CN116120079B - 物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法 - Google Patents

物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法 Download PDF

Info

Publication number
CN116120079B
CN116120079B CN202310040311.XA CN202310040311A CN116120079B CN 116120079 B CN116120079 B CN 116120079B CN 202310040311 A CN202310040311 A CN 202310040311A CN 116120079 B CN116120079 B CN 116120079B
Authority
CN
China
Prior art keywords
powder
silicon carbide
porous graphite
physical vapor
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310040311.XA
Other languages
English (en)
Other versions
CN116120079A (zh
Inventor
张玉桃
张宜国
李新跃
罗敏
罗宏
何宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zigong Advanced Carbon Material Industry Technology Research Institute
Sichuan Yuxing Carbon Co ltd
Original Assignee
Zigong Advanced Carbon Material Industry Technology Research Institute
Sichuan Yuxing Carbon Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zigong Advanced Carbon Material Industry Technology Research Institute, Sichuan Yuxing Carbon Co ltd filed Critical Zigong Advanced Carbon Material Industry Technology Research Institute
Priority to CN202310040311.XA priority Critical patent/CN116120079B/zh
Publication of CN116120079A publication Critical patent/CN116120079A/zh
Application granted granted Critical
Publication of CN116120079B publication Critical patent/CN116120079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,采用氯化铵预浸处理的丝光棉纤维作为模板,与预制半焦粉、人造石墨粉、氯化铵、石油沥青混合,经压制、焙烧、纯化、真空石墨化得到多孔石墨材料,再机械加工成规定尺寸的PVT生长碳化硅单晶用多孔石墨隔板,隔板纯度高挥发份低,力学性能好易于机械加工,孔径分布均匀,开口气孔率高并具有通孔结构,有利于气相物质传输。

Description

物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法
技术领域
本发明涉及碳化硅晶体制造技术领域,具体涉及一种物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法。
背景技术
第三代半导体材料碳化硅(SiC)具有高的电场击穿强度、热导率、电子饱和速率及抗辐射能力强等优势,碳化硅半导体器件能在更高的温度、高电压、高频率下稳定运行,且电能消耗低。物理气相传输法(PVT)生长碳化硅单晶是以高纯碳化硅粉为原料,在石墨坩埚中生长碳化硅晶体,晶体生长包含碳化硅在1800℃-2000℃气相升华、升华物质输运转移、在碳化硅籽晶上结晶三个过程,晶体生长过程中需要精确控制硅碳比(Si/C)、生长温度梯度、晶体生长速率以及气流气压等参数以减少杂晶和晶体缺陷。PVT法生长碳化硅单晶设备结构简单、原料消耗少、技术成熟,目前是工程应用最广泛的碳化硅单晶生长方法。
PVT法生长碳化硅单晶装置主体为顶部固定碳化硅籽晶的石墨坩埚,石墨坩埚内装有碳化硅粉源,通常石墨坩埚内安装多孔石墨隔板将碳化硅粉源分隔成上下两层,多孔石墨隔板具有调节坩埚内温度场分布、Si/C比、气相物质传输速率和避免气体硅流失作用,从而提高碳化硅晶体质量和增加原料利用率。
现有技术中,常用的多孔石墨隔板普遍采用沥青焦、人造石墨粉、炭黑等作为主要原料,加入粘结剂、造孔剂混捏均匀后,经压制成型、高温焙烧得到多孔炭,再进行纯化、石墨化得到多孔石墨材料,最后机械加工成多孔石墨隔板。目前国内多采用氯化铵等高温易分解物质作为造孔剂制备多孔石墨,造成孔径不易控制、孔径分布宽、容易形成闭孔影响物质的气相传输。现有技术也考虑采用各类纤维作为模板造孔,但是采用这种工艺就需要制做专门的模板纤维,造成多孔碳材料制备工艺复杂,且不易形成通孔结构。
发明内容
针对现有技术的不足,本发明提供了一种物理气相传输法生长碳化硅单晶用多孔石墨隔板制造方法,隔板纯度高挥发份低,力学性能好易于机械加工,孔径分布均匀,开口气孔率高并具有通孔结构,有利于气相物质传输,以解决现有技术中多孔石墨隔板生产工艺复杂、不易形成通孔结构、多孔石墨隔板的孔径不易控制、孔径分布较宽、容易形成闭孔影响气相物质传输的问题。
本发明提供一种物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,具体包括如下步骤:
步骤1:备料,按照如下质量份数进行备料:半焦粉为50~65份,石墨粉为5~8份,氯化铵为2~6份,棉纤维模板为8~15份,石油沥青为16~26份;
步骤2:将半焦粉、石墨粉、氯化铵和棉纤维模板加入混合机中,在100℃~120℃条件下干混0.5h~2h,注入预先加热融化的石油沥青,并在100℃~130℃条件下湿混1h~2h,将混合料模压成型坯件;
步骤3:将步骤2得到的坯件在隔绝空气条件下进行焙烧;其中,第一阶段升温至330℃~380℃,恒温20h~28h;第二阶段升温至450℃~650℃,恒温40h~50h;第三阶段为升温至1200℃~1400℃,焙烧72h~120h,得到多孔碳材料;
步骤4:将步骤3得到的多孔碳材料放入真空石墨化炉中,先N2气保护下升温至1700℃~1900℃,通入氟利昂纯化3~5h;再升温至2000℃~2300℃,通入氯气纯化7~9h。再抽真空加热至2200℃~2600℃进行真空石墨化22~26h,真空石墨化炉绝对真空度50Pa~150Pa。
优选地,在步骤2中,对棉纤维模板进行如下预处理:
采用丝光棉纤维作为模板,将丝光棉纤维放入氯化铵溶液中搅拌浸泡0.5h~3h,离心过滤烘干后,得到所述棉纤维模板;其中氯化铵溶液的浓度大于或等于25%。
优选地,选择直径为20μm~40μm,且长度为10mm~30mm的丝光棉短纤维作为模板。
优选地,在步骤2中,所述半焦粉通过如下步骤获得:
将生焦磨制成粉,生焦粉与炭黑油混合后放入混捏锅内,在150℃-180℃条件下混捏1~2h,制成料糊;将料糊在氮气保护炉内加热到300℃-360℃保温4h-6h制成预碳化半焦料;将半焦料磨粉成为所述半焦粉;其中,所述生焦为生石油焦或生沥青焦,且生焦粉与炭黑油的质量比为(70~80):(20~30)。
优选地,对生焦粉进行筛选,生焦粉经过150目筛选后得到的粉体质量占生焦粉总质量至少80%以上。
优选地,对半焦粉进行筛选,半焦粉经过200目筛选后得到的粉体质量占半焦粉总质量至少80%以上。
优选地,所述石墨粉为人造石墨粉,并取170目~270目之间的粉体。
优选地,所述氯化铵为粉体。
本发明还提供一种多孔石墨隔板的应用,如上述制造方法制造得到的多孔石墨隔板用于物理气相传输法生长碳化硅晶体。
与现有技术相比,本发明具有如下有益效果:
1、本发明对物理气相传输法生长碳化硅晶体用多孔石墨隔板的原料以及制备方法都进行了深入研究,采用氯化铵预浸处理的丝光棉纤维作为模板,与预制半焦粉、人造石墨粉、氯化铵、石油沥青混合,经压制、焙烧、纯化、真空石墨化得到多孔石墨材料,再机械加工成规定尺寸的PVT生长碳化硅单晶用多孔石墨隔板,隔板纯度高挥发份低,力学性能好易于机械加工,孔径分布均匀,开口气孔率高并具有通孔结构,有利于气相物质传输。
2、本发明优选直径约20μm-40μm、长度10mm-3mm丝光棉短纤维作为模板制备原料,并用氯化铵预浸处理,有利于模板在材料中均匀分散和互穿搭接,通过氯化铵在后续高温中分解,能够在材料内部形成孔径分布均匀的通孔结构,并且开口气孔率高有利于物质输运。
3、本发明还对半焦粉、人造石墨粉的粒径进行了选择,采用特定粒径分布的半焦粉、人造石墨粉作为基体材料,相较采用普通生焦作为基体材料,能够有效减小焙烧过程收缩率,有利于孔径及孔径分布控制,同时减少裂纹并提高强度,使制得的多孔石墨材料在进行后续机械加工时不易脆裂。
4、本发明所述制备方法采用隔绝空气梯度升温焙烧,控制升温过程中挥发成分的释放速率,使材料收缩均匀,避免材料内部裂纹产生,从而影响多孔石墨材料的强度。
5、相较于传统石墨制备方法,本发明所述制造方法引入的不挥发性杂质少,经氟利昂和氯气纯化,再真空石墨化,制得的多孔石墨材料中杂质和挥发份含量低,满足碳化硅晶体生长多孔隔板材料纯度要求。
具体实施方式
下面将结合实施例对本发明作进一步说明。
一、实施例和对比例
实施例1:本实施例是比较优化的一个实施例,具体实施方法为:
(1)采用直径约20μm-40μm、长度15mm-25mm丝光棉短纤维作为模板制备原料。将氯化铵溶解在去离子水中配制成浓度25%的水溶液,用氯化铵溶液搅拌下浸泡丝光棉纤维1h,离心过滤脱除多余溶液后,110℃烘干得到棉纤维模板。
(2)用磨粉机将生石油焦磨粉,控制生焦粉150目筛下物质量分数≥80%,将上述生焦粉与炭黑油按质量比75:25,在混捏锅内160℃混捏1h,制成料糊,将料糊在氮气保护炉内加热到350℃保温5h制成预碳化半焦料。将半焦料磨粉成为半焦粉,控制半焦粉200目筛下物质量分数≥80%。
(3)人造石墨粉筛分取200目-230目粉末,造孔剂采用氯化铵粉,粘接剂采用石油沥青。配料质量份数为半焦粉:人造石墨粉:氯化铵粉:棉纤维模板:石油沥青=56:6:4:12:22。将半焦粉、人造石墨粉、氯化铵粉、棉纤维模板加入混合机中110℃干混1h,注入预先加热融化的石油沥青粘结剂在120℃湿混1.5h。将所得混合料模压成型坯件。
(4)模压成型坯件隔绝空气梯度升温焙烧,工艺条件为:第一段缓慢升温至350℃恒温24h;第二段均匀升温至600℃恒温48h;第三段均匀升温至1300℃焙烧100h。
(5)焙烧所得多孔炭材料放入真空石墨化炉中,先N2气保护下升温至1800℃,通入氟利昂纯化4h;再升温至2200℃,通入氯气纯化8h。再抽真空至绝对真空度低于100Pa,加热至2400℃进行真空石墨化24h得到多孔石墨。
实施例1所得多孔石墨材料体积密度为1.38g/cm3,开口气孔率53%,抗折强度18MPa,抗压强度43MPa,最大孔径75μm,平均孔径为46μm。石墨含量99.99%,杂质含量2ppm。
实施例2:本实施例是比较优化的一个实施例,具体实施方法为:
本实施例配料质量份数为半焦粉:人造石墨粉:氯化铵粉:棉纤维模板:石油沥青=65:5:2:12:16。其它制备工艺和原料与实施例1相同。
实施例2所得多孔石墨材料体积密度为1.41g/cm3,开口气孔率48%,抗折强度20MPa,抗压强度39MPa,最大孔径82μm,平均孔径为45μm。石墨含量99.99%,杂质含量2ppm。
对比例1:
本对比例不用棉纤维模板,采用氯化铵作为造孔剂,配料质量份数为半焦粉:人造石墨粉:氯化铵粉:石油沥青=60:6:12:22。其它制备工艺和原料与实施例1相同。所得多孔石墨材料平均孔径较小且孔径分布宽,强度较实施例1低,其体积密度为1.32g/cm3,开口气孔率49%,抗折强度11MPa,抗压强度18MPa,最大孔径126μm,平均孔径为26μm。
对比例2:
本对比例采用未经氯化铵溶液浸泡处理的丝光棉短纤维作为模板制备原料,其它制备工艺和原料与实施例1相同。所得多孔石墨材料平均孔径小且孔径分布窄,开孔气孔率较实施例1低,其体积密度为1.43g/cm3,开口气孔率34%。
对比例3:
本对比例采用长度30mm-50mm丝光棉短纤维作为模板制备原料,其它制备工艺和原料与实施例1相同。棉纤维模板相互缠结,湿混时不易分散均匀,经焙烧得到的多孔碳强度低,有不规则大孔,在后续石墨化加工容易开裂。
对比例4:
本对比例采用直径20μm-40μm、长度15mm-25mm的未经丝光处理棉短纤维作为模板制备原料,其它制备工艺和原料与实施例1相同。所得多孔石墨材料开孔气孔率较实施例1低,其体积密度为1.36g/cm3,开口气孔率44%,抗折强度15MPa,抗压强度37MPa,最大孔径73μm,平均孔径为38μm。
通过上述实施例和对比例进行比较,采用氯化铵溶液浸泡处理直径约20μm-40μm、长度15mm-25mm丝光棉短纤维为原料,制备的多孔石墨平均孔径适中且孔径分布窄,开口气孔率及强度高,适合于制做PVT生长碳化硅单晶隔板,有利于气相物质的控制传输。
对比例5:
本对比例采用100目-120目生石油焦替代实施例1使用的半焦粉为原料,其它制备工艺和原料与实施例1相同。所得多孔石墨材料平均孔径、开孔气孔率较实施例1高,且孔径分布更宽,体积密度和强度降低。其体积密度为1.29g/cm3,开口气孔率57%,抗折强度9MPa,抗压强度17MPa,最大孔径134μm,平均孔径为72μm。
对比例6:
本对比例不用氟利昂、氯气纯化,直接真空石墨化40h,其它制备工艺和原料与实施例1相同。所得多孔石墨材料杂质含量大于30ppm,不适合于制作PVT生长碳化硅单晶隔板。
二、性能比较
通过实施例与对比例的比较可以看出,本发明所述方法采用氯化铵溶液浸泡处理直径为20μm-40μm、长度15mm-25mm丝光棉短纤维为原料,制备的多孔石墨平均孔径适中且孔径分布窄,开口气孔率及强度高,并且杂质少,不会影响碳化硅单晶的品质,适合于制作PVT生长碳化硅单晶隔板,有利于气相物质的控制传输。而对比例1没有采用棉纤维作为模板,使得制备得到的多孔石墨材料平均孔径较小,并且孔径数值分布较宽,形成的多孔并不均匀,过小和过大的孔径不仅影响气相物质的控制传输,还会影响多孔石墨材料的强度,导致在后续机械加工过程中非常容易破碎;对比例2虽然采用丝光棉短纤维作为模板,但没有对丝光棉纤维进行氯化铵溶液浸泡处理,这使得到的多孔石墨材料平均孔径小且孔径分布在很窄的范围内,并且开口气孔率明显低于实施例,不利于气相物质的控制传输;对比例3采用了长度超过30mm的丝光棉纤维作为模板,这导致丝光棉纤维模板相互之间出现缠绕,进行湿混时不易分散均匀,而且经过焙烧后得到的多孔石墨材料存在不规则大孔,导致多孔石墨材料强度低,在后续机械加工时相较于对比例1~2更容易出现开裂,难以制成合格的多孔石墨隔板;对比例4采用了直径为20μm-40μm、长度15mm-25mm但未经丝光处理的棉短纤维为原料,得到的多孔石墨材料在性能上虽然优于其他对比例,但其整体性能仍然略逊于实施例1;对比例5采用100目~120目生石油焦替代半焦粉为原料,虽然孔径分布更宽,但体积密度和强度有显著降低,在后续进行机械加工时容易出现碎裂;对比例6不用氟利昂、氯气纯化,直接真空石墨化,导致得到的多孔石墨材料杂质含量高,不适合制作PVT生长碳化硅单晶隔板。
最后需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制技术方案,本领域的普通技术人员应当理解,那些对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,其特征在于,具体包括如下步骤:
步骤1:备料,按照如下质量份数进行备料:半焦粉为50~65份,石墨粉为5~8份,氯化铵为2~6份,棉纤维模板为8~15份,石油沥青为16~26份;
步骤2:将半焦粉、石墨粉、氯化铵和棉纤维模板加入混合机中,在100℃~120℃条件下干混0.5h~2h,注入预先加热融化的石油沥青,并在100℃~130℃条件下湿混1h~2h,将混合料模压成型坯件;
步骤3:将步骤2得到的坯件在隔绝空气条件下进行焙烧;其中,第一阶段升温至330℃~380℃,恒温20h~28h;第二阶段升温至450℃~650℃,恒温40h~50h;第三阶段升温至1200℃~1400℃,焙烧72h~120h,得到多孔碳材料;
步骤4:将步骤3得到的多孔碳材料放入真空石墨化炉中,先N2气保护下升温至1700℃~1900℃,通入氟利昂纯化3~5h;再升温至2000℃~2300℃,通入氯气纯化7~9h;再抽真空加热至2200℃~2600℃进行真空石墨化22~26h,真空石墨化炉绝对真空度50Pa~150Pa;
在步骤2中,对棉纤维模板进行如下预处理:
采用丝光棉纤维作为模板,将丝光棉纤维放入氯化铵溶液中搅拌浸泡0.5h~3h,离心过滤烘干后,得到所述棉纤维模板;其中氯化铵溶液的浓度大于或等于25%;
选择直径为20μm~40μm,且长度为10mm~30mm的丝光棉短纤维作为模板;
在步骤2中,所述半焦粉通过如下步骤获得:
将生焦磨制成粉,生焦粉与炭黑油混合后放入混捏锅内,在150℃-180℃条件下混捏1~2h,制成料糊;将料糊在氮气保护炉内加热到300℃-360℃保温4h-6h制成预碳化半焦料;将半焦料磨粉成为所述半焦粉;其中,所述生焦为生石油焦或生沥青焦,且生焦粉与炭黑油的质量比为(70~80):(20~30)。
2.根据权利要求1所述的物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,其特征在于,对生焦粉进行筛选,生焦粉经过150目筛选后得到的粉体质量占生焦粉总质量至少80%以上。
3.根据权利要求1所述的物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,其特征在于,对半焦粉进行筛选,半焦粉经过200目筛选后得到的粉体质量占半焦粉总质量至少80%以上。
4.根据权利要求1所述的物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,其特征在于,所述石墨粉为人造石墨粉,并取170目~270目之间的粉体。
5.根据权利要求1所述的物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法,其特征在于,所述氯化铵为粉体。
6.一种多孔石墨隔板的应用,其特征在于,如权利要求1~5任一所述制造方法制造得到的多孔石墨隔板用于物理气相传输法生长碳化硅晶体。
CN202310040311.XA 2023-01-12 2023-01-12 物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法 Active CN116120079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310040311.XA CN116120079B (zh) 2023-01-12 2023-01-12 物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310040311.XA CN116120079B (zh) 2023-01-12 2023-01-12 物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法

Publications (2)

Publication Number Publication Date
CN116120079A CN116120079A (zh) 2023-05-16
CN116120079B true CN116120079B (zh) 2023-11-10

Family

ID=86300512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310040311.XA Active CN116120079B (zh) 2023-01-12 2023-01-12 物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法

Country Status (1)

Country Link
CN (1) CN116120079B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1070951A (en) * 1963-04-29 1967-06-07 Ferodo Sa Improvements in or relating to materials having an asbestos fibre base
CN101829363A (zh) * 2010-05-28 2010-09-15 西安交通大学 一种骨组织工程仿生支架材料的制备方法
CN110511050A (zh) * 2019-09-02 2019-11-29 大同新成新材料股份有限公司 一种多晶硅铸锭炉用碳纤维石墨材料及其制备方法
CN110950661A (zh) * 2019-12-25 2020-04-03 自贡市宇星碳素制品有限公司 一种过滤用多孔碳素材料及其制备方法
CN113666368A (zh) * 2021-07-19 2021-11-19 广东海洋大学 一种人造石墨负极材料及其制备方法
CN114177884A (zh) * 2021-11-19 2022-03-15 天津工业大学 三维整体型纤维状多孔碳材料、制备方法及应用
CN114478042A (zh) * 2022-02-23 2022-05-13 永安市鼎丰碳素科技有限公司 一种纤维增强的特种等静压石墨的制备方法
CN114988402A (zh) * 2022-06-21 2022-09-02 清华大学 多孔透气石墨及其制备方法和应用
CN115583835A (zh) * 2022-11-29 2023-01-10 自贡东新电碳有限责任公司 一种低气孔率高机械强度炭石墨材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1070951A (en) * 1963-04-29 1967-06-07 Ferodo Sa Improvements in or relating to materials having an asbestos fibre base
CN101829363A (zh) * 2010-05-28 2010-09-15 西安交通大学 一种骨组织工程仿生支架材料的制备方法
CN110511050A (zh) * 2019-09-02 2019-11-29 大同新成新材料股份有限公司 一种多晶硅铸锭炉用碳纤维石墨材料及其制备方法
CN110950661A (zh) * 2019-12-25 2020-04-03 自贡市宇星碳素制品有限公司 一种过滤用多孔碳素材料及其制备方法
CN113666368A (zh) * 2021-07-19 2021-11-19 广东海洋大学 一种人造石墨负极材料及其制备方法
CN114177884A (zh) * 2021-11-19 2022-03-15 天津工业大学 三维整体型纤维状多孔碳材料、制备方法及应用
CN114478042A (zh) * 2022-02-23 2022-05-13 永安市鼎丰碳素科技有限公司 一种纤维增强的特种等静压石墨的制备方法
CN114988402A (zh) * 2022-06-21 2022-09-02 清华大学 多孔透气石墨及其制备方法和应用
CN115583835A (zh) * 2022-11-29 2023-01-10 自贡东新电碳有限责任公司 一种低气孔率高机械强度炭石墨材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氯化铵改性Lyocell纤维的研究――(Ⅱ)氯化铵对Lyocell纤维结构与性能的影响;彭顺金, 邵惠丽, 胡学超;高分子材料科学与工程(第05期);全文 *

Also Published As

Publication number Publication date
CN116120079A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN108842438B (zh) 一种耐高温SiC纤维的制备方法
CN103539109A (zh) 多晶硅铸锭保温热场用石墨材料及其制备方法
CN106784667A (zh) 一种炭材料表面碳化硅纳米晶须及其制备方法
US6363098B1 (en) Carbon electrode for melting quartz glass and method of fabricating thereof
CN108441244A (zh) 一种中间相炭微球和中间相沥青的制备方法
CN114538950A (zh) 一种基于生物质粉为碳源的多孔碳化硅陶瓷骨架及其制备方法
CN116120079B (zh) 物理气相传输法生长碳化硅晶体用多孔石墨隔板制造方法
KR102375530B1 (ko) 소량의 바나듐이 도핑된 반절연 탄화규소 단결정, 기판, 제조 방법
JP5208900B2 (ja) ディーゼルパティキュレートフィルタ用の導電性炭化珪素質多孔体の製造方法
CN114455969B (zh) 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚
CN113481603B (zh) 一种pvt法碳化硅晶体生长原料的制备方法
EP2113497A2 (en) High purity carbon fiberreinforced carbon composite for semiconductor manufacturing apparatus and method for producing the same
CN113564711B (zh) 一种快速生长高质量碳化硅的方法
CN112939606A (zh) 一种多孔碳化硅陶瓷及其制备方法
CN113321512A (zh) 复合碳化硅蜂窝陶瓷体及其制备方法
CN112457014A (zh) 一种超高功率石墨电极接头及其制备工艺
KR102508857B1 (ko) 등방 흑연 제조용 탄화 블록 제조방법
CN117486612B (zh) 一种纯化碳棒的制备方法及其制成的纯化碳棒
CN117945775B (zh) 一种Cf/ZrC陶瓷复合材料的制备方法
CN111320475A (zh) 一种Si-B-C三组元相的高通量制备方法
CN115611634B (zh) 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法
CN112939605B (zh) 一种提高碳化硅陶瓷的生长速率的方法
CN114455970B (zh) 一种含有氧化铝涂层的低密度C/C-SiC复合材料坩埚
CN115385705B (zh) 一种氮化硼纤维毡及其制备方法
CN117776764A (zh) 石墨复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant