例,可以在体外刺激T细胞群,如通过与抗CD3抗体或其抗原结合片段或固定在表面上的抗CD2抗体接触,或通过与钙离子载体结合的蛋白激酶C激活剂(例如,苔藓抑素)接触。为了共同刺激T细胞表面上的辅助分子,使用结合辅助分子的配体。例如,可以在适于刺激T细胞增殖的条件下,使T细胞群与抗CD3抗体和抗CD28抗体接触。为了刺激CD4+ T细胞或CD8+ T细胞的增殖,需要使用抗CD3抗体和抗CD28抗体。例如,提供每个信号的试剂可以在溶液中或与表面偶联。颗粒与细胞的比例可以取决于相对于靶细胞的颗粒大小。在进一步的实施方案中,将细胞,如T细胞与包被有试剂的珠组合,随后分离珠和细胞,然后培养细胞。在可选的实施方案中,在培养之前,将包被有试剂的珠和细胞不分离,而是一起培养。适用于T细胞培养的条件包括适当的培养基(例如,最小必需培养基或RPMI培养基1640或X-vivo 5,(Lonza)),其中可以包含增殖和生存能力所需的因子,包括血清(例如,胎牛或人血清)、白介素2(IL-2)、胰岛素、IFN-g、IL-4、IL-7、GM-CSF、IL-10、IL-2、IL-15、TGFβ和TNF-α或任何细胞生长的其他添加剂。用于细胞生长的其他添加剂包括,但不限于,表面活性剂、血浆化物和还原剂,如N-乙酰基-半胱氨酸和2-硫醇基乙醇酸。培养基可以包括RPMI1640、A1M-V、DMEM、MEM、a-MEM、F-12、X-Vivo 1和X-Vivo 20、Optimizer,并添加了氨基酸、丙酮酸钠和维生素,无血清或补充有适当量的血清(或血浆)或一组确定的激素,和/或足以使T细胞生长和扩增的细胞因子。靶细胞可以维持在支持生长所必需的条件下,例如,适当的温度(例如,37℃)和大气(例如,空气加5%CO2)。暴露于不同刺激时间的T细胞可以表现出不同的特征。
在另一个实施方案中,可以通过与组织或细胞共培养来激活或扩增细胞。用于激活T细胞的细胞可以是APC或人工APC(aAPC)。APC可以是专业的APC,如树突状细胞、巨噬细胞或B细胞。APC可以是单核细胞或单核细胞衍生的树突状细胞。aAPC可以表达T细胞受体和共刺激分子的配体,并可以激活和扩增T细胞以进行转移,同时在一些情况下可以提高其效能和功能。可以对aAPC进行工程化,使其表达任何可激活T细胞的基因。可以对aAPC进行工程化,使其表达T细胞扩增的任何基因。aAPC可以是珠、细胞、蛋白质、抗体、细胞因子或任何组合。aAPC可以向可以经历基因组移植的细胞群递送信号。例如,aAPC可以递送信号1、信号2、信号3或任何组合。信号1可以是抗原识别信号。例如,信号1可以是TCR与肽-MHC复合物的连接,或针对CD3的激动性抗体的结合,可以导致CD3信号转导复合物的激活。信号2可以是共刺激信号。例如,共刺激信号可以是分别与ICOS-L、CD70和4-1BBL结合的抗CD28、诱导型共刺激物(ICOS)、CD27和4-1BB(CD 137)。信号3可以是细胞因子信号。细胞因子可以是任何细胞因子。细胞因子可以是IL-2、IL-7、IL-12、IL-15、IL-21或其任何组合。
在一些情况下,aAPC可以用于激活和/或扩增细胞群。在一些情况下,人工制剂可以不诱导同种异体特异性。在一些情况下,aAPC可以不表达HLA。可以对aAPC进行基因修饰,以稳定表达可用于激活和/或刺激的基因。在一些情况下,K562细胞可用于激活。K562细胞也可以用于扩增。K562细胞可以是人红白血病细胞系。可以工程化K562细胞以表达感兴趣的基因。K562细胞可以不内源性表达HLA I、II或CD1d分子,但可以表达ICAM-1(CD54)和LFA-3(CD58)。可以将K562工程化为向T细胞递送信号1。例如,可以将K562细胞工程化为表达I类HLA。在一些情况下,可以将K562细胞工程化为表达另外的分子,如B7、CD80、CD83、CD86、CD32、CD64、4-1BBL、抗CD3、抗-CD3 mAb、抗CD28、抗CD28mAb、CD1d、抗CD2、膜结合IL-15、膜结合IL-17、膜结合IL-21、膜结合IL-2、截短CD19或任何组合。在一些情况下,工程化的K562细胞除了CD80和CD83之外,还可以表达膜形式的抗CD3 mAb、克隆OKT3。在一些情况下,工程化的K562细胞除CD80和CD83之外,还可以表达膜形式的抗CD3 mAb、克隆OKT3、膜形式的抗CD28 mAb。
在一些情况下,可以用抗原和受辐射的组织相容性APC,如饲养细胞PBMC进行细胞的再刺激。在一些情况下,可以使用非特异性促细胞分裂剂,如PHA和同种异体饲养细胞培养细胞。饲养细胞PBMC可以被40Gy辐射。饲养细胞PBMC可以被从约10Gy至约15Gy、从约15Gy至约20Gy、从约20Gy至约25Gy、从约25Gy至约30Gy、从约30Gy至约35Gy、约35Gy至约40Gy、约40Gy至约45Gy、约45Gy至约50Gy辐射。在一些情况下,仅辐射过的饲养细胞的对照瓶可以用抗CD3和IL-2刺激。
aAPC可以是珠。球形聚苯乙烯珠可以涂有针对CD3和CD28的抗体,并用于T细胞激活。珠可以是任何大小。在一些情况下,珠可以是或可以是约3和6微米。珠的大小可以为或可以为约4.5微米。可以以任何细胞与珠的比例使用珠。例如,可以使用每毫升一百万个细胞的三比一的珠与细胞的比例。aAPC也可以是刚性球形颗粒、聚苯乙烯乳胶微珠、磁性纳米或微粒、纳米尺寸的量子点、聚乳酸-乙醇酸(PLGA)微球、非球形颗粒、碳纳米管束、椭球PLGA微粒、纳米蠕虫、含流体脂质双层的系统、2D支持的脂质双层(2D-SLB)、脂质体、RAFTsomes/微结构域脂质体、SLB颗粒或其任何组合。
在一些情况下,aAPC可以扩增CD4 T细胞。例如,可以将aAPC工程化以模拟HLA II类限制性CD4 T细胞的抗原处理和呈递途径。可以将K562工程化以表达HLA-D、DPα、DPβ链、Ii、DMα、DMβ、CD80、CD83或其任何组合。例如,可以用HLA限制的肽对工程化的K562细胞进行脉冲处理,以扩增HLA限制的抗原特异性CD4T细胞。
在一些情况下,可以将aAPC与外源引入的细胞因子结合使用,以进行T细胞激活、扩增或任何组合。将基因组移植的细胞施用到受试者体内后,细胞也可以在体内扩增,例如,在受试者的血液中扩增。
细胞(例如,受体细胞)也可以在体内施用后,例如,在受试者的血液中在体内扩增。
防止错误组装
在一些情况下,表达免疫受体的载体可以被引入表达内源性二分免疫受体的受体细胞中。在这种情况下,可以防止内源性和外源性免疫受体之间的错误组装。例如,如果将表达TCR的载体引入T细胞,则内源(来自基因组)TCR链和外源(来自载体)TCR链均可以被表达。因此,内源性α链可以与外源性β链形成二聚体,从而导致不需要的TCR(即,错误组装的TCR)。在BCR编程的B细胞中可以会发生类似情况。通过工程化免疫受体链的恒定结构域或敲除/敲低编码免疫受体的内源基因,可以使用各种方法来最大程度地减少这种错误组装,如二硫键工程(Kuball 2007)、域交换(Bethune 2016)、RNA干扰敲低(Bunse 2014)、基因敲除(Provasi 2012)、使TCR部分变质、以单链形式表达TCR(Uckert和Schumacher,2009)以及在TCR-CAR构建体中表达TCR(Walseng等人,2017)。
在一些情况下,通过诱变工程化编码免疫受体链恒定结构域的序列。在一些情况下,对编码两条免疫受体链的两个恒定结构域的序列进行工程化,使得可以将一个或多个半胱氨酸引入每条链的接触区。在一些情况下,对编码两条免疫受体链的两个恒定结构域的序列进行工程化,使得可以在表达的免疫受体的两条链之间形成一个或多个二硫键。例如,可以将一个或多个半胱氨酸引入免疫受体的两条链(例如,TCRα和TCRβ链,或BCR重链和轻链)的每个恒定结构域中,可以在半胱氨酸之间形成二硫键。
在一些情况下,对编码免疫受体两条链的恒定结构域的序列进行工程化,使得该序列编码在不同于获得受体细胞的物种的物种中发现的恒定结构域。例如,如果受体细胞是从人获得的,则可以将编码免疫受体的两条链的恒定结构域的序列改变为在小鼠中发现的编码免疫受体的恒定结构域的序列(即,诱变)。
在一些情况下,编码第一链(例如,TCRα链)的第一恒定结构域的第一序列的第一片段和编码第二链(例如,TCRβ)的第二恒定结构域的第二序列的第二片段链可以交换。例如,交换之后,错误组装的TCR分子可能无法与CD3或信号正确组装。
在一些情况下,编码第一链(例如,TCRα链)的第一恒定结构域的第一序列的第一片段和编码第二链(例如,TCRβ)的第二恒定结构域的第二序列的第二片段可以改变为另一种蛋白质的胞内结构域,例如CD3-ζ。例如,修饰的TCRα和TCRβ链,其中胞外半胱氨酸下游的原始恒定结构域(介导链间二硫桥)可以被完整的人CD3-ζ取代,导致修饰的TCR链无法与内源性TCR链错误组装,并且无法在原代人T细胞中正确配对这些TCR链。
在一些情况下,可以使用编码经修饰的TCRα链的构建体,所述经修饰的TCRα链通过P2A连接子与经修饰的TCRβ连接。
在一些情况下,修饰的TCRβ链可以与类似于用于嵌合抗原受体(CARs)的人工信号传导结构域融合,即CD28跨膜(TM)编码序列,随后是两个信号传导模块(CD28和CD3ζ)。同时,修饰的TCRα链可以仅包含TCRα的胞外结构域。此外,可以在TCRα链和TCRβ链的恒定结构域(C-结构域)上进行半胱氨酸置换,以提高TCR二聚体的稳定性。该构建体被称为“TCR-CAR”。这种TCR-CAR可以在非T细胞如NK细胞中发信号。
受体细胞可以是基因修饰的细胞,其内源性免疫受体被敲除或敲低。本文所述的示例使用T细胞作为受体细胞,但类似的策略可以应用于其他细胞类型。
为了破坏内源TCR的组分,可以使用基因编辑核酸酶。由于TCRα/β二聚体可以产生功能全面的TCR复合物,因此破坏TCRα和/或TCRβ功能可以减少(甚至消除)内源性TCR表达。可以使用多种方法破坏内源性TCRα或TCRβ基因。例如,存在四类基因编辑蛋白,它们在结合用户定义的DNA序列和介导双链DNA断裂(DSB)方面具有共同的作用方式。锌指核酸酶(ZFN)是异二聚体阵列,其共定位在靶DNA位点。ZFN包括结合DNA的单个手指亚基,并被束缚在切割DNA的Fok1核酸酶域。转录激活子样效应核酸酶(TALEN)包括通过控制DNA碱基识别的高变的两个氨基酸序列(重复可变二残基;RVD)与DNA结合的重复单元。与ZFNS相似,TALEN是二聚体蛋白,与Fok1核酸内切酶结构域融合,以产生DSB。归巢核酸内切酶(MN)是具有先天核酸酶活性的单体蛋白,其来源于细菌归巢内切核酸酶,并经过工程化以用于唯一的靶位点。簇状规则间隔短回文重复序列(CRISPR)和相关的Cas9核酸酶平台涉及小指导RNA(gRNA)转录本,该转录本通过Watson-Crick碱基配对与靶DNA序列接触,并切割该DNA的Cas9核酸酶。
在一些情况下,将基因组编辑核酸酶引入T细胞包括将编码基因组编辑核酸酶的多核苷酸引入T细胞。在一些情况下,将基因组编辑核酸酶引入T细胞包括将Cas9多肽引入T细胞。在一些实施方案中,基因组编辑核酸酶包括TALEN核酸酶、CRISPR/Cas9核酸酶或megaTAL核酸酶。在一些情况下,CRISPR/Cas9核酸酶来自化脓性链球菌(Streptococcuspyogenes)或金黄色葡萄球菌(Staphylococcus aureus)。在一些实施方案中,CRISPR/Cas9核酸酶包括抗核酸酶的gRNA,如至少一个2′-OMe-硫代磷酸酯修饰的碱基,至少一个2′-O-甲基修饰的碱基或至少一个2′-O-甲基3′thioPACE修饰的碱基。在一些情况下,TALEN核酸酶或megaTAL核酸酶由具有外源聚腺苷酸化信号的RNA编码。在一些情况下,本文所述的方法可以进一步包括在有效扩增经基因组修饰的T细胞群的条件下培养T细胞。
受体细胞的另外基因组工程化
在一些情况下,免疫受体程序化受体细胞包含编码免疫检查点蛋白如PD1和CTLA-4的灭活基因。这可以通过使编码免疫检查点蛋白如PD1和CTLA-4的基因灭活来实现。在一些情况下,基因修饰依赖于选自PD1、CTLA-4、LAG3、Tim3、BTLA、BY55、TIGIT、B7H5、LAIR1、SIGLEC10、2B4的一个基因或两个基因的失活。在一些情况下,基因修饰可以包括敲除MHC成分,如B2M。本文所述的基因也可以,例如,通过微小RNA被下调。
受体细胞表达的另外的试剂
可以对免疫受体程序化受体细胞进行工程化,以表达另外的试剂(例如,蛋白质或RNA),以增强这些细胞的功能。例如,该功能可以是细胞毒性功能、促炎功能或抗炎功能。在一些情况下,可以对免疫受体程序化受体细胞进行工程化,使其表达另一种增强抗肿瘤功效的试剂。在一些情况下,另外的试剂是分泌的蛋白质。分泌的蛋白质可以是细胞因子,或抗体或其片段。在一些情况下,分泌的蛋白质是细胞因子。在一些情况下,分泌的蛋白质是单链可变片段(scFv)。分泌的蛋白质可以抑制抑制分子,其中该抑制分子降低了免疫细胞启动免疫效应反应的能力。分泌的蛋白质可以是促炎细胞因子或抗炎细胞因子。促炎性细胞因子的示例包括,但不限于,肿瘤坏死因子α(TNFα);白介素(IL)-1α;IL-1β;IL-2;IL-5;IL-6;IL-8;IL-15;IL-18;干扰素(IFN-γ);血小板激活因子(PAF);单核细胞趋化蛋白1和2(MCP-1、MCP-2);巨噬细胞迁移抑制因子(MIF);CXCL8;CXCL9;CXCL10;以及高迁移率族蛋白1(HMGB-1)。抗炎细胞因子的示例包括,但不限于,IL-1ra、IL-4、IL-10、IL-11、IL-13、转化生长因子β(TGF-β)和IL-16。在一些情况下,另外的试剂是RNA。在一些情况下,另外的试剂可以是编码RNA的DNA。RNA可以是指导RNA、微小RNA或小发夹RNA(shRNA)。RNA可以抑制抑制性分子的转录或翻译。抑制分子的示例包括PD1、PD-L1、CTLA4、TIM3、LAG3、VISTA、BTLA、TIGIT、LAIR1、CD160、2B4和TGFRβ。在一些情况下,RNA可以下调内源基因的基因表达,包括TCRα链、TCRβ链、β-2微球蛋白、HLA分子、CTLA-4、PD1和FAS。编码这些抑制分子的内源基因也可以通过本文所述的基因编辑方法敲除。
在一些实施方案中,本文所述的免疫受体程序化受体细胞可以进一步表达另一种试剂,例如,增强免疫受体程序化受体细胞的活性的试剂。例如,该试剂可以是抑制抑制分子的试剂。抑制分子可以降低免疫受体程序化受体细胞启动免疫效应反应的能力。抑制分子的示例包括PD1、PD-L1、CTLA4、TIM3、LAG3、VISTA、BTLA、TIGIT、LAIR1、CD160、2B4和TGFRβ。
另外的试剂可以是转换受体。例如,对抑制性分子进行抑制的试剂包括与第二多肽缔合的第一多肽,例如抑制性分子,该第二多肽向细胞,例如,细胞内信号传导结构域提供阳性信号。在一些实施方案中,试剂包含抑制性分子如PD1、LAG3、CTLA4、CD160、BTLA、LAIR1、TIM3、2B4和TIGIT的第一多肽,或这些中的任何一个的片段(例如,这些中任何一个胞外结构域的至少一部分)和第二多肽,它是胞内信号传导结构域(例如,共刺激域4-1BB、CD27或CD28)和/或初级信号传导结构域(例如,CD3ζ信号传导结构域)。在一些实施方案中,试剂包含PD1的第一多肽或其片段(例如,PD1的胞外结构域的至少一部分),以及细胞内信号传导结构域的第二多肽,如CD28信号传导结构域或CD3ζ信号传导结构域。另外的试剂可以是赋予淋巴衰竭抵抗力或降低的移植物抗宿主疾病潜力的蛋白质。例如,蛋白质可以结合抑制性自然杀伤(NK)细胞受体,从而可以抑制NK细胞杀伤受体细胞。蛋白质可以是HLA-E或HLA-G。
在一些实施方案中,另外的试剂由表达免疫受体的载体编码或由其表达。
应用
如本文所述,可以将源免疫受体表达细胞的多克隆群体转化为免疫受体程序化受体细胞的多克隆群体,其中免疫受体编程受体细胞的工程化免疫受体库可以包含源免疫受体表达细胞的天然免疫受体库(例如,免疫受体链的同源对组合)。许多免疫受体的二分性使得常规技术难以完成这项任务。本文提供的方法可用于克服这些困难。与使用源免疫受体表达细胞相比,使用经免疫受体程序化受体细胞可以有几个优势。例如,免疫受体程序化受体细胞可以大量制备,可以具有更理想的功能特性,可以处于更理想的表观遗传状态,可以具有更统一的遗传或表型背景,可以被工程化以表达其他药剂来增强抗肿瘤功效,或可以被工程化以表达报告基因以帮助选择。免疫受体程序化受体细胞可以在许多领域中有广泛的应用。
抗体发现
当源免疫受体表达细胞是B细胞时,所得的融合的二分免疫受体多核苷酸文库可以是编码多种抗体的文库。可以筛选该文库以查找具有所需功能的抗体。所需的特征可以包括与特定的靶蛋白结合或引发靶细胞中的某些细胞应答。抗体的发现,可以使用实施例中所述的类似策略将融合的BCR基因转化为单链Fv构建体(scFv)和表达scFv的载体,除了可以重新设计引物和连接子序列,以适应scFv构建的需要,这可以由技术人员完成。源免疫受体表达细胞可以是浆母细胞、浆细胞、淋巴浆细胞样细胞、记忆B细胞、滤泡B细胞、边缘区B细胞、B-1细胞、B-2细胞或调节性B细胞。
结合选择
表达抗体的载体或表达scFv的载体可以与常规的筛选技术一起使用,如噬菌体展示、酵母展示、哺乳动物细胞展示和mRNA展示。此外,可以将表达抗体的载体文库引入B细胞系(例如,Raji细胞)以产生工程化的表达抗体受体细胞的文库。这些细胞可用于Eyer等人,2017和Mazutiz等人,2013中所述的表型筛选,其中表达抗体的受体细胞可以取代直接从动物中分离的B细胞。
功能选择
表达抗体的载体文库也可以引入针对表面受体功能经报告子回路工程化的哺乳动物细胞。可以直接选择作为受体激动剂的抗体。例如,慢病毒形式的抗体表达载体文库可以用于感染真核细胞,该真核细胞含有与受体偶联的荧光报告系统,针对该受体寻求受体激动剂或拮抗剂抗体。在该方法的该实施方案中,大量表达慢病毒和真核报告细胞的候选抗体可以以各自能够复制的格式包装在一起,从而在基因型和表型之间建立直接联系。在以限制扩散的设置(例如,在软琼脂或液滴中)进行感染和孵育之后,可以对显示出荧光改变(可能由于表达抗体的载体所分泌的抗体的作用)的细胞进行分选,并可以回收编码激动剂或拮抗剂抗体的整合基因。为了提供适当的背景信号,可以在受体的同源配体或已知激动剂或拮抗剂抗体存在下孵育。该系统已通过说明其快速产生完整的血小板生成素表型的有效抗体激动剂的能力得到了验证(Hongkai Zhang等人,Chemistry&biology 20(5):734-741,May 2013)。该系统可以推广到任何途径,其中所述系统的激活可以与选择性表型的产生联系起来。
多克隆抗体的治疗用途
本文所述的方法可用于从获自人类供体的B细胞和浆细胞库中获得的DNA文库制备重组多克隆抗体。重组多克隆抗体可以用于治疗某些疾病。例如,免疫缺陷患者可以用血浆药物治疗,该血浆药物来源于数千名人类供体的血浆样品。此类产品的示例包括静脉免疫球蛋白(IVIG)和超免疫,这是从供体血浆中制备的具有高滴度的对特定病原体抗体的IVIG变体。超免疫可用于治疗免疫受损患者的急性感染或预防感染,如器官移植后。重组多克隆抗体可用于替代目前基于血浆的产品。重组多克隆抗体可以被工程化为具有比血浆来源的等同物更高的效力。
多克隆免疫受体程序化受体细胞的治疗用途
免疫受体程序化受体细胞可以施用于患者以治疗各种疾病。在一些实施方案中,免疫受体程序化受体细胞是多克隆免疫受体程序化受体细胞。
治疗癌症的TCR-T细胞
许多肿瘤可以具有大量的T细胞浸润到肿瘤微环境中,并且这些肿瘤浸润的T细胞(TIT)中的许多可以具有识别肿瘤表达的抗原的TCR。这些TIT可以是肿瘤反应性T细胞。TIT识别的抗原可以是新抗原、肿瘤特异性抗原或肿瘤相关抗原。这些抗原可以是野生型序列或突变序列。治疗癌症的一般策略可以是增加这些TIT的数量和/或活性。体现该策略的一种特定方法可以是TIT的离体扩增。然而,这种方法可以有很多限制。例如,一些TIT可以部分由于长期的抗原暴露而表现出深度耗尽的表型。这些T细胞可以扩增不良。此外,将从手术切除的肿瘤中分离出的少量T细胞扩增到足以重新注入患者体内的数量可以需要很长时间(可以需要数亿甚至数十亿个细胞)。通过单细胞测序的最新进展实现的另一种方法是从这些肿瘤浸润的T细胞(包括深度耗尽的细胞)中获得配对的TCR序列。接下来,可以合成这些TCR序列,以获得表达TCR的载体。而且这些载体可以导入大量新鲜的宿主T细胞(例如,从患者外周血中分离出来,然后进行离体扩增,类似于制备用于CAR-T的宿主细胞的过程)以产生TCR-T细胞。然而,由于DNA合成的限制,一次只能制备少量(例如,少于100或少于50)的表达TCR的唯一载体。换言之,TCR-T细胞可以具有有限的外源TCR库。
利用如上所述的快速获得融合的二分免疫受体多核苷酸的技术,可以产生大量(例如,大于约100、大于约1,000、大于约10,000、大于约100,000或大于约1,000,000)个表达TCR的唯一载体,编码大量TCR。可以将这些载体引入新鲜的宿主T细胞(作为受体细胞),以产生具有非常多样的外源TCR库(大于约100、大于约1,000、大于约10,000、大于约100,000或大于约1,000,000种克隆型)的多克隆TCR-T细胞。然后可以将这些多克隆TCR-T细胞施用于患者。
在本申请中使用的表达TCR的源细胞可以是从手术切除的肿瘤分离的TIT。例如,在除去脂肪和结缔组织后,可将肿瘤组织切成3-5mm2的碎片,并使用Seward Stomacher装置(Fisher,Pittsburgh,PA)使用温和的机械粉碎法在冷的RPMI 1640中分解。该过程可以快速产生单细胞悬浮液,而无需酶消化。可以通过75μm孔径的筛网(BD Biosciences,SanJose CA)过滤细胞悬浮液,并在培养基中洗涤。可以在培养基中洗涤用于通过流式细胞仪立即染色和分析的部分细胞,并将细胞悬浮液铺在不连续的70%上,然后用100%FicollIsopaque梯度分层,然后离心以从富集的TIT(100%接口)中分离出肿瘤细胞(70%接口)。然后可以在D-PBS、1%BSA中洗涤富集的TIT,然后进行处理。在一些情况下,可以使用3,000IU/ml重组IL-2在含有Glutamax(Invitrogen)、10%人AB血清(Sigma,St.Louis,MI)、50mM 2-硫醇基乙醇(Invitrogen)、1mM丙酮酸、1X青霉素/链霉素(Invitrogen)的RPMI1640的TIT培养基(TIL-CM)中扩增肿瘤样品的TIT。
在一些情况下,新鲜的肿瘤可能无法获得,并且在这种情况下,可以从冷冻或固定的组织中分离细胞核。这些核还可以作为配对二分免疫受体克隆过程(在这种情况下为配对TCR克隆)的输入,以获得融合的二分免疫受体多核苷酸文库。这些细胞和细胞核无需进一步选择即可使用。可替代地,可以分离特定的细胞或细胞核群以富集肿瘤特异性TCR。例如,细胞表面标志物CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB的表达可以与肿瘤反应性相关。细胞表面标志物可用于通过FACS分离/富集肿瘤反应性TCR。换言之,具有一种或多种这些标志物的高表达细胞可以用作配对TCR克隆的输入。
T细胞可以作为受体细胞以产生多克隆TCR-T细胞。作为受体细胞的T细胞可以从“T细胞的来源”部分中所述的来源获得,也可以从各种样品中获得,如“样品”部分中所述。在一些情况下,可以从患者的外周血获得T细胞作为受体细胞,并如本文所述离体扩增。
可替代地,作为受体细胞的T细胞可以从供体获得。供体可以是健康的供体。从供体获得的T细胞可以适当地储存在,例如,冰箱中,然后根据需要注入同种异体个体中。受体细胞或多克隆TCR-T细胞可以使用标题为“受体细胞的来源”、“激活和扩增”、“防止错误组装”、“受体细胞的另外基因组工程化””和“受体细胞表达的另外的试剂”的章节中所述的方法进行培养或修饰。当受体细胞是T细胞时,可以如本文所述敲除或敲低T细胞的内源TCR。当受体细胞是T细胞时,它可以是CD8+ T细胞、CD4+ T细胞或CD8+CD4+双阳性T细胞。它可以是γ-δT细胞。这些TCR-T细胞可以进一步工程化,以表达其他调节分子的细胞因子,以增强其抗肿瘤活性,如本文所述。从供体(例如,与待治疗的受试者不同的受试者)获得的受体细胞可以进行工程化以表达结合抑制性自然杀伤(NK)细胞受体的蛋白质。抑制性NK细胞受体可以是杀伤细胞免疫球蛋白样受体(KIR)或C型凝集素家族受体。抑制性NK细胞受体可以是NKG/CD94或KIR2DL4。结合抑制性NK细胞受体的蛋白质可以是跨膜蛋白质、细胞表面蛋白质或分泌蛋白质。结合抑制性NK细胞受体的蛋白质可以包含HLA-E或HLA-G。在一些实施方案中,结合抑制性NK细胞受体的蛋白质还包含B2M域。在一些实施方案中,结合抑制性NK细胞受体的蛋白质是B2M-HLA-E融合蛋白或B2M-HLA-G融合蛋白。
本文所述的方法可以实现用寡克隆或多克隆TCR-T细胞进行个性化癌症治疗。这些TCR-T细胞可以包含可以是肿瘤相关的受试者特异性TCR。在图19中概述了示例性治疗方法,称为合成TIL或SynTIL。首先,可以从患者获得切除的肿瘤或肿瘤活检物。可以使用现有方法从肿瘤组织获得浸润肿瘤的T细胞(图19,步骤(1))。然而,代替使用传统的TIL方法培养这些细胞,可以使用本文提供的方法将这些细胞中的TCR转化为融合的TCR多核苷酸(图19,步骤(2))。然后可以将融合的TCR多核苷酸转化为表达TCR的慢病毒载体(图19,步骤(3)),其可以用于转导本文所述的报告细胞(图19,步骤(4))。可以将转导的报告细胞与肿瘤细胞或加载有肿瘤mRNA的APC孵育,然后可以如本文所述(图19,步骤(5),另请参见图18)鉴定或分离(例如,使用FACS)报告阳性细胞(例如,肿瘤反应性细胞)。任选地,可以对所鉴定的报告阳性细胞的TCR进行测序。接下来,从分选的细胞融合的TCR可以重新扩增,以产生表达TCR的载体库,其中可以预期大多数TCR具有肿瘤反应性(图19,步骤(6))。在一些情况下,来自供体的同种异体T细胞可用于表达已鉴定的肿瘤反应性细胞,而不是自体T细胞。并且在这种情况下,同种异体T细胞可以如本文所述工程化。可以单独或合并制备不同的表达TCR的载体,然后使用现有的TCR-T制造方法,将其从患者外周血中转导大量(例如,数亿或数十亿个)自体T细胞(图19,步骤(7))。当单独制备表达TCR的载体时,可以使用它们的限定子集(例如,5至20个TCR)来工程化外周T细胞以产生TCR-T细胞。这些TCR-T细胞可以被认为是寡克隆的。当将表达TCR的载体制备为池时,所得的TCR-T细胞可以称为多克隆的。例如,池中TCR克隆的总数可以大于或等于约5、10、15、20、25、30、35、40、45或50或更多。池中TCR克隆的总数可以为至少约20、30、40、50、60、80、100、200、300或500或更多。可以对TCR-T细胞进行一系列的释放测试(图19,步骤(8)),并且将其施用(例如,通过注射)给患者。图19示出了每个步骤可以需要的示例定时。在一些情况下,可以用患者的外周T细胞代替浸润肿瘤的T细胞,作为源免疫受体表达细胞。这些源T细胞(例如,外周T细胞)可以通过与组织或细胞共培养而被激活或扩增。来自外周血的靶反应性T细胞(例如,肿瘤反应性T细胞)可以富集,其是(1)基于表面标志物表达(例如,CD25、CD69、CD137、PD-1和本文所述的其他标志物),(2)通过使用本文所述的共培养方法或二者的组合,用经脉冲或经工程化以表达肿瘤抗原的APC进行体外刺激。APC可以是专门APC或非专门APC。可以从受试者,例如,患者或健康供体,分离APC。APC可以是如本文所述的aAPC(例如,K562细胞)。
与常规方法相比,本文提供的方法可以提供从分离T细胞到将治疗细胞施用于受试者的更快的周转时间。本文提供的在受试者中治疗肿瘤的方法可以包括从受试者中分离出T细胞群,其中T细胞群表达T细胞受体(TCR)群。TCR群的亚群可以富集,其中该亚群可以包含多个肿瘤反应性TCR。接下来,可以将表达多个肿瘤反应性TCR的多个受体细胞或其子集施用于受试者。在一些情况下,在分离T细胞群后至多约60天、50天、40天、30天、20天或更短时间进行施用。在一些情况下,从受试者分离T细胞群到向受试者体内施用多个受体细胞,受试者的肿瘤进展不超过约60天、50天、40天、30天、20天或更短。在一些情况下,从分离T细胞群到施用多个受体细胞,肿瘤的大小增加了小于约50%、30%、40%、20%、15%、10%、5%或2%。在一些情况下,从分离T细胞群到施用多个受体细胞,受试者体内的许多肿瘤细胞没有增加约2倍、3倍、4倍或5倍。在一些情况下,从分离T细胞群到施用多个受体细胞,肿瘤尚未发展到新阶段。例如,肿瘤没有从I期发展到II期、从II期发展到III期或从III期发展到IV期。
本文提供的在受试者中治疗肿瘤的方法可以包括从受试者中分离出T细胞群。T细胞群可以表达来自内源核酸的T细胞受体(TCR)群。接下来,可以富集TCR群的亚群,其中该亚群可以包含多个肿瘤反应性TCR。然后可以将表达多个肿瘤反应性TCR的多个受体细胞或其子集施用于受试者。编码多个肿瘤反应性TCR的多核苷酸可以是内源核酸的复制产物(例如,转录产物或扩增产物)。这些复制的产物可以通过模板依赖性核酸合成来生成,其中以现有链为模板合成互补链,如引物延伸、核酸扩增、第二链合成、转录、反转录等。
在一些情况下,该方法不包括,例如,通过使用亚磷酰胺化学合成编码多个肿瘤反应性TCR的多核苷酸。T细胞群可以是浸润肿瘤的T细胞。T细胞群可以包含耗尽的T细胞或调节性T细胞。多个受体细胞可以是同种异体T细胞、自体T细胞或细胞系细胞。该方法可以进一步包括在富集之前在报告细胞群中表达TCR群。在一些情况下,当表达时,可以通过病毒载体将编码TCR群的核酸序列递送到报告细胞群中。病毒载体可以是本文所述的任何类型的载体,例如,病毒载体或非病毒载体。例如,病毒载体可以是逆转录病毒、慢病毒、腺病毒、腺伴随病毒、疱疹病毒、痘病毒、α病毒、痘苗病毒、乙型肝炎病毒、人乳头瘤病毒载体或其伪型。报告细胞群中的每个报告细胞可以包含报告基因。当富集时,TCR群可以与肿瘤细胞或负载有肿瘤RNA(例如,负载有mRNA)的抗原呈递细胞或一种或多种抗原/MHC复合物接触。抗原的身份或序列可以未知。富集后,TCR群的亚群可以包含至少约2、5、10、15或20个不同的TCR同源对。在一些情况下,亚群可以包含大于或等于约20、30、40、50、60、100、200、300、400、500、1,000、1,500、2,000、2,500、3,000、3,500或4,000或更多不同的同源对。TCR群的亚群中每个TCR都可以对不同的表位或不同的蛋白质具有特异性。TCR群的亚群中每个TCR可以包含不同的(i)TCRαCDR3序列,(ii)TCRβCDR3可变结构域序列,(iii)TCRα可变结构域序列,(iv)TCRβ可变结构域序列,或(v)TCRα和TCRβ可变结构域序列的组合。多个肿瘤反应性TCR可以结合受试者的肿瘤细胞,但不与受试者的健康细胞结合,或以比对肿瘤细胞的亲和力至少低约10倍、20倍、50倍、100倍、500倍或1000倍的亲和力结合受试者的健康细胞。
本文提供的方法可以不需要通过化学合成来合成鉴定的同源对。治疗受试者的癌症的方法可以包括从受试者中分离第一T细胞群。第一T细胞群可以表达来自内源性核酸的T细胞受体(TCR)群。接下来,可以在第二细胞群中表达编码由内源核酸编码的TCR群的核酸序列,其中所述核酸序列不是化学合成的,例如,使用亚磷酰胺。接下来,可以从第二细胞群富集TCR群的亚群,其中该亚群包含多个肿瘤反应性TCR。然后可以将表达多个肿瘤反应性TCR的多个受体细胞施用于受试者。
本文提供的在受试者中治疗癌症的方法可以包括从受试者中分离第一T细胞群,其中第一T细胞群从内源性核酸表达T细胞受体(TCR)群。接下来,可以在第二细胞群中表达来自第一T细胞群的内源核酸的转录产物或扩增产物,其中该转录产物或扩增产物编码TCR群。转录或扩增的产物可以是通过复制亲本链合成的核酸链。接下来,可以富集来自第二细胞群的TCR群的亚群,其中该亚群包含多个肿瘤反应性TCR。然后可以将表达多个肿瘤反应性TCR的多个受体细胞施用于受试者。
本文提供的在受试者中治疗癌症的方法可以包括从受试者中分离第一T细胞群,其中所述第一T细胞群从内源性核酸表达T细胞受体(TCR)的群。接下来,TCR群可以在第二个细胞群中表达。第二细胞群可以不具有第一T细胞群的表型背景/特征。例如,第二细胞群可以不具有与第一T细胞群相同的非TCR基因表达谱。第二细胞群可以与第一T细胞群的细胞类型不同(例如,耗尽的T细胞、激活的T细胞、记忆性T细胞或效应T细胞)。接下来,可以从第二细胞群富集TCR群的亚群,其中该亚群体包含多个肿瘤反应性TCR。接下来,可以将表达多个肿瘤反应性TCR的多个受体细胞施用于受试者。第一T细胞群可以是浸润肿瘤的T细胞或外周T细胞。第一T细胞群可以包含耗尽的T细胞或调节性T细胞。在分离第一T细胞群后,施用至多约60天、50天、40天、30天、20天或更短。当富集时,第二细胞群可以与一种或多种抗原/MHC复合物接触。抗原/MHC复合物可以是与MHC四聚体复合的抗原。在一些情况下,第二细胞群可以与一个或多个细胞接触,每个细胞都呈现一种或多种靶抗原(例如,肿瘤抗原)。例如,第二细胞群可以与肿瘤细胞或加载有肿瘤RNA的APC接触。多个受体细胞可以是同种异体细胞、自体细胞或细胞系细胞。
本文提供的方法可以用于从TCR群中鉴定多个肿瘤反应性TCR。本文提供的在受试者中治疗肿瘤的方法可以包括从TCR群中鉴定多种肿瘤反应性T细胞受体(TCR),其中TCR群包含至少约20、30、50、100、1,000、10,000、100,000、1,000,000、10,000,000或更多不同的同源对。然后可以将表达多个肿瘤反应性TCR的多个细胞或其子集施用于受试者。多个肿瘤反应性TCR或其子集对于多个细胞可以是外源的。多个肿瘤反应性TCR或其子集可以包含至少5、至少10、至少15或至少20个不同的同源对。在一些情况下,多个肿瘤反应性TCR或其子集可以包含大于或等于约20、30、40、50、60、100、200、300、400、500、1,000、1,500、2,000、2,500、3,000、3,500或4,000个或更多不同的同源对。多个肿瘤反应性TCR中的每个TCR可以对不同的表位或不同的蛋白质具有特异性,或者可以包含不同的(i)TCRαCDR3序列,(ii)TCRβCDR3可变结构域序列,(iii)TCRα可变结构域序列,(iv)TCRβ可变结构域序列,或(v)TCRα和TCRβ可变结构域序列的组合。该方法可以进一步包括从受试者分离表达TCR群的T细胞群。TCR的不同同源对可以包含来自至少5、10、15、20或更多不同V基因的V区。
本文提供的方法可以从具有小样品大小的样品中鉴定靶反应性TCR,如至多具有约100,000、10,000、1,000、100个或更少的细胞。本文提供的在受试者中治疗肿瘤的方法可以包括从受试者中分离表达T细胞受体(TCR)群的T细胞群,其中所述T细胞群包括至多约10,000个细胞。接下来,可以从TCR群中鉴定出多个肿瘤反应性TCR。接下来,可以将多个肿瘤反应性TCR或其子集施用于受试者,其中多个肿瘤反应性TCR或其子集包含至少约2、5、10、15、20、30、40或50个或更多不同的同源对。在各种实施方案中,多个受体细胞可以在施用于受试者之前扩增。
用于治疗自身免疫性疾病的TCR-Treg细胞
除了创建用于治疗癌症的“杀手”细胞外,还可以创建用于治疗自身免疫性疾病的“治愈者”细胞。可以通过向Treg细胞中引入嵌合抗原受体(CAR)来创建抗原特异性调节性T细胞(Jelena Skuljec等人,Chimeric Antigen Receptor-Redirected Regulatory TCells Suppress Experimental Allergic Airway Inflammation,a Model of Asthma,Front Immunol.2017;8:1125)。可以使用本文所述的方法(包括培养和工程方法)将组织特异的TCR引入Treg细胞,引导这些细胞归巢并保护特定的组织或器官。源免疫受体表达细胞可以从驻留于组织的T细胞获得,或者可以针对已知的组织特异性抗原进行选择。在此,组织特异性抗原可以是细胞内或细胞表面结合。这些TCR-Treg细胞可以被进一步工程化以表达另外的试剂(例如,细胞因子或其他调节分子),以增强它们的免疫调节活性,如本文所述。这些另外的试剂的示例包括抗炎细胞因子,如IL-1ra、IL-4、IL-10、IL-11、IL-13、转化生长因子β(TGF-β)和IL-16。
靶反应性TCR的鉴定
可以从多个器官如外周血、脾脏、淋巴结和肿瘤中筛选T细胞(此处统称为“源TCR表达细胞”,以与本公开内容中其他地方的描述一致),以便鉴定识别特定MHC结合抗原的TCR。使用本文所述方法获得的多克隆TCR编程受体细胞可以取代这些应用中的源TCR表达细胞。在这些应用中,受体细胞可以是细胞系细胞,如细胞系T细胞。细胞系T细胞的示例包括,但不限于,Jurkat、CCRF-CEM、HPB-ALL、K-T1、TALL-1、MOLT 16/17和HUT 78/H9。如本文所述,可以敲除或敲低细胞系T细胞的内源TCR。
在一些实施方案中,结合MHC的抗原是肽MHC复合物(pMHC)、pMHC四聚体、pMHC寡聚体。例如,pMHC可在链霉亲和素支架上四聚,或在多种化学支架上低聚(Cochran&Stern,2000)。在一些实施方案中,对pMHC、pMHC四聚体、pMHC寡聚物进行荧光标记,以促进识别pMHC的多克隆TCR编程的受体细胞的FACS分选。
在一些实施方案中,结合MHC的抗原呈递在细胞表面。在一些情况下,细胞是抗原呈递细胞(APC)。APC可以是专业的APC,如树突状细胞、巨噬细胞或B细胞。APC也可以是表达MHC或HLA的其他细胞(例如,人工APC)。例如,来自癌细胞系的细胞可以是APC。在一些实施方案中,可以将APC工程化为仅表达一个MHC I类等位基因。在一些实施方案中,可以将APC工程化以表达任意数量的MHC I类等位基因和MHC II类等位基因,如从一个受试者分离的所有MHC I类或II类等位基因。受试者可以是人。人可以是患者。患者可以是癌症患者。
在一些实施方案中,与MHC结合的抗原的表位是明确定义的。例如,在pMHC四聚体中,表位肽可以化学合成。在一些实施方案中,与MHC结合的抗原的表位是未知的或没有明确定义。例如,抗原蛋白可以在APC中过表达,并且多个表位可以由APC呈递。在另一示例中,一小组蛋白质(例如,至少2个蛋白质、至少3个蛋白质、至少4个蛋白质、至少5个蛋白质、至少10个蛋白质、至少20个蛋白质、至少30个蛋白质、至少40个蛋白质蛋白质或至少50种蛋白质)可以在APC中过表达。在另一个示例中,未知数量的蛋白质可以在APC中过表达,并且在这种情况下,可以将cDNA库递送(例如,使用本文所述的载体转染、电穿孔或其他递送方法)到APC中。
在一些实施方案中,可以通过将编码抗原的DNA或mRNA转染到APC来将抗原引入APC。在一些实施方案中,可以将作为蛋白质的抗原添加到APC的培养基中。在一些实施方案中,可以将抗原作为肽添加到APC的培养基中。
识别MHC结合抗原的表达TCR的受体细胞可以选自那些不能识别的细胞。选择可以基于与可溶性的、荧光标记的pMHC、pMHC四聚体或pMHC低聚物的结合。选择可以基于细胞接触MHC结合的抗原后在表达TCR的受体细胞上的细胞表面标志物表达。细胞表面标志物可以是CD25、CD69、CD39、CD103、CD137,以及其他T细胞激活标志物,或其组合。选择可以基于钙流入。选择也可以基于报告基因的表达。报告基因可以是荧光蛋白(如GFP和mCherry)。报告基因可以受TCR信号传导调节的转录因子的控制。这些转录因子的示例包括,但不限于,AP-1、NFAT、NF-κB、Runx1、Runx3等。
在一些实施方案中,基于上述标准的选择的TCR编程的受体细胞可以被繁殖并再次经历选择,以进一步富集识别MHC结合抗原的TCR。在一些实施方案中,可以扩增从选择的表达TCR的受体细胞分离的表达TCR的载体中的融合的TCR多核苷酸,并将其转化为表达TCR的载体。这些表达TCR的载体可用于获得新的TCR编程受体细胞群。这些细胞可以再次进行选择,以进一步富集识别MHC结合抗原的TCR。
在不必知道抗原、表位或呈递的MHC的身份的情况下,快速鉴定肿瘤反应性TCR可以在癌症免疫疗法中具有广泛的应用,并且可以通过本文所述的大规模并行TCR克隆技术结合基于报告的选择方法实现。
在图18中概述了基于报告子的选择方法的示例方案。报告细胞系可以是T细胞系(例如,Jurkat)。报告细胞系可以携带由TCR信号控制的启动子(例如,NFAT、NF-κ-B、Nur77)驱动的报告基因(例如,荧光蛋白或可染色的细胞表面蛋白)。任选地,可以敲除报告细胞系的内源TCR。可以用从T细胞群(例如,浸润肿瘤的T细胞)中获得的多克隆TCR表达慢病毒载体转导报告细胞,其中一些具有肿瘤反应性(或肿瘤特异性)(图18,步骤(1)))。可以将转导的报告细胞与肿瘤细胞、肿瘤组织、肿瘤球或APC(经工程化以表达自体MHC的自体APC或同种异体APC)经工程化,以表达肿瘤基因(即,已作为癌症疫苗进行研究的载有肿瘤mRNA的APC)。如果转导到报告细胞系中的TCR具有肿瘤反应性,则可以表达报告细胞中的报告基因,并可以鉴定该细胞(例如,使用FACS或MACS选择/分离/富集)(图18,步骤(3))。任选地,可以对鉴定的具有肿瘤反应性的TCR进行测序。来自分选细胞的已经融合的TCR可以简单地进行PCR扩增,然后分批克隆到表达TCR的载体中。任选地,例如,通过选择宿主表达TCR的载体的大肠杆菌菌落,可以获得单独的TCR。
本文所述的方法可以实现免疫监测测试从而量化患者的肿瘤组织或外周血中的肿瘤反应性T细胞。例如,可以从癌症患者获得肿瘤活检。外周T细胞也可以从同一患者获得。可以将来自外周T细胞的TCR克隆到表达TCR的载体中,该载体又可以用于工程化本文所述的报告细胞系。同时,可以从外周血中扩增HLA基因。没有人HLA表达的APC细胞系(例如,不表达MHC或表达非常低的MHC的人细胞系,如K562和721.221,非人灵长类细胞系,如COS-7或敲除内源性HLA的人细胞系)可以被工程化以表达患者的HLA基因。来自患者的自体APC(例如,单核细胞来源的树突细胞、树突细胞、巨噬细胞和B细胞)也可以作为APC。可以分离、扩增和转染来自肿瘤样品(手术样品或活检样品)的全长mRNA,并将其转染到上述自体或HLA工程化的同种异体APC中,以产生载有肿瘤mRNA的APC。肿瘤样品可以是活检样品,如核心活检或细针活检样品。这些样品的体积可以很小(例如,<1000mm3、<500mm3、<100mm3、<50mm3),因为即使很小的肿瘤样品也可以含有足够的mRNA进行扩增。在一些情况下,肿瘤样品的体积可以等于或至多约2000mm3、1000mm3、800mm3、500mm3、100mm3、50mm3或20mm3。因此,该方法可适用于难以获得大手术肿瘤样品的情况。如上所述,可以将TCR工程化的报告细胞和载有肿瘤mRNA的APC共孵育,并且可以分离具有肿瘤反应性的报告表达细胞。可以对分离细胞的TCR进行测序,以提供肿瘤反应性TCR的序列和丰度。可以发表包含此类信息的报告。此方法可以与常规TCR库分析结合使用,以提高肿瘤反应性TCR丰度的准确性。在本段中描述的获得和工程化APC和加载了肿瘤mRNA的APC的方法也可以在本文其他地方描述的方法中使用。
例如,鉴定多个靶反应性T细胞受体(TCR)的方法可以包括提供表达TCR群的细胞群。TCR群可以是细胞群外源的。TCR群可以包含不同的同源对,例如,至少50个不同的同源对。TCR群可以包含至少约10、15、20、25、30、35、40个或更多个不同V基因的V区。TCR群可以包含至少100个不同的VJ组合。该方法可以进一步包括使细胞群与一种或多种靶抗原接触,其中多个靶反应性TCR与一种或多种靶抗原结合。然后可以分离或富集多个靶反应性TCR。在一些情况下,可以分离或富集至少约5、10、15、20、30、50、100、200、300、400、500、600个或更多个靶反应性TCR。细胞群可以是工程化的细胞、未耗尽的细胞或未从患者体内分离的细胞。该方法可以进一步包括使细胞群与一种或多种靶抗原接触,其中多个靶反应性TCR可以与一种或多种靶抗原结合。然后可以分离或富集多个至少5个靶反应性TCR。TCR群可以包含至少约100、200、500、1,000、10,000、100,000、1,000,000或10,000,000个不同的同源对。多个靶反应性TCR包含来自至少10个、至少15个、至少20个或更多个不同的V基因的V区。在一些情况下,使细胞群与呈递一种或多种靶抗原的肿瘤细胞或抗原呈递细胞接触。靶抗原可以是肿瘤抗原或组织特异性抗原。一种或多种靶抗原可以与主要组织相容性复合物(MHC)复合。MHC可以是MHC四聚体。该方法可以进一步包括将多个靶反应性TCR中的至少一个靶反应性TCR施用给受试者。在一些情况下,细胞或工程化的细胞群中的细胞可以包含报告基因。当细胞的TCR结合一种或多种靶抗原的靶抗原时,可以调节报告基因以发送信号。细胞或工程化的细胞群可以是细胞系细胞(例如,Jurkat细胞)。
例如,鉴定多个靶反应性T细胞受体(TCR)的方法可以包括提供表达多个TCR的多个T细胞。多个TCR可以包含至少50个不同的同源对,其包含来自至少20个不同的V基因的V区。该方法可以进一步包括将多个TCR中的每个TCR的编码TCRα(或γ)链的第一多核苷酸和编码TCRβ(或δ)链的第二多核苷酸物理连接,从而产生多个融合的多核苷酸。多个融合的多核苷酸可以在多个细胞中表达,其中多个细胞的子集表达多个靶反应性TCR。多个细胞可以与一种或多种靶抗原接触,以鉴定多个靶反应性TCR。表达多个靶反应性TCR的多个细胞的子集可以结合一种或多种靶抗原。可以分离或富集多个细胞的子集,从而分离或富集多个靶反应性TCR。
例如,一种鉴定多个靶反应性T细胞受体(TCR)的方法可以包括提供表达多个TCR的多个T细胞。多个TCR可以包含至少50个不同的同源对,其包含来自至少20个不同的V基因的V区。该方法可以进一步包括在不使用任何条形码,例如,单细胞条形码的情况下对多个TCR的一个或多个同源对进行测序。例如,测序可以包括对多个TCR的一个或多个同源对的TCR链进行测序,其中TCR链不包含相同的条形码。然后可以,例如,以可溶形式或在多个细胞中表达编码多个TCR或其子集的一个或多个同源对。用于表达一个或多个同源对的多个细胞可以是细胞系细胞。多个TCR或其子集可以包括多个靶反应性TCR。然后可将多个TCR与一种或多种靶抗原接触,以鉴定靶反应性TCR。多个靶反应性TCR可以结合一种或多种靶抗原,然后可以被分离或富集。在一些情况下,当识别TCR的同源对时,可以将多个TCR的每个TCR的编码TCRα链的第一多核苷酸和编码TCRβ链的第二多核苷酸物理连接,从而产生多个融合的多核苷酸。该方法可以进一步包括对多个TCR的一个或多个同源对进行测序。多个T细胞可以与受试者分离。多个T细胞可以是浸润肿瘤的T细胞。多个T细胞可以包括耗尽的T细胞。多个靶反应性TCR可以通过FACS分离或富集。多个靶反应性TCR可以通过细胞表面标志物或细胞因子标志物分离。例如,可通过使用对表面标志物如CD69、CD25或41BB具有特异性的抗体来分离或富集靶反应性TCR,以通过FACS进行分选。
在一些情况下,从样品分离的多个T细胞可以在体外培养和刺激,例如,用呈递抗原的APC,并且可以富集多个T细胞的子集。然后可以将这些预富集的T细胞用于鉴定靶反应性TCR。例如,当从血液样品或PBMC样品中分离多个T细胞时,多个T细胞中的一小部分可以是靶反应性T细胞。在这种情况下,多个T细胞可以首先与一种或多种靶抗原(例如,以MHC四聚体形式或呈递在细胞表面上)接触,以激活T细胞。可以基于标志物(例如,表面标志物)富集或分离多个T细胞的子集,然后可以将其用于本文所述的后续鉴定方法,其包括融合同源TCR链。预富集的T细胞也可以经受已知方法的鉴定,例如,使用测序来鉴定同源对。测序可以使用单细胞条形码(例如,将T细胞分区到单独的隔室,对单个细胞释放的核酸进行条形码化,对核酸进行测序,并基于相同的条形码配对来自单个细胞的TCR链)。
组合物
本发明提供了组合物,该组合物包含融合免疫受体多核苷酸、含融合免疫受体多核苷酸的表达载体或包含融合免疫受体多核苷酸和/或表达载体的宿主细胞。本发明还提供了包含多个水凝胶颗粒的组合物,该水凝胶颗粒含生成融合免疫受体多核苷酸的核酸。
在一方面,本文提供了一种包含多个融合的T细胞受体(TCR)多核苷酸的组合物。多个融合的TCR多核苷酸中的每个融合的TCR多核苷酸可包含第一核酸序列和第二核酸序列。第一核酸序列可编码第一TCR肽序列的第一可变结构域,其中第一可变结构域包括CDR2和CDR3,第二核酸序列可编码第二TCR肽序列的第二可变结构域,其中第二可变结构域包括CDR2和CDR3。每个融合的TCR多核苷酸的第一和第二核酸序列可编码来自免疫细胞的第一和第二TCR肽序列的同源对。多个融合的TCR多核苷酸编码至少约50、100、1.000、10,000、100,000、1,000,000或10,000,000个不同的同源对。多个融合的TCR多核苷酸可包含来自至少5、至少10、至少15、至少20、至少25、至少30、至少35、至少40或更多个不同的V基因的V区。
第一TCR肽链可以是T细胞受体(TCR)α肽链,第二TCR肽链可以是TCRβ肽链。第一TCR肽链可以是TCRγ肽链,第二TCR肽链可以是TCRδ肽链。第一可变结构域还可包括CD1。第二可变结构域还可包括CDR1。第一TCR肽链的第一可变结构域可以是第一全长可变结构域,包括FR1、CDR1、FR2、CDR2、FR3和CDR3。第二TCR肽链的第二可变结构域可以是第二全长可变结构域,包括FR1、CDR1、FR2、CDR2、FR3和CDR3。第一核酸序列还可编码第一TCR肽链的第一恒定结构域或其一部分。第二核酸序列还可编码第二TCR肽链的第二恒定结构域或其一部分。每个融合的TCR多核苷酸的长度可以是至少800、至少900、至少1000或至少1500个碱基对。每个融合的TCR多核苷酸的长度可以是至少1000、至少1500或至少2000个碱基对。
可以从免疫细胞中获得或释放出第一核酸序列和第二核酸序列。免疫细胞可分离自样品。例如,样品可以是血液样品、骨髓样品、脐血样品、腹水样品、胸腔积液样品、脑脊液样品、精液样品、痰样品、尿液样品、粪便样品或其组合。再例如,样品可以是从各种来源获得的组织样品,包括脑、肝、肺、肾、前列腺、卵巢、脾、淋巴结、扁桃体、甲状腺、胰腺、心脏、骨骼肌、肠、喉、食管、胸腺、胃、肿瘤或感染部位。样品可以从受试者中获得。受试者可以是健康的受试者也可以是患病的受试者。在一些情况下,受试者是哺乳动物。哺乳动物可以是人、狗、猫、小鼠或大鼠。免疫细胞可以是各种具有或表达二分免疫受体的免疫细胞。例如,免疫细胞可以是淋巴细胞,包括但不限于T细胞或B细胞。T细胞可以是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助T细胞、自然杀伤T细胞或其组合。T细胞可以是CD4+T或CD8+T。
在一些情况下,体外或离体扩增免疫细胞。免疫细胞可以通过标志物从样品中分离。标志物可以是细胞表面标志物。例如,适宜的细胞表面标志物包括但不限于CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB、CD137、CD3、CD28、CD4、CD8、CD45RA、CD45RO、GITR和FoxP3。标志物可以是细胞因子。例如,细胞因子可以是FN-γ、TNF-α、IL-17A、IL-2、IL-3、IL-4、GM-CSF、IL-10、IL-13、颗粒酶B、穿孔素或其组合。
融合的TCR多核苷酸还可包含启动子。启动子可以是组成型或可诱导型的。例如,启动子可以是四环素反应性启动子。启动子可以是病毒启动子。启动子可以是β肌动蛋白启动子、SV40早期启动子、SV40晚期启动子、免疫球蛋白启动子、巨细胞病毒启动子、逆转录病毒启动子、友脾病灶形成病毒启动子、疱疹病毒TK启动子、劳斯肉瘤病毒启动子、小鼠乳腺肿瘤病毒启动子、金属硫蛋白启动子、腺病毒晚期启动子、痘苗7.5K启动子或烯醇化酶启动子。
第一核酸和第二核酸可以框内融合,以使得第一核酸和第二核酸的表达受到一个启动子的控制。在一些其他情况下,第一核酸和第二核酸可以不在框内融合。第一核酸和第二核酸的表达受到两个启动子的控制。这两个启动子可以是相同的也可以是不同的。
融合的TCR多核苷酸还可包含编码蛋白酶切割位点的序列。蛋白酶切割位点可以是细胞蛋白酶切割位点或病毒蛋白酶切割位点。蛋白酶切割位点可以是肠激酶切割位点、因子Xa切割位点、凝血酶切割位点、肾素切割位点、胶原酶切割位点、胰蛋白酶切割位点、半胱天冬酶蛋白酶切割位点、弗林蛋白酶切割位点、PC5/6蛋白酶切割位点、PACE蛋白酶切割位点、LPC/PC7蛋白酶切割位点、因子Xa蛋白酶切割位点、genenase I切割位点、MMP蛋白酶切割位点或者KEX2蛋白酶切割位点。蛋白酶切割位点可以是病毒2A蛋白酶切割位点、病毒3C蛋白酶切割位点、传染性胰腺坏死病毒(IPNV)VP4蛋白酶切割位点、烟草蚀刻病毒(TEV)蛋白酶切割位点或芜菁花叶病毒切割位点的核包含蛋白a(N1a)。融合的TCR多核苷酸可包含编码自切割肽的序列。自切割肽可以是内含肽、刺猬肽或2A肽。
多个融合的TCR多核苷酸可包含来自至少5、至少10、至少15、至少20、至少25、至少30、至少35、至少40或更多个不同的V基因的V区。在一些情况下,多个融合的TCR多核苷酸包含至少20个不同的V基因。至少20个不同的V基因可包括至少10个不同的TRAV基因和/或至少10个不同的TRBV基因。TRAV基因或TRBV基因可以是人TRAV基因或TRBV基因。TRAV基因或TRBV基因可以是小鼠TRAV基因或TRBV基因。人TRAV基因的示例包括人TRAV1-1、TRAV1-2、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8-1、TRAV8-2、TRAV8-3、TRAV8-4、TRAV8-6、TRAV9-1、TRAV9-2、TRAV10、TRAV12-1、TRAV12-2、TRAV12-3、TRAV13-1、TRAV13-2、TRAV14、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20、TRAV21、TRAV22、TRAV23、TRAV24、TRAV25、TRAV26-1、TRAV26-2、TRAV27、TRAV29、TRAV30、TRAV34、TRAV35、TRAV36、TRAV38-1、TRAV38-2、TRAV39、TRAV40和TRAV41。人TRBV基因的示例包括人TRBV2、TRBV3-1、TRBV4-1、TRBV4-2、TRBV4-3、TRBV5-1、TRBV5-4、TRBV5-5、TRBV5-6、TRBV5-8、TRBV6-1、TRBV6-2、TRBV6-3、TRBV6-4、TRBV6-5、TRBV6-6、TRBV6-8、TRBV6-9、TRBV7-2、TRBV7-3、TRBV7-4、TRBV7-6、TRBV7-7、TRBV7-8、TRBV7-9、TRBV9、TRBV10-1、TRBV10-2、TRBV10-3、TRBV11-1、TRBV11-2、TRBV11-3、TRBV12-3、TRBV12-4、TRBV12-5、TRBV13、TRBV14、TRBV15、TRBV16、TRBV18、TRBV19、TRBV20-1、TRBV24-1、TRBV25-1、TRBV27、TRBV28、TRBV29-1和TRBV30。
多个融合的TCR多核苷酸可包含来自至少5、至少10、至少15、至少20、至少25、至少30、至少35、至少40或更多个不同的V基因亚组的V区。至少20个不同的V基因可包括来自至少20个不同的V基因亚组的基因。至少20个V基因亚组可包含至少10个不同的TRAV基因亚组和/或至少10个不同的TRBV基因亚组。TRAV基因亚组的示例包括人TRAV1、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8、TRAV9、TRAV10、TRAV12、TRAV13、TRAV14、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20、TRAV21、TRAV22、TRAV23、TRAV24、TRAV25、TRAV26、TRAV27、TRAV29、TRAV30、TRAV34、TRAV35、TRAV36、TRAV38、TRAV39、TRAV40和TRAV41亚组。TRBV基因亚组的示例包括人TRBV2、TRBV3、TRBV4、TRBV5、TRBV6、TRBV7、TRBV9、TRBV10、TRBV11、TRBV12、TRBV13、TRBV14、TRBV15、TRBV16、TRBV18、TRBV19、TRBV20、TRBV24、TRBV25、TRBV27、TRBV28、TRBV29和TRBV30亚组。
小鼠TRAV基因的示例包括小鼠TRAV1、TRAV2、TRAV3-1、TRAV3-3、TRAV3-4、TRAV3D-3、TRAV3N-3、TRAV4-2、TRAV4-3、TRAV4-4、TRAV4D-2、TRAV4D-3、TRAV4D-4、TRAV4N-3、TRAV4N-4、TRAV5-1、TRAV5-2、TRAV5-4、TRAV5D-2、TRAV5D-4、TRAV5N-2、TRAV5N-4、TRAV6-1、TRAV6-2、TRAV6-3、TRAV6-4、TRAV6-5、TRAV6-6、TRAV6-7、TRAV6D-3、TRAV6D-4、TRAV6D-5、TRAV6D-6、TRAV6D-7、TRAV6N-5、TRAV6N-6、TRAV6N-7、TRAV7-1、TRAV7-2、TRAV7-3、TRAV7-4、TRAV7-5、TRAV7-6、TRAV7D-2、TRAV7D-3、TRAV7D-4、TRAV7D-5、TRAV7D-6、TRAV7N-4、TRAV7N-5、TRAV7N-6、TRAV8-1、TRAV8-2、TRAV8D-1、TRAV8D-2、TRAV8N-2、TRAV9-1、TRAV9-2、TRAV9-3、TRAV9-4、TRAV9D-1、TRAV9D-2、TRAV9D-3、TRAV9D-4、TRAV9N-2、TRAV9N-3、TRAV9N-4、TRAV10、TRAV10D、TRAV10N、TRAV11、TRAV11D、TRAV11N、TRAV12-1、TRAV12-2、TRAV12-3、TRAV12D-1、TRAV12D-2、TRAV12D-3、TRAV12N-1、TRAV12N-2、TRAV12N-3、TRAV13-1、TRAV13-2、TRAV13-3、TRAV13-4、TRAV13-5、TRAV13D-1、TRAV13D-2、TRAV13D-3、TRAV13D-4、TRAV13N-1、TRAV13N-2、TRAV13N-3、TRAV13N-4、TRAV14-1、TRAV14-2、TRAV14-3、TRAV14D-1、TRAV14D-2、TRAV14D-3、TRAV14N-1、TRAV14N-2、TRAV14N-3、TRAV15-1、TRAV15-2、TRAV15D-1、TRAV15D-2、TRAV15N-1、TRAV15N-2、TRAV16、TRAV16D、TRAV16N、TRAV17、TRAV18、TRAV19、TRAV20和TRAV21。小鼠TRBV基因的示例包括小鼠TRBV1、TRBV2、TRBV3、TRBV4、TRBV5、TRBV8、TRBV9、TRBV10、TRBV12-1、TRBV12-2、TRBV13-1、TRBV13-2、TRBV13-3、TRBV14、TRBV15、TRBV16、TRBV17、TRBV19、TRBV20、TRBV21、TRBV23、TRBV24、TRBV26、TRBV29、TRBV30和TRBV31。小鼠TRAV基因亚组的示例包括小鼠TRAV1、TRAV2、TRAV3、TRAV4、TRAV5、TRAV6、TRAV7、TRAV8、TRAV9、TRAV10、TRAV11、TRAV12、TRAV13、TRAV14、TRAV15、TRAV16、TRAV17、TRAV18、TRAV19、TRAV20和TRAV21亚组。小鼠TRBV基因亚组的示例包括小鼠TRBV1、TRBV2、TRBV3、TRBV4、TRBV5、TRBV8、TRBV9、TRBV10、TRBV12、TRBV13、TRBV14、TRBV15、TRBV16、TRBV17、TRBV19、TRBV20、TRBV21、TRBV23、TRBV24、TRBV26、TRBV29、TRBV30和TRBV31亚组。
可环化融合的TCR多核苷酸。多个融合的TCR多核苷酸可包含至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同(或唯一)的序列。
可将融合的TCR多核苷酸递送至宿主细胞中以进行表达。可以使用各种基因递送方法。如上文所述,在一些情况下,可通过电穿孔将融合的TCR多核苷酸递送至宿主细胞中,并且在一些其他情况下,可通过载体将融合的TCR多核苷酸递送至宿主细胞中。在一些实施方案中,本文提供了多个载体,每个载体包含来自本文所述的多个融合的TCR多核苷酸的不同的融合的TCR多核苷酸。多个载体可包括至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000、至少10,000,000个载体。多个载体可以是自组装RNA复制子、质粒、噬菌体、转座子、粘粒、病毒或病毒体。多个载体可以是病毒载体。多个载体可衍生自逆转录病毒、慢病毒、腺病毒、腺相关病毒、疱疹病毒、痘病毒、α病毒、痘苗病毒、乙型肝炎病毒或人乳头瘤病毒或其伪型。多个载体可以是非病毒载体。非病毒载体可以是纳米颗粒、阳离子脂质、阳离子聚合物、金属纳米聚合物、纳米棒、脂质体、胶束、微泡、细胞穿透肽或脂球。
在另一方面,本文提供了一种组合物,其包含多个载体,多个载体中的每个载体包含具有第一核酸序列和第二核酸序列的融合的TCR多核苷酸,其中(1)第一核酸序列编码第一TCR肽链的第一可变结构域,其中第一可变结构域包括CDR1、CDR2和CDR3,和(2)第二核酸序列编码第二TCR肽链的第二可变结构域,其中第二可变结构域包括CDR1、CDR2和CDR3;其中每个融合的TCR序列的第一和第二核酸序列编码来自哺乳动物细胞的第一和第二TCR肽链的同源对。多个融合的TCR多核苷酸可包含至少5、至少10、至少15、至少20、至少25、至少30、至少35、至少40或更多个不同的V基因。在一些情况下,多个融合的TCR多核苷酸可包含至少20个不同的V基因。在一些情况下,多个载体包含至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同的同源对。至少20个不同的V基因可包括至少10个不同的TRAV基因亚组和/或至少10个不同的TRBV基因亚组。
在另一方面,本文提供了多个TCR。多个TCR中的每个TCR可由来自多个融合的TCR多核苷酸的不同的融合的TCR多核苷酸编码。多个TCR中的每个TCR可由来自本文所述的多个载体的不同的融合的TCR多核苷酸编码。多个TCR可包括至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个TCR。
在另一方面,本文提供了多个宿主细胞。如本文所述,此类宿主细胞称为“受体细胞”。多个宿主细胞中的每个宿主细胞可包含来自本文所述的多个融合的TCR多核苷酸的不同的融合的TCR多核苷酸。多个宿主细胞中的每个宿主细胞可包含本文所述的多个载体中的不同的载体。多个宿主细胞中的每个宿主细胞可表达融合的TCR多核苷酸。多个宿主细胞中的每个宿主细胞可包含多个TCR中的不同的TCR。多个宿主细胞可以是T细胞或B细胞。T细胞可以是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助性T细胞、自然杀伤性T细胞或其组合。T细胞可以是CD4+T细胞或CD8+T细胞。多个宿主细胞可以是自体细胞。多个宿主细胞可以是同种异体细胞。多个宿主细胞可从供体获得。供体可以是人。供体可以是健康的供体或者是患病的供体。多个宿主细胞可从样品获得。例如,样品可以是血液样品、骨髓样品、脐带血、腹水、胸腔积液、脑脊液、精液样品、痰样、尿样、大便样品或其组合。再例如,样品可以是从脑、肝、肺、肾、前列腺、卵巢、脾、淋巴结、扁桃体、甲状腺、胰腺、心脏、骨骼肌、肠、喉、食管、胸腺、胃、肿瘤、感染部位或其组合获得的组织样品。多个宿主细胞可以是细胞系细胞。细胞系细胞的示例包括但不限于CHO-K1细胞;HEK293细胞;Caco2细胞;U2-OS细胞;NIH 3T3细胞;NSO细胞;SP2细胞;CHO-S细胞;DG44细胞;K-562细胞,U-937细胞;MRC5细胞;IMR90细胞;Jurkat细胞;HepG2细胞;HeLa细胞;HT-1080细胞;HCT-116细胞;Hu-h7细胞;Huvec细胞;或Molt 4细胞。多个宿主细胞可以是基因修饰的细胞。在一些情况下,编码TCRα肽序列、TCRβ肽序列、TCRγ肽序列、TCRδ肽序列、BCR重肽序列或BCR轻肽序列的内源性基因可以下调或失活。在一些情况下,编码TCRα肽序列和TCRβ肽序列二者的内源性基因可以下调或失活。在一些情况下,另外的内源性基因可以下调或失活。另外的内源性基因的示例包括但不限于PD1、CTLA-4、LAG3、Tim3、BTLA、BY55、TIGIT、B7H5、LAIR1、SIGLEC10和2B4。在一些情况下,另外的内源性基因中的两个或更多个内源性基因下调或失活。工程化宿主细胞以表达另外的试剂,进而增强宿主细胞的功能。该功能可以是细胞毒性功能、促炎功能或抗炎功能。另外的试剂可以是细胞因子。细胞因子可以是促炎细胞因子或抗炎细胞因子。细胞因子可以是肿瘤坏死因子α(TNFα)、白细胞介素(IL)-1α、IL-1β、IL-2、IL-5、IL-6、IL-8、IL-15、IL-18、干扰素(IFN-γ)、血小板活化因子(PAF)、单核细胞趋化蛋白1和2(MCP-1、MCP-2)、巨噬细胞移动抑制因子(MIF)、CXCL8、CXCL9、CXCL10、高迁移率族盒蛋白1(HMGB-1)、白细胞介素-1ra、IL-4、IL-10,IL-11、IL-13、转化生长因子β(TGF-β)、IL-16或其任意组合。
本文还提供了一种组合物,其包含多个水凝胶颗粒或珠。在一些方面,多个水凝胶颗粒或珠中的每个水凝胶颗粒或珠可包含:(a)编码第一免疫受体肽序列的第一可变结构域的第一核酸分子及其第一扩增产物,其中第一可变结构域包括CDR3,和(b)编码第二免疫受体肽序列的第二可变结构域的第二核酸分子及其第二扩增产物,其中第二可变结构域包括CDR3(例如,图4A、4B、5A-5C、9A、9B、10A和10B中的TRA和TRB)。第一扩增产物和第二扩增产物可以嵌入或包埋在具有聚合或胶凝化的多个聚合物和/或单体的基质内。第一扩增产物和第二扩增产物的扩散可受到限制。在一些其他方面下,多个水凝胶颗粒或珠中的每个水凝胶颗粒或珠包含:(a)编码第一免疫受体肽序列的第一可变结构域的第一核酸分子及其第一引物延伸产物,其中第一可变结构域包括CDR3,和(b)编码第二免疫受体肽序列的第二可变结构域的第二核酸分子及其第二引物延伸产物,其中第二可变结构域包括CDR3。第一引物延伸产物和第二引物延伸产物可以嵌入或包埋在具有聚合或胶凝化的多个聚合物和/或单体的基质内。第一引物延伸产物和第二引物延伸产物的扩散可受到限制。第一和第二引物延伸产物可包含具有预设计序列的衔接子序列。衔接子序列可不与第一或第二核酸杂交或互补。衔接子序列可以是模板转换寡核苷酸的序列或其反向互补序列。第一和第二引物延伸产物可以是逆转录(RT)产物。第一和第二引物延伸产物可以是第二链合成(SSS)产物。RT产物可以与扩散限制剂连接。SSS产物可以与扩散限制剂连接。SSS产物可间接地与扩散限制剂连接。例如,SSS产物可与依次与扩散限制剂连接的多核苷酸杂交(例如,图5A和5B以及图10A和10B)。
第一和第二引物延伸产物可以是第一和第二扩增产物。第一扩增产物和/或第二扩增产物可与扩散限制剂连接。第一扩增产物和/或第二扩增产物可通过捕获剂与扩散限制剂。捕获剂可包含具有与第一扩增产物和/或第一扩增产物的衔接子序列互补的序列的寡核苷酸。扩散限制剂可以是聚合物。聚合物可以是线性聚合物。聚合物可以是聚丙烯酰胺、聚乙二醇或多糖。扩散限制剂可以是颗粒。颗粒的直径比基质的孔径大,以使得颗粒不可从水凝胶颗粒或珠的基质中扩散出去。扩散限制剂可以是基质本身。例如,多核苷酸可以直接与基质连接,从而限制多核苷酸的扩散。第一核酸分子和第二核酸分子可以从细胞中释放出来。细胞可以是单个细胞。细胞可以是淋巴细胞。细胞可以是T细胞或B细胞。细胞可以是CD3+T细胞、CD28+T细胞、CD4+T细胞、CD8+T细胞、CD45RA+T细胞、CD45RO+T细胞或其任意组合。B细胞可以是浆母细胞、浆细胞、淋巴浆细胞样细胞、记忆B细胞、滤泡B细胞、边缘区B细胞、B-1细胞、B-2细胞或调节性B细胞。第一免疫受体肽序列可以是TCRα肽序列,第二免疫受体肽序列可以是TCRβ肽序列。
第一免疫受体肽链可以是TCRγ肽链,第二免疫受体肽链可以是TCRδ肽链。第一免疫受体肽链可以是免疫球蛋白重肽链,第二免疫受体肽链可以是免疫球蛋白轻肽链。第一免疫受体肽链和第二免疫受体肽链可以是二分免疫受体的同源对。
连接第一扩增产物和第二扩增产物,形成连续的多核苷酸。第一扩增产物和/或第二扩增产物可包含第一核酸分子和/或第二核酸分子的至少约100、至少约500、至少约1,000、至少约10,000或更多个拷贝。第一或第二核酸可受到扩散限制。例如,可以将第一或第二核酸与扩散限制剂直接或间接连接。第一核酸分子和/或第二核酸分子可以是脱氧核糖核酸或核糖核酸。第一核酸分子和/或第二核酸分子可以是单链核酸或双链核酸。第一核酸分子还可以编码第一恒定结构域和/或第二核酸分子还可以编码第二恒定结构域。
多个水凝胶颗粒或珠可包括至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个水凝胶颗粒或珠。多个水凝胶颗粒或珠可包含二分免疫受体的至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同的同源对。
用于制得水凝胶颗粒或珠的聚合物可以是多糖、聚丙烯酰胺或其组合。多糖可以是琼脂糖、透明质酸、羧甲基纤维素、壳聚糖、葡聚糖、淀粉或海藻酸盐。用于制得水凝胶颗粒或珠的单体可以是丙烯酰胺或甲基丙烯酰胺单体。聚合或胶凝化的多个聚合物和/或单体可包含琼脂糖和聚丙烯胺的混合物。可以交联聚合或胶凝化的多个聚合物和/或单体。第一可变结构域和/或第二可变结构域还可包括CDR1、CDR2或其组合。在一些情况下,每个水凝胶颗粒或珠是琼脂糖凝胶颗粒。
在另一方面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个至少5个水凝胶颗粒包含多核苷酸,所述多核苷酸包括(a)包含编码第一免疫受体肽链的序列的第一多核苷酸和(b)包含编码第二免疫受体肽链的序列的第二多核苷酸,其中每个第一和第二免疫受体肽链包含唯一的同源免疫受体配对链,其中至少5个水凝胶颗粒中的单个水凝胶颗粒的第一多核苷酸和第二多核苷酸(i)来自单个细胞和(ii)彼此连接;并且其中来自水凝胶颗粒的第一多核苷酸和第二多核苷酸的扩散受到限制。第一多核苷酸或第二多核苷酸可以是DNA。DNA可以是扩增产物。第一多核苷酸和第二多核苷酸可以共价连接。第一多核苷酸和第二多核苷酸可以通过磷酸二酯键连接。第一多核苷酸或第二多核苷酸可以与扩散限制剂连接。
在另一方面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个至少5个水凝胶颗粒包含(a)具有编码第一免疫受体肽链的序列的第一RNA和(b)具有编码第二免疫受体肽链的序列的第二RNA,其中第一和第二免疫受体肽链中的每个包括唯一的同源免疫受体配对链,其中至少5个水凝胶颗粒中的单个水凝胶颗粒的每个第一RNA和第二RNA来自单个细胞,并且其中(1)每个第一RNA与包含第一RNA的反向互补序列的第一cDNA杂交和(2)每个第二RNA与包含第二RNA的反向互补序列的第二cDNA杂交;并且其中来自水凝胶颗粒的第一cDNA和第二cDNA的扩散受到限制。第一cDNA或第二cDNA还可包含不与第一RNA或第二RNA杂交或互补的序列。第一cDNA或第二cDNA还可包含模板转换寡核苷酸的反向互补序列。第一cDNA或第二cDNA可与扩散限制剂连接。
在另一方面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个至少5个水凝胶颗粒包含(a)具有编码第一免疫受体肽链的序列的第一多核苷酸和(b)具有编码第二免疫受体肽链的序列的第二多核苷酸,其中第一和第二免疫受体肽链中的每个包括唯一的同源免疫受体配对链,其中至少5个水凝胶颗粒中的单个水凝胶颗粒的每个第一多核苷酸和第二多核苷酸来自单个细胞,并且其中(1)每个第一多核苷酸与第一引物杂交和(2)每个第二多核苷酸与第二引物杂交;并且其中来自水凝胶颗粒的第一引物和第二引物的扩散受到限制。第一引物或第二引物可以是逆转录引物。第一引物或第二引物可以是扩增引物。第一多核苷酸或第二多核苷酸可以是RNA。第一多核苷酸或第二多核苷酸可以是DNA。第一引物或第二引物可与扩散限制剂连接。
在另一方面,本文提供了一种组合物,其包含多个至少5个水凝胶颗粒,其中每个至少5个水凝胶颗粒包含(a)具有编码第一免疫受体肽链的序列的第一DNA和(b)具有编码第二免疫受体肽链的序列的第二DNA,其中第一和第二免疫受体肽链中的每个包括唯一的同源免疫受体配对链,其中至少5个水凝胶颗粒中的单个水凝胶颗粒的每个第一DNA和第二DNA来自单个细胞,并且其中(1)每个第一DNA与包含编码第一免疫受体链的序列的反向互补序列的第一多核酸杂交和(2)每个第二DNA与包含编码第二免疫受体链的序列的反向互补序列的第二多核苷酸杂交;并且其中来自水凝胶颗粒的第一多核苷酸和第二多核苷酸的扩散受到限制。第一DNA或第二DNA可以是cDNA。第一DNA或第二DNA可以是基因组DNA,并且在此类情况下,可用具有衔接子序列的引物来杂交第一DNA或第二DNA以生成第一或第二DNA的延伸产物。第一多核苷酸或第二多核苷酸可以是RNA。RNA可以是信使RNA。例如,图4A或图5A示出了cDNA与mRNA杂交。来自水凝胶颗粒的第一DNA或第二DNA的扩散受到限制。在一些情况下,第一DNA或第二DNA是cDNA,并且在此类情况下,第一多核苷酸或第二多核苷酸可以是第二链合成(SSS)产物。第一多核苷酸或第二多核苷酸可以是扩增产物。扩增产物可包含不与第一或第二DNA杂交或互补的衔接子序列。衔接子序列还可与捕获剂杂交。捕获剂可与扩散限制剂连接。
扩散限制剂可以是聚合物或颗粒。第一和第二免疫受体肽链可以是TCRα和TCRβ肽链、TCRγ和TCRδ肽链或BCR重和轻肽链。单个细胞可以是免疫细胞。免疫细胞可以是T细胞或B细胞。
在另一方面,本文提供了一种组合物,其包含多个至少1,000个隔室,至少1,000个隔室中的每个隔室包含固体支持物,其中固体支持物包含:(a)第一多核苷酸,其包含第一共同序列、第二共同序列和编码第一和第二共同序列之间的TCRα链的蛋白编码序列,和(b)第二多核苷酸,其包含第三共同序列、第四共同序列和编码第三和第四共同序列之间的TCRβ链的蛋白编码序列,其中,(i)每个隔室中的TCRα链和TCRβ链是同源对,(ii)多个隔室中的多个第一共同序列具有相同的序列并且可与第一引物杂交或互补,(iii)多个隔室中的多个第二共同序列具有相同的序列并且可与第二引物杂交或互补,(iv)多个隔室中的多个第三共同序列具有相同的序列并且可与第三引物杂交或互补,和(v)多个隔室中的多个第四共同序列具有相同的序列并且可与第四引物杂交或互补。每个隔室还可包含第一引物、第二引物、第三引物和第四引物。第一引物的浓度可以是至少1nM,第二引物的浓度可以是至少1nM,第三引物的浓度可以是至少1nM,第四引物的浓度可以是至少1nM。每个引物的浓度可以是至少约0.5nM、至少约1nM、至少约1.5nM、至少约2nM、至少约2.5nM、至少约3nM、至少约3.5nM或至少约4nM。第二共序列可与每个隔室中的第四共同序列或其反向互补序列杂交或互补。
在另一方面,本文提供了一种组合物,其包含多个至少1,000个隔室,至少1,000个隔室中的每个隔室包含固体支持物,其中固体支持物包含:(a)第一全部或部分单链多核苷酸,其包含5’端的第一共同序列、3’端的第二共同序列和编码第一和第二共同序列之间的TCRα链的蛋白编码序列,和(b)第二全部或部分单链多核苷酸,其包含5’端的第三共同序列、3’端的第四共同序列和编码第三和第四共同序列之间的TCRβ链的蛋白编码序列,其中,(i)TCRα链和TCRβ链是同源对,和(ii)第二共同序列与第四共同序列杂交。第一共同序列、第二共同序列、第三共同序列或第四共同序列在多个至少1,000g个隔室中可以是相同的。每个隔室还可包含固体支持物。固体支持物可以是珠或水凝胶珠。
方法
本发明提供了制得或使用本文所述的融合的二分免疫受体多核苷酸的方法。提供了各种方法和应用。
在一方面,本文提供了一种制备融合二分免疫受体序列文库的方法,其包括:(a)生成多个容器,每个容器包含(1)细胞,其中所述细胞包含编码二分免疫受体的第一肽序列的第一核酸和编码二分免疫受体的第二肽序列的第二核酸,和(2)多个可聚合或胶凝化聚合物和/或单体;以及(b)聚合或胶凝化多个可聚合或胶凝化聚合物和/或单体,形成多个硬化颗粒,所述多个硬化颗粒中的每个硬化颗粒具有由聚合或胶凝化的多个聚合物和/或单体组成的基质,其中多个硬化颗粒中的每个硬化颗粒包含第一核酸的第一引物延伸产物和第二核酸的第二引物延伸产物。在一些情况下,第一引物延伸产物和第二引物延伸产物嵌入或包埋在基质内。在一些情况下,第一引物延伸产物和第二引物延伸产物受到限制。第一和第二引物延伸产物可以是逆转录(RT)产物,第二链合成(SSS)产物或扩增产物。第一和/或第二引物延伸产物可包含衔接子序列。衔接子序列可不与第一或第二核酸分子杂交或互补。第一和第二引物延伸产物可编码可变结构序列。可变结构域可包括CD1、CDR2和/或CDR3。第一和/或第二引物延伸产物还编码恒定结构域。
每个容器内的细胞可被裂解以释放第一核酸和第二核酸。第一核酸和第二核酸可以被逆转录。可使用RT引物进行逆转录。RT引物可以与扩散限制剂连接,其中扩散限制剂限制RT引物在基质内的扩散。在一些情况下,进行模板转换反应或SSS反应。可以扩增第一核酸和第二核酸,生成第一和第二扩增产物。在一些情况下,对于每个第一或第二核酸来说,使用第一扩增引物和第二扩增引物进行扩增。第一扩增引物可与扩散限制剂连接,其中扩散限制剂限制第一扩增引物在基质内的扩散。
在一些情况下,可以清洗硬化颗粒。清洗硬化颗粒以使试剂从硬化颗粒中扩散出去。试剂可包含RT引物、扩增引物、模板转换引物、SSS引物或其任意组合。在一些情况下,可清洗硬化颗粒以使试剂扩散进入硬化颗粒中。在一些情况下,该方法还包括反复清洗硬化颗粒。清洗步骤后,可在油中重新乳化硬化颗粒。可以再次使用重新乳化的硬化颗粒作为单细胞反应以进行反应。在温度升高时进行的某些反应期间,硬化颗粒可完全或部分溶解。
第一和第二引物延伸产物可与扩散限制剂连接。扩散限制剂可以是聚合物。用作扩散限制剂的聚合物可以是聚丙烯酰胺、聚丙烯醇或多糖。扩散限制剂可以是颗粒。颗粒的直径比基质孔径大。扩散限制剂可以是基质本身。
有各种将多核苷酸与基质或扩散限制剂连接以使多核苷酸受到限制的方法。例如,第一和第二引物延伸产物可通过捕获剂与扩散限制剂连接。捕获剂可包含固定部分。固定部分可将捕获剂与扩散限制剂连接。固定部分可包含反应基团。捕获剂还可包含靶向部分。靶向部分可以是捕获寡核苷酸。第一扩增引物可包含与捕获寡核苷酸杂交的寡核苷酸序列。第一和第二扩增产物可包含与捕获寡核苷酸杂交的寡核苷酸序列,从而将第一和第二扩增产物与捕获剂连接并且从而与扩散限制剂连接。反应基团可以是琥珀酰亚胺酯、酰胺、丙烯酰胺、酰基叠氮化物、酰基卤化物、酰基腈、醛、酮、烷基卤化物、烷基磺酸盐、酸酐、芳基卤化物、氮杂环丙烷、硼酸盐、碳二亚胺、重氮烷、环氧化物、卤代乙酰胺、卤代铂、卤代三嗪、亚胺酯、异氰酸酯,异硫氰酸酯、马来酰亚胺、磷酰胺、硅卤化物、磺酸酯、磺酰卤化物、胺、苯胺、硫醇、醇、苯酚、杂环、羟胺、羧酸、乙二醇或杂环。
第一扩增产物和第二扩增产物可进一步连接,以在每个容器或硬化颗粒内形成融合的二分免疫受体多核苷酸,从而生成具有多个融合的二分免疫受体多核苷酸的融合的二分免疫受体多核苷酸文库。每个融合的多核苷酸可具有唯一的序列。第一扩增产物和第二扩增产物可通过连接反应或PRC来连接。第一扩增产物和第二扩增产物可通过磷酸二酯键连接,形成连续的多核苷酸。第一扩增产物和第二扩增产物可框内连接。
多个融合的二分免疫受体多核苷酸可从多个容器或硬化颗粒中释放出来。多个融合的二分免疫受体多核苷酸中的每个融合的二分免疫受体多核苷酸可被环化。
可将多个融合的二分免疫受体多核苷酸中的每个融合的二分免疫受体多核苷酸转化为载体(例如,通过将融合的线性多核苷酸连接至多核苷酸载体主链中)。在一些情况下,载体不是多核苷酸,可通过非多核苷酸载体将融合的二分免疫受体多核苷酸递送至宿主细胞中。
载体可以是自扩增RNA复制子、质粒、噬菌体、转座子、粘粒、病毒或病毒粒子。载体可以是病毒载体。病毒载体可衍生自逆转录病毒、扁豆病毒、腺病毒、腺相关病毒、疱疹病毒、痘病毒、α病毒、痘苗病毒、乙型肝炎病毒、人乳头瘤病毒或其伪型。载体可以是非病毒载体。非病毒载体可以是纳米颗粒、阳离子脂质、阳离子聚合物、金属纳米聚合物、纳米棒、脂质体、胶束、微泡、细胞穿透肽或脂质球。
二分免疫受体可以是T细胞受体(TCR)或B细胞受体(BCR)。TCR可包含TCRα肽序列和TCRβ肽序列,或TCRγ肽序列和TCR5肽序列;BCR可包含重肽序列和轻肽序列。
用作源细胞的细胞可以是免疫细胞。免疫细胞可以是淋巴细胞。淋巴细胞可以是T细胞或B细胞。T细胞可以是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助T细胞、自然杀伤性T细胞或其组合。T细胞可以是CD4+T细胞或CD8+T细胞。B细胞可以是浆目细胞、浆细胞、淋巴浆细胞样细胞、记忆B细胞、滤泡B细胞、边缘区B细胞、B-1细胞、B-2细胞或调节B细胞。免疫细胞可分离自肿瘤组织或血液样品。
可将融合的二分免疫受体多核苷酸递送至宿主细胞中。融合的二分免疫受体多核苷酸文库包括至少50、至少100、至少200、至少500、至少1,000、至少10,000、至少100,000、至少1,000,000或至少10,000,000个不同的融合的二分免疫受体多核苷酸,每个融合的二分免疫受体多核苷酸具有不同的序列。由第一核酸和第二核酸编码的第一肽链和第二肽链可以是二分免疫受体的同源对。
本文所述方法中使用的容器可以是液滴。液滴可以是油包水液滴。硬化颗粒可通过聚合或胶凝化聚合物和/或单体形成在液滴内。硬化颗粒可以是水凝胶颗粒。用以形成水凝胶颗粒的聚合物可以是多糖、聚丙烯酰胺或其组合。多糖可以是琼脂糖、透明质酸、羧甲基纤维素、壳聚糖、淀粉、葡聚糖或海藻酸盐。用以形成水凝胶颗粒的单体可以是丙烯酰胺或甲基丙烯酰胺单体。聚合或胶凝化的多个聚合物和/或单体可包括琼脂糖和聚丙烯酰胺的混合物。聚合或胶凝化的多个聚合物和/或单体可被交联。在一些情况下,可以使用引发剂对多个可聚合或胶凝化的聚合物和/或单体进行聚合或胶凝化。引发剂可以是UV光或化学品。在一些情况下,可通过降低容器的温度对多个可聚合或胶凝化的聚合物和/或单体进行聚合或胶凝化。例如,琼脂糖颗粒可通过降低琼脂糖的温度形成。
在另一方面,本文提供了在液体中进行以制得融合的二分免疫受体多核苷酸的方法。该方法的示例性程序可包括:(a)生成多个容器(例如,液滴),每个容器包含单个细胞(例如,免疫细胞)和多个可聚合或胶凝化的聚合物和/或单体;(b)裂解每个容器中的单个细胞以释放具有第一核酸和第二核酸的核酸,其中第一核酸和第二核酸编码免疫受体的第一肽链和第二肽链;(c)逆转录第一和第二核酸,其中第一和第二核酸是RNA;(d)通过对聚合物和/或单体进行聚合或胶凝化生成水凝胶颗粒,以使第一和第二核酸或其衍生物(例如,cDNA)包埋在水凝胶颗粒内;(e)清洗水凝胶颗粒以进行试剂交换;(f)重新乳化水凝胶颗粒;(g)扩增第一和第二核酸或其衍生物,生成第一和第二核酸的扩增产物;以及(h)连接或融合第一和第二核酸的扩增产物,形成多个融合的二分免疫受体多核苷酸。在一些情况下,在逆转录期间进行模板转换反应。在一些其他情况下,在逆转录后进行第二链合成反应。在一些情况下,在扩增第一和第二核酸后生成水凝胶颗粒,然后清洗水凝胶颗粒可去除用以扩增第一和第二核酸的内部引物。在一些其他情况下,可在逆转录后和扩增前不生成水凝胶颗粒。
在一些实施方案中,本文提供了一种在液体中进行的方法,其包括:(a)使与核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;(b)用包含第一引物和第二引物的引物组扩增第一延伸产物或其反向互补链;(c)在液体中生成聚合物基质以形成水凝胶颗粒,从而限制扩增产物的扩散;以及(d)清洗水凝胶颗粒,从而将第二引物从水凝胶颗粒中去除。第一引物或扩增产物可与扩散限制剂连接。该方法还可包括使与另一核酸分子杂交的第二寡核苷酸延伸。核酸分子和另一核酸分子可以是免疫受体的同源对。
在一些实施方案中,本文提供了一种在液体中进行的方法,其包括:(a)使与核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;(b)在液体中生成聚合物基质以形成水凝胶颗粒,从而限制第一延伸产物或其反向互补链的扩散;(c)清洗水凝胶颗粒;以及(d)用包含第一引物和第二引物的引物组扩增第一延伸产物或其反向互补链,从而形成扩增产物。第一寡核苷酸或第一延伸产物可与扩散限制剂连接。
扩散限制剂可以是聚合物或颗粒。聚合物可以是聚丙烯酰胺、聚乙二醇或多糖。颗粒的直径比聚合物基质的孔径大。扩散限制剂可以是聚合物基质。核酸分子可以是DNA或RNA。核酸分子可以是基因组DNA。核酸分子可以是信使RNA。第一寡核苷酸可以是逆转录(RT)引物。可以用模板转换寡核苷酸进一步延伸RT引物,从而生成具有模板转换寡核苷酸的反向互补序列的第一延伸产物。在一些情况下,可可用具有衔接子序列的第二链合成(SSS)引物来合成第一延伸产物的反向互补链。衔接子序列可不与核酸分子或第一延伸产物杂交或互补。第一延伸产物可包含衔接子序列。核酸分子可编码免疫受体的肽序列。在一些情况下,该方法还包括:在清洗水凝胶颗粒之后或期间,使试剂与水凝胶颗粒接触,以使试剂扩散进入水凝胶颗粒中。试剂可以是寡核苷酸或酶。酶可以是聚合酶。聚合酶可具有校正活性。聚合酶的示例包括DNA聚合酶、热稳定聚合酶、野生型聚合酶、修饰聚合酶、大肠杆菌DNA聚合酶I、T7 DNA聚合酶、Taq聚合酶、Tth聚合酶、Tli聚合酶、Pfu聚合酶、Pwo聚合酶、VENT聚合酶、DEEPVENT聚合酶、EX Taq聚合酶、LA Taq聚合酶、Sso聚合酶、Poc聚合酶、Pab聚合酶、Mth聚合酶、ES4聚合酶、Tru聚合酶、Tac聚合酶、Tne聚合酶、Tma聚合酶、Tea聚合酶,Tih聚合酶、Tfi聚合酶、铂Taq聚合酶、Tbr聚合酶、Tfl聚合酶、Pfu turbo聚合酶、Pyrobest聚合酶、Pwo聚合酶、KOD聚合酶、Bst聚合酶、Sac聚合酶、克列诺片段及其变体、修饰产物和衍生物。
在各种实施方案中,可在清洗后在油中重新乳化水凝胶颗粒。
在一些实施方案中,本文提供了一种在液体中进行的方法,其包括:(a)形成多个液滴,其中多个液滴中的至少两个液滴包含单个细胞;(b)使与来自单个细胞的第一核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;和使与来自单个细胞的第二核酸分子杂交的第二寡核苷酸延伸,从而形成第二延伸产物;(c)用包含第一引物和第二引物的第一引物组扩增第一延伸产物或其反向互补序列,从而形成第一组扩增产物;和用包含第三引物和第四引物的第二引物组扩增第二延伸产物或其反向互补序列,从而形成第二组扩增产物;以及(d)将第一组扩增产物中的扩增产物与第二组扩增产物中的扩增产物连接,其中连接包括在不存在第二和第四引物的情况下在液体中进行连接。
在一些实施方案中,本文提供了一种在液体中进行的方法,其包括:(a)形成多个液滴,其中多个液滴中的至少两个液滴包含单个细胞;(b)使与来自单个细胞的第一核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;和使与来自单个细胞的第二核酸分子杂交的第二寡核苷酸延伸,从而形成第二延伸产物;(c)用包含第一引物和第二引物的第一引物组扩增第一延伸产物或其反向互补序列,从而形成第一组扩增产物;和用包含第三引物和第四引物的第二引物组扩增第二延伸产物或其反向互补序列,从而形成第二组扩增产物;以及(d)去除第二和第四引物;以及(e)将第一组扩增产物中的扩增产物与第二组扩增产物中的扩增产物连接。多个液滴中的每个液滴可包括多个可聚合或胶凝化的聚合物和/或单体。生成在液体中的聚合物基质以形成水凝胶颗粒,从而限制第一组扩增产物和第二组扩增产物的扩散。可在缓冲液中清洗水凝胶颗粒以将第二引物和第四引物从水凝胶颗粒中去除。
在各个实施方案中,连接包括在第一和第二组扩增产物上生成粘性末端,可使用USER酶在扩增产物上生成粘性末端。在一些情况下,连接包括杂交第一和第二组扩增产物。在一些情况下,连接包括连接第一和第二组扩增产物。第一引物和第三引物可以是相同的引物(即,具有相同的序列)。第一引物、第三引物、第一组扩增产物或第二组扩增产物可与扩散限制剂连接。
在一些实施方案中,本文提供了一种在液体中进行的方法,其包括(a)形成多个液滴,其中多个液滴中的至少两个液滴包含单个细胞;(b)使与来自单个细胞的第一核酸分子杂交的第一寡核苷酸延伸,从而形成第一延伸产物;和使与来自单个细胞的第二核酸分子杂交的第二寡核苷酸延伸,从而形成第二延伸产物;(c)在液体中生成聚合物基质以形成水凝胶颗粒,从而限制第一延伸产物和第二延伸产物的扩散;(d)用包含第一引物和第二引物的第一引物组扩增第一延伸产物或其反向互补序列,从而形成第一组扩增产物;和用包含第三引物和第四引物的第二引物组扩增第二延伸产物或其反向互补序列,从而形成第二组扩增产物;以及(e)将第一组扩增产物中的扩增产物与第二组扩增产物中的扩增产物连接。该方法还包括在(c)后清洗水凝胶颗粒。该方法还可包括使试剂与水凝胶颗粒接触,以使试剂扩散进入水凝胶颗粒。试剂可包括酶或寡核苷酸。试剂可以使第一引物组和/第二引物组。酶可以是聚合酶、连接酶、USER酶或其组合。该方法还可包括清洗后在油中乳化水凝胶颗粒。第一寡核苷酸或第二寡核苷酸可与扩散限制剂连接。第一寡核苷酸或第二寡核苷酸可以是RT引物,其中第一和第二核酸分子是mRNA。可以用模板转换寡核苷酸延伸RT引物。在一些情况下,可使用第二链合成(SSS)引物来合成第一和/或第二延伸产物的反向互补链。SSS引物可包含衔接子序列。衔接子序列可不与第一和/或第二延伸产物杂交或互补。SSS引物可与RT引物一起添加或者通过扩散进入聚合物基质中单独添加。单个细胞可以是免疫细胞。免疫细胞可以是T细胞或B细胞。第一核酸分子和第二核酸分子是DNA(例如,基因组DNA)或RNA(例如,mRNA)。
在各种实施方案中,第一核酸分子可编码免疫受体的第一肽链,第二核酸分子可编码免疫受体的第二肽链。第一肽链和第二肽链是免疫受体的同源对。第一肽链或第二肽链可包含部分或全长可变结构域。可变结构域可包括CDR1、CDR2、CDR3或其组合。第一肽链或第二肽链可包含恒定结构域。在一些情况下,第一肽链和第二肽链是TCR链,并且它们还可包含铰链区、跨膜区和细胞质尾。第一肽链和第二肽链可形成功能性TCR。免疫受体可以是TCR或BCR。
在另一方面,本文提供了使用本文所述的融合的二分免疫受体多核苷酸、免疫受体表达载体或宿主细胞。本发明提供了各种应用。例如,该方法可包括:(a)获得宿主细胞群,宿主细胞群中的每个宿主细胞表达具有天然配对的TCRα和β肽序列的TCR或具有天然配对的BCR重和轻肽序列的BCR;(b)富集(i)来自群中的宿主细胞亚群或(ii)来自群中的宿主细胞亚群的被表达TCR或BCR,其中宿主细胞亚群或宿主细胞亚群的被表达TCR或BCR与靶抗原或靶MHC-抗原复合物结合;以及(c)向表达靶抗原或靶MHC-抗原复合物的受试者施用步骤(b)中富集的宿主细胞亚群或亚群的被表达TCR或BCR。
可使用本文所述的方法获得宿主细胞群。可通过使宿主细胞群或被表达TCR或BCR与靶抗原或靶MHC-抗原复合物接触来富集T细胞亚群。MHC可以是MHC四聚体。富集的宿主细胞亚群或被表达TCR或BCR可通过注射施用于受试者。注射可包括静脉内注射,皮下注射,皮内注射或肌内注射。靶抗原是新生抗原或肿瘤相关抗原。受试者可患有癌症或自身免疫疾病。
在另一方面,本文提供了一种方法,其包括:(1)提供多个至少1,000个细胞,至少1,000个细胞中的每个细胞包含TCRα链和TCRβ链;(2)提供多个至少1,000个隔室,至少1,000个隔室中的每个隔室包含固体支持物,其中固体支持物包含:(a)第一多核苷酸,其包含第一共同序列、第二共同序列和编码第一和第二共同序列之间的TCRα链的蛋白编码序列,和(b)第二多核苷酸,其包含第三共同序列、第四共同序列和编码第三和第四共同序列之间的TCRβ链的蛋白编码序列,其中每个隔室中的TCRα链和TCRβ链是存在于多个细胞中的至少一个细胞中的同源对,从而提供各自编码TCRα链的第一多个蛋白编码序列和各自编码TCRβ链的第二多个蛋白编码序列;以及(3)物理上连接每个隔室中的第一多核苷酸和第二多核苷酸。第一多个蛋白编码序列可包含至少10个TRAV亚组,第二多个蛋白编码序列可包含至少10个TRBV亚组。至少1,000个隔室中的每个隔室可包含来自至少1,000个细胞中的细胞。隔室可以是孔、微孔或液滴。固体支持物可以是珠、水凝胶颗粒,或者孔或微孔表面。第一共同序列、第二共同序列、第三共同序列或第四共同序列在多个至少1,000个隔室中可以是相同的序列。
治疗方案
本文公开了治疗方案中使用的细胞(例如,免疫受体程序化受体)。例如,受试者可接受细胞作为用于治疗癌症或疾病的治疗方案的一部分。治疗方案可包括:手术、化疗、放疗、免疫抑制剂、免疫刺激剂、抗真菌剂、抗病毒药物、抗生素或止吐药等等。在一些情况下,细胞组合物可以与骨髓移植、使用氟达拉平、外束辐射治疗(XRT)、环磷酰胺等化疗剂或者OKT3或CAMPATH等抗体的T细胞消融疗法一起(例如,前、同时或之后)施用于受试者。在一些情况下,在手术前或后施用扩增的细胞。在一些情况下,手术可以是肿瘤切除术。可以进行手术以使TIL或TIT分离。
使用治疗有效量的细胞进行施用。在一些情况下,向受试者施用约5x1010个细胞。在一些情况下,约5x1010个细胞表示施用于受试者的细胞的平均量。在一些实施方案中,约5x1010个细胞对于在受试者中产生治疗性反应来说是必需的。在一些实施方案中,可向受试者施用至少约1x106个细胞、至少约2x106个细胞、至少约3x106个细胞、至少约4x106个细胞、至少约5x106个细胞、至少约6x106个细胞、至少约8x106个细胞、至少约9x106个细胞、至少约1x107个细胞、至少约2x107个细胞、至少约3x107个细胞、至少约4x107个细胞、至少约5x107个细胞、至少约6x107个细胞、至少约6x107个细胞、至少约8x107个细胞、至少约9x107个细胞、至少约1x108个细胞、至少约2x108个细胞、至少约3x108个细胞、至少约4x108个细胞,至少约5x108个细胞,至少约6x108个细胞,至少约6x108个细胞、至少约8x108个细胞、至少约9x108个细胞、至少约1x109个细胞、至少约2x109个细胞、至少约3x109个细胞、至少约4x109个细胞、至少约5x109个细胞、至少约6x109个细胞、至少约6x109个细胞、至少8x109个细胞、至少约9x109个细胞、至少约1x1010个细胞、至少约2x1010个细胞、至少约3x1010个细胞、至少约4x1010个细胞、至少约5x1010个细胞、至少约6x1010个细胞、至少约6x1010个细胞、至少约8x1010个细胞,至少约9x1010个细胞,至少约1x1011个细胞,至少约2x1011个细胞,至少约3x1011个细胞,至少约4x1011个细胞,至少约5x1011个细胞、至少约6x1011个细胞、至少约6x1011个细胞、至少约8x1011个细胞、至少约9x1011个细胞、或至少约1x1012个细胞。例如,可向受试者施用约5x1011个细胞。在另一示例中,以3x106个细胞开始,可使细胞扩增至约5x1010个细胞并施用于受试者。在一些情况下,使细胞扩增至足以用于治疗的数目。例如,对5x107个细胞进行快速扩增以生成足以用于治疗用途的数目。在一些情况下,足以用于治疗用途的数目可以是5x1010。可以输注任意数目的细胞以用于治疗用途。例如,患者可输注有1x106至5x1012(含)之间的大量细胞。病人可输注尽可能多的可为他们所生成的细胞。在一些情况下,输注至患者中的细胞并未全部工程化。例如,可使输注入患者中的至少90%的细胞工程化。在其他情况下,可使输注入患者中的至少40%的细胞工程化。对患者产生治疗效果所需的细胞量可根据细胞的活力和细胞被基因修饰的效率而变化。在一些情况下,基因修饰后细胞活力的产物(例如,扩增)可对应于可施用于受试者的治疗性等分细胞。在一些情况下,基因修饰后细胞活力的增加可对应于施用于患者产生治疗效果所必需的细胞数量的减少。
在一些情况下,一种方法可包括计算和/或向受试者施用能对受试者中治疗性反应产生作用所必需的工程化细胞的量。在一些实施方案中,对影响受试者中的治疗性反应产生作用所必需的工程化细胞的量包括确定工程化细胞的活力。在一些实施方案中,为了对受试者中的治疗性反应产生作用,施用于受试者的细胞是活细胞。在一些实施方案中,为了对受试者中的治疗性反应产生作用,至少约95%、至少约90%、至少约85%、至少约80%、至少约75%、至少约70%、至少约65%、至少约60%、至少约55%、至少约50%、至少约45%、至少约40%、至少约35%、至少约30%、至少约25%、至少约20%、至少约15%、至少约10%的细胞是活细胞。在一些实施方案中,为了对受试者中的治疗性反应产生作用,已将至少约95%、至少约90%、至少约85%、至少约80%、至少约75%、至少约70%、至少约65%、至少约60%、至少约55%、至少约50%、至少约45%、至少约40%、至少约35%、至少约30%、至少约25%、至少约20%、至少约15%、至少约10%的细胞与编码同源免疫受体的同源对的多核苷酸一起引入。
在一些情况下,可通过定量PCR(qPCR)监测过继移植细胞。过继移植细胞的qPCR试验表明引入后受试者中存在的被修饰细胞的水平。在一些情况下,可使用流式细胞术监测过继移植细胞。例如,流式细胞术可确定4-1BB与TCR的水平。在一些情况下,可进行单个细胞的TCR PCR。在输注后第40天鉴定过继移植细胞的水平。在输注后第5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195天或最多第200天鉴定被修饰细胞等过继移植细胞的水平。
免疫刺激剂
在一些情况下,可将免疫刺激剂引入到细胞或受试者中。免疫刺激剂可以是特异性的或非特异性的。特异性免疫刺激剂可提供抗原特异性,如疫苗或抗原。非特异性免疫刺激剂可增大免疫反应或刺激免疫反应。非特异性免疫刺激剂可以是助剂。免疫刺激剂可以是疫苗、集落刺激剂、干扰素、白细胞介素、病毒、抗原、共刺激剂、免疫原性剂、免疫调节剂或免疫治疗剂。免疫刺激剂可以是细胞因子,如白细胞介素。可以将一个或多个细胞因子与本发明细胞一起引入。可利用细胞因子促进细胞毒性T淋巴细胞(包括过继转移的肿瘤特异性细胞毒性T淋巴细胞)在肿瘤微环境内扩增。可以使用IL-15等细胞因子。还可以利用免疫疗法领域中其他相关的细胞因子,如IL-2、IL-7、IL-12、IL-15、IL-21或其任意组合。在一些情况下,可以使用IL-2、IL-7和IL-15来培养本发明的细胞。白细胞介素可以是IL-2或阿地白介素。可以低剂量或高剂量施用阿地白介素。高剂量的阿地白介素方案可包括每8小时静脉内施用阿地白介素一次,如可耐受,最多14次,剂量约为0.037mg/kg(600000IU/kg)。免疫刺激剂(例如,阿地白介素)可以在细胞输注后约每8小时输注约15分钟,最多持续约4天。可以约100000IU/kg、200000IU/kg、300000IU/kg、400000IU/kg、500000IU/kg、600000IU/kg、700000IU/kg、800000IU/kg、900000IU/kg或最多约1000000IU/kg的剂量施用免疫刺激剂(例如,阿地白介素)。在一些情况下,可以约100000IU/kg至300000IU/kg、300000IU/kg至500000IU/kg、500000IU/kg至700000IU/kg、700000IU/kg至约1000000IU/kg的剂量施用免疫刺激剂(例如,阿地白介素)。可以约1剂量至约14剂量施用免疫刺激剂(例如,阿地白介素)。可以至少约1剂量、2剂量、3剂量、4剂量、5剂量、6剂量、7剂量、8剂量、9剂量、10剂量、11剂量、12剂量、13剂量、14剂量、15剂量、16剂量、17剂量、18剂量、19剂或最多20剂量施用免疫刺激剂(例如,阿地白介素)。在一些情况下,可以约1剂量到3剂量、3剂量到5剂量、5剂量到8剂量、8剂量到10剂量、10剂量到14剂量、14剂量到20剂量施用免疫刺激剂,如阿地白介素。阿地白介素的施用超过20剂量。在一些情况下,免疫刺激剂,如阿地白细胞素,可以按顺序施用或与细胞给药同时施用。例如,免疫刺激剂可以从约第-14天、约第-13天、约第-12天、约第-11天、约第-10天、约第-9天、约第-8天、约第-7天、约第-6天、约第-5天、约第-4天、约第-3天、约第-2天、约第-1天、约第0天、约第1天、约第2天、约第3天、约第4天、约第5天、约第6天、约第7天、约第8天、约第9天、约第10天、约第11天、约第12天、约第13天或最多约第14天开始施用。在一些情况下,在施用细胞群后第0天至第4天开始施用免疫刺激剂,如阿地白介素。在一些情况下,施用免疫刺激剂(例如,阿地白介素)约10分钟、约15分钟、约20分钟、约30分钟、约40分钟、约50分钟、约1小时、2小时或最多约3小时。在一些情况下,可以从施用工程化细胞前约24小时到施用工程化细胞后约4天的时间内施用免疫刺激剂(例如,阿地白介素)。可以在施用工程化细胞后第-7天、第-6天、第-5天、第-4天、第-3天、第-2天、第-1天、第0天、第1天、第2天、第3天、第4天、第5天、第6天、第7天、第8天、第9天、第10天、第11天、第12天、第13天、第14天、第15天、第16天、第17天、第18天、第19天或最多约20天施用免疫刺激剂(例如,阿地白介素)。
可提供阿地白介素等免疫刺激剂作为含有2200万IU(-1.3mg)IL-2(为无菌、白色至非白色冻干饼加50mg甘露醇和0.18mg十二烷基硫酸钠)的一次性使用瓶,用约0.17mg单碱式和0.89mg二元磷酸钠缓冲至pH值7.5(范围7.2至7.8)。小瓶可用1.2ml无菌水USP复溶,其形成的浓度为1800万IU/mL或1.1mg/mL。稀释剂应对准小瓶的侧面,以避免过度起泡。由于小瓶不含防腐剂,因此复溶的溶液应在24小时内。用50毫升5%人血清白蛋白(HSA)进一步稀释复溶的阿地白介素。在添加RIL-2之前,可以将HSA添加到稀释剂中。可接受在玻璃瓶或聚氯乙烯袋中稀释1000倍(即1mg/mL至1mcg/mL)的复溶的溶液。阿地白细胞素在冷藏和室温(2℃-30℃)下可化学稳定48小时。可根据总体重计算阿地白介素的施用量。阿地白介素的最终稀释液可在15分钟内注入。
在一些情况下,免疫刺激剂是集落刺激因子。集落刺激因子可以是G-CSF(非格司亭)。集落刺激因子可存储在300mcg/ml和480ug/1.6ml的小瓶中。可每天皮下注射非格司亭。非格司亭的施用量可以是约5mcg/kg/天。非格司亭的施用量可以是约1mcg/kg/天,非格司亭的施用量可以是约2mcg/kg/天,非格司亭的施用量可以是约3mcg/kg/天,非格司亭的施用量可以是约4mcg/kg/天,非格司亭的施用量可以是约5mcg/kg/天,非格司亭的施用量可以是约6mcg/kg/天,非格司亭的施用量可以是约7mcg/kg/天,非格司亭的施用量可以是约8mcg/kg/天,非格司亭的施用量可以是约9mcg/kg/天,非格司亭的施用量可以是约10mcg/kg/天。可以约0.5mcg/kg/天至约1.0mcg/kg/天、约1.0mcg/kg/天至约1.5mcg/kg/天、约1.5mcg/kg/天至约2.0mcg/kg/天、约2.0mcg/kg/天至约3.0mcg/kg/天、约2.5mcg/kg/天至约3.5mcg/kg/天、约3.5mcg/kg/天至约4.0mcg/kg/天、约4.0mcg/kg/天至约4.5mcg/kg/天的剂量施用非格司亭。可以每天连续施用非格司亭,直到中性粒细胞计数为至少约1.0×109/L×3天或至少约5.0×109/L。可以从施用工程化细胞后第-7、第-6、第-5、第-4、第-3、第-2、第-1、第0、第1、第2、第3、第4、第5、第6、第7、第8、第9、第10、第11、第12、第13、第14、第15、第16、第17、第18、第19或最多约20天开始施用免疫刺激剂,如非司莫司汀。
化学治疗剂
化疗剂或化合物可以是可在癌症治疗中使用的化学化合物。可以与公开的T细胞联合使用的化疗剂包括但不限于有丝分裂抑制剂(长春花生物碱)。这些包括长春新碱,长春碱,长春地辛和
Figure BDA0004071139730001641
Figure BDA0004071139730001642
(长春瑞滨,5′-去甲水生碱)。在其他情况下,化疗剂包括拓扑异构酶I抑制剂,例如喜树碱化合物。如本文所用,“喜树碱化合物”包括CamptosarTM(伊立替康HCL),HycamtinTM(拓扑替康HCL)和衍生自喜树碱及其类似物的其他化合物。可在本文所述的方法和组合物中使用的另一类别的化疗剂是足叶草毒素衍生物,如依托泊苷、替尼泊苷和米托泊齐德。本发明还包括已知作为烷基化剂的其它癌症化疗剂,其可烷基化肿瘤细胞中的遗传物质。这些包括但不限于顺铂、环磷酰胺、氮芥末、三亚甲基硫代磷酰胺、卡莫司汀、白消安、苯丁酸氮芥、贝鲁斯汀、尿嘧啶芥末、氯苯哌嗪和达卡巴嗪。本发明包括作为化疗剂的抗代谢物。这些类型试剂的示例包括阿糖胞苷、氟尿嘧啶、甲氨蝶呤、巯基嘌呤、硫唑嘌呤和丙卡巴嗪。在本文公开的方法和组合物中使用的另一类别癌症化疗剂包括抗生素。示例包括但不限于阿霉素、博莱霉素、达克霉素、柔红霉素、米特拉霉素、丝裂霉素、密托霉素C和柔红霉素。有许多商业上可用于这些化合物的脂质体制剂。本发明还包括其他癌症化疗剂,包括但不限于抗肿瘤抗体、达卡巴嗪、氮胞苷、阿姆沙林、美法仑、异环磷酰胺和米托蒽醌。
本文公开的免疫受体程序化受体细胞可与包括细胞毒素/抗肿瘤剂和抗血管生成剂的其它抗肿瘤剂联合施用。细胞毒素/抗肿瘤剂可以定义为攻击和杀死癌细胞的试剂。一些细胞毒素/抗肿瘤剂可以是烷基化剂,其可烷基化肿瘤细胞中的遗传物质,例如顺铂、环磷酰胺、氮芥、三甲硫磷酰胺、卡莫司汀、白消安、氯苯脲、贝卢斯汀、尿嘧啶芥、氯马法嗪和达卡巴嗪。其它细胞毒素/抗肿瘤剂可以是用于肿瘤细胞的抗代谢药,如阿糖胞苷、氟尿嘧啶、甲氨蝶呤、巯基嘌呤、硫唑嘌呤和丙卡巴嗪。其它细胞毒素/抗肿瘤剂可以是抗生素,例如阿霉素、博莱霉素、达克霉素、柔红霉素、米特拉霉素、丝裂霉素、密托霉素C和柔红霉素。有许多商业上可用于这些化合物的脂质体制剂。其它细胞毒素/抗肿瘤剂还可以是有丝分裂抑制剂(长春花生物碱)。这些药物包括长春新碱、长春花碱和足叶乙甙。其他细胞毒性/抗肿瘤药物包括紫杉醇及其衍生物、L-天冬酰胺酶、抗肿瘤抗体、达卡巴嗪、氮胞苷、阿姆沙林、美法仑、VM-26、异环磷酰胺、米托蒽醌和长春地辛。
可以使用抗血管生成剂。所公开的方法和组合物中使用的适宜的抗血管生成剂包括抗VEGF抗体,包括人源化和嵌合抗体、抗VEGF适体和反义寡核苷酸。其它抗血管生成抑制剂包括血管抑素、内皮抑素、干扰素、白细胞介素1(包括α和β)、白细胞介素12、维甲酸、金属蛋白酶组织抑制剂-1和-2。(TIMP-1和-2)。还可以使用小分子,包括雷佐生等拓扑异构酶,具有抗血管生成活性的拓扑异构酶II抑制剂。
与所公开的工程化细胞联合使用的其他抗癌剂可包括但不限于阿昔维辛;阿克拉霉素;盐酸阿托咪唑;阿托品;阿托色林;阿地白素;阿他雷他明;氨苄霉素;阿美坦酮醋酸酯;氨基谷氨酰胺;氨吖啶;阿那曲唑;蒽霉素;天门冬酰胺酶;阿斯匹林;阿瓦斯丁;阿扎胞苷;氮泽巴;阿托霉素;巴替马斯他;苯佐替派;比卡鲁胺;双香烯盐酸盐;二甲酰比沙芬;比泽林;博莱霉素硫酸酯;短喹钠;布洛吡嗪;白消安;卡他霉素;卡舒孕酮;卡酰胺;卡比妥;卡铂;卡莫司汀;盐酸卡柔比星;卡柔比星;雪地芬醇;氯霉素;卷曲霉素;顺铂;克拉屈滨;甲磺酸克里斯蒂钠醇;环磷酰胺;阿糖胞苷;达卡巴嗪;达卡霉素;盐酸柔红霉素;地西他滨;右甲基铂;地扎古宁;甲磺酸地扎古宁;二嗪喹酮;多西紫杉醇;阿霉素;盐酸阿霉素;屈洛昔芬;枸橼酸屈洛昔芬;丙酸屈莫司他龙;多氮霉素;依达霉素;盐酸依氟硝胺;埃尔沙明;依洛铂;安普罗酯;外丙哌啶;盐酸表阿霉素;埃尔布洛唑;盐酸埃索霉素;雌霉素;磷酸雌霉素钠;依他唑;依托泊苷;磷酸依托泊苷;依托普利;盐酸法曲唑;法扎拉滨;芬瑞替尼;氟尿嘧啶;磷酸氟达拉滨;氟尿嘧啶;氟罗西他滨;福斯奎酮;福斯特里辛钠;吉西他滨;盐酸吉西他滨;羟基脲;盐酸伊达柔比星;异环磷酰胺;伊莫福辛;白细胞介素II(包括重组白细胞介素II或rIL2)、干扰素α-2a;干扰素α-2b;干扰素α-n1;干扰素α-n3;干扰素β-Ia;干扰素γ-Ib;依普罗铂;盐酸伊立替康;醋酸兰瑞肽;来曲唑;醋酸亮丙瑞林;盐酸利奥唑;洛美曲索钠;洛莫司汀;盐酸洛沙桐;马索罗酚;美登素;盐酸氮芥;醋酸甲地孕酮;醋酸美伦孕酮;美法仑;美诺立尔;巯基嘌呤;甲氨蝶呤;甲氨蝶呤钠;氯苯氨啶;美乌替派;米坦度胺;线虫素;丝裂红素;丝裂菌褶素;丝裂马菌素;丝裂霉素;丝裂帕菌素;米托坦;盐酸米托蒽醌;霉酚酸;诺可达唑;诺伽霉素;奥马铂;奥昔舒仑;紫杉醇;培门冬酶;佩里霉素;戊氮芥;硫酸培洛霉素;培磷酰胺;哌泊溴烷;哌泊舒凡;盐酸吡咯蒽醌;普卡霉素;普洛美坦;波菲霉素钠;波菲霉素;泼尼莫司汀;盐酸丙卡巴嗪;嘌呤霉素;盐酸嘌呤霉素;吡唑呋啉;核糖嘌呤;罗格列替胺;番红花醇;盐酸番红花醇;塞莫司汀;辛曲嗪;司帕沙星钠;司帕霉素;盐酸螺锗;螺莫司汀;螺旋铂;链霉素;链脲佐菌素;舒洛芬;塔利霉素;替卡伦钠;替加氟;盐酸替洛沙酮;替莫泊芬;替尼泊苷;特罗昔酮;睾酮;噻咪嗪;硫鸟嘌呤;硫替哌;硫唑呋啉;替拉帕扎明;枸橼酸托瑞米芬;醋酸曲司酮;磷酸三氯立宾;曲美曲酯;曲美曲酯葡糖醛酸酯;曲普瑞林;盐酸微管唑;尿嘧啶芥末;脲脲哌酸;伐前肽;维替泊芬;硫酸长春花碱;硫酸长春新碱;硫酸长春花碱;硫酸长春花碱;硫酸长春吡定;硫酸长春甘氨酸酯;硫酸长春亮罗辛;酒石酸长春瑞滨;硫酸长春罗辛;硫酸长春唑定;伏罗唑;齐尼铂;生姜素;盐酸唑柔比星。其他抗癌药物包括但不限于:20-表-1,25-二羟维生素D3;5-乙炔基尿嘧啶;阿比特龙;阿克拉比星;酰氟乙烯;阿德香酚;阿托色林;醛类白细胞素;ALL-TK拮抗剂;阿他瑞明;安巴霉素;阿米多克斯汀;阿米福汀;氨基乙酰丙酸;氨柔比星;安萨克林;阿那格雷;阿那曲唑;穿心莲内酯;血管生成抑制剂;拮抗剂D;拮抗剂G;antarelix;抗背向形态发生蛋白-1;抗雄激素,前列腺癌;抗雌激素;抗肿瘤;反义寡核苷酸;甘氨酸蚜霉素;凋亡基因调节剂;凋亡调节剂;阿糖胞苷酸;阿糖胞苷-DL-PTBA;精氨酸脱氨酶;阿苏拉克林;阿他美坦;阿曲霉素;阿昔那他汀1;阿昔那他汀2;阿昔那他汀3;阿扎司琼;阿扎毒素;阿扎酪氨酸;浆果赤霉素III衍生物;巴他玛司他;BCR/ABL拮抗剂;苯甲酰氯;苯甲酰基司他丁;β-内酰胺衍生物;β-阿利酮;β-阿霉素B;桦木酸;bFGF抑制剂;比卡鲁胺;双蒽醌;双氮丙啶亚精胺;双萘甲酰胺;双司他丁A;比泽林;布雷莱特;布洛吡嗪;布托替坦;丁硫氨酸亚砜;钙泊三醇;钙磷素C;喜树碱衍生物;金丝桃素IL-2;卡培他滨;甲酰胺氨基三唑;羧酰胺三唑;CaRestM3;CARN 700;软骨衍生抑制剂;卡折来新;酪蛋白激酶抑制剂(ICOS);蓖麻精胺;抗菌肽B;西曲瑞利;氯仿;氯喹恶啉磺酰胺;西卡前列素;顺式卟啉;克拉屈滨;氯米芬类似物;克霉唑;卡霉素A;卡霉素B;卡霉素A4;卡霉素类似物;柯纳金;克拉姆贝西丁816;克硝醇;隐霉素8;隐霉素A衍生物;姜黄素A;环戊四醌;环磷酰胺;环丙霉素;阿糖胞苷烷磷脂;细胞溶解因子;细胞抑制素;达昔单抗;地西他滨;脱氢胞苷B;地索瑞林;地塞米松;地西磷酰胺;右雷佐生;右维拉帕米;亚斯醌;膜海鞘素B;didox;二乙基去甲精胺;二氢-5-氮杂胞苷;二氢紫杉醇,9-;二氧霉素;二苯螺莫司汀;多西他赛;二十二烷醇;多拉司琼;多西氟尿啶;屈洛昔芬;杜卡霉素SA;依布硒啉;依考莫斯汀;依地福辛;依决洛单抗;依洛尼赛;榄香烯;乙嘧替氟;表柔比星;依普列斯特;依可霉素类似物;雌激素激动剂;雌激素拮抗剂;依他硝唑;磷酸依托泊苷;依西美坦;法曲唑;法扎拉滨;芬瑞替尼;非格拉司汀;非那雄胺;黄吡利多;氟哌啶醇;氟司酮;氟达拉滨;氟柔红霉素盐酸盐;福非尼美司;福美斯塔;福斯特里辛;福特莫司汀;钆替沙芬;硝酸镓;加罗西他滨;甘乃瑞利;明胶酶抑制剂;吉西他滨;谷胱甘肽抑制剂;庚磺胺;海藻氨酸;六亚甲基二乙酰胺;金丝桃素;伊班膦酸;伊达比星;依多昔芬;依达曼酮;伊莫福辛;伊洛马斯特;咪唑环磷酰胺;咪喹莫特;免疫刺激肽;胰岛素样生长因子-1受体抑制剂;干扰素激动剂;干扰素;白介素;依苯胍;碘多柔比星;依泊美醇,4-;伊罗普利;伊索格拉丁;异苄唑;异高卤素B;依他司琼;莱莉花素内酯;卡海拉内酯F;三醋酸拉美拉林-N;兰瑞肽;雷纳霉素;利诺格拉司汀;硫酸香菇多糖;瘦素他汀;来曲唑;白血病抑制因子;白细胞α-干扰素;亮丙瑞林+雌激素+孕酮;亮丙瑞林;左旋咪唑;利奥唑;线性多胺类似物;亲脂性双糖肽;亲脂性铂化合物;赖索昔康胺7;洛巴铂;龙布里星;洛美曲索;洛尼达明;洛伐他汀;洛伐他汀;洛索里滨;鲁托替康;叶黄素;溶血磷脂;裂解肽;麦坦星;甘露聚糖A;万寿菊酯;美索洛可;马斯平;基质溶血素抑制剂;基质金属蛋白酶抑制剂;美诺加里;美巴龙;美托瑞林;甲硫氨酸酶;甲氧氯普胺;米非司酮;米非司酮;米非司酮;米利莫司汀;错配双链RNA;丝裂霉素;丝裂霉素类似物;丝裂霉素甲酰胺;丝裂毒素成纤维细胞生长因子皂草素;米托蒽醌;莫法罗汀;莫格列莫司汀;单克隆抗体,人绒毛膜促性腺激素;单磷酰脂质A+肌杆菌细胞壁sk;莫匹达莫;多药耐药基因抑制剂;多药抑癌1基疗法;芥子气抗癌药;米卡哌啶B;分枝杆菌细胞壁提取物;杨梅酮;N-乙酰地那林;N-取代苯甲酰胺;萘法林;纳洛酮+戊唑嗪;纳巴芬;萘普汀;纳托格拉斯汀;奈达铂;尼莫霉素;尼里膦酸;中性内肽酶;尼鲁他胺;尼沙霉素;一氧化氮调节剂;氮氧化物抗氧化剂;硝基精;O6-苄基鸟嘌呤;奥曲肽;奥基松;寡核苷酸;奥那普利斯通;昂丹司琼;昂丹司琼;口服细胞因子诱导剂;奥美拉汀;奥沙坦;奥沙利铂;奥沙霉素;紫杉醇;紫杉醇类似物;紫杉醇衍生物;帕劳胺;棕榈酰根霉素;帕米膦酸;人参三醇;帕诺米芬;对羟肌动蛋白;帕泽利汀;聚乙二醇天冬氨酸;佩尔地辛;戊聚糖聚硫酸钠;戊甾;戊曲唑;潘氟龙;全氟酰胺;紫苏醇;非那霉素;苯乙酸酯;磷酸酶抑制剂;匹昔巴尼;盐酸毛果芸香碱;吡柔比星;吡雷西姆;胎盘素A;胎盘素B;纤溶酶原激活物抑制剂;铂络合物;铂化合物;铂三胺络合物;泊菲莫钠;泊菲霉素;泼尼松;丙基双吖啶酮;前列腺素J2;蛋白酶体抑制剂;基于蛋白A的免疫调节剂;蛋白激酶C抑制剂;蛋白激酶C抑制剂,微藻;蛋白酪氨酸磷酸酶抑制剂;嘌呤核苷磷酸化酶抑制剂;紫癜素;吡唑啉胞苷;吡啶氧基化血红蛋白聚氧乙烯结合物;raf拮抗剂;雷替曲辛;雷莫司琼;ras-法尼基蛋白转移酶抑制剂;ras抑制剂;ras-GAP抑制剂;去甲基瑞替利汀;铼Re186-乙膦酸盐;根霉素;核酶;RII-视黄酰胺;洛太米特;罗希吐碱;罗呋肽;罗喹尼美克斯;茜草酮B1;茜草酚;番红花酚;沙丁胺醇;沙丁胺醇;沙丁胺醇;沙丁胺醇;Sdi1模拟物;司莫司汀;衰老衍生抑制剂1;正义寡核苷酸;信号转导抑制剂;信号转导调节剂;单链抗原结合蛋白;西索非兰;索布唑烷;硼卡钠;苯乙酸钠;溶醇;生长抑素结合蛋白;索那明;司帕沙星;司匹霉素D;螺莫司汀;脾细胞开放素;海绵生长抑素1;角鲨胺;干细胞抑制物;干细胞分裂抑制物;斯蒂哌胺;溶血素抑制物;亚硫诺新;超活性血管活性肠肽拮抗剂;苏拉地斯塔;苏拉明;苦马豆素;合成糖胺聚糖;塔利莫司汀;他莫昔芬碘;牛磺莫司汀;他扎罗汀;替加氟;替加氟;端粒酶抑制剂;替莫泊芬;替莫唑胺;替尼泊苷;四氯癸氧基;四唑嗪;沙利布斯汀;硫可拉林;血小板生成素;血小板生成素模拟物;胸腺肽;胸腺肽受体激动剂;胸腺肽;促甲状腺激素;乙基乙硫丙脯氨酸锡;替拉帕扎明;二氯化钛;托瑞米芬;全能性干细胞因子;翻译抑制剂;维甲酸;三乙酰尿苷;曲美瑞宾;曲美力士;曲普瑞林;托烷司琼;妥罗雄脲;酪氨酸激酶抑制剂;酪磷素;UBC抑制剂;乌苯美司;泌尿生殖窦源性生长抑制因子;尿激酶受体拮抗剂;伐普肽;拟青霉素B;红细胞基因治疗;维拉雷索、维拉明、凡尔丁、维替泊芬、长春瑞滨、文克斯汀、维他辛、伏罗唑、扎诺特罗、泽尼铂、齐拉斯可和司他宁。可以临床有效剂量施用任意前述化疗剂。可从施用细胞群后约第-14、第-13、第-12、第-11、第-10、第-9、第-8、第-7、第-6、第-5、第-4、第-3、第-2、第-1、第0、第1、第2、第3、第4、第5、第6、第7、第8、第9、第10、第11、第12、第13或最多约第14天开始施用化疗剂。在一些情况下,受试者可患有对化疗反应迟钝的难治性癌症。
抗真菌剂
在一些情况下,向接受免疫受体程序化受体细胞的受试者施用抗真菌疗法。抗真菌剂可以是能杀死或防止真菌生长的药物。抗真菌剂的目标可包括甾醇生物合成、DNA生物合成和β-葡聚糖生物合成。抗真菌剂还可以是叶酸合成抑制剂或核酸交联剂。叶酸合成抑制剂可以是磺胺类药物。例如,叶酸合成抑制剂可以是抑制叶酸的真菌合成的药剂或竞争性抑制剂。磺胺类药物或叶酸合成抑制剂可以是甲氨蝶呤或磺胺甲噁唑。在一些情况下,抗真菌剂可以是核酸交联剂。交联剂可抑制真菌中的DNA或RNA过程。例如,交联剂可以是5-氟胞嘧啶,它可以是胞嘧啶的氟化类似物。5-氟胞嘧啶可通过胞浆内转化为5-氟尿嘧啶来抑制DNA和RNA合成。其他抗真菌剂可以是灰黄霉素。灰黄霉素是由灰黄青霉(Penicilliumgriseofulvum)产生的抗真菌抗生素。灰黄霉素抑制真菌中的有丝分裂并且被认为是交联剂。另一交联剂可以是烯丙胺(萘替芬和特比萘芬),其在角鲨烯环氧化酶水平上抑制麦角甾醇的合成;一种吗啉衍生物(阿莫洛芬)在麦角甾醇途径的后续步骤中抑制麦角甾醇的合成。
在一些情况下,抗真菌剂可以来自一类多烯、唑、烯丙胺或棘白菌素。在一些实施方案中,多烯抗真菌剂是两性霉素B、念珠菌素、菲利平、汉霉素、纳他霉素、制霉菌素或利莫霉素。在一些情况下,抗真菌剂来自唑类家族。唑类抗真菌剂可抑制羊毛甾醇14α-脱甲基酶。唑类抗真菌剂可以是咪唑,如联苯苄唑、丁醚甲环唑、克霉唑、益康唑、芬太尼唑、异康唑、酮康唑、卢利康唑、咪康唑、奥莫康唑、奥克康唑、舍他康唑、舒可唑或硫康唑。唑类抗真菌剂可以是三唑类,如阿尔巴康唑、埃夫那康唑、氟环唑、氟康唑、伊曲康唑、泊沙康唑、丙环唑、雷夫康唑、特康唑或伏立康唑。在一些情况下,唑可以是三唑,如阿巴芬净。抗真菌剂可以是烯丙胺,如阿莫罗芬、布替萘芬、萘替芬或特比萘芬。抗真菌剂可以是棘白菌素,如阿尼芬净、卡泊芬净或米卡分净。可以是抗真菌剂的另一药剂可以是橙酮、苯甲酸、环匹罗司、氟胞嘧啶、灰黄霉素、氟丙炔碘、托萘酯、十一碳烯酸、囊紫罗兰或秘鲁香脂。
本领域技术人员可基于感染个体的真菌适当地确定应用哪种已知抗真菌剂物。在一些情况下,受试者可接受氟康唑以及工程化细胞。可按比例施用抗真菌疗法。
氟康唑可以200mg片剂的形式获得。在一些情况下,氟康唑可以50mg、100mg、150mg、200mg、250mg、300mg、350mg或最多400mg片剂的形式施用。对于不能耐受口服制剂的受试者的静脉给药,氟康唑以2mg/毫升的注射液形式提供。应以200mg/小时的最大静脉速率施用。在一些情况下,输液速率可以是50mg/小时至500mg/小时。输液速率也可为约20mg/小时至约30mg/小时、约30mg/小时至约40mg/小时、约40mg/小时至约50mg/小时、约50mg/小时至约60mg/小时、约60mg/小时至约70mg/小时、约70mg/小时至约80mg/小时、约80mg/小时至约90mg/小时、约90mg/小时至约100mg/小时,约100mg/小时至约120mg/小时、约120mg/小时至约140mg/小时、约140mg/小时至约160mg/小时、约160mg/小时至约180mg/小时、约180mg/小时至约200mg/小时、约180mg/小时至约220mg/小时、约220mg/小时至约240mg/小时或约240mg/小时至约275mg/小时。
可以治疗效剂量施用抗真菌剂。治疗有效剂量是治疗或预防真菌感染但对治疗癌症无效的剂量。例如,氟康唑等抗真菌剂的施用剂量是约10mg至约1000mg。氟康唑的施用剂量是约10mg、20mg、30mg、40mg、50mg、60mg、70mg、80mg、90mg、100mg、125mg、150mg、175mg、200mg、225mg、250mg、275mg、300mg、325mg、350mg、375mg、400mg、425mg、450mg、475mg、500mg、525mg、550mg、575mg、600mg、625mg、650mg、675mg、700mg、725mg、750mg、775mg、800mg、825mg、850mg、875mg、900mg、925mg、950mg、975mg或最多约1000mg。氟康唑的施用剂量是400mg。在一些情况下,可以在细胞疗法之前、细胞疗法期间或细胞疗法之后施用抗真菌剂。例如,可以在细胞疗法之后的约第0天(将细胞疗法引入受试者中的那天)至约第4天施用氟康唑。在进行细胞疗法前约14天到完成细胞疗法后的约14天施用抗真菌剂。可以从第-14天、第-13天、第-12天、第-11天、第-10天、第-9天、第-8天、第-7天、第-6天、第-5天、第-4天、第-3天、第-2天、第-1天、第0天、第1天、第2天、第3天、第4天、第5天、第6天、第7天、第8天、第9天、第10天、第11天、第12天、第13天或多达第14天开始施用抗真菌剂。
在一些情况下,受试者可接受免疫抑制剂作为治疗方案的一部分。免疫抑制剂可指放射治疗剂、生物剂或化学剂。在一些情况下,免疫抑制剂可包括化学剂。例如,化学剂包括由以下试剂组成的组中的至少一个成员:环磷酰胺、甲氨蝶呤、苯丙胺、美法仑、异环磷酰胺、硫替帕、六甲基三聚氰胺、白消安、氟达拉滨、亚硝基脲、铂、甲氨蝶呤、硫唑嘌呤、巯基嘌呤、丙卡巴嗪、达卡巴嗪、替莫唑胺、卡莫司汀、洛莫司汀、链脲佐菌素、氟尿嘧啶、达卡霉素、蒽环素、丝裂霉素C、博莱霉素和光神霉素。化学剂可以是环磷酰胺或氟达拉滨。
此外,免疫抑制剂可包括糖皮质激素、细胞抑制剂、抗体、抗免疫亲和素或其任何衍生物。糖皮质激素可抑制过敏反应、过敏反应、炎症和自身免疫状况。糖皮质激素可以是强的松、地塞米松和氢化可的松。免疫抑制疗法可包括抑制免疫系统的任何治疗。免疫抑制疗法可有助于减轻、最小化或去除受体中的移植排斥。例如,免疫抑制治疗可包括免疫抑制药物。可在移植前、期间和/或之后使用的免疫抑制药物包括但不不限于MMF(霉酚酸酯(Cellcept))、ATG(抗胸腺细胞球蛋白)、抗CD154(CD4OL)、抗CD40(2C10,ASKP1240,CCFZ533X2201)、阿来单抗(Campath)、抗CD20(利妥昔单抗)、抗IL-6R抗体(托珠单抗,Actemra)、抗IL-6R抗体(托珠单抗,Actemra)、抗IL-6抗体(沙鲁单抗,奥洛珠单抗)、CTLA4-Ig(阿巴西替/奥瑞希钠)、贝拉西普(LEA29Y)、西罗莫司(Rapimuine)依维莫司、他克莫司(Prograf)、达利珠单抗(Ze-napax)、巴利昔单抗、英夫利昔单抗(Remicade)、环孢霉素、脱氧瓜氨酸、可溶性补体受体1、眼镜蛇毒因子、compstatin、抗C5抗体(依库丽单抗/依库珠单抗)、甲基强的松龙、FTY720、依维莫司、来氟米特、抗IL-2R-Ab、雷帕霉素、抗CXCR3抗体,抗ICOS抗体、抗OX40抗体和抗CD122抗体。此外,可以一起或顺序使用一种或多于一种的免疫抑制剂/药物。一种或多于一种的免疫抑制剂/药物可用于诱导治疗或用于巩固治疗。可在诱导或巩固阶段使用相同或不同的药物。在一些情况下,达克珠单抗可用于诱导治疗,他克莫司(Prograf)和西罗莫司(Rapimune)可用于巩固治疗。达利珠单抗(Zenapax)也可用于诱导治疗,小剂量他克莫司(Prograf)和小剂量西罗莫司(Rapimune)可用于巩固治疗。免疫抑制还可使用非药物方案实现,包括但不限于全身照射、胸腺照射、全和/或部分脾切除术。
在一些情况下,可施用细胞抑制剂以用于免疫抑制。细胞抑制剂可抑制细胞分裂。细胞抑制剂可以是嘌呤类似物。细胞抑制剂可以是烷基化剂、抗代谢药物如甲氨蝶呤、硫唑嘌呤或巯基嘌呤。细胞抑制剂可以是环磷酰胺、甲氨蝶呤、苯丙胺、美法仑、异环磷酰胺、硫替帕、六甲基三聚氰胺、白消安、氟达拉滨、亚硝基脲、铂、甲氨蝶呤、硫唑嘌呤、巯基嘌呤、丙卡巴嗪、达卡巴嗪、替莫唑胺、卡莫司汀、洛莫司汀、链脲佐菌素、氟尿嘧啶、达卡霉素、蒽环素、丝裂霉素C、博莱霉素和光神霉素中的至少一种。
在一些情况下,可以施用氟达拉宾等免疫抑制剂作为治疗方案的一部分。磷酸氟达拉滨可以是合成的嘌呤核苷,其与生理核苷的区别在于糖部分可以是阿拉伯糖,而不是核糖或脱氧核糖。氟达拉滨可以是嘌呤抗代谢拮抗剂。氟达拉滨可作为一种白色冻干固体饼形式的磷酸氟达拉滨粉末以50mg小瓶供给。在用2mL注射用无菌水复溶成25mg/mL的浓度后,溶液的pH值可以达到7.7。氟达拉滨在2-8℃下可稳定至少18个月;复溶时,氟达拉滨可在室温下稳定至少16天。由于无防腐剂,复溶的氟达拉滨可在8小时内施用。具体的相容性信息应参考专业的参考文献。氟达拉滨在血清中去磷酸,胞内运输并转化为核苷酸氟达拉滨三磷酸酯;该2-氟-ara-ATP分子被认为是药物的细胞毒性作用所必需的。氟达拉滨抑制DNA聚合酶、核糖核酸还原酶、DNA引发酶,并且可干扰链延伸、RNA和蛋白质合成。氟达拉滨可作为静脉输注100毫升0.9%氯化钠,USP超过15至30分钟。剂量可根据体表面积(BSA)确定。如果患者肥胖(BMI>35),可以使用实际体重计算药物剂量。在一些情况下,免疫抑制剂,如氟达拉滨,可以受试者体表面积的约20mg/m2至约30mg/m2的剂量施用。在一些情况下,免疫抑制剂,如氟达拉滨,可以约5mg/m2至约10mg/m2受试者体表面积、约10mg/m2至约15mg/m2受试者体表面积、约15mg/m2至约20mg/m2受试者体表面积、约20mg/m2至约25mg/m2受试者体表面积、约25mg/m2至约30mg/m2受试者体表面积、约30mg/m2到约40mg/m2受试者体表面积的剂量施用。在一些情况下,免疫抑制剂,如氟达拉滨,可以约1mg/m2、2mg/m2、3mg/m2、4mg/m2、5mg/m2、6mg/m2、7mg/m2、8mg/m2、9mg/m2、10mg/m2、10mg/m2、11mg/m2、12mg/m2、13mg/m2、14mg/m2、15mg/m2、16mg/m2、17mg/m2、18mg/m2、19mg/m2、20mg/m2、21mg/m2、22mg/m2、23mg/m2、24mg/m2、25mg/m2、26mg/m2、27mg/m2、28mg/m2、29mg/m2、30mg/m2、31mg/m2、32mg/m2、33mg/m2、34mg/m2、35mg/m2、36mg/m2、37mg/m2、38mg/m2、39mg/m2、40mg/m2、41mg/m2、42mg/m2、43mg/m2、44mg/m2、45mg/m2、46mg/m2、47mg/m2、48mg/m2、49mg/m2、50mg/m2、51mg/m2、52mg/m2、53mg/m2、54mg/m2、55mg/m2、56mg/m2、57mg/m2、58mg/m2、59mg/m2、60mg/m2、61mg/m2、62mg/m2、63mg/m2、64mg/m2、65mg/m2、66mg/m2、67mg/m2、68mg/m2、69mg/m2、70mg/m2、71mg/m2、72mg/m2、73mg/m2、74mg/m2、75mg/m2、76mg/m2、77mg/m2、78mg/m2、79mg/m2、80mg/m2、81mg/m2、82mg/m2、83mg/m2、84mg/m2、85mg/m2、86mg/m2、87mg/m2、88mg/m2、89mg/m2、90mg/m2、91mg/m2、92mg/m2、93mg/m2、94mg/m2、95mg/m2、96mg/m2、97mg/m2、98mg/m2、99mg/m2或最多约100mg/m2受试者体表面积的剂量施用。在一些情况下,免疫抑制剂,如氟达拉滨,剂量为25mg/m2,加入100ml 0.9%氯化钠,USP,并注射约15至30分钟。
在一些情况下,可以使用环磷酰胺等免疫抑制剂作为治疗方案的一部分。环磷酰胺可以是氮芥衍生物烷基化剂。在肝脏中转化为活性代谢物后,环磷酰胺起着烷基化剂的作用;该药物还具有强大的免疫抑制活性。静脉施用后血清半衰期为3~12h;施用后72小时内可在血清中检测到药物和/或其代谢物。按照无菌注射用水的指示进行重组后,环磷酰胺可在室温下稳定24小时,或在2-8℃下稳定6天。环磷酰胺可在250ml D5W中稀释,并输注1小时以上。剂量按受试者的体重计算。受试者肥胖(BMI>35),使用本文所述的实际重量计算药物剂量。在一些情况下,可以约1mg/kg至约3mg/kg、约3mg/kg至约5mg/kg、约5mg/kg至约10mg/kg、约10mg/kg至约20mg/kg、约20mg/kg至约30mg/kg、约30mg/kg至约40mg/kg、约40mg/kg至约50mg/kg、约50mg/kg至60mg/kg、约60mg/kg至约70mg/kg、约70mg/kg至约80mg/kg、约80mg/kg至约90mg/kg、约90mg/kg至约100mg/kg的剂量施用环磷酰胺等免疫抑制剂。在一些情况下,可以超过受试者的50mg/kg的剂量施用环磷酰胺等免疫抑制剂。在一些情况下,可以受试者的约1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、6mg/kg、7mg/kg、8mg/kg、9mg/kg、10mg/kg、11mg/kg、12mg/kg、13mg/kg、14mg/kg、15mg/kg、16mg/kg、17mg/kg、18mg/kg、19mg/kg、20mg/kg、21mg/kg、22mg/kg、23mg/kg、24mg/kg、25mg/kg、26mg/kg、27mg/kg、28mg/kg、29mg/kg、30mg/kg、31mg/kg、32mg/kg、33mg/kg、34mg/kg、35mg/kg、36mg/kg、37mg/kg、38mg/kg、39mg/kg、40mg/kg、41mg/kg、42mg/kg、43mg/kg、44mg/kg、45mg/kg、46mg/kg、47mg/kg、48mg/kg、49mg/kg、50mg/kg、51mg/kg、52mg/kg、53mg/kg、54mg/kg、55mg/kg、56mg/kg、57mg/kg、58mg/kg、59mg/kg、60mg/kg、61mg/kg、62mg/kg、63mg/kg、64mg/kg、65mg/kg、66mg/kg、67mg/kg、68mg/kg、69mg/kg、70mg/kg、71mg/kg、72mg/kg、73mg/kg、74mg/kg、75mg/kg、76mg/kg、77mg/kg、78mg/kg、79mg/kg、80mg/kg、81mg/kg、82mg/kg、83mg/kg、84mg/kg、85mg/kg、86mg/kg、87mg/kg、88mg/kg、89mg/kg、90mg/kg、91mg/kg、92mg/kg、93mg/kg、94mg/kg、95mg/kg、96mg/kg、97mg/kg、98mg/kg、99mg/k、最多约100mg/kg的剂量施用环磷酰胺等免疫抑制剂。在一些情况下,可以施用环磷酰胺等免疫抑制剂至少约1天到约3天、3天到5天、5天到7天、7天到约10天、10天到14天、14天到约20天。在一些情况下,环磷酰胺可以约60mg/kg的剂量施用并在250ml 5%右旋糖水溶液中稀释并且输注一小时以上。
免疫抑制剂可以是例如环磷酰胺和氟达拉滨方案。例如,可向接受工程化细胞疗法的受试者施用环磷酰胺氟达拉滨方案。可以施用环磷酰胺氟达拉滨,方案是60mg/kg qd,2天,以及25mg/m2 qd,5天。在施用本发明的工程化细胞之前,可以先施用环磷酰胺方案例如环磷酰胺氟达拉滨1小时到14天。可以不同的剂量施用化疗方案。例如,受试者先接受较高的初始剂量,然后再接受较低的剂量。受试者可先接受较低的初始剂量,再接受较高的剂量。
在一些情况下,免疫抑制剂可以是抗体。可以治疗有效剂量施用抗体。抗体可以是多克隆抗体或单克隆抗体。单克隆抗体可以是抗IL-2受体抗体、抗CD25抗体或抗CD3抗体。还可使用抗CD20抗体。B细胞消融疗法,如与CD20反应的药物,如利妥昔单抗,也可用作免疫抑制剂。
免疫抑制剂还可以是抗免疫亲和素。抗免疫亲和素可以是环孢素、他克莫司、依维莫司或西罗莫司。另外的免疫抑制剂可以是干扰素,如干扰素β、阿片类药物、抗肿瘤坏死因子结合剂、霉酚酸酯或芬格莫德。
免疫抑制剂也可用于放射疗法。放射疗法可包括辐射。全身辐射剂量为12Gy。辐射剂量可包括对包括健康组织在内的全身的12Gy累积剂量。辐射剂量可包括12Gy~20Gy。辐射剂量可以是5Gy、6Gy、7Gy、8Gy、9Gy、10Gy、11Gy、12Gy、13Gy、14Gy、15Gy、16Gy、17Gy、18Gy、19Gy或最多20Gy。辐射可以是全身辐射或部分身体辐射。在辐射是全身辐射的情况下,它可以是均匀的或者是非均匀的。例如,当辐射不均匀时,身体较窄的部位如颈部会比较宽的部位如臀部接受到更高的剂量。例如,在一个实施方案中,受试者接受标准治疗,即先高剂量化疗,再进行外周血干细胞移植。在某些实施方案中,移植后,受试者注射了本发明的扩增细胞(例如,免疫受体程序化受体细胞)。向患者施用的上述治疗剂量可随正在治疗的病症的确切性质和治疗的接受者而变化。人体给药的剂量缩放可根据本领域接受的实践进行。例如,对于成人患者,CAMPATH的剂量可以是1至约100mg,通常在1到30天之间每日都施用。每日剂量可以是每日1至10mg,尽管在某些情况下可使用每日最多40mg的较大剂量(如美国专利6,120,766所述)。
抗生素药剂
可以向受试者施用抗生素药剂作为治疗方案的一部分。可以治疗有效剂量施用抗生素药剂。抗生素药剂可杀死或抑制细菌的生长。抗生素药剂可以是广谱抗生素,其能靶向大范围的细菌。广谱抗生素药,无论是3代还是4代,都可以是头孢菌素或喹诺酮。
抗生素还可以是窄谱抗生素,其能靶向特定类型的细菌。抗生素可靶向细菌细胞壁,如青霉素和头孢菌素。抗生素可靶向细胞膜,如多粘菌素。抗生素可干扰必需的细菌酶,如抗生素:利福霉素、脂霉素、喹诺酮类和磺胺。抗生素还可以是蛋白合成抑制剂,如大环内酯、林可酰胺和四环素。抗生素还可以是环状脂肽如达托霉素、甘氨酰环素如替加环素、噁唑烷酮如利奈唑胺和脂霉素如非达索霉素。
在一些情况下,抗生素可以是第1代、第2代、第3代、第4代或第5代抗生素。第一代抗生素可具有窄谱。第1代抗生素的示例可以是青霉素(青霉素G或青霉素V)、头孢菌素(头孢唑啉、头孢噻吩、头孢匹林、头孢噻吩、头孢拉定或头孢氨苄)。在一些情况下,抗菌素可以是第2代抗生素。第2代抗生素可以是青霉素(阿莫西林或氨苄青霉素)、头孢菌素(头孢呋辛、头孢曼多、头孢西丁、头孢克洛、头孢唑、洛拉卡培夫)。在一些情况下,抗生素可以是第3代抗菌剂。第3代抗生素可以是青霉素(羧苄青霉素和羟基噻吩青霉素)或头孢菌素(头孢克肟、头孢曲松、头孢噻肟、头孢唑肟和头孢他啶)。抗生素可以是第4代抗生素。第4代抗生素可以是头孢吡肟。抗生素还可以是第5代抗生素。第5代抗生素可以是头孢洛林或头孢比普罗。
在一些情况下,抗生素可以是细菌壁靶向剂、细胞膜靶向剂、细菌酶干扰剂、杀菌剂、蛋白质合成抑制剂或抑菌剂。细菌壁靶向剂可以是青霉素衍生物(penams)、头孢菌素(cephems)、单内酰环和碳青霉烯。β-内酰胺抗菌剂具有杀菌或抑菌作用,可通过抑制细菌细胞壁肽聚糖层的合成而发挥作用。在一些情况下,抗生素可以是蛋白合成抑制剂。蛋白合成抑制剂可以是氨苄青霉素,它是酶转肽酶的不可逆抑制剂,细菌需要这种酶来制造细胞壁。它在二元裂变中抑制细菌细胞壁合成的第三个也是最后一个阶段,最终导致细胞裂解。因此,氨苄西林通常具有杀菌作用。在一些情况下,杀菌剂可以是头孢菌素或喹诺酮。在其他情况下,抑菌剂是甲氧苄啶、磺胺甲噁唑或戊脒。
在一些情况下,可以施用预防PCR肺炎的药剂。例如,可以施用甲氧苄啶和磺胺甲噁唑来预防肺炎。甲氧苄啶和磺胺甲噁唑(TMP/SMX;磺胺药的例子)的剂量可以是甲氧苄啶和磺胺甲噁唑的剂量(TMP/SMX;一种磺胺药物的例子)可以在非连续日,在第一次化疗时或之后,每周三次,每天一次,每次1片PO,持续至少约6个月,直到至少2个连续的实验室研究中CD4计数大于200。在一些情况下,以160mg的剂量施用甲氧苄氨嘧啶。甲氧苄氨嘧啶的施用剂量可以是约100mg至约300mg。甲氧苄氨嘧啶的施用剂量可以是约100mg、125mg、150mg、175mg、200mg、225mg、250mg、275mg或最多约300mg。在一些情况下,可以800mg的剂量施用磺胺甲噁唑。以约500mg至约1000mg的剂量施用磺胺甲噁唑。可以约500mg、525mg、550mg、575mg、600mg、625mg、650mg、675mg、700mg、725mg、750mg、775mg、800mg、825mg、850mg、875mg、900mg、925mg、950mg、975mg或最多约1000mg的剂量施用磺胺甲噁唑。在一些情况下,可以治疗有效量施用TMP/SMX方案。可以每日约1X至约10X的剂量施用TMP/SMX。可以每日1X、2X、3X、4X、5X、6X、7X、8X、9X、10X、11X、12X、13X、14X、15X、16X、17X、18X、19X或最多约20X的剂量施用TMP/SMX。在一些情况下,可每周施用TMP/SMX。例如,可以每周1X、2X、3X、4X、5X、6X或最多约7X一次的剂量施用TMP/SMX。可以在施用细胞疗法后约第-14天、第-13天、第-12天、第-11天、第-10天、第-9天、第-8天、第-7天、第-6天、第-5天、第-4天、第-3天、第-2天、第-1天、第0天、第1天、第2天、第3天、第4天、第5天、第6天、第7天、第8天、第9天、第10天、第11天、第12天、第13或最多约第14天施用TMP/SMX方案,如本文所述的受体细胞。
在一些情况下,患有磺胺过敏的受试者可接受戊烷眯。戊烷眯可通过气雾剂来施用。在入院前一周内,一周内施用戊烷脒300mg/雾化器并持续每月,直到连续两次随访实验室研究中CD4计数200mg以上,化疗后至少6个月。戊烷脒可用于预防发生PCP感染。它可在300mg的冻干粉瓶中供给,并可以通过雾化器使用。戊烷脒可以约300mg至约500mg的剂量施用。在一些情况下,哌咪嗪可以约100mg、200mg、300mg、400mg、500mg、600mg、700mg或最多约800mg的剂量施用。
在一些情况下,抑菌剂,如抗生素,可以在施用免疫受体程序化受体细胞之前施用,与这些细胞同时施用,或者在这些细胞之后施用。在一些情况下,可从施用免疫受体程序化受体细胞前约14天到施用这些细胞后约6个月施用抑菌剂。
抗病毒剂
在一些情况下,可以使用抗病毒剂作为治疗方案的一部分。在一些情况下,可向受试者施用疱疹病毒预防药作为治疗方案的一部分。疱疹病毒预防药可以是万乃洛韦(Valtrex)。可口服Valtrex以预防在HSV血清学阳性受试者中发生疱疹病毒感染。它可以500mg片剂形式供给。以治疗有效量施用万乃洛韦。例如,可以约50mg、75mg、100mg、125mg、150mg、175mg、200mg、225mg、250mg、275mg、300mg、325mg、350mg、375mg、400mg、425mg、450mg、475mg、500mg、525mg、550mg、575mg、600mg、625mg、650mg或最多约700mg片剂的剂量施用万乃洛韦。如果受试者能够耐受口服,则可以在最后一次服用氟达拉滨的第二天开始服用伐昔洛韦,剂量为500毫克/天。可以在施用细胞疗法后约第-14天、第-13天、第-12天、第-11天、第-10天、第-9天、第-8天、第-7天、第-6天、第-5天、第-4天、第-3天、第-2天、第-1天、第0天、第1天、第2天、第3天、第4天、第5天、第6天、第7天、第8天、第9天、第10天、第11天、第12天、第13天或多达约第14天施用抗病毒疗法。
在一些情况下,受试者可能无法口服预防疱疹的药物。在那些情况下,可施用阿昔洛韦。阿昔洛韦可作为注射用粉剂,500mg/瓶。在一些情况下,可以治疗有效量施用阿昔洛韦。可以约50mg、75mg、100mg、125mg、150mg、175mg、200mg、225mg、250mg、275mg、300mg、325mg、350mg、375mg、400mg、425mg、450mg、475mg、500mg、525mg、550mg、575mg、600mg、625mg、650mg或多达约700mg的剂量口服阿昔洛韦。每日可以1X、2X、3X、4X、5X、6X或多达约7X的剂量施用阿昔洛韦。可在施用细胞疗法后约第-14天、第-13天、第-12天、第-11天、第-10天、第-9天、第-8天、第-7天、第-6天、第-5天、第-4天、第-3天、第-2天、第-1天、第0天、第1天、第2天、第3天、第4、第5、第6、第7、第8、第9、第10、第11天、第12天、第13天或多达约第14天施用阿昔洛韦。在一些情况下,阿昔洛韦可以静脉施用。例如,可以1mg/kg至约3mg/kg、约3mg/kg至约5mg/kg、约5mg/kg至约10mg/kg、约10mg/kg至约20mg/kg、20mg/kg至约30mg/kg、约30mg/kg至约40mg/kg、约40mg/kg至约50mg/kg、约50mg/kg至约60mg/kg、约60mg/kg至约70mg/kg、约70mg/kg至约80mg/kg、约80mg/kg至约90mg/kg、约90mg/kg至约100mg/kg的剂量施用阿昔洛韦。在一些情况下,阿昔洛韦的剂量超过50mg/kg。阿昔洛韦可以10mL无菌注射用水中复溶,浓度为50mg/kg。应在12小时内使用复溶的溶液。静脉注射溶液可稀释至7mg/mL或更低的浓度,并在1小时内输注,以避免肾损害。
施用
本文提供了向患有癌症等病症的受试者施用治疗方案的方法。在一些情况下,可以单位剂量形式提供细胞组合物(例如,包括免疫受体程序化受体细胞)。将细胞组合物重悬在溶液中并作为注射液施用。本文还提供了一种治疗方案,该方案包括免疫刺激剂、免疫抑制剂、抗生素、抗真菌剂、止吐药、化疗、放疗或其任意组合。可冻干包括上述任意一种的治疗方案并且可在水溶液(例如,盐溶液)中复溶。在一些情况下,通过选自皮下注射,肌内注射,皮内注射,经皮给药,静脉内(“i.v.”)给药,鼻内给药,淋巴内注射和口服给药的途径进行治疗(例如,细胞治疗)。在一些情况下,受试者通过淋巴管内微导管注射有包含免疫受体程序化受体细胞的细胞组合物。
许多药物可以液体、胶囊、片剂或可咀嚼片剂的形式进行口服。因为口服途径是最方便的并且通常是最安全且花费最少的,所以口服是最常用的途径之一。然而,由于药物通常是通过消化道的,所以它会有局限性。对于口服的药物,可从嘴和胃部开始吸收。但是,大部分的药物是从小肠中吸收的。药物在经血流运输到期靶向位点前先通过肠壁然后运行到肝部。肠壁和肝可化学改变(代谢)多种药物,从而降低到达血流的药物的量。因此,这些药物在静脉内注射时可以较小的剂量进行施用,以产生相同的作用。
对于皮下途径,可将针插入皮下的脂肪组织中。药物注射后,它移动到小血管(毛细血管)中并通过血流运载。可替代地,药物可通过淋巴血管到达血流。在需要大量药物产物时可使用肌肉内途径。因为肌肉在皮肤和脂肪组织下面,所以可使用较长的针。一般将药物注射至上壁、大腿或腰部的肌肉中。对于静脉内途径,可将针直接插入静脉中。含有该药物的溶液可单次给药或连续输注。输液时,溶液可以通过重力(从可折叠塑料袋中)移动,或者更常见的是,通过输液泵通过细软管移动到插入静脉(通常在前臂)的导管(导管)。在一些情况下,细胞或治疗方案作为输液给药。输液可以持续一段时间。例如,输注可以是在约5分钟到约5小时的期间内施用细胞或治疗方案。输注可以持续5分钟、10分钟、20分钟、30分钟、40分钟、50分钟、1小时、1.5小时、2小时、2.5小时、3小时、3.5小时、4小时、4.5小时或最多5小时。
在一些实施方案中,静脉内给药用于快速地递送精确的剂量并以良好的控制方式贯穿整个身体。它也可用于刺激性溶液,如果给予皮下或肌肉注射,会引起疼痛和损伤组织。静脉注射可比皮下注射或肌肉注射更难以施用,因为将针头或导管插入静脉会很困难,尤其是当患者肥胖时。当静脉给药时,药物可以立即递送至血液,并且比通过任何其他途径给药的效果更快。因此,卫生保健从业人员可以密切监测接受静脉注射的人是否有药物起作用或引起不良副作用的迹象。此外,通过这种途径给药的效果可能会持续较短的时间。因此,有些药物可以通过持续输注来保持药效恒定。对于鞘内路径,可以将一根针插入下脊柱的两个椎骨之间,并插入脊髓周围的空间。然后药物可以注入椎管。少量局部麻醉剂可用于麻醉注射部位。当需要药物对脑、脊髓或覆盖它们的组织层(脑膜)产生快速或局部作用时,可以使用这种途径-例如,治疗这些结构的感染。
可将通过嘴吸入的药物雾化为比鼻吸入的药物更小的液滴,以使得该药物可通过气管(导管)并进入到肺部。它们进入肺部的深度取决于液滴的大小。较小的液滴进入地更深,这可增加所吸收药物的量。在肺内部,它们可被吸收至血流中。
在一些情况下,治疗方案可根据受试者的体重来定。在判定为肥胖(BMI>35)的受试者中,可能需要使用实际的体重。BMI是根据以下计算的:BMI=体重(Kg)/[身高(m)]2
男性的理想体重可计算为50kg+2.3×(超过60英寸的英寸数),或者女性的理想体重可计算为45.5kg+2.3×(超过60英寸的英寸数)。对于超过理想体重20%的受试者,可以计算调整后的体重。调整后的体重可以是理想体重+(0.4x(实际体重-理想体重))的总和。在一些情况下,可使用体表面积来计算剂量。体表面积(BSA)的计算公式为:BSA(m2)=√身高(cm)*体重(kg)/3600。
在一些情况下,包含细胞疗法的药物组合物可以通过任意途径单独施用或与药学上可接受的载体或赋形剂一起施用。这种施用可以单一剂量和多个剂量进行。更具体地,药物组合物可与各种药学上可接受的惰性载体以片剂、胶囊、含片、片剂、糖果、粉剂、喷雾剂、水悬浮液、注射溶液、酏剂、糖浆等形式组合。此类载体包括固体稀释剂或填料、无菌水媒介和各种无毒有机溶剂等。而且,此类口服药物制剂可通过通常用于此类目的的各种类型的试剂适当地增甜和/或调味。
在一些情况下,治疗方案可与载体或赋形剂一起施用。载体和赋形剂的示例可包括葡萄糖、氯化钠、蔗糖、乳糖、纤维素、木糖醇、山梨醇、苹果醇、明胶、PEG、PVP或其任意组合。在一些情况下,右旋糖或氯化钠等赋形剂的百分比可以是约0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%或最多15%。在一些情况下,一种治疗受试者中疾病的方法包括向受试者移植一个或多个包含工程化细胞(例如,免疫受体程序化受体细胞)的细胞(包括器官和/组织)。通过胞内基因组移植制备的细胞可用于治疗癌症。
本发明提供了包括但不限于以下实施方式:
1.一种制备融合的二分免疫受体多核苷酸的文库的方法,其包括:
(a)生成多个容器,每个容器包括(1)细胞,其中所述细胞包含编码二分免疫受体的第一肽链的第一核酸和编码二分免疫受体的第二肽链的第二核酸,和(2)多个可聚合或可胶凝聚合物和/或单体;以及
(b)将所述多个可聚合或可胶凝聚合物和/或单体聚合或胶凝化以形成多个硬化颗粒,所述多个硬化颗粒中的每个硬化颗粒具有由聚合或胶凝化的多个聚合物和/或单体构成的基质,其中所述多个硬化颗粒中的每个硬化颗粒包括所述第一核酸的第一引物延伸产物和所述第二核酸的第二引物延伸产物;其中所述第一引物延伸产物和所述第二引物延伸产物嵌入或包埋在所述基质内,并且其中所述第一引物延伸产物和所述第二引物延伸产物的扩散受到限制。
2.根据实施方式1所述的方法,其中所述第一和第二引物延伸产物是逆转录(RT)产物、第二链合成(SSS)产物或扩增产物。
3.根据实施方式1或2所述的方法,其中所述第一和/或第二引物延伸产物包含衔接子序列。
4.根据实施方式3所述的方法,其中所述衔接子序列不与所述第一或第二核酸分子杂交或互补。
5.根据实施方式1或4中任意一项所述的方法,其中所述第一和第二引物延伸产物编码一可变结构域。
6.根据实施方式1所述的方法,其中所述可变结构域包括CDR1、CDR2和CDR3。
7.根据实施方式1-6中任意一项所述的方法,其中所述第一和/或第二引物延伸产物还编码一恒定结构域。
8.根据实施方式1-7中任意一项所述的方法,还包括裂解所述细胞以释放所述第一核酸和所述第二核酸。
9.根据实施方式1-8中任意一项所述的方法,还包括逆转录所述第一核酸和所述第二核酸。
10.根据实施方式9所述的方法,其中使用RT引物进行所述逆转录。
11.根据实施方式10所述的方法,其中所述RT引物与扩散限制剂连接,其中所述扩散限制剂限制所述RT引物在所述基质内的扩散。
12.根据实施方式1-11中任意一项所述的方法,还包括进行模板转换反应或SSS反应。
13.根据实施方式1-12中任意一项所述的方法,还包括对所述第一核酸和所述第二核酸进行扩增,以生成第一和第二扩增引物。
14.根据实施方式13所述的方法,其中对于所述第一核酸和所述第二核酸中的每个,使用第一扩增引物和第二扩增引物进行所述扩增。
15.根据实施方式14所述的方法,其中所述第一扩增引物与扩散限制剂连接,其中所述扩散限制剂限制所述第一扩增引物在所述基质内的扩散。
16.根据实施方式1-15中任意一项所述的方法,还包括清洗所述多个硬化颗粒。
17.根据实施方式16所述的方法,还包括清洗所述多个硬化颗粒以使试剂从所述多个硬化颗粒中扩散出去。
18.根据实施方式17所述的方法,其中所述试剂包括RT引物、扩增引物、模板转换引物、SSS引物或其任意组合。
19.根据实施方式1-18中任意一项所述的方法,还包括反复清洗所述多个硬化颗粒。
20.根据实施方式6-19中任意一项所述的方法,还包括在清洗步骤后在油中乳化所述多个硬化颗粒,从而形成另外的多个容器,所述另外的多个容器中的每个容器包括所述多个硬化颗粒中的单个硬化颗粒。
21.根据实施方式1-20中任意一项所述的方法,其中所述第一和第二引物延伸产物与扩散限制剂连接。
22.根据实施方式11-21中任意一项所述的方法,其中所述扩散限制剂是聚合物。
23.根据实施方式22所述的方法,其中所述聚合物是聚丙烯酰胺、聚乙二醇或多糖。
24.根据实施方式21所述的方法,其中所述扩散限制剂是颗粒。
25.根据实施方式24所述的方法,其中所述颗粒的直径大于所述基质的孔径。
26.根据实施方式21-25中任意一项所述的方法,其中所述扩散限制剂是所述基质。
27.根据实施方式21-26中任意一项所述的方法,其中所述第一和第二引物延伸产物通过捕获剂与所述扩散限制剂连接。
28.根据实施方式27所述的方法,其中所述捕获剂包括固定化部分。
29.根据实施方式28所述的方法,其中所述固定化部分将所述捕获剂与所述扩散限制剂连接。
30.根据实施方式28或29所述的方法,其中所述固定化部分括反应性基团。
31.根据实施方式27-30中任意一项所述的方法,其中所述捕获剂还包含靶向部分。
32.根据实施方式31所述的方法,其中所述靶向部分是捕获寡核苷酸。
33.根据实施方式14-32中任意一项所述的方法,其中所述第一扩增引物包含与所述捕获寡核苷酸杂交的寡核苷酸序列。
34.根据实施方式14-33中任意一项所述的方法,其中所述第一和第二扩增产物包含与所述捕获寡核苷酸杂交的寡核苷酸序列,从而将所述第一和第二扩增产物与所述捕获剂连接并且从而与所述扩散限制剂连接。
35.根据实施方式20-34中任意一项所述的方法,还包括连接所述第一扩增产物和所述第二扩增产物以在所述另外的多个容器中的每个容器内形成融合的二分免疫受体多核苷酸,从而生成融合的二分免疫受体多核苷酸的文库,所述文库具有多个融合的二分免受体多核苷酸。
36.根据实施方式35所述的方法,其中所述第一扩增产物和所述第二扩增产物通过连接反应或PCR来连接。
37.根据实施方式35或36所述的方法,其中所述第一扩增产物和所述第二扩增产物通过磷酸二酯键连接,以形成连续的多核苷酸。
38.根据实施方式35-37中任意一项所述的方法,其中所述第一扩增产物和所述第二扩增产物框内连接。
39.根据实施方式35-38中任意一项所述的方法,还包括从所述另外的多个容器中释放所述多个融合的二分免疫受体多核苷酸。
40.根据实施方式39所述的方法,还包括使所述多个融合的二分免受体多核苷酸中的每个融合的二分免受体多核苷酸环化。
41.根据实施方式39所述的方法,还包括将所述多个融合的二分免受体多核苷酸中的每个融合的二分免受体多核苷酸插入载体。
42.根据实施方式41所述的方法,其中所述载体为自扩增RNA复制子、质粒、噬菌体、转座子、粘粒、病毒或病毒体。
43.根据实施方式41所述的方法,其中所述载体是病毒载体。
44.根据实施方式41所述的方法,其中所述载体是非病毒载体。
45.根据实施方式1-44中任意一项所述的方法,其中所述二分免疫受体是T细胞受体(TCR)或B细胞受体(BCR)。
46.根据实施方式45所述的方法,其中所述TCR包含TCRα肽链和TCRβ肽链或者TCRλ肽链和TCRδ肽链;所述BCR包含重肽链和轻肽链。
47.根据实施方式1-46中任意一项所述的方法,其中所述细胞是免疫细胞。
48.根据实施方式47所述的方法,其中所述免疫细胞是淋巴细胞。
49.根据实施方式48所述的方法,其中所述淋巴细胞是T细胞或B细胞。
50.根据实施方式49所述的方法,其中所述T细胞是炎性T细胞、细胞毒性T细胞、调节性T细胞、辅助T细胞、自然杀伤T细胞或其组合。
51.根据实施方式49或50所述的方法,其中所述T细胞是CD4+ T细胞或CD8+ T细胞。
52.根据实施方式49-50中任意一项所述的方法,其中所述B细胞是浆母细胞、浆细胞、淋巴浆细胞、记忆B细胞、滤泡B细胞、边缘区B细胞、B-1细胞、B-2细胞或调节性B细胞。
53.根据实施方式47-52中任意一项所述的方法,其中所述免疫细胞分离自肿瘤组织或血液样品。
54.根据实施方式35-53中任意一项所述的方法,还包括将所述融合的二分免疫受体多核苷酸递送至宿主细胞中。
55.根据实施方式35-54中任意一项所述的方法,其中所述融合的二分免疫受体多核苷酸的文库包含至少50个不同的融合的二分免疫受体序列。
56.根据实施方式1-55中任意一项所述的方法,其中所述第一肽链和所述第二肽链是所述二分免疫受体的同源对。
57.根据实施方式1-56中任意一项所述的方法,其中所述容器是液滴。
58.根据实施方式57所述的方法,其中所述液滴是油包水液滴。
59.根据实施方式1-58中任意一项所述的方法,其中所述硬化颗粒是水凝胶颗粒。
60.根据实施方式1-59中任意一项所述的方法,其中所述聚合物是多糖、聚丙烯酰胺或其组合。
61.根据实施方式60所述的方法,其中所述多糖是琼脂糖、透明质酸、羧甲基纤维素、壳聚糖或海藻酸。
62.根据实施方式1-61中任意一项所述的方法,其中所述单体是丙烯酰胺或甲基丙烯酰胺单体。
63.根据实施方式1-62中任意一项所述的方法,其中所述聚合的或胶凝化的多个聚合物和/或单体包括琼脂糖和聚丙烯酰胺的混合物。
64.根据实施方式1-63中任意一项所述的方法,其中聚合或胶凝化所述多个可聚合或可胶凝聚合物和/或单体包括使用引发剂。
65.根据实施方式64所述的方法,其中所述引发剂是UV光或化学品。
66.根据实施方式1-65中任意一项所述的方法,其中聚合或胶凝化所述多个可聚合或可胶凝聚合物和/或单体包括降低所述容器的温度。
67.一种鉴定靶反应性T细胞受体(TCR)的方法,其包括:
(a)提供表达多个TCR的多个T细胞,其中所述多个T细胞中的每个T细胞表达所述多个TCR中的TCR的同源对;
(b)将所述多个T细胞分配至多个隔室,其中每个隔室包括所述多个T细胞中的单个T细胞;
(c)在每个隔室内,将编码第一TCR链的第一多核苷酸与编码所述单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)所述第一多核苷酸和所述第二多核苷酸是所述单个T细胞的内源性核酸的转录产物或扩增产物,或者(ii)所述第一多核苷酸和所述第二多核苷酸不是使用亚磷酰胺化学合成的;
(d)将所述多个融合的多核苷酸递送至多个细胞中,其中所述多个细胞中的每个细胞包含所述多个融合的多核苷酸中的至少一个融合的多核苷酸;
(e)在所述多个细胞中从所述多个载体表达所述多个融合的多核苷酸,其中所述多个细胞的子集表达多个靶反应性TCR;
(f)将所述多个细胞与一个或多个靶抗原接触,其中表达所述多个靶反应性TCR的所述多个细胞的子集与所述一个或多个靶抗原结合;以及
(g)鉴定所述多个细胞的所述子集的所述多个靶反应性TCR中的靶反应性TCR。
68.根据实施方式67所述的方法,还包括在递送之前生成包含所述多个融合的多核苷酸的多个载体,所述多个载体中的每个载体包含所述多个融合的多核苷酸中的融合的多核苷酸。
69.根据实施方式67或68所述的方法,其中所述多个细胞是多个受体细胞。
70.根据实施方式67-69中任意一项所述的方法,其中所述内源性核酸是脱氧核糖核酸(DNA)或核糖核酸(RNA)。
71.根据实施方式70所述的方法,其中所述DNA是基因组DNA。
72.根据实施方式70或71所述的方法,其中所述RNA是信使RNA。
73.根据实施方式67-72中任意一项所述的方法,其中接触还包括使细胞群与呈递所述一个或多个靶抗原的一个或多个细胞接触。
74.根据实施方式73所述的方法,其中所述一个或多个细胞是一个或多个肿瘤细胞、肿瘤球、肿瘤裂解物脉冲抗原呈递细胞(APC)或工程化为呈递所述一个或多个靶抗原的APC。
75.根据实施方式74所述的方法,其中将所述工程化为呈递所述一个或多个靶抗原的一个或多个APC与编码靶抗原的DNA或RNA一起递送。
76.根据实施方式67-72中任意一项所述的方法,其中接触还包括使所述细胞群与肿瘤组织接触。
77.根据实施方式67-72中任意一项所述的方法,其中所述一个或多个靶抗原与主要组织相容性复合物(MHC)复合。
78.根据实施方式77所述的方法,其中所述MHC是MHC四聚体。
79.根据实施方式67-78中任意一项所述的方法,其中所述第一TCR链是TCRα链,所述第二TCR链是TCRβ链。
80.根据实施方式67-78中任意一项所述的方法,其中所述第一TCR链是TCRγ链,所述第二TCR链是TCRδ链。
81.根据实施方式67-80中任意一项所述的方法,其中所述多个细胞是细胞系细胞。
82.根据实施方式81所述的方法,其中所述细胞系细胞是CHO-K1细胞;HEK293细胞;Caco2细胞;U2-OS细胞;NIH 3T3细胞;NSO细胞;SP2细胞;CHO-S细胞;DG44细胞;K-562细胞、U-937细胞;MRC5细胞;IMR90细胞;Jurkat细胞;HepG2细胞;HeLa细胞;HT-1080细胞;HCT-116细胞;Hu-h7细胞;Huvec细胞;或Molt 4细胞。
83.根据实施方式67-80中任意一项所述的方法,其中所述多个细胞分离自来自受试者的样品。
84.根据实施方式67-82中任意一项所述的方法,其中所述多个T细胞分离自来自受试者的样品。
85.根据实施方式84所述的方法,其中所述样品是肿瘤组织、血液样品、外周血单核细胞(PBMC)样品或其组合。
86.根据实施方式85所述的方法,其中所述肿瘤组织至多约2000mm3
87.根据实施方式85所述的方法,其中所述血液样品包括外周血单核细胞(PBMC)。
88.根据实施方式67-87中任意一项所述的方法,其中所述多个T细胞是肿瘤浸润T细胞或外周T细胞。
89.根据实施方式67-88中任意一项所述的方法,其中所述多个T细胞包括CD8+ T细胞、CD4+ T细胞、耗尽型T细胞、调节性T细胞或其任意组合。
90.根据实施方式67-89中任意一项所述的方法,还包括分离所述多个细胞的所述子集中的至少一个细胞。
91.根据实施方式90所述的方法,其中通过FACS分离所述多个细胞的所述子集中的所述至少一个细胞。
92.根据实施方式90或91所述的方法,其中基于标志物分离所述多个细胞的所述子集中的所述至少一个细胞。
93.根据实施方式92所述的方法,其中所述标志物是细胞表面标志物或细胞因子。
94.根据实施方式93所述的方法,其中所述细胞表面标志物是CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB、CD137、CD3、CD28、CD4、CD8、CD45RA、CD45RO、GITR、FoxP3或其组合。
95.根据实施方式93或94所述的方法,其中所述细胞因子是IFN-γ、TNF-α、IL-17A、IL-2、IL-3、IL-4、GM-CSF、IL-10、IL-13、颗粒酶B、穿孔素或其组合。
96.根据实施方式67-95中任意一项所述的方法,还包括(i)向所述受试者施用所述多个细胞的所述子集中的至少一个细胞或(ii)向所述受试者施用包含经鉴定的靶反应性TCR的自体或同种异体细胞。
97.根据实施方式96所述的方法,其中所述自体或同种异体细胞包括编码所述经鉴定的靶反应性TCR的多核苷酸。
98.根据实施方式97所述的方法,其中编码所述经鉴定的靶反应性TCR的所述多核苷酸是融合的多核苷酸或其扩增产物,或包含编码所述融合的多核苷酸的所述第一TCR链和所述第二CTR链的序列。
99.一种鉴定多个靶反应性T细胞受体(TCR)的方法,其包括:
(a)提供表达多个TCR的多个细胞,所述多个细胞中的每个细胞表达所述多个TCR中的TCR,其中所述多个TCR包括至少50个不同的同源对并且包括来自多个V基因的V区,并且其中所述多个TCR对所述多个细胞来说是外源性的;
(b)使所述多个细胞与一个或多个靶抗原接触,其中表达所述多个靶反应性TCR的所述多个细胞的子集与所述一个或多个靶抗原结合;以及
(c)鉴定所述多个细胞的所述子集中的至少两个细胞,所述至少两个细胞表达所述多个靶反应性TCR中的至少两个靶反应性TCR,从而鉴定所述多个靶反应性TCR中的所述至少两个靶反应性TCR。
100.根据实施方式99所述的方法,其中所述多个V基因包括至少10个不同的V基因。
101.根据实施方式99或100所述的方法,其中所述多个细胞是多个基因工程化细胞。
102.根据实施方式99-101中任意一项所述的方法,其中所述多个细胞分离自来自受试者的样品。
103.根据实施方式102所述的方法,其中所述样品是组织样品、血液样品、PBMC样品或其组合。
104.根据实施方式99-103中任意一项所述的方法,其中所述多个TCR包括至少100个不同的同源对。
105.根据实施方式99-104中任意一项所述的方法,还包括分离所述多个细胞的所述子集中的所述至少两个细胞。
106.根据实施方式99-105中任意一项所述的方法,其中(b)包括使所述多个细胞与呈递所述一个或多个靶抗原的一个或多个细胞接触。
107.根据实施方式106所述的方法,其中所述一个或多个细胞是一个或多个肿瘤细胞、肿瘤球、肿瘤裂解物脉冲抗原呈递细胞(APC)或工程化为呈递所述一个或多个靶抗原的APC。
108.根据实施方式107所述的方法,其中所述工程化为呈递所述一个或多个靶抗原的一个或多个APC包括编码靶抗原的DNA或RNA。
109.根据实施方式99-105中任意一项所述的方法,其中(b)包括使所述多个细胞与肿瘤组织接触。
110.根据实施方式99-105中任意一项所述的方法,其中(b)包括使所述多个细胞与所述一个或多个与主要组织相容性复合物(MHC)复合的靶抗原接触。
111.根据实施方式110所述的方法,其中所述MHC是MHC四聚体。
112.根据实施方式99-111中任意一项所述的方法,其中所述一个或多个靶抗原的序列或身份是未知的。
113.根据实施方式99-112中任意一项所述的方法,还包括向所述受试者施用所述多个细胞的所述子集中的所述至少两个细胞中的至少一个。
114.根据实施方式99-113中任意一项所述的方法,其中所述多个细胞中的每个细胞包括报告基因,所述报告基因被调节以在所述细胞的TCR与所述一个或多个靶抗原中的靶抗原结合时发送信号。
115.根据实施方式99-114中任意一项所述的方法,其中所述多个细胞是细胞系细胞。
116.根据实施方式99-115中任意一项所述的方法,其中所述多个TCR包括至少100个不同的VJ组合。
117.根据实施方式99-116中任意一项所述的方法,其中所述多个TCR包括来自受试者样品的TCR。
118.根据实施方式117,其中所述受试者患有疾病或病症。
119.根据实施方式99-116中任意一项所述的方法,其中所述多个TCR包括来自样品的TCR,所述样品包括来自受试者的肿瘤浸润淋巴细胞。
120.一种治疗受试者中的癌症的方法,其包括:
(a)提供表达多个TCR的多个T细胞,其中所述多个T细胞中的每个T细胞表达所述多个TCR中的TCR的同源对;
(b)将所述多个T细胞分配至多个隔室,其中每个隔室包括所述多个T细胞中的单个T细胞;
(c)在每个隔室内,将编码第一TCR链的第一多核苷酸与编码所述单个T细胞的所述TCR的所述同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)所述第一多核苷酸和所述第二多核苷酸是所述单个T细胞的内源性核酸的转录产物或扩增产物,或者(ii)所述第一多核苷酸和所述第二多核苷酸不是使用亚磷酰胺化学合成的;
(d)将所述多个融合的多核苷酸递送至多个细胞中、其中所述多个细胞中的每个细胞包含所述多个融合的多核苷酸中的至少一个融合的多核苷酸;
(e)在所述多个细胞中表达所述多个融合的多核苷酸,其中所述多个细胞的子集从所述融合的多核苷酸的子集表达多个靶反应性TCR;
(f)从所述多个融合的多核苷酸的子集中鉴定所述多个靶反应性TCR;
(g)将所述多个融合的多核苷酸的子集中的一个或多个融合的多核苷酸或其衍生物递送至多个受体细胞中,其中所述多个受体细胞中的每个细胞包含所述多个融合的多核苷酸的所述子集中的所述一个或多个融合的多核苷酸或其衍生物中的至少一个;以及
(h)(i)向所述受试者施用所述多个受体细胞中的至少一个受体细胞或者(ii)向所述受试者施用所述多个受体细胞中的至少两个受体细胞,其中所述至少两个受体细胞表达不同的TCR。
121.根据实施方式120所述的方法,其中所述多个T细胞是肿瘤浸润T细胞或外周T细胞。
122.根据实施方式120或121所述的方法,其中所述多个T细胞包括CD8+ T细胞、CD4+ T细胞、耗尽型T细胞、调节性T细胞或其任意组合。
123.根据实施方式120-122中任意一项所述的方法,其中所述多个T细胞是在体外激活和/或扩增。
124.根据实施方式120-123中任意一项所述的方法,其中在多个载体中递送所述多个融合的多核苷酸,其中所述多个载体中的每个载体包括所述多个融合的多核苷酸中的融合的多核苷酸。
125.根据实施方式124所述的方法,还包括在(d)中进行递送前生成所述多个载体。
126.根据实施方式120-125中任意一项所述的方法,其中(f)中进行鉴定包括使所述多个细胞与一个或多个靶抗原接触,其中表达所述多个靶反应性TCR的所述多个细胞的所述子集与所述一个或多个靶抗原结合。
127.根据实施方式126所述的方法,其中所述一个或多个靶抗原由一个或多个肿瘤细胞、抗原呈递细胞(APC)或人造APC(aAPC)呈递。
128.根据实施方式127所述的方法,其中所述一个或多个APC或aAPC(i)由所述一个或多个靶抗原脉冲或者(ii)包括编码靶抗原的DNA或RNA。
129.根据实施方式126所述的方法,其中所述一个或多个抗原中的每个抗原与主要组织相容性复合物(MHC)复合。
130.根据实施方式129所述的方法,其中所述MHC是MHC四聚体。
131.根据实施方式120-130中任意一项所述的方法,还包括:在(g)中进行递送前分离所述多个细胞的所述子集中的一个或多个细胞。
132.根据实施方式120-131中任意一项所述的方法,还包括:从所述受试者分离表达所述多个TCR的所述多个T细胞。
133.根据实施方式132所述的方法,其中在分离所述多个T细胞后的最多约60天进行施用。
134.根据实施方式120-133中任意一项所述的方法,其中所述多个受体细胞是同种异体细胞、自体细胞或细胞系细胞。
135.根据实施方式120-134中任意一项所述的方法,其中所述多个细胞是基因工程化细胞或细胞系细胞。
136.根据实施方式120-135中任意一项所述的方法,还包括:在(h)前扩增所述多个受体细胞。
137.根据实施方式120-136中任意一项所述的方法,其中所述衍生物包含所述一个或多个融合的多核苷酸的序列。
138.根据实施方式120-137中任意一项所述的方法,其中所述衍生物是所述一个或多个融合的多核苷酸的扩增产物或合成产物。
139.一种治疗受试者中的肿瘤的方法,其包括:
(a)从表达多个T细胞受体(TCR)的受试者中分离多个T细,其中所述多个T细胞中的每个T细胞从内源性核酸表达所述多个TCR中的TCR的同源对,其中所述多个TCR包括多个肿瘤反应性TCR;
(b)从所述多个TCR中鉴定所述多个肿瘤反应性TCR;
(c)将编码所述多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中所述多个受体细胞中的每个受体细胞包含编码所述多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核苷酸,其中(i)所述多核苷酸是所述内源性核酸的转录产物或扩增产物或者(ii)所述多核苷酸不是使用亚磷酰胺化学合成的;
(d)在所述多个受体细胞中表达所述多个肿瘤反应性TCR或其子集;以及
(e)(i)向所述受试者施用所述多个受体细胞中的至少一个受体细胞或者(ii)向所述受试者施用所述多个受体细胞中的至少两个受体细胞,其中所述至少两个受体细胞表达不同的TCR。
140.根据实施方式139所述的方法,其中所述方法不包括使用亚磷酰胺来化学合成编码所述多个肿瘤反应性TCR或其子集的多核苷酸。
141.根据实施方式139或140所述的方法,其中所述多个T细胞是肿瘤浸润性T细胞或外周T细胞。
142.根据实施方式139-141中任意一项所述的方法,其中所述多个T细胞包括CD8+T细胞、CD4+ T细胞、耗尽型T细胞、调节性T细胞或其任意组合。
143.根据实施方式139-142中任意一项所述的方法,其中所述多个受体细胞是同种异体T细胞、自体T细胞或细胞系细胞。
144.根据实施方式139-143中任意一项所述的方法,还包括:在(b)之前在多个报告细胞中表达所述多个TCR。
145.根据实施方式144所述的方法,其中表达包括通过病毒载体递送编码所述多个TCR的核酸序列。
146.根据实施方式145所述的方法,其中所述病毒载体是慢病毒载体。
147.根据实施方式144-146中任意一项所述的方法,其中所述多个报告细胞中的每个报告细胞包含报告基因。
148.根据实施方式144-147中任意一项所述的方法,其中在(b)中,鉴定包括使所述多个TCR与一个或多个靶抗原或呈递一个或多个靶抗原的细胞或组织接触。
149.根据实施方式148所述的方法,其中所述一个或多个靶抗原由一个或多个肿瘤细胞、抗原呈递细胞(APC)、人造APC(aAPC)呈递。
150.根据实施方式149所述的方法,其中所述一个或多个APC或aAPC包含编码靶抗原的DNA或RNA。
151.根据实施方式148所述的方法,其中所述一个或多个靶抗原与MHC复合。
152.根据实施方式151所述的方法,其中所述MHC是MHC四聚体。
153.根据实施方式144-152中任意一项所述的方法,其中所述多个TCR的所述多个肿瘤反应性TCR包括TCR的至少2个不同的同源对。
154.根据实施方式144-153中任意一项所述的方法,其中所述多个肿瘤反应性TCR中的每个TCR对不同的表位或不同的蛋白质具有特异性。
155.根据实施方式144-154中任意一项所述的方法,其中所述多个肿瘤反应性TCR中的每个TCR包含不同的(i)TCRαCD3序列、(ii)TCRβCDR3可变结构域序列、(iii)TCRα可变结构域序列、(iv)TCRβ可变结构域序列或(v)组合的TCRα和TCRβ可变结构域序列。
156.根据实施方式144-155中任意一项所述的方法,其中所述多个肿瘤反应性TCR与来自所述受试者的肿瘤细胞结合但不与来自所述受试者的健康细胞结合或以跟肿瘤细胞相比低至少10倍的亲和力与来自所述受试者的健康细胞结合。
157.根据实施方式144-156中任意一项所述的方法,其中在(e)中施用的所述多个受体细胞包括比在(a)中分离的所述多个T细胞多至少10倍的细胞。
158.一种治疗受试者中的肿瘤的方法,其包括:
(a)从所述受试者中分离出表达T细胞受体(TCR)群的T细胞群,其中所述T细胞群包括最多约10,000个细胞;
(b)从所述TCR群中鉴定多个肿瘤反应性TCR;以及
(c)向所述受试者施用表达所述多个肿瘤反应性TCR或其子集的多个细胞,其中所述多个肿瘤反应性TCR或其子集包括至少2个不同的同源对。
159.一种治疗受试者中的肿瘤的方法,其包括:
(a)从TCR群中鉴定多个肿瘤反应性T细胞受体(TCR),其中所述TCR群包括至少50个不同的TCR同源对;以及
(b)向所述受试者施用表达所述多个肿瘤反应性TCR或其子集的多个细胞,其中所述多个肿瘤反应性TCR或其子集包括所述至少50个不同的同源对中的至少5个不同的同源对,其中所述多个肿瘤反应性TCR对于所述多个细胞来说是外源性的。
160.一种治疗受试者中的肿瘤的方法,其包括:
(a)向所述受试者施用表达从TCR群中鉴定的多个肿瘤反应性TCR的多个细胞,其中所述TCR群包括至少50个不同的TCR同源对,其中所述多个肿瘤反应性TCR或其子集包括所述至少50个不同的同源对中的至少5个不同的同源对,其中所述多个肿瘤反应性TCR对于所述多个细胞来说是外源性的。
161.根据实施方式159或160所述的方法,其中所述多个肿瘤反应性TCR或其子集包括至少5个TCR,并且其中所述至少5个TCR中的每个TCR对(1)不同的表位或不同的蛋白质具有特异性或(2)包含不同的(i)TCRαCD3序列、(ii)TCRβCDR3可变结构域序列、(iii)TCRα可变结构域序列、(iv)TCRβ可变结构域序列或(v)组合的TCRα和TCRβ可变结构域序列。
162.根据实施方式159-161中任意一项所述的方法,还包括在(a)之前,从所述受试者中分离表达所述TCR群的T细胞群。
163.根据实施方式159-162中任意一项所述的方法,其中所述至少50个不同的同源对包含来自至少5个不同V基因的V区域。
164.根据实施方式159-163中任意一项所述的方法,其中鉴定包括通过标志物分离所述肿瘤反应性TCR。
165.根据实施方式159-164中任意一项所述的方法,其中表达所述多个肿瘤反应性TCR或其子集的所述多个细胞是多个同种异体细胞、自体细胞或细胞系细胞。
166.根据实施方式165所述的方法,其中所述多个同种异体细胞表达与抑制性自然杀伤(NK)细胞受体结合的蛋白质。
167.根据实施方式166所述的方法,其中所述蛋白质是B2M-HLA-E或B2M-HLA-G融合蛋白。
168.一种鉴定靶反应性T细胞受体(TCR)的方法,其包括:
(a)使来自第一样品的多个T细胞与包含来自受试者的肿瘤细胞的第二样品或第三样品接触,其中所述第三样品衍生自所述第二样品,并且其中所述第三样品中包含:
(i)来自所述第二样品的肿瘤细胞的靶抗原或编码所述靶抗原的核酸、和MHC,
(ii)在MHC中呈递所述靶抗原的细胞,或者
(iii)包含MHC和由所述核酸编码的蛋白质产物的细胞,并且
其中所述多个T细胞的子集与和所述MHC复合的所述靶抗原结合;
(b)分离所述第一样品的所述多个T细胞的所述子集或其一部分;
(c)将所述多个T细胞的所述子集或其一部分分配至多个隔室,其中每个隔室包括所述多个T细胞的所述子集或其一部分中的单个T细胞;以及
(d)在每个隔室内,鉴定编码第一TCR链的第一多核苷酸和编码所述单个T细胞中的TCR同源对的第二TCR链的第二多核苷酸,从而生成一个或多个成对的核苷酸。
169.根据实施方式168所述的方法,其中鉴定包括物理上将编码所述第一TCR链的所述第一多核苷酸和编码所述单个T细胞中的TCR同源对的所述第二TCR链的所述第二多核苷酸连接。
170.根据实施方式168或169所述的方法,其中所述一个或多个成对的多核苷酸是一个或多个融合的多核苷酸。
171.根据实施方式168所述的方法,其中鉴定包括通过测序将编码所述第一TCR链的所述第一多核苷酸和编码所述单个T细胞中的TCR同源对的所述第二TCR链的第二多核苷酸连接。
172.根据实施方式168-170中任意一项所述的方法,其中所述第一多核苷酸和所述第二多核苷酸不是用亚磷酰胺化学合成的。
173.根据实施方式168-170中任意一项所述的方法,其中所述第一多核苷酸和所述第二多核苷酸是所述单个T细胞的内源性核酸的转录产物或扩增产物。
174.根据实施方式168-173中任意一项所述的方法,其中所述第一样品或所述第二样品分离自受试者。
175.根据实施方式168-174中任意一项所述的方法,其中所述第一样品和所述第二样品分离自同一受试者。
176.根据实施方式168-174中任意一项所述的方法,其中所述第一样品和所述第二样品分离自不同的受试者。
177.根据实施方式168-176中任意一项所述的方法,其中所述第一样品或所述第二样品是组织样品、血液样品、PBMC样品或其组合。
178.根据实施方式177所述的方法,其中所述组织样品是肿瘤组织或健康组织。
179.根据实施方式168-178中任意一项所述的方法,其中通过取芯活检、细针活检或单采从受试者中分离所述第一样品或所述第二样品。
180.根据实施方式168-179中任意一项所述的方法,其中分离包括通过标志物分离所述多个T细胞的所述子集或其一部分。
181.根据实施方式180所述的方法,其中所述标志物是细胞表面标志物或细胞因子。
182.根据实施方式181所述的方法,其中所述细胞表面标志物是CD39、CD69、CD103、CD25、PD-1、TIM-3、OX-40、4-1BB、CD137、CD3、CD28、CD4、CD8、CD45RA、CD45RO、GITR、FoxP3或其组合。
183.根据实施方式168-181中任意一项所述的方法,其中呈递所述靶抗原的细胞是肿瘤细胞、抗原呈递细胞(APC)或人造APC(aAPC)。
184.根据实施方式183所述的方法,其中用所述靶抗原对所述APC或所述aAPC进行脉冲。
185.根据实施方式168-184中任意一项所述的方法,其中包含由所述核酸编码的蛋白质产物的细胞是递送有所述核酸或其衍生物的APC或aAPC。
186.根据实施方式185所述的方法,其中所述APC或所述aAPC还递送有编码所述MHC的另外核酸。
187.根据实施方式185或186所述方法,其中所述核酸或其衍生物是DNA或RNA。
188.根据实施方式168-187中任意一项所述的方法,其中呈递所述靶抗原的细胞或包含由所述核酸编码的蛋白质产物的细胞分离自受试者或者是细胞系细胞。
189.根据实施方式188所述的方法,其中呈递所述靶抗原的细胞包含由所述核酸编码的蛋白质产物的细胞分离自从其中分离出所述第一样品和所述第二样品的同一受试者。
190.根据实施方式168-189中任意一项所述的方法,还包括生成包含所述一个或多个融合的多核苷酸的一个或多个载体,所述一个或多个载体中的每个载体包含所述一个或多个融合的多核苷酸中的融合的多核苷酸。
191.根据实施方式190所述的方法,还包括将所述一个或多个载体递送至多个细胞中,其中所述多个细胞中的每个细胞包含所述一个或多个载体中的至少一个载体。
192.根据实施方式191所述的方法,还包括在所述多个细胞中表达所述一个或多个融合的多核苷酸,其中所述多个细胞的子集表达多个靶反应性TCR。
193.根据实施方式192所述的方法,还包括使所述多个细胞与一个或多个靶抗原接触,其中表达所述多个靶反应性TCR的所述多个细胞的所述子集与所述一个或多个靶抗原结合。
194.根据实施方式193所述的方法,还包括鉴定所述多个靶反应性TCR中的一个或多个靶反应性TCR。
195.根据实施方式194所述的方法,还包括将编码所述一个或多个靶反应性TCR的多核苷酸递送至多个受体细胞中。
196.根据实施方式195所述的方法,还包括向所述受试者施用所述多个受体细胞中的一个或多个细胞。
197.一种药物组合物,其包含受体细胞,所述受体细胞包含编码根据实施方式67-116和168-196中任意一项所述的方法鉴定的靶反应性或肿瘤反应性TCR的序列。
198.一种施用受体细胞的方法,其包括向有需要的受试者施用根据实施方式197所述的药物组合物。
实施例
实施例1:以尾对尾的取向利用基于液滴的单细胞反应器进行配对TCR克隆
步骤1:含寡核苷酸的热可逆性水凝胶的制备
含寡核苷酸的热可逆性水凝胶可由超低胶凝化温度(ULGT)琼脂糖(用作热可逆性水凝胶)和用寡核苷酸共价修饰的线性聚丙烯酰胺聚合物制成。ULGT琼脂糖可以是IX-A型的,由Sigma-Aldrich(Cat.#A2576)获得。
寡核苷酸修饰的线性聚丙烯酰胺可以由寡核苷酸和丙烯酰胺单体共聚而成。具体地,制备在PBS缓冲液中含有~4%丙烯酰胺、100μM丙烯酸盐-dT30、100μM丙烯酸盐-T1d的溶液,向溶液中加入适量的过硫酸铵(APS)和TEMED,溶液在室温下孵育~6小时,在此期间丙烯酰胺、Acrydite-dT30 Acrydite-T1d(T1 d的序列可以是5′-CGGAAAGCA GA-3′)将共聚成高分子量线性聚合物。
用PBS对该溶液进行透析,以去除未并入长链线性聚丙烯酰胺的丙烯酰胺单体、短聚丙烯酰胺链和寡核苷酸等废物。这种透析也会去除APS、TEMED、它们的反应/分解产物。然后,以1∶1比例混合制备2%熔融的ULT琼脂糖和含有寡核苷酸修饰的线性聚丙烯酰胺的溶液,得到含寡核苷酸的1%ULT琼脂糖。
在本实施例中,dT30作为图4A和图5A所示的扩散限制性TCRα恒定结构域(TRAC)RT引物和扩散限制性TCR3恒定结构域(TRBC)RT引物。可替代地,靶向TRAC和TRBC的基因特异性引物可以用作RT引物。TRAC靶向基因特异性引物序列的示例是5′-ttgagaatcaaaatcggtga ata-3′。TRBC靶向基因特异性引物序列的示例是5′-tgtgcacctccttccc-3′。
在本实施例中,T1d用作亲和捕获寡核苷酸(ACO),其可以与图4A和图5B所示的亲和保留序列(ARS)杂交,以使得携带ARS的分子(例如,引物和PCR产物)受到扩散限制。优化聚合条件,以使dT30和T1d在1%ULGT琼脂糖凝胶中的最终浓度范围为100nM-500nM。
步骤2:在水凝胶液滴中封装T细胞
在37℃将约10,000个T细胞添加到上文所述的约50μL的熔融含寡核苷酸热可逆性水凝胶中,轻轻混合,并使用流动聚焦微流控装置与载体油乳化,形成约200,000个大小均匀的油包水液滴,中间体积约为250pL,或者使用TissueLyser LT(Qiagen)进行涡流形成大小不一的油包水液滴。载体油可以是含洗涤剂的氟碳油(例如,RAN Biotechnologies,Cat#008-氟表面活性剂-2wtH)或含矿物油的洗涤剂(例如,以73∶20∶7的比例混合的TegosoftDEC、矿物油、Abil WE09,见Abil等人,2017)。对于涡流法,可以调整涡流的频率和持续时间,以使合理比例的T细胞(例如,>20%)在液滴中,该液滴的体积在0.1nL与0.5nL之间。
步骤3:捕获和逆转录mRNA
上文产生的乳液可在65至75℃下孵育5分钟,以使细胞破裂并释放mRNA。然后将乳液放在冰上,以使dT30与聚A尾(图4A,顶部)杂交。这种冰上孵育也会促进琼脂糖胶凝化。然后,将乳液破乳以在水溶液中获得水凝胶珠。破乳方法取决于所用的载体油。对于氟碳油,在HFE-7500油(20%PFO)中加入20%(vol/vol)1H、1H、2H、2H全氟辛醇来对乳液破乳。对于矿物油,可以用苯酚/氯仿/异戊醇(25∶24∶1;vol/vol/vol;Fisher,cat)对乳液破乳。cat号:BP17521)
可以进行试剂交换以将缓冲液和试剂递送至水凝胶珠中,从而可以发生逆转录(RT)和模板转换(TS)(图4A,箭头(1))。为此,可在4℃下用含足量dNTP的RT缓冲液(例如,SmartScribe RT缓冲液)洗涤水凝胶珠,然后将足量的RT酶(例如SmartScript逆转录酶)和模板转换寡聚物(TSO)添加到珠悬浮液中并允许其扩散到水凝胶珠中。TSO可具有AAGCAGTGGTATCAACGCAGAGTACAT/rG//rG//+G/-3’的序列,其中/rG/意指核糖G核苷酸,/+G/意指LNA G核苷酸。然后通过短暂离心(例如,500g,持续1分钟)将水凝胶珠压实,去除上清液。然后使用搅拌方法将水凝胶珠重新乳化。为此,可向含压实水凝胶珠的管中添加少量(例如,~500uL)的载体油。搅拌管(例如,通过涡流或手弹)以形成油包水乳液,其中水凝胶珠将被少量(例如,50pL)或中间没有流体水溶液的载体油包围。孵育该乳液以完成RT和模板转换(例如,在42℃下孵育1小时),然后在4℃下孵育5分钟,得到琼脂糖凝胶。然后可以如上所述再次对乳液破乳。
步骤4:PCR扩增TRA和TRB
由于第一链cDNA在水凝胶中的扩散受到限制,可对水凝胶珠再次进行试剂交换(如上所述),以在基于液滴的单细胞反应器中递送缓冲液、DNA聚合酶(例如,Taq或KOD)和用于PCR扩增TRA和TRB的引物。一组3个引物可用于扩增TRAC和TRBC:引物‘ARS-pTSO’、‘1R’和‘2R’(参见图4A,箭头(2))。引物ARS-pTSO可具有[T1i|3xSpacer18|pTSO}的序列,其中T1i与T1d互补,3xSpacer18是由三个连续的内部Spacer18(即,六乙二醇)修饰组成的柔性连接子,pTSO的序列与TSO可在模板转换的cDNA上的启动序列基本相同。pTSO可具有以下序列:5’-GCAGTGGTATCAACGCAGAG TAC-3’。可根据“配对二分免疫受体序列的融合:尾对尾设计”一节中概述的策略来设计引物1R和2R。结构域TRAC-5A可具有序列5’-GACCCTGCCGTGTACCAG-3’;结构域TRBC-5A可具有序列5’-TGTGTTTGAGCCATCAGAAGCAGAG-3’;结构域OL-1可具有序列5’-ACCAG-3’;结构域OL-2可具有序列5’-CTCTGCT-3’。
试剂交换后,可使用上述搅拌方法再次乳化水凝胶珠。对乳液进行PCR(图4B,箭头(3)),之后产生扩增和扩散受到限制的TRA和TRB。扩增的TRA和TRB还有重叠的序列,以便于融合。再次冷却乳液,以使琼脂糖胶凝化,然后破乳。
步骤5:TRA和TRB的融合
按照“配对的二分免疫受体序列的融合:尾对尾设计”一节中概述的策略融合扩增的TRA和TRB。例如,可以使用USER(New England Biolabs)和连接酶。为此,引物1R和2R需要在选定的位置用脱氧尿苷修饰。例如,引物1R可具有序列5’-AGCAGAGC/dU/GG/dU/ACACGGCAGGGTC-3’,引物2R可具有序列5’-ACCAGCTC/dU/GC/dU/TCTGATGGCTCAAACACA-3’,其中/dU/意指脱氧尿苷修饰。
在上一步中的PCR扩增后,对乳液破乳并进行试剂交换,以将USER缓冲液和酶混合物递送至琼脂糖珠中的水性内含物。可以使用搅拌方法再次乳化水凝胶珠,并且可在适合USER消化的温度下孵育乳液(例如,在37℃下孵育1小时)。温度可以稍微升高,以确保琼脂糖融化,这使得USER消化的PCR产物自由扩散。然后在37℃下再次孵育乳液,以便USER消化的TRA和TRB上的粘性末端杂交(图4B,箭头(4))。然后将乳液在冰上冷却以使琼脂糖胶凝化,并破乳。
然后,可以应用试剂交换将连接酶缓冲液和酶(例如,Taq-DNA连接酶)引入到琼脂糖珠中,然后可以使用搅拌方法对琼脂糖珠重新乳化。然后可以在连接酶的最佳温度下孵育乳液,连接酶将连接粘性末端(图4B,箭头(5))。再次冷却乳液并对其破乳,从而在水溶液中收获琼脂糖珠。
琼脂糖珠用~100μL 1x TE稀释并再次熔融,以使琼脂糖浓度足够低,使其在室温下不会凝胶。将具有序列pTSO的引物与PCR缓冲液和酶一起加入到该混合物中,并进行批量PCR以进一步扩增融合产物。这种新的PCR产物将不再受到扩散限制,并且可用AgencourtAMPure珠纯化。纯化的PCR产物代表融合二分免疫受体多核苷酸的文库。
实施例2:以头对尾的取向利用基于液滴的单细胞反应器进行配对TCR克隆
前3个步骤基本上与实施例1相同,除了TSO可以是可有可无的(FIG.5A,顶部和箭头(1))。
步骤4:扩散受到限制的cDNA的第二链合成
RT后,对水凝胶珠进行试剂交换以递送一组第二链合成(SSS)引物(图5A,箭头(2))。该组可包括两个小组:TRA小组和TRB小组。根据物种,每个小组可包含10到100个引物。对人类来说,45-引物TRA小组和48-引物TRB小组可用于覆盖IMGT数据库中注释的所有功能性V基因变体。TRA小组中的每个引物可具有[AdptA|CDSTRA}的一般结构,TRB小组中的每个引物可具有[AdptB|CDSTRB}的一般结构。在本发明中描述了AdptA和AdptB。AdptA可具有P2A-3A的序列。P2A-3A是P2A“自裂解”肽的编码序列的后20个碱基。P2A的编码序列可以是‘gcgacgaatt ttagtttgct taagcaagcc ggagatgtgg aggaaaatcc tggaccg’。AdptB可具有attB 1-K的序列,其核苷酸序列可以是‘ACAAGTTTGTACAAAAAAGCAGGCT tacc’。CDSTRA可以是每个TRA-L1基因的编码序列(编码TRAV基因的前导序列)的前20到45个碱基。CDSTRB可以是每个TRB-L1基因的编码序列(编码TRBV基因的前导序列)的前20到45个碱基。在这种情况下,CDSTRA和CDSTRB还分别称为TRAV-L1UE和TRBV-L1UE(其中U代表上游,E代表精确,这意味着序列正好从起始密码子开始)。所有CDSTRA和CDSTRB序列应设计成具有相似的Tm,以使它们都能以相当好的效率和特异性结合其在cDNA上的靶位点。
试剂交换后,水凝胶珠中每个引物的引物浓度可为~10nM(~1uM)。由于AdptA和AdptB的存在可导致SSS引物的非特异性结合,因此可以添加具有与AdptA和AdptB(这里分别称为BlockerA和BlockerB)互补的序列的阻断剂寡核苷酸以与AdptA和AdptB杂交。BlockerA和BlockerB的3′端可用延伸阻断剂(例如,胺、C3间隔基、双脱氧修饰或反向dT)修饰。可以确保BlockerA的浓度等于或高于TRA小组SSS引物的总浓度,并且阻断剂B的浓度等于或高于TRB小组SSS引物的总浓度。
试剂交换后,可采用搅拌法重新乳化水凝胶珠。乳液可先加热至~95℃3至10分钟,使mRNA:cDNA双链变性,然后冷却至退火温度,该温度可比典型CDSTRA和CDSTRB序列的Tm低3~10℃。退火可持续3-6小时。然后将乳液冷却,获得琼脂糖凝胶,破乳,并在室温下清洗水凝胶珠,去除未结合的SSS引物。任选地,可以将ssDNA3′-5′外核酸酶(例如,EXO I)添加到琼脂糖珠(通过试剂交换)中,以使剩余和未混合的SSS引物降解。如果核酸外切酶需要比琼脂糖的熔融温度高的孵育温度,则此外切核酸酶处理步骤可能需要另一乳化→反应→破乳→试剂交换。
然后,可以通过试剂交换将DNA聚合酶(例如,DNA聚合酶I、Phi 29、克列诺片段、Taq等)和适当的缓冲液添加到琼脂糖中。可通过搅拌方法再次乳化琼脂糖珠,乳液可在DNA聚合酶的最佳温度下孵育10至60分钟,以进行SSS(图5B,箭头(3))。
第5步:PCR扩增TRA和TRB,融合
SSS后,乳液冷却,得到琼脂糖凝胶,破乳,用PCR缓冲液洗涤。可以通过试剂交换将引物ht1F、ht1R、ht2F、ht2R以及耐热DNA聚合酶(例如,热启动Taq)添加到水凝胶中(图5B,箭头(4))。引物ht1F可具有序列[T1i|3xSpacter18|AdptA},其中T1i用作亲和保留序列(ARS)。引物ht2R可具有序列[T1i|3xSpacer18|TRBC-3A*},其中TRBC-3A*是TRBC的反向引物,可具有序列5’-CTCTGCTTCTGATGGCTCAAACACA-3’。本文描述了引物ht1R和ht2F。结构域[htTRAC-5A}可具有序列5’-gaccctgccgtgtaccagc-3’。
可使用搅拌方法乳化水凝胶珠,并对其进行PCR(图5B和5C,箭头(5))。TRA和TRBPCR产物具有重叠序列,可以使用实施例1(图5C)中描述的方法进行融合。融合产物代表融合的二分免疫受体多核苷酸的文库。
实施例3:将尾对尾融合的二分免疫受体多核苷酸转化为具有双向启动子的免疫 受体表达载体
从实施例1获得的尾对尾融合的二分免疫受体多核苷酸可仅包含部分C区序列。添加其余的C区序列以及启动子以在表达载体中形成全表达盒。图6A和6B概述了实现这一目标的示例策略。首先,可以选择性地捕获和释放顶链(图6A,箭头(1))。这可以通过使用捕获寡核苷酸来实现,捕获寡核苷酸特异性识别顶链的保守序列(例如,[OL-1|OL-2})。然后,包含两个相对的人启动子的线性DNA构建体(这里称为启动子片段)可以与捕获的顶链融合(图6A,箭头(2)和(3))。为便于融合,启动子片段的底链(如图6A所示)可包含具有序列[TSO}的单链区以与捕获的顶链杂交。单链区可以通过USER消化创建。为此,用于扩增启动子片段的正向引物可具有一些(例如,1到5)脱氧尿苷修饰,PCR产物可以用USER酶混合物处理。为了获得dsDNA(图6A,箭头(3)),可以使用具有强链置换活性的DNA聚合酶(例如,phi29,Bst)。可替代地,可以使用连接酶来密封顶链。
该融合产物可通过PCR进一步扩增。为了确保正向引物(基本上具有[TSO}序列)不与顶链(我们称之为干扰引物结合位点)中间的[TSO*}杂交,可以使用阻断剂寡核苷酸。这种阻断剂寡核苷酸可具有[PB3|TSO}的序列,其中[PB3}具有[Promoter B}的最后10到20个碱基的序列。因此,阻断剂寡核苷酸可比正向引物具有更高的Tm。在PCR反应中,阻断剂寡核苷酸可以比正向引物浓度低的浓度使用。热循环程序中可采用两步退火。在每个PCR循环中,在变性步骤之后,可使用相对较高温度(例如,68℃)下的第一退火步骤以确保阻断剂与顶链杂交,但正向引物不会氢化为顶链或底链。然后,可使用相对较低温度(例如,58℃)下的第二退火步骤以确保正向引物结合底链。由于在第一个退火步骤中,顶链上的[TSO*}序列已经被阻断剂占据,因此正向引物可能无法有效地结合该序列。尽管在第二退火步骤中,阻断剂也可结合底链上的[TSO*}(正向引物结合位点),但由于正向引物具有更高的浓度,其可比阻断剂更有效地结合底链上的[TSO*}位点。
接下来,采用已知的方法环化扩增产物(图6A,箭头(4))。环化产物可以通过在[OL-1}和[OL-2}之间进行实质性切割来线性化。这可以简单地通过使用基本上具有序列[OL-2}的正向引物和基本上具有序列[OL-1*}的反向引物进行PCR扩增来实现。两个引物均可在3′端延伸,以达到PCR所需的合适Tm。在线性化的产物中,定位并定向启动子片段的第一启动子(例如,启动子a)以转录TRA,定位并定向启动子片段的第二启动子(例如,启动子B)以转录TRB。
可使用现有方法将线性化的产物克隆到质粒主链中(图6B,箭头(6))。线性化的产物可不包含TRA或TRB的C区域的全序列。这些恒定序列(TRAC和TRBC的完整或部分序列)可以包括在质粒主链中,从而使TRA和TRB的翻译产物具有功能性。质粒主链可具有TRA(例如,pA1)和TRB(例如,pA2)的终止序列。质粒主链还可具有用于载体的传播和功能的其他元件,如复制源、选择标记(例如,抗生素抗性基因)、用于逆转录病毒载体功能的LTRs或用于转座依赖插入的序列元件。
实施例4:将尾对尾融合的二分免疫受体多核苷酸转化为双顺反子免疫受体表达 载体
在TCR表达载体中,TRA和TRB的编码序列可以框内方式以头对尾取向融合,以使得一个启动子可以用于转录编码TRA和TRB的mRNA,并且使得核糖体可以转录TRA和TRB作为连续多肽,可替代地,如果使用P2A等“自裂解肽”,作为两个多肽。可以在TRA和TRB之间插入连接子衔接子序列。
在本实施例中,我们展示了如何将使用图4A和图4B以及实施例1所述方法生成的尾对尾融合TCR基因转化为TCR表达载体,其中TRA和TRB以头对尾取向、框内以及用在TRA和TRB之间的连接子融合。策略如图7A-7D所示。
在本实施例中,可以控制TRA和TRB的起始位点。在本实施例中,使用更精确的描述序列的命名系统。图7A的顶部示出了使用图4A和图4B以及实施例1中所述的方法生成的融合产物。TRA序列可包含5′UTR、TRA的L结构域、TRA的重排VDJ序列和在TRA的C区(我们称之为mini-C或mC)的5′端的短序列。因此,TRA序列被称为TRAuTR-L-VDJmC。类似地,TRB序列被称为TRBuTR-L-VDJmC
实施例2中描述的[P2A-3A|TRAV-L1UE}区可用于“修剪”顶链,以使(1)TRA序列可精确地从TRA的L1区的起始密码子开始,和(2)引入共同序列[P2A-3A},从而促进进一步的操作,如扩增(图7A,箭头(1))。该反应与实施例2中所述的SSS反应类似,不同之处在于使用尾对尾融合TCR基因作为模板。以类似的方式,可使用[attB 1-K|TRBV-L1UE}区来修剪底链(图7A,箭头(2))。使用具有序列[P2A-3A}和[attB 1-K}的引物进行进一步PCR扩增可产生钝端dsDNA(图7A,箭头(3))。注意,在本实施例中,在修剪之后,[TRAUTR-L-VDJmC}变为[TRALVDJmC},因为UTR序列已经被修剪掉;对于TRB也是如此。
然后,PCR产物可以与另一个称为ds[Lox66|P2A-5}(参见下文描述)的dsDNA在[TRBL VDJmC*}下游融合(图7B,箭头(4))。这可以使用类似于针对图6A的箭头(2)-(3)所描述的过程来实现。
接下来,融合dsDNA可以使用类似于图6A的箭头(4)所述的过程来环化(图7B,箭头(5))。环化后,[P2A-5}可以连接到[P2A-3A}以形成[P2A-5|P2A-3A},其可具有[P2A}的准确序列。环化的DNA可以在TRA和TRB之间的断点处线性化(图7B,箭头(6))。这可以例如通过使用引物[TRAC-5A*}和[TRBC-5A*}对环化的DNA进行PCR扩增来实现,如本文所述。此线性化产物可在[TRBL-VDJmC}上游融合ds[Lox71*|FF*|TRBC-3*}(图7C,箭头(7))。这里,TRBC-3是位于[TRBC-5A}下游的TRBC的序列(注:对于人类,这可以是TRBC1或TRBC2),FF编码多肽序列,该序列是弗林蛋白酶切割位点,后跟柔性连接子。Lox66和Lox71是一对进行了不可逆重组的Cre重组位点。由于[TRBL-VDJmC|TRBC-3}是TRB的全长序列,我们可以将[TRBL-VDJmC|TRBC-3}重写为[TRBL-VDJ|TRBC},其中[TRBL-VDJ}是TRB从L区的起始密码子到重排的VDJ片段末端的序列,TRBC是TRBC的序列。(参见图7C中的垂直“=”符号)。
用Cre重组酶处理上述融合产物可引起Lox66与Lox71之间的DNA序列反转,并导致形成双突变Lox位点[dmLox}和[LoxP}位点(图7C,箭头(8))。设计[Lox66}和[Lox71}的序列,以使得在转换之后,FF、dmLox和P2A在没有终止密码子的情况下进行框内连接(参见图7D中箭头(8)之后的核苷酸和氨基酸序列)。
可用[attB1-K}和[TRAC-5A*}对该反转产物进行PCR扩增,并将PCR产物克隆到载体主链中(图7D,箭头(9))。主链可具有足以完成TRAC的序列,并且还具有启动子、终止子和用于如上所述载体功能的其他必需元件。
实施例5:将头对尾融合的二分免疫受体多核苷酸转化为双顺反子免疫受体表达 载体
可以使用与前面实施例类似的策略将由实施例2所述方法生成的头对尾融合TCR基因(其序列构建体如图8A所述)转化为TCR表达载体。命名惯例与实施例4相同。首先,融合TCR基因可以使用常规重叠PCR或图6A中的箭头(2)-(3)所示的其他方法与ds[TRBC-3|P2A-5}(图8A,箭头(1))融合。该融合创建了位于[TRBL-VDJ}(图8A中的垂直“=”符号)下游的完整TRBC序列。如前所述,可环化该融合产物(图8A,箭头(2)),并通过使用引物[attB 1-K}和[TRAC-5A*}(图8B,箭头(3))进行PCR扩增来线性化。可以按照前面所述将线性化产物克隆到载体主链中,以完成TRAC序列并引入其他必要的元件(图8C)。
实施例6:使用OE-PCR的配对TCR
实施例1和实施例2描述了使用USER介导的粘性末端生成和连接来融合预扩增TRA和TRB的方法。可替代地,可以使用重叠延伸PCR(OE-PCR)融合预扩增TRA和TRB。在一些情况下,去除内部引物(例如,实施例1中的引物1R和2R,或实施例2中的引物ht1R和ht2F)可有助于融合。可以按照前面所述去除内部引物。在其他情况下,OE-PCR可以在不去除内部引物的情况下进行。在这些情况下,预扩增产物不需要是扩散受到限制的。因此,外部引物(例如,实施例1中的pTSO,或实施例2中的[Adpt1}和[TRBC-5A*})不需要与ARS连接。
图9A和图9B描述了一种使用OE-PCR在尾对尾的方向融合TRA和TRB的方法。步骤1至3与实施例1相同(图9A,箭头(1))。在步骤4中,应用试剂交换以向琼脂糖珠递送高浓度pTSO(例如,400nM)、低浓度引物1R和2R(例如,每个80nM)、耐热DNA聚合酶和PCR缓冲液(图9A,箭头(2))。使用搅拌法(图9B,箭头(3)),用含氟碳油的洗涤剂,重新乳化琼脂糖珠。然后,使用OE-PCR热循环程序进行乳液PCR。热循环程序可具有三个阶段。第一阶段的目标是扩增TRA和TRB。第二阶段的目标是用pTSO作为引物生成具有TRA和TRB的感测序列的ssDNA产物以及3′端重叠区。第三阶段的目标是融合ssDNS产物。
图10A和图10B描述了一种使用OE-PCR在头对尾的方向融合TRA和TRB的方法。步骤1至4与实施例2相同(图10A,箭头(1)至(3))。在步骤5中,应用试剂交换以向琼脂糖珠递送高浓度的外引物[AdptA}和[TRBC-5A*}(例如,每个400nM)、引物1R和2R(例如,每个80nM)、耐热DNA聚合酶和PCR缓冲液(图10B,箭头(4))。然后,可以按照上述方式执行OE-PCR(图10B,箭头(5))。
实施例7:引物修饰的琼脂糖
本文提供了制备引物修饰的琼脂糖的两种示例方法。在第一种方法中,在70℃制备含有约4%琼脂糖和100~500mM高碘酸钠(NaIO4)的溶液。在70℃短暂孵育后,通过涡流用含表面活性剂的油乳化溶液。实际上,本领域中用于制备稳定油包水乳液的任何含表面活性剂的油都可以在此处使用。乳液在冰上孵育约20分钟,然后使用20%~100%PFO破乳。将所得的琼脂糖珠悬浮液在水中洗涤,通过离心和去除上清液来进行包装,再次熔融并在0.1至1mM氰基硼氢化钠(NaCNBH3)存在下与含有胺标记的RT引物的等体积溶液混合。在37℃过夜孵育后,如上所述,将溶液乳化,在冰上孵育,破乳并洗涤,产生具有共价连接RT引物的2%琼脂糖珠悬浮液。固定化RT引物的浓度可以通过用DNA结合染料或荧光标记的与RT引物互补的寡核苷酸染色来测定。以100nM~10μM获得带有固定化RT引物的琼脂糖珠。
在第二种方法中,RT引物与线性聚丙烯酰胺共价连接。为此,首先将丙烯酰胺与甲基丙烯酰胺盐酸盐共聚,制得氨基修饰的线性聚丙烯酰胺,然后将其与NHS叠氮化物和DBCO修饰的引物反应。将引物修饰的线性聚丙烯酰胺与2%琼脂糖混合,乳化,冰上孵育,破乳,并洗涤,如上所述。
多种品牌的琼脂糖的来源很多。胶凝化温度可不同,修饰可影响胶凝化温度。作为质量控制步骤,控制所得的引物修饰的琼脂糖在约37℃保持熔融,并在室温下保持胶凝化。
实施例8:利用外周T细胞以头对尾的方式物理上连接TCRα链和β链和基于NGS的表
来自健康捐赠者的外周血T细胞用于制备物理上连接(头对尾方向)的天然配对TCR(即,融合的TCR多核苷酸)的DNA文库。在典型运行中,通过混合以下组分创建细胞悬浮液(CS):外周T细胞(典型最终浓度为1000~5000个细胞/μL)、1%引物修饰的琼脂糖(包含两个RT引物)、一个靶向人TRAC mRNA、另一个靶向人TRBC mRNA(在本实施例中:TRBC靶向RT引物不区分TRBC1和TRBC2)和PBS。
制备一种称为试剂完全混合(RCM)的溶液,包括以下组分:1%琼脂糖、SSIV反应缓冲液(根据制造商的单位定义试验制备)、Maxima H减逆转录酶(最终浓度:5至50U/μL)、Q5DNA聚合酶(最终浓度:0.02~0.2U/μL)、SYBR Gold(最终浓度:1倍,由制造商定义)、dNTP(各0.1-1mM)、RNaseOUT(最终浓度:10倍于库存稀释)、[AdptA|CDSTRA}区(最终浓度:各1-5nM)和[AdptB|CDSTRB}区(最终浓度:各1-5nM)。
在制备[AdptA|CDSTRA}和[AdptB|CDSTRB}小组时,可首先使用阻断剂A/B和称为V-特异性阻断剂(VSB)的另外阻断剂对每个引物进行退火。VSB可与相应的CDSTRA或CDSTRB区的3′部分互补,但比相应的CDSTRA或CDSTRB区短10-15nt。换句话说,每个[AdptA|CDSTRA}和[AdptB|CDSTRB}的3′端可与VSB形成钝端。也可以修饰3′VSB,使VSB不可延伸。
在典型的运行中,在等流速下将RCM和CS注入到标准2入口液滴生成微流控芯片(例如,水凝胶珠生成装置,Zilionis等人,2017Nature Protocol doi:10.1038/nprot.2016.154)的两个进口中,产生直径约为30~70μm的液滴。可使用含有氟碳油的耐热表面活性剂(例如,RAN 008-氟表面活性剂-2wtF、RAN 008-氟表面活性剂-5wtH或Bio-Rad液滴油)作为油相。图11A示出了液滴生成过程的快照。所得乳液在50℃孵育1-2小时。在孵育过程中,由于SYBR Gold可以染色引物和细胞核,因此可以用荧光显微镜检查一小部分乳液。图11B中提供了示例图像。然后将乳液在93℃孵育2分钟,65℃孵育20分钟,72℃孵育1分钟。可增加以下的5到8个周期:93℃孵育30秒,60℃孵育1分钟,72℃孵育1分钟,80℃孵育1分钟。
然后冷却乳液,形成琼脂糖凝胶珠,并通过与足量的20%PFO孵育来破乳。琼脂糖凝胶珠在低EDTA TE中洗涤,然后与引物AdptA、ht1R、ht2F和TRBC-5A*(如图10A和图10B所述)以及热启动KOD、商用KOD反应缓冲液和足够的dNTP混合,形成珠状悬浮液。将微珠悬浮液注入DropSeq或inDrop芯片的水相入口(例如,Zilios等人的细胞封装装置,Zilionis等人,2017 Nature Protocol doi:10.1038/nprot.2016.154)。将含有除微珠外的微珠悬浮液所有组分的载体溶液注入其他水相入口。调整珠悬浮液和载体溶液的流速,使大多数液滴中只有0或1个琼脂糖珠。这里使用与以前相同的含氟碳油的表面活性剂作为油相。图12示出了典型乳液的显微图像,其中突出显示了含有琼脂糖珠的液滴。
对乳液进行OE-PCR热循环程序。OE-PCR热循环程序的示例如下:93℃持续2min,35个循环[93℃持续15s,63℃持续30s,70℃持续1min],以及70℃持续3min。然后乳液使用20%PFO破乳,SPRI纯化,并使用AdptA和嵌套版本TRBC-5A*进一步扩增。扩增产物可以被认为是物理上连接的DNA文库(头对尾取向),天然配对的TCR。该文库中的每个成员具有图13-(1)所示的结构,其中1F和2F分别是衔接子序列AdptA和AdptB,AC-5和BC-5分别是TRAC和TRBC的5′段。用Nextra XT试剂盒轻轻处理扩增产物以去除部分TRAV序列(但不过度切割PCR产物,见图13-(2)),然后使用嵌套TRBC-5A*和针对Nextra接头(Tn5MEA或Tn5MEB)的另一引物扩增PCR。PCR产物在琼脂糖凝胶上进行分离,并使用MiSeq(600循环试剂盒)回收长度在650bp与800bp之间的DNA片段,使用图13-(3)所示的策略。
通过这种碎片化和尺寸选择策略,配对端读段的相当一部分包含足够的信息以使用MiXCR软件包识别同一物理上连接分子的TRAV、TRAJ、TRBV、TRBJ基因以及CDR3α和CDR3β序列。在典型的NGS运行中,TCRα链(TRA)序列可以聚簇成1000~100,000个克隆(取决于输入细胞号和读段深度)。同样,TCRβ链(TRB)序列可以聚簇成1000到100,000个克隆。请注意,只保留映射到TRA和TRB克隆的读段。其余的都被忽视了。
可以创建一个名为M0的数值矩阵,其中每行都是TRA克隆,每列都是TRB克隆,矩阵的元素(i,j)值显示其RED1序列映射到第i个TRA克隆的读段总数,RED2序列映射到j-thTRB克隆。图14示出M0矩阵的一部分的热图可视化。
为了访问一个TRA克隆是否主要与一个TRB克隆配对,以及一个TRB克隆是否主要与一个TRA克隆配对,从测序数据集中随机选取3个TRA克隆(图15A-C),并绘制具有所有TRB克隆的配对的读段计数。可以看出,这些TRA克隆中的每一个主要与一个TRB克隆配对。对于3个随机选取的TRB克隆,也是如此(图15D-F)。
为了提供随机选取克隆之外的整体视图,对于每个TRA克隆(即,对于M0矩阵的每一行),我们计算了片段读段,其由前1、2或3对贡献。这些片段分别称为FTop1、FTop2和FTop3。以TRA克隆#148为例(图15A),将总共1581个读段映射到该TRA克隆上,其中1349个读段映射到TRB克隆#73上,175个读段映射到TRB克隆#218上,57个读段映射到TRB克隆#985上,且没有映射到其他TRB克隆上。因此,FTop1(TRA#148)=1349/1581=0.85,FTop2(TRA#148)=(1349+175)/1581=0.96,FTop3(TRA#148)=(1349+175+57)/1581=1。使用此方法,所有TRA克隆都可以按FTop1值排序。可以绘制每个TRA克隆的降阶顺序和相应的FTop1值(图16A,数据系列A1)。同样,TRA克隆可以按FTop2值排序。可以绘制每个TRA克隆的降阶顺序和相应的FTop2值(图16A,数据序列A2)。同样,TRA克隆可以按FTop3值排序。可以绘制每个TRA克隆的降秩顺序和相应的FTop3值(图17A,数据A3)。在这些绘图中,圆的大小反映了映射到此TRA克隆上的总读段计数。可以为TRB克隆绘制类似的图(图16B),其中数据系列B1、B2、B3分别显示FTop1、FTop2和FTop3的秩序和值。可以看出,对于超过一半的TRA克隆,70%以上的读段是由一对贡献的。对TRB克隆也有相同的结论。
可以创建反映整个文库的配对精度的度量。由于占优配对(dominant pair)更有可能是天然对,因此可以计算由占优配对贡献的读段分数。为了定义主要对,同时考虑到某些克隆比其他克隆更容易表示,对矩阵M0进行归一化创建矩阵M1。M1的尺寸与M0相同。M1的每个元素的值计算如下:
Figure BDA0004071139730002171
因此M1的所有值都在0和1之间。如果M1i,j大于预先确定的阈值(称为占优阈值),则一对可以定义为占优(dominant)。正如预期的那样,占优配对的数量随着占优阈值的增加而减少(图17A)。类似地,占优配对所贡献的读段分数随着显性阈值的增加而减少(图17B,实线)。对于这个示例库,当占优阈值为0.7时,鉴定出297个占优配对,63%的所有读段都是由这些占优配对贡献的。作为对照,如果来自测序数据的TRA-TRB配对被随机重组,则由占优配对贡献的读段分数几乎为0%(图17B,虚线)。
虽然本发明的优选实施例已在本文中示出和描述,但对于本领域技术人员来说,显而易见的是,这些实施例仅作为示例提供。本发明并不打算受到说明书中提供的具体示例的限制。虽然已经参考前述说明书描述了本发明,但是这里的实施例的描述和图示并不意味着在限制意义上进行解释。在不脱离本发明的情况下,本领域技术人员现在将发生许多变化、改变和替换。此外,应当理解,本发明的所有方面不限于本文所阐述的依赖于各种条件和变量的具体描述、配置或相对比例。应当理解,在实施本发明时可以采用本文所描述的本发明实施例的各种替代方案。因此,预期本发明还应涵盖任何此类替代、修改、变化或等效物。以下权利要求旨在限定本发明的范围,并由此涵盖这些权利要求及其等效物范围内的方法和结构。

Claims (10)

1.一种制备融合的二分免疫受体多核苷酸的文库的方法,其包括:
(a)生成多个容器,每个容器包括(1)细胞,其中所述细胞包含编码二分免疫受体的第一肽链的第一核酸和编码二分免疫受体的第二肽链的第二核酸,和(2)多个可聚合或可胶凝聚合物和/或单体;以及
(b)将所述多个可聚合或可胶凝聚合物和/或单体聚合或胶凝化以形成多个硬化颗粒,所述多个硬化颗粒中的每个硬化颗粒具有由聚合或胶凝化的多个聚合物和/或单体构成的基质,其中所述多个硬化颗粒中的每个硬化颗粒包括所述第一核酸的第一引物延伸产物和所述第二核酸的第二引物延伸产物;其中所述第一引物延伸产物和所述第二引物延伸产物嵌入或包埋在所述基质内,并且其中所述第一引物延伸产物和所述第二引物延伸产物的扩散受到限制。
2.根据权利要求1所述的方法,其中所述第一和第二引物延伸产物是逆转录(RT)产物、第二链合成(SSS)产物或扩增产物。
3.一种鉴定靶反应性T细胞受体(TCR)的方法,其包括:
(a)提供表达多个TCR的多个T细胞,其中所述多个T细胞中的每个T细胞表达所述多个TCR中的TCR的同源对;
(b)将所述多个T细胞分配至多个隔室,其中每个隔室包括所述多个T细胞中的单个T细胞;
(c)在每个隔室内,将编码第一TCR链的第一多核苷酸与编码所述单个T细胞的TCR的同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)所述第一多核苷酸和所述第二多核苷酸是所述单个T细胞的内源性核酸的转录产物或扩增产物,或者(ii)所述第一多核苷酸和所述第二多核苷酸不是使用亚磷酰胺化学合成的;
(d)将所述多个融合的多核苷酸递送至多个细胞中,其中所述多个细胞中的每个细胞包含所述多个融合的多核苷酸中的至少一个融合的多核苷酸;
(e)在所述多个细胞中从所述多个载体表达所述多个融合的多核苷酸,其中所述多个细胞的子集表达多个靶反应性TCR;
(f)将所述多个细胞与一个或多个靶抗原接触,其中表达所述多个靶反应性TCR的所述多个细胞的子集与所述一个或多个靶抗原结合;以及
(g)鉴定所述多个细胞的所述子集的所述多个靶反应性TCR中的靶反应性TCR。
4.一种鉴定多个靶反应性T细胞受体(TCR)的方法,其包括:
(a)提供表达多个TCR的多个细胞,所述多个细胞中的每个细胞表达所述多个TCR中的TCR,其中所述多个TCR包括至少50个不同的同源对并且包括来自多个V基因的V区,并且其中所述多个TCR对所述多个细胞来说是外源性的;
(b)使所述多个细胞与一个或多个靶抗原接触,其中表达所述多个靶反应性TCR的所述多个细胞的子集与所述一个或多个靶抗原结合;以及
(c)鉴定所述多个细胞的所述子集中的至少两个细胞,所述至少两个细胞表达所述多个靶反应性TCR中的至少两个靶反应性TCR,从而鉴定所述多个靶反应性TCR中的所述至少两个靶反应性TCR。
5.一种治疗受试者中的癌症的方法,其包括:
(a)提供表达多个TCR的多个T细胞,其中所述多个T细胞中的每个T细胞表达所述多个TCR中的TCR的同源对;
(b)将所述多个T细胞分配至多个隔室,其中每个隔室包括所述多个T细胞中的单个T细胞;
(c)在每个隔室内,将编码第一TCR链的第一多核苷酸与编码所述单个T细胞的所述TCR的所述同源对的第二TCR链的第二多核苷酸连接,从而生成多个融合的多核苷酸,其中(i)所述第一多核苷酸和所述第二多核苷酸是所述单个T细胞的内源性核酸的转录产物或扩增产物,或者(ii)所述第一多核苷酸和所述第二多核苷酸不是使用亚磷酰胺化学合成的;
(d)将所述多个融合的多核苷酸递送至多个细胞中、其中所述多个细胞中的每个细胞包含所述多个融合的多核苷酸中的至少一个融合的多核苷酸;
(e)在所述多个细胞中表达所述多个融合的多核苷酸,其中所述多个细胞的子集从所述融合的多核苷酸的子集表达多个靶反应性TCR;
(f)从所述多个融合的多核苷酸的子集中鉴定所述多个靶反应性TCR;
(g)将所述多个融合的多核苷酸的子集中的一个或多个融合的多核苷酸或其衍生物递送至多个受体细胞中,其中所述多个受体细胞中的每个细胞包含所述多个融合的多核苷酸的所述子集中的所述一个或多个融合的多核苷酸或其衍生物中的至少一个;以及
(h)(i)向所述受试者施用所述多个受体细胞中的至少一个受体细胞或者(ii)向所述受试者施用所述多个受体细胞中的至少两个受体细胞,其中所述至少两个受体细胞表达不同的TCR。
6.一种治疗受试者中的肿瘤的方法,其包括:
(a)从表达多个T细胞受体(TCR)的受试者中分离多个T细,其中所述多个T细胞中的每个T细胞从内源性核酸表达所述多个TCR中的TCR的同源对,其中所述多个TCR包括多个肿瘤反应性TCR;
(b)从所述多个TCR中鉴定所述多个肿瘤反应性TCR;
(c)将编码所述多个肿瘤反应性TCR或其子集的多核苷酸递送至多个受体细胞中,其中所述多个受体细胞中的每个受体细胞包含编码所述多个肿瘤反应性TCR或其子集的多核苷酸中的至少一个多核苷酸,其中(i)所述多核苷酸是所述内源性核酸的转录产物或扩增产物或者(ii)所述多核苷酸不是使用亚磷酰胺化学合成的;
(d)在所述多个受体细胞中表达所述多个肿瘤反应性TCR或其子集;以及
(e)(i)向所述受试者施用所述多个受体细胞中的至少一个受体细胞或者(ii)向所述受试者施用所述多个受体细胞中的至少两个受体细胞,其中所述至少两个受体细胞表达不同的TCR。
7.一种治疗受试者中的肿瘤的方法,其包括:
(a)从所述受试者中分离出表达T细胞受体(TCR)群的T细胞群,其中所述T细胞群包括最多约10,000个细胞;
(b)从所述TCR群中鉴定多个肿瘤反应性TCR;以及
(c)向所述受试者施用表达所述多个肿瘤反应性TCR或其子集的多个细胞,其中所述多个肿瘤反应性TCR或其子集包括至少2个不同的同源对。
8.一种治疗受试者中的肿瘤的方法,其包括:
(a)从TCR群中鉴定多个肿瘤反应性T细胞受体(TCR),其中所述TCR群包括至少50个不同的TCR同源对;以及
(b)向所述受试者施用表达所述多个肿瘤反应性TCR或其子集的多个细胞,其中所述多个肿瘤反应性TCR或其子集包括所述至少50个不同的同源对中的至少5个不同的同源对,其中所述多个肿瘤反应性TCR对于所述多个细胞来说是外源性的。
9.一种治疗受试者中的肿瘤的方法,其包括:
(a)向所述受试者施用表达从TCR群中鉴定的多个肿瘤反应性TCR的多个细胞,其中所述TCR群包括至少50个不同的TCR同源对,其中所述多个肿瘤反应性TCR或其子集包括所述至少50个不同的同源对中的至少5个不同的同源对,其中所述多个肿瘤反应性TCR对于所述多个细胞来说是外源性的。
10.一种鉴定靶反应性T细胞受体(TCR)的方法,其包括:
(a)使来自第一样品的多个T细胞与包含来自受试者的肿瘤细胞的第二样品或第三样品接触,其中所述第三样品衍生自所述第二样品,并且其中所述第三样品中包含:
(i)来自所述第二样品的肿瘤细胞的靶抗原或编码所述靶抗原的核酸、和MHC,
(ii)在MHC中呈递所述靶抗原的细胞,或者
(iii)包含MHC和由所述核酸编码的蛋白质产物的细胞,并且
其中所述多个T细胞的子集与和所述MHC复合的所述靶抗原结合;
(b)分离所述第一样品的所述多个T细胞的所述子集或其一部分;
(c)将所述多个T细胞的所述子集或其一部分分配至多个隔室,其中每个隔室包括所述多个T细胞的所述子集或其一部分中的单个T细胞;以及
(d)在每个隔室内,鉴定编码第一TCR链的第一多核苷酸和编码所述单个T细胞中的TCR同源对的第二TCR链的第二多核苷酸,从而生成一个或多个成对的核苷酸。
CN202310093858.6A 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用 Pending CN116144706A (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201862718227P 2018-08-13 2018-08-13
US62/718,227 2018-08-13
US201862725842P 2018-08-31 2018-08-31
US62/725,842 2018-08-31
US201862732898P 2018-09-18 2018-09-18
US62/732,898 2018-09-18
US201962818355P 2019-03-14 2019-03-14
US62/818,355 2019-03-14
US201962823831P 2019-03-26 2019-03-26
US62/823,831 2019-03-26
CN201980067485.7A CN112840031B (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用
PCT/US2019/046170 WO2020036875A1 (en) 2018-08-13 2019-08-12 High throughput cloning of paired bipartite immunoreceptor polynucleotides and applications thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980067485.7A Division CN112840031B (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用

Publications (1)

Publication Number Publication Date
CN116144706A true CN116144706A (zh) 2023-05-23

Family

ID=69525770

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201980067485.7A Active CN112840031B (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用
CN202310118607.9A Active CN116298309B (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用
CN202310093858.6A Pending CN116144706A (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201980067485.7A Active CN112840031B (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用
CN202310118607.9A Active CN116298309B (zh) 2018-08-13 2019-08-12 成对的二分免疫受体多核苷酸的高通量克隆及其应用

Country Status (11)

Country Link
US (2) US11208457B2 (zh)
EP (1) EP3837373B1 (zh)
JP (2) JP7227374B2 (zh)
KR (2) KR20230088518A (zh)
CN (3) CN112840031B (zh)
AU (1) AU2019322834A1 (zh)
CA (1) CA3108439A1 (zh)
IL (2) IL280682B (zh)
MX (1) MX2021001763A (zh)
SG (1) SG11202101371TA (zh)
WO (1) WO2020036875A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020036875A1 (en) 2018-08-13 2020-02-20 Rootpath Genomics, Inc. High throughput cloning of paired bipartite immunoreceptor polynucleotides and applications thereof
US20210363543A1 (en) * 2018-10-30 2021-11-25 Nantbio, Inc. Self Replicating RNA System
MX2021012207A (es) 2019-04-05 2021-12-10 Rootpath Genomics Inc Composiciones y métodos para ensamblaje de genes del receptor de linfocitos t.
WO2023091420A2 (en) * 2021-11-16 2023-05-25 TCR2 Therapeutics Inc. Compositions and methods for t cell engineering
WO2023096890A1 (en) * 2021-11-24 2023-06-01 Rootpath Genomics, Inc. Compositions and methods for polynucleotide assembly
CN115029341A (zh) * 2022-05-23 2022-09-09 立凌生物制药(苏州)有限公司 一种快速克隆配对tcr序列检测方法及其应用
WO2023179795A1 (zh) * 2022-03-25 2023-09-28 立凌生物制药(苏州)有限公司 一种快速且简便地获得正确配对tcr的方法以及获得的tcr
CN114891779A (zh) * 2022-03-31 2022-08-12 立凌生物制药(苏州)有限公司 一种克隆tcr序列的检测方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103711A (zh) * 2013-11-21 2016-11-09 组库创世纪株式会社 T细胞受体和b细胞受体库分析系统及其在治疗和诊断中的应用
CN107002076A (zh) * 2014-09-15 2017-08-01 阿布维特罗有限责任公司 高通量核苷酸文库测序
WO2017171631A1 (en) * 2016-03-31 2017-10-05 Lion Tcr Pte. Ltd. Non-activated t cells expressing exogenous virus-specific t cell receptor (tcr)
CN107849560A (zh) * 2015-04-27 2018-03-27 阿布维特罗有限责任公司 对治疗剂和疾病特异性抗原进行测序、确定、配对和验证的方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534055B1 (en) 1988-11-23 2003-03-18 Genetics Institute, Inc. Methods for selectively stimulating proliferation of T cells
US5858358A (en) 1992-04-07 1999-01-12 The United States Of America As Represented By The Secretary Of The Navy Methods for selectively stimulating proliferation of T cells
US6905680B2 (en) 1988-11-23 2005-06-14 Genetics Institute, Inc. Methods of treating HIV infected subjects
US6352694B1 (en) 1994-06-03 2002-03-05 Genetics Institute, Inc. Methods for inducing a population of T cells to proliferate using agents which recognize TCR/CD3 and ligands which stimulate an accessory molecule on the surface of the T cells
GB9125768D0 (en) 1991-12-04 1992-02-05 Hale Geoffrey Therapeutic method
US7175843B2 (en) 1994-06-03 2007-02-13 Genetics Institute, Llc Methods for selectively stimulating proliferation of T cells
US7067318B2 (en) 1995-06-07 2006-06-27 The Regents Of The University Of Michigan Methods for transfecting T cells
US6692964B1 (en) 1995-05-04 2004-02-17 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
US6607878B2 (en) 1997-10-06 2003-08-19 Stratagene Collections of uniquely tagged molecules
US7572631B2 (en) 2000-02-24 2009-08-11 Invitrogen Corporation Activation and expansion of T cells
US6867041B2 (en) 2000-02-24 2005-03-15 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
US6797514B2 (en) 2000-02-24 2004-09-28 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
ATE373078T1 (de) 2000-02-24 2007-09-15 Xcyte Therapies Inc Gleichzeitige stimulation und konzentration von zellen
JP2004537313A (ja) 2001-07-31 2004-12-16 クローンテック ラボラトリーズ インク. 細胞内のプロテアーゼ活性を検出する方法
TWI333977B (en) 2003-09-18 2010-12-01 Symphogen As Method for linking sequences of interest
EP2484774A3 (en) 2005-07-21 2012-11-14 Abbott Laboratories Multiple gene expression including sorf contructs and methods with polyproteins, pro-proteins, and proteolysis
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US8454906B2 (en) 2007-07-24 2013-06-04 The Regents Of The University Of California Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions
EP2373812B1 (en) 2008-12-19 2016-11-09 President and Fellows of Harvard College Particle-assisted nucleic acid sequencing
AU2013222267A1 (en) 2012-02-22 2014-07-31 The Trustees Of The University Of Pennsylvania Compositions and methods for generating a persisting population of T cells useful for the treatment of cancer
EP2839026B1 (en) 2012-04-19 2016-08-10 Life Technologies Corporation Nucleic acid amplification
CA2881685C (en) 2012-08-14 2023-12-05 10X Genomics, Inc. Microcapsule compositions and methods
US20150005199A1 (en) 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US20150005200A1 (en) 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US20140378345A1 (en) 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
KR102290829B1 (ko) * 2014-03-14 2021-08-18 이뮤노코어 리미티드 Tcr 라이브러리
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
US20150298091A1 (en) 2014-04-21 2015-10-22 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
CN107002128A (zh) 2014-10-29 2017-08-01 10X 基因组学有限公司 用于靶核酸测序的方法和组合物
WO2016069886A1 (en) 2014-10-29 2016-05-06 Adaptive Biotechnologies Corporation Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples
CA2979726A1 (en) 2015-04-01 2016-10-06 Adaptive Biotechnologies Corp. Method of identifying human compatible t cell receptors specific for an antigenic target
US9422547B1 (en) 2015-06-09 2016-08-23 Gigagen, Inc. Recombinant fusion proteins and libraries from immune cell repertoires
GB201516275D0 (en) 2015-09-15 2015-10-28 Adaptimmune Ltd And Immunocore Ltd TCR Libraries
WO2017053902A1 (en) * 2015-09-25 2017-03-30 Abvitro Llc High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences
WO2017177217A2 (en) * 2016-04-08 2017-10-12 Unum Therapeutics Chimeric receptors and uses thereof in immune therapy
CN110520530A (zh) 2016-10-18 2019-11-29 明尼苏达大学董事会 肿瘤浸润性淋巴细胞和治疗方法
MA47265A (fr) 2017-01-13 2019-11-20 Agenus Inc Récepteurs de lymphocytes t qui se lient à ny-eso-1 et méthodes d'utilisation de ces derniers
WO2019126466A1 (en) 2017-12-22 2019-06-27 Rootpath Genomics, Inc. Compositions and methods for barcoding
WO2019196088A1 (en) 2018-04-13 2019-10-17 Syz Cell Therapy Co. Methods of obtaining tumor-specific t cell receptors
WO2020036875A1 (en) 2018-08-13 2020-02-20 Rootpath Genomics, Inc. High throughput cloning of paired bipartite immunoreceptor polynucleotides and applications thereof
MX2021012207A (es) 2019-04-05 2021-12-10 Rootpath Genomics Inc Composiciones y métodos para ensamblaje de genes del receptor de linfocitos t.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103711A (zh) * 2013-11-21 2016-11-09 组库创世纪株式会社 T细胞受体和b细胞受体库分析系统及其在治疗和诊断中的应用
CN107002076A (zh) * 2014-09-15 2017-08-01 阿布维特罗有限责任公司 高通量核苷酸文库测序
CN107849560A (zh) * 2015-04-27 2018-03-27 阿布维特罗有限责任公司 对治疗剂和疾病特异性抗原进行测序、确定、配对和验证的方法
WO2017171631A1 (en) * 2016-03-31 2017-10-05 Lion Tcr Pte. Ltd. Non-activated t cells expressing exogenous virus-specific t cell receptor (tcr)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LORENZ FKM等: "Unbiased Identification of T-Cell Receptors Targeting Immunodominant Peptide-MHC Complexes for T-Cell Receptor Immunotherapy", 《HUM GENE THER》, vol. 28, no. 12, 26 September 2017 (2017-09-26), pages 1158 - 1168, XP009510105, DOI: 10.1089/hum.2017.122 *

Also Published As

Publication number Publication date
EP3837373B1 (en) 2024-06-12
JP7227374B2 (ja) 2023-02-21
EP3837373A4 (en) 2022-07-06
CA3108439A1 (en) 2020-02-20
KR20230088518A (ko) 2023-06-19
MX2021001763A (es) 2021-04-19
JP2023058615A (ja) 2023-04-25
CN116298309A (zh) 2023-06-23
KR102543325B1 (ko) 2023-06-13
IL280682B (en) 2022-08-01
CN112840031B (zh) 2023-03-24
JP7475506B2 (ja) 2024-04-26
US20220135641A1 (en) 2022-05-05
CN116298309B (zh) 2024-04-02
IL294471A (en) 2022-09-01
WO2020036875A1 (en) 2020-02-20
US11208457B2 (en) 2021-12-28
CN112840031A (zh) 2021-05-25
EP3837373A1 (en) 2021-06-23
AU2019322834A1 (en) 2021-03-18
JP2021534245A (ja) 2021-12-09
US20210171600A1 (en) 2021-06-10
IL280682A (en) 2021-03-25
SG11202101371TA (en) 2021-03-30
IL294471B1 (en) 2024-03-01
KR20210057043A (ko) 2021-05-20

Similar Documents

Publication Publication Date Title
CN116298309B (zh) 成对的二分免疫受体多核苷酸的高通量克隆及其应用
ES2948133T3 (es) Métodos para mejorar la eficacia y expansión de células que expresan un receptor de antígeno quimérico
TWI719946B (zh) 使用cd123嵌合抗原受體治療癌症
EP3172234B1 (en) Treatment of cancer using a cd33 chimeric antigen receptor
EP3129470B1 (en) Treatment of cancer using anti-cd19 chimeric antigen receptor
JP2022000036A (ja) 改変された細胞および治療の方法
JP2022087214A (ja) 遺伝子改変細胞を作製するウイルス法
AU2020394441A1 (en) CD19 and CD22 chimeric antigen receptors and uses thereof
JP2021502979A (ja) Bcmaターゲティングキメラ抗原受容体、cd19ターゲティングキメラ抗原受容体及び併用療法
ES2955408T3 (es) Nucleasas modificadas genéticamente optimizadas que tienen especificidad para el gen de la región constante alfa del receptor de linfocitos t humanos
WO2017075451A1 (en) Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1
US20220389406A1 (en) Compositions and methods for t-cell receptor identification
Hocevar et al. PEGylated gold nanoparticles target age-associated B cells in vivo
US20240118285A1 (en) Compositions and methods for t-cell receptor identification
EP4326308A2 (en) Nanoparticles for antigen-specific cell programming and uses thereof
US20230272340A1 (en) Compositions and methods for antigen identification
TW202307210A (zh) Cd19和cd22嵌合抗原受體及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination