CN115611634B - 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法 - Google Patents

一种钛铝碳增强多孔碳化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN115611634B
CN115611634B CN202211275295.4A CN202211275295A CN115611634B CN 115611634 B CN115611634 B CN 115611634B CN 202211275295 A CN202211275295 A CN 202211275295A CN 115611634 B CN115611634 B CN 115611634B
Authority
CN
China
Prior art keywords
silicon carbide
porous silicon
titanium
carbide ceramic
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211275295.4A
Other languages
English (en)
Other versions
CN115611634A (zh
Inventor
余超
杨昕雨
董博
邓承继
丁军
祝洪喜
陈嵛沣
程旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202211275295.4A priority Critical patent/CN115611634B/zh
Publication of CN115611634A publication Critical patent/CN115611634A/zh
Application granted granted Critical
Publication of CN115611634B publication Critical patent/CN115611634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。技术方案是:将粒径为30~100μm、6~15μm、0.5~2μm的三种碳化硅粉和钛铝碳粉A及结合剂溶液混合,模压成型后等静压成型;然后在氩气气氛中,以1~3℃/min的速率升温至800~1000℃,保温,再以5~10℃/min的速率升温至1800~2200℃,保温,得到多孔碳化硅陶瓷;最后将钛铝碳粉B、聚乙烯醇和去离子水混合,制得涂覆液;将所述涂覆液均匀喷涂至多孔碳化硅陶瓷表面,在氮气气氛中以2~4℃/min的速率升温至800~1000℃,保温,制得钛铝碳增强多孔碳化硅陶瓷。本发明实现了电学性能、热学性能、渗透性能和力学性能的协同提升,所制制品电阻率低、热导率高、渗透性强和力学性能优异。

Description

一种钛铝碳增强多孔碳化硅陶瓷及其制备方法
技术领域
本发明属于多孔碳化硅陶瓷技术领域。尤其涉及一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。
背景技术
多孔碳化硅具有优异的抗氧化性能、抗热震性能、渗透性能及可加工性,通过优化材料的气孔特性能够有效实现其热学性能、电学性能及渗透性能的调控,成为近年来电加热器领域的研究热点。一般情况下,电加热过滤器需具有低电阻率、高热导率、高渗透性及优良的力学性能:较低的电阻率及高热导率有利于提升电能-热能转换率,降低能源损耗;高渗透性有利于提升材料对颗粒物及有机气体的过滤、吸附效率;而优良的力学性能是保证电加热过滤器服役寿命的关键因素,若材料强度偏低,在服役过程中易发生损毁。但材料的电阻率及渗透性均随其气孔率增加而增大,且随气孔率增大,材料的热导率及力学性能降低,导致其服役性能及寿命受损。
目前,针对多孔碳化硅电阻率、渗透率、热导率及力学性能的协同改善主要集中在优化烧结助剂或烧结工艺,通过引入掺杂元素,调控碳化硅晶粒形貌、材料中载流子浓度及气孔形状、分布等。
文献1(Yeom J A,Kim Y W.Effect of carbon content on electrical,thermal,and mechanical properties of porous SiC ceramics with B4C and Cadditives[J].Journal of the European Ceramic Society,2022,42(10):4076-4085)以1wt%的B4C及4wt%的C为复合烧结助剂,经2100℃高温烧成制得多孔碳化硅陶瓷,其电阻率、显气孔率及常温抗折强度分别为1.3×10-1Ω·cm、36.7%及110.3MPa。采用该方法制得的多孔碳化硅虽具有优良力学性能及低电阻率,但其气孔率偏低,因此渗透性能较差。
文献2(Kultayeva S,Ha J H,Malik R,et al.Effects of porosity onelectrical and thermal conductivities of porous SiC ceramics[J].Journal ofthe European Ceramic Society,2020,40(4):996-1004.)以Y2O3-AlN为复合烧结助剂,经2000℃高温烧成,制得的多孔碳化硅陶瓷的显气孔率、热导率和电阻率依次为62.7%、5.8W/(m·K)和5.9×10-1Ω·cm。该方法制得的多孔碳化硅虽具有高渗透率等优势,但其热导率较小且电阻率偏大,导致能源利用率偏低。
文献3(Zhong Z,Zhang B,Ye J,et al.The thermal,electrical andmechanical properties of porousα-SiC ceramics bonded with Ti3SiC2 andβ-SiC vialow temperature in-situ reaction sintering[J].Ceramics International,2022,48(11):15189-15199)采用反应烧结法,制得的Ti3SiC2-SiC复合材料的显气孔率、热导率和电阻率依次为53.2%、6.03W/(m·K)及1.8×10-1Ω·cm;使用该方法制得的多孔碳化硅的电阻率低和渗透率虽较高,但其热导率偏低,导致热量在传递过程中损耗较大,同样使能源利用率降低。
文献4(Kultayeva S,Kim Y W,Song I H.Influence of sintering atmosphereand BN additives on microstructure and properties of porous SiC ceramics[J].Journal of the European Ceramic Society,2021,41(14):6925-6933.)以BN为烧结助剂,经2000℃高温烧成,制得的多孔碳化硅陶瓷的显气孔率、电阻率的抗折强度依次约为65.9%、6.0×10-1Ω·cm和8.4MPa,所制制品虽具有高渗透性,但其力学性能较差且电阻率偏大。
综上所述,现有技术制备的多孔碳化硅陶瓷不能同时具有低电阻率、高热导率、高渗透率的优异力学性能,难以实现多孔碳化硅陶瓷的电学性能、热学性能、渗透性能和力学性能的协同改善。
发明内容
本发明旨在克服现有技术缺陷,目的是制备一种电学性能、热学性能、渗透性能和力学性能的协同提升的钛铝碳增强多孔碳化硅陶瓷及其制备方法,所制备的钛铝碳增强多孔碳化硅陶瓷电阻率低、热导率高、渗透性能好、力学性能优异,所制备的钛铝碳增强多孔碳化硅陶瓷适用性强、尤其是适用于电加热过滤器。
为实现上述目的,本发明采用的技术方案是:
步骤1、将粒径为30~100μm的50~70质量份的碳化硅粉、粒径为6~15μm的10~15质量份的碳化硅粉、粒径为0.5~2μm的25~40质量份的碳化硅粉、0.8~10质量份的钛铝碳粉A和6~10质量份的结合剂溶液混合2~6h,即得混合料;
步骤2、将所述混合料在4~30MPa的条件下模压成型,再于100~200MPa条件下等静压成型,得到陶瓷素坯;
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以1~3℃/min的速率升温至800~1000℃,保温1~5h,再以5~10℃/min的速率升温至1800~2200℃,保温1~4h,得到多孔碳化硅陶瓷;
步骤4、将10~30质量份的钛铝碳粉B、1~3质量份的聚乙烯醇和50~110质量份的去离子水混合,得到涂覆液;
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以2~4℃/min的速率升温至800~1000℃,保温1~2h,制得钛铝碳增强多孔碳化硅陶瓷。
所述碳化硅粉的SiC含量≥99wt%。
所述钛铝碳粉A的Ti3AlC2含量≥98wt%;钛铝碳粉A的粒径为10~45μm。
所述钛铝碳粉B的Ti3AlC2含量≥99wt%,钛铝碳粉B的粒径为3~20μm。
所述结合剂溶液为羟乙基纤维素溶液、羟丙基甲基纤维素溶液、聚乙烯醇溶液、聚乙二醇溶液中的任一种、或为任两种溶液的混合物;所述结合剂溶液的浓度为1~6wt%。
所述聚乙烯醇的黏度为10~30Pa·s。
所述雾化喷涂时的表压为2~4.6bar。
由于采用上述技术方案,本发明与现有技术相比具有以下积极效果:
1、本发明将具有优异电热学性能及力学性能的Ti3AlC2引入至多孔碳化硅陶瓷中,一方面利用其分解温度高等特点,在碳化硅烧成过程中不引入低熔相,同时使Al元素在高温下固溶至碳化硅晶格,改善碳化硅带隙结构,增大碳化硅中载流子浓度并促进了碳化硅烧结颈的发育,有效降低了钛铝碳增强多孔碳化硅陶瓷的电阻率,并使其力学性能得到明显提升;另一方面Al元素的引入促进了六方碳化硅晶粒的生长,改善了多孔碳化硅陶瓷中的气孔形状、尺寸及分布,实现了钛铝碳增强多孔碳化硅陶瓷气孔特性的优化,显著提高了钛铝碳增强多孔碳化硅陶瓷的渗透性能。
2、本发明引入的三元碳化物Ti3AlC2粉体在高温下分解生成TiC,并在碳化硅晶粒发育时与其形成良好化学结合,提升了颗粒间结合力,使钛铝碳增强多孔碳化硅陶瓷的力学性能得到进一步提升;同时TiC的原位生成使多孔碳化硅表面粗糙度增大,有利于改善浆料喷涂效率及催化剂负载率,提升钛铝碳增强多孔碳化硅陶瓷的渗透性能。
3、本发明将Ti3AlC2喷涂至多孔陶瓷表面,利用Ti3AlC2在高温下的物相及结构演变特点,使其在多孔碳化硅表面形成网格结构,进一步增大材料比表面积及晶粒间结合强度,使所制备的钛铝碳增强多孔碳化硅陶瓷的力学性能及渗透性能得到协同提升。
本发明制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为61.83~78.31MPa,显气孔率为41.4%~47.5%,热导率为40.12~53.28W/(m·K),电阻率为1.89×10-2~3.02×10-2Ω·cm。
因此,本发明实现了钛铝碳增强多孔碳化硅陶瓷的电学性能、热学性能、渗透性能和力学性能的协同提升,制备的钛铝碳增强多孔碳化硅陶瓷具有电阻率低、热导率高、渗透性强和力学性能优异的特点,适用范围广、尤其适用于电加热过滤器。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制:
一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。本具体实施方式所述制备方法的步骤是:
步骤1、将粒径为30~100μm的50~70质量份的碳化硅粉、粒径为6~15μm的10~15质量份的碳化硅粉、粒径为0.5~2μm的25~40质量份的碳化硅粉、0.8~10质量份的钛铝碳粉A和6~10质量份的结合剂溶液混合2~6h,即得混合料。
步骤2、将所述混合料在4~30MPa的条件下模压成型,再于100~200MPa条件下等静压成型,得到陶瓷素坯。
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以1~3℃/min的速率升温至800~1000℃,保温1~5h,再以5~10℃/min的速率升温至1800~2200℃,保温1~4h,得到多孔碳化硅陶瓷。
步骤4、将10~30质量份的钛铝碳粉B、1~3质量份的聚乙烯醇和50~110质量份的去离子水混合,得到涂覆液。
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以2~4℃/min的速率升温至800~1000℃,保温1~2h,制得钛铝碳增强多孔碳化硅陶瓷。
所述结合剂溶液为羟乙基纤维素溶液、羟丙基甲基纤维素溶液、聚乙烯醇溶液、聚乙二醇溶液中的任一种、或为任两种溶液的混合物。
所述雾化喷涂时的表压为2~4.6bar。
本具体实施方式中:
所述碳化硅粉的SiC含量≥99wt%;
所述钛铝碳粉A的Ti3AlC2含量≥98wt%;钛铝碳粉A的粒径为10~45μm;
所述钛铝碳粉B的Ti3AlC2含量≥99wt%,钛铝碳粉B的粒径为3~20μm;
所述结合剂溶液的浓度为1~6wt%。
所述聚乙烯醇的黏度为10~30Pa·s。
实施例中不再赘述。
实施例1
一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。本具体实施方式所述制备方法的步骤是:
步骤1、将粒径为30~100μm的70质量份的碳化硅粉、粒径为6~15μm的10质量份的碳化硅粉、粒径为0.5~2μm的25质量份的碳化硅粉、0.8质量份的钛铝碳粉A和6质量份的结合剂溶液混合2h,即得混合料。
步骤2、将所述混合料在4MPa的条件下模压成型,再于200MPa条件下等静压成型,得到陶瓷素坯。
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以1℃/min的速率升温至800℃,保温5h,再以10℃/min的速率升温至2200℃,保温1h,得到多孔碳化硅陶瓷。
步骤4、将30质量份的钛铝碳粉B、3质量份的聚乙烯醇和110质量份的去离子水混合,得到涂覆液。
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以2℃/min的速率升温至1000℃,保温1h,制得钛铝碳增强多孔碳化硅陶瓷。
所述结合剂溶液为聚乙烯醇溶液。
所述雾化喷涂时的表压为2bar。
本实施例制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为75.23MPa,显气孔率为42.3%,热导率为50.81W/(m·K),电阻率为2.01×10-2Ω·cm。
实施例2
一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。本具体实施方式所述制备方法的步骤是:
步骤1、将粒径为30~100μm的65质量份的碳化硅粉、粒径为6~15μm的11质量份的碳化硅粉、粒径为0.5~2μm的30质量份的碳化硅粉、3质量份的钛铝碳粉A和7质量份的结合剂溶液混合3h,即得混合料。
步骤2、将所述混合料在12MPa的条件下模压成型,再于180MPa条件下等静压成型,得到陶瓷素坯。
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以1.5℃/min的速率升温至850℃,保温4h,再以8℃/min的速率升温至2150℃,保温1.5h,得到多孔碳化硅陶瓷。
步骤4、将25质量份的钛铝碳粉B、2.5质量份的聚乙烯醇和95质量份的去离子水混合,得到涂覆液。
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以2.5℃/min的速率升温至950℃,保温1.2h,制得钛铝碳增强多孔碳化硅陶瓷。
所述结合剂溶液为羟乙基纤维素溶液和聚乙烯醇溶液的混合物。
所述雾化喷涂时的表压为2.5bar。
本实施例制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为66.59MPa,显气孔率为45.8%,热导率为43.86W/(m·K),电阻率为2.54×10-2Ω·cm。
实施例3
一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。本具体实施方式所述制备方法的步骤是:
步骤1、将粒径为30~100μm的60质量份的碳化硅粉、粒径为6~15μm的12质量份的碳化硅粉、粒径为0.5~2μm的32质量份的碳化硅粉、5质量份的钛铝碳粉A和8质量份的结合剂溶液混合4h,即得混合料。
步骤2、将所述混合料在18MPa的条件下模压成型,再于150MPa条件下等静压成型,得到陶瓷素坯。
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以2℃/min的速率升温至900℃,保温3h,再以7℃/min的速率升温至2000℃,保温2h,得到多孔碳化硅陶瓷。
步骤4、将20质量份的钛铝碳粉B、2质量份的聚乙烯醇和80质量份的去离子水混合,得到涂覆液。
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以3℃/min的速率升温至900℃,保温1.4h,制得钛铝碳增强多孔碳化硅陶瓷。
所述结合剂溶液为羟丙基甲基纤维素溶液。
所述雾化喷涂时的表压为3bar。
本实施例制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为68.72MPa,显气孔率为43.1%,热导率为47.35W/(m·K),电阻率为1.92×10-2Ω·cm。
实施例4
一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。本具体实施方式所述制备方法的步骤是:
步骤1、将粒径为30~100μm的55质量份的碳化硅粉、粒径为6~15μm的13质量份的碳化硅粉、粒径为0.5~2μm的35质量份的碳化硅粉、7质量份的钛铝碳粉A和9质量份的结合剂溶液混合5h,即得混合料。
步骤2、将所述混合料在24MPa的条件下模压成型,再于120MPa条件下等静压成型,得到陶瓷素坯。
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以2.5℃/min的速率升温至950℃,保温2h,再以6℃/min的速率升温至1900℃,保温3h,得到多孔碳化硅陶瓷。
步骤4、将15质量份的钛铝碳粉B、1.5质量份的聚乙烯醇和65质量份的去离子水混合,得到涂覆液。
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以3.5℃/min的速率升温至850℃,保温1.7h,制得钛铝碳增强多孔碳化硅陶瓷。
所述结合剂溶液为聚乙二醇溶液。
所述雾化喷涂时的表压为3.5bar。
本实施例制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为78.31MPa,显气孔率为41.4%,热导率为53.28W/(m·K),电阻率为1.89×10-2Ω·cm。
实施例5
一种钛铝碳增强多孔碳化硅陶瓷及其制备方法。本具体实施方式所述制备方法的步骤是:
步骤1、将粒径为30~100μm的50质量份的碳化硅粉、粒径为6~15μm的15质量份的碳化硅粉、粒径为0.5~2μm的40质量份的碳化硅粉、10质量份的钛铝碳粉A和10质量份的结合剂溶液混合6h,即得混合料。
步骤2、将所述混合料在30MPa的条件下模压成型,再于100MPa条件下等静压成型,得到陶瓷素坯。
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以3℃/min的速率升温至1000℃,保温1h,再以5℃/min的速率升温至1800℃,保温4h,得到多孔碳化硅陶瓷。
步骤4、将10质量份的钛铝碳粉B、1质量份的聚乙烯醇和50质量份的去离子水混合,得到涂覆液。
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以4℃/min的速率升温至800℃,保温2h,制得钛铝碳增强多孔碳化硅陶瓷。
所述结合剂溶液为羟乙基纤维素溶液和聚乙二醇溶液的混合物。
所述雾化喷涂时的表压为4.6bar。
本实施例制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为61.83MPa,显气孔率为47.5%,热导率为40.12W/(m·K),电阻率为3.02×10-2Ω·cm。
本具体实施方式与现有技术相比具有以下积极效果:
1、本具体实施方式将具有优异电热学性能及力学性能的Ti3AlC2引入至多孔碳化硅陶瓷中,一方面利用其分解温度高等特点,在碳化硅烧成过程中不引入低熔相,同时使Al元素在高温下固溶至碳化硅晶格,改善碳化硅带隙结构,增大碳化硅中载流子浓度并促进了碳化硅烧结颈的发育,有效降低了钛铝碳增强多孔碳化硅陶瓷的电阻率,并使其力学性能得到明显提升;另一方面Al元素的引入促进了六方碳化硅晶粒的生长,改善了多孔碳化硅陶瓷中的气孔形状、尺寸及分布,实现了钛铝碳增强多孔碳化硅陶瓷气孔特性的优化,显著提高了钛铝碳增强多孔碳化硅陶瓷的渗透性能。
2、本具体实施方式引入的三元碳化物Ti3AlC2粉体在高温下分解生成TiC,并在碳化硅晶粒发育时与其形成良好化学结合,提升了颗粒间结合力,使钛铝碳增强多孔碳化硅陶瓷的力学性能得到进一步提升;同时TiC的原位生成使多孔碳化硅表面粗糙度增大,有利于改善浆料喷涂效率及催化剂负载率,提升钛铝碳增强多孔碳化硅陶瓷的渗透性能。
3、本具体实施方式将Ti3AlC2喷涂至多孔陶瓷表面,利用Ti3AlC2在高温下的物相及结构演变特点,使其在多孔碳化硅表面形成网格结构,进一步增大材料比表面积及晶粒间结合强度,使所制备的钛铝碳增强多孔碳化硅陶瓷的力学性能及渗透性能得到协同提升。
本具体实施方式制备的钛铝碳增强多孔碳化硅陶瓷经检测:抗折强度为61.83~78.31MPa,显气孔率为41.4%~47.5%,热导率为40.12~53.28W/(m·K),电阻率为1.89×10-2~3.02×10-2Ω·cm。
因此,本具体实施方式实现了钛铝碳增强多孔碳化硅陶瓷的电学性能、热学性能、渗透性能和力学性能的协同提升,制备的钛铝碳增强多孔碳化硅陶瓷具有电阻率低、热导率高、渗透性强和力学性能优异的特点,适用范围广、尤其适用于电加热过滤器。

Claims (8)

1.一种钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述制备方法的步骤是:
步骤1、将粒径为30~100μm的50~70质量份的碳化硅粉、粒径为6~15μm的10~15质量份的碳化硅粉、粒径为0.5~2μm的25~40质量份的碳化硅粉、0.8~10质量份的钛铝碳粉A和6~10质量份的结合剂溶液混合2~6h,即得混合料;
步骤2、将所述混合料在4~30MPa的条件下模压成型,再于100~200MPa条件下等静压成型,得到陶瓷素坯;
步骤3、将所述陶瓷素坯置于高温炉中,在氩气气氛中,先以1~3℃/min的速率升温至800~1000℃,保温1~5h,再以5~10℃/min的速率升温至1800~2200℃,保温1~4h,得到多孔碳化硅陶瓷;
步骤4、将10~30质量份的钛铝碳粉B、1~3质量份的聚乙烯醇和50~110质量份的去离子水混合,得到涂覆液;
步骤5、将所述涂覆液采用雾化喷涂方式均匀喷涂至所述多孔碳化硅陶瓷表面;再置于高温炉中,在氮气气氛中以2~4℃/min的速率升温至800~1000℃,保温1~2h,制得钛铝碳增强多孔碳化硅陶瓷。
2.如权利要求1所述的钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述碳化硅粉的SiC含量≥99wt%。
3.如权利要求1所述的钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述钛铝碳粉A的Ti3AlC2含量≥98wt%;钛铝碳粉A的粒径为10~45μm。
4.如权利要求1所述的钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述钛铝碳粉B的Ti3AlC2含量≥99wt%,所述钛铝碳粉B的粒径为3~20μm。
5.如权利要求1所述的钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述结合剂溶液为羟乙基纤维素溶液、羟丙基甲基纤维素溶液、聚乙烯醇溶液、聚乙二醇溶液中的任一种、或为任两种溶液的混合物;所述结合剂溶液的浓度为1~6wt%。
6.如权利要求1所述的钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述聚乙烯醇的黏度为10~30Pa·s。
7.如权利要求1所述的钛铝碳增强多孔碳化硅陶瓷的制备方法,其特征在于所述雾化喷涂时的表压为2~4.6bar。
8.一种钛铝碳增强多孔碳化硅陶瓷,其特征在于所述钛铝碳增强多孔碳化硅陶瓷是根据权利要求1~7项中任一项所述钛铝碳增强多孔碳化硅陶瓷的制备方法所制备的钛铝碳增强多孔碳化硅陶瓷。
CN202211275295.4A 2022-10-18 2022-10-18 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法 Active CN115611634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211275295.4A CN115611634B (zh) 2022-10-18 2022-10-18 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211275295.4A CN115611634B (zh) 2022-10-18 2022-10-18 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115611634A CN115611634A (zh) 2023-01-17
CN115611634B true CN115611634B (zh) 2023-04-18

Family

ID=84863576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211275295.4A Active CN115611634B (zh) 2022-10-18 2022-10-18 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115611634B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253651A (ja) * 2010-05-31 2011-12-15 National Institute Of Advanced Industrial & Technology 高温耐酸化性に優れた導電性快削セラミックス及びその製造方法
CN104947029A (zh) * 2015-06-26 2015-09-30 中国科学院宁波材料技术与工程研究所 一种热喷涂制备max相陶瓷涂层的方法
CN107324809A (zh) * 2017-07-11 2017-11-07 深圳市商德先进陶瓷股份有限公司 多孔碳化硅陶瓷及其制备方法和应用
CN114591087A (zh) * 2020-12-03 2022-06-07 中国科学院上海硅酸盐研究所 一种以max相-钛碳化铝为助剂的复相碳化硅导电陶瓷及其制备方法
CN114736034A (zh) * 2022-03-30 2022-07-12 中国科学院金属研究所 一种梯度多孔Ti3AlC2/SiC吸波屏蔽复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253651A (ja) * 2010-05-31 2011-12-15 National Institute Of Advanced Industrial & Technology 高温耐酸化性に優れた導電性快削セラミックス及びその製造方法
CN104947029A (zh) * 2015-06-26 2015-09-30 中国科学院宁波材料技术与工程研究所 一种热喷涂制备max相陶瓷涂层的方法
CN107324809A (zh) * 2017-07-11 2017-11-07 深圳市商德先进陶瓷股份有限公司 多孔碳化硅陶瓷及其制备方法和应用
CN114591087A (zh) * 2020-12-03 2022-06-07 中国科学院上海硅酸盐研究所 一种以max相-钛碳化铝为助剂的复相碳化硅导电陶瓷及其制备方法
CN114736034A (zh) * 2022-03-30 2022-07-12 中国科学院金属研究所 一种梯度多孔Ti3AlC2/SiC吸波屏蔽复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
万方豪 等.含堇青石涂层碳化硅网状多孔陶瓷的制备及燃烧特性.硅 酸 盐 学 报.2022,第1685-1693页. *

Also Published As

Publication number Publication date
CN115611634A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN111533572B (zh) 一种多孔碳化硅陶瓷支撑体的制备方法
CN109704781B (zh) 一种氮化硅纳米带气凝胶及其制备方法
US20230044409A1 (en) Fe-al-based metal porous membrane and preparation method thereof
EP2520349B1 (en) Filter used for filtering molten metal and preparation method thereof
CN107082628B (zh) 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN102391012B (zh) 结合碳热还原制备重结晶碳化硅多孔陶瓷的方法
CN105541334B (zh) 多层孔筋结构的碳化硅基复合泡沫陶瓷及其制备方法
CN108285355B (zh) 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN108585917B (zh) 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN109279909B (zh) 一种高强度碳化硼多孔陶瓷的制备方法
CN113045332A (zh) 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
US11918958B2 (en) Fe-Al-based metal porous membrane and preparation method thereof
CN103467102A (zh) 一种氮化硅多孔陶瓷及其制备方法
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
CN107935628B (zh) 一种泡沫碳化硅陶瓷及其制备方法
CN113735629A (zh) 一种碳材料宽温域防氧化抗冲刷复相陶瓷涂层及其制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN103420677B (zh) 一种高强度高抗氧化性bn陶瓷及其制备方法
CN115611634B (zh) 一种钛铝碳增强多孔碳化硅陶瓷及其制备方法
CN110002863B (zh) 一种钇铝石榴石多孔陶瓷的制备方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN110734287A (zh) 一种硅/碳化硅复相陶瓷的制备方法
CN105439620A (zh) 放电等离子烧结制备多孔氮化硅的方法
CN103804010A (zh) 一种多孔赛隆复相陶瓷及其制备方法
CN105126887A (zh) 催化剂支撑体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant