CN116115777A - 一种聚乙二醇-药物偶联物及其制备方法和应用 - Google Patents

一种聚乙二醇-药物偶联物及其制备方法和应用 Download PDF

Info

Publication number
CN116115777A
CN116115777A CN202310151324.4A CN202310151324A CN116115777A CN 116115777 A CN116115777 A CN 116115777A CN 202310151324 A CN202310151324 A CN 202310151324A CN 116115777 A CN116115777 A CN 116115777A
Authority
CN
China
Prior art keywords
compound
polyethylene glycol
preparation
drug conjugate
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310151324.4A
Other languages
English (en)
Inventor
柳华
刘剑宇
黄珂珂
张海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No 3 Peoples Hospital of Chengdu
Original Assignee
No 3 Peoples Hospital of Chengdu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No 3 Peoples Hospital of Chengdu filed Critical No 3 Peoples Hospital of Chengdu
Priority to CN202310151324.4A priority Critical patent/CN116115777A/zh
Publication of CN116115777A publication Critical patent/CN116115777A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种聚乙二醇‑药物偶联物及其制备方法和应用,具体涉及药物合成技术领域。所述偶联物是由活性荷载(细胞毒性分子)、可裂解连接子及聚乙二醇三部分构成。所述偶联物的制备方法简单,且在特定条件下能够自组装为纳米胶束,且在肿瘤微环境高表达的FAP‑α酶条件下,可特异性降解出活性物质,对多种肿瘤细胞的增殖有抑制作用,IC50值与紫杉醇相当,但在紫杉醇耐药株细胞上显著优于紫杉醇,体外内均有抗紫杉醇耐药肿瘤的效果,在抗肿瘤药物领域具有极高应用价值。

Description

一种聚乙二醇-药物偶联物及其制备方法和应用
技术领域
本发明涉及药物合成技术领域,具体涉及一种聚乙二醇-药物偶联物及其制备方法和应用。
背景技术
聚乙二醇化药物相对于原药有着巨大的优势,可以增加药物分子的水溶性(对紫杉醇、喜树碱或铂类这些溶解度极低的分子很重要);可以防止或减少药物产生结块、免疫原性和抗原性。大多数的小分子抗癌药在血液循环中只能保持数分钟,而高分子偶联抗癌药可以保持几十、几百小时甚至更长,这有利于因肿瘤毛细血管的渗漏而产生的“增强渗透和保留”效应,即EPR效应;由于流体力学体积增加而减弱了药物的肾消除,保护药物不被酶降解,延长药物在血浆内的半衰期,增加药物的生物利用度;通过EPR被动靶向或主动靶向使抗癌药高度富集在癌变的器官、组织或细胞,大幅度地降低因为小分子抗癌药充满全身而导致的毒副作用;将药物的细胞吸收局限于内吞路径,有利于向溶酶体方向的药物传输,从而避开p-糖蛋白泵出而导致的抗药性;刺激或恢复免疫功能,利于杀灭癌细胞。
高分子偶联药物可以大幅度增加药物分子的水溶性;可以防止或减少药物产生结块、免疫原性和抗原性;大多数的小分子药物在血液循环中只能保持数分钟,而高分子偶联药物可以保持几十、几百小时甚至更长,这有利于因肿瘤毛细血管的渗漏而产生的“增强渗透和保留”效应(即EPR效应);由于流体力学体积增加而减弱了药物的肾消除,保护药物不被酶降解,延长药物在血浆内的半衰期,增加药物的生物利用度。此外,通过主动靶向或EPR被动靶向使抗癌药高度富集在癌变的器官、组织或细胞,大幅度地降低因为小分子抗癌药充满全身而导致的毒副作用;将药物的细胞吸收局限于内吞路径,有利于向溶酶体方向的药物传输,从而避开p-糖蛋白泵出而导致的抗药性;刺激或恢复免疫功能,利于杀灭癌细胞。聚乙二醇是高分子偶联药物纳米医学领域最成功的载体,被称之为“黄金标准”载体。过去30年来,聚乙二醇化药物技术取得了巨大的成就,已经有17个聚乙二醇化药物被美国FDA批准进入市场销售,有1个聚乙二醇化药物被中国NMPA批准上市,此外还有近40个临床新药在进行一期、二期、三期临床试验和进入NDA阶段,其中半数为聚乙二醇化小分子药物。
为了有效治疗恶性肿瘤疾病,攻克癌症对人类健康的威胁,研究人员作出了诸多努力,目前已出现许多被广泛认可的抗癌药物,例如紫杉醇作为一种天然抗癌药物,在临床上已经广泛用于乳腺癌、卵巢癌和部分头颈癌和肺癌的治疗。在对抗肿瘤药物的不断探索中,也有众多新的化合物反映出优异的抗肿瘤活性,例如Myrexis公司研制的新型抗肿瘤药verubulin hydrochloride(代号为MPC-6827,商品名为AzixaTM)为一种具有双重作用机制的小分子化合物,即其既具有微管解聚作用,使肿瘤细胞分裂受阻而诱导凋亡,又具有血管破坏剂(vascular disrupting agent,VDA)作用,可减少实体肿瘤的血液供应,从而导致肿瘤细胞凋亡,结构为:
Figure BDA0004090890400000021
然而,抗肿瘤药物在杀死肿瘤细胞的同时,往往不可避免地会同时对正常细胞造成损伤,从而存在一定的毒性,杀死肿瘤细胞的能力越强,往往毒性越强。且大多数该类型的抗肿瘤药物水溶性极差,不便进行静脉给药。因此,不断探索既能够有效抗肿瘤,又能够降低毒性的化合物以及化合物制剂的制备方法,在癌症的治疗领域具有非常重要的意义。
发明内容
为此,本发明提供一种聚乙二醇-药物偶联物及其制备方法和应用,以解决现有技术中由于抗肿瘤药物靶向性差及水溶性差而导致的毒性大、不便给药的问题。
为了实现上述目的,本发明提供如下技术方案:
根据本发明第一方面提供的一种聚乙二醇-药物偶联物,所述偶联物分子式如下:
Figure BDA0004090890400000031
根据本发明第二方面提供的一种聚乙二醇-药物偶联物的制备方法,包括:
步骤一,利用4-甲氧基-3-硝基苯胺、多聚甲醛、甲醇钠和硼氢化钠制备化合物L1;
步骤二,利用4-氯-2-甲基喹唑啉、化合物L1和浓盐酸制备化合物L2;
步骤三,利用钯碳作为催化剂,化合物L2经氢气还原后制得化合物L3;
步骤四,利用化合物L3与N,N,N',N'-四甲基氯甲脒六氟磷酸盐、N-甲基咪唑和N-[叔丁氧羰基]甘氨酰-L-脯氨酸制备得到化合物L4;
步骤五,利用化合物L4与三氟乙酸制得化合物L5;
步骤六,利用化合物L5与甲氧基PEG活性酯制得化合物L6;化合物L6即为聚乙二醇-药物偶联物。
根据本发明第三方面提供的一种聚乙二醇-药物偶联物在制备抗肿瘤产品中的应用。
根据本发明第四方面提供的一种药物制剂,包括聚乙二醇-药物偶联物。
进一步的,所述制剂还包括药学上可接受的常用辅料。
进一步的,所述制剂为液体制剂、固体制剂、半固体制剂或气体制剂。
根据本发明第五方面提供的一种抗肿瘤制剂,所述制剂是包括将聚乙二醇-药物偶联物溶解于水中,得到淡黄色澄清透明溶液。
根据本发明第六方面提供的一种抗肿瘤制剂,所述制剂是包括将聚乙二醇-药物偶联物溶解于二氯甲烷中,得到油相,而后油相逐滴加入到去离子水中,使油相和水相充分混合搅拌;待油相在水相中呈小颗粒状均匀分布,外观呈现乳状后,在水浴条件下旋转蒸发至有机溶剂完全挥发后加入去离子水,手动振摇至薄膜完全溶解在水中,得到淡黄色澄清透明溶液。
根据本发明第七方面提供的一种抗肿瘤制剂,所述制剂是包括用乙醇将聚乙二醇-药物偶联物溶解,而后逐滴加入到去离子水中,外观呈现带蓝色乳光的淡黄色溶液后,在水浴条件下旋转蒸发至乙醇完全挥发后加入去离子水定容,得到淡黄色澄清透明溶液。
本发明具有如下优点:
本发明提供了一种在可自组装成纳胶束并具有抗肿瘤效果的聚乙二醇-药物偶联物;本发明提供的聚乙二醇-药物偶联物在特定条件下能够自组装为纳米胶束,且在肿瘤微环境高表达的FAP-α酶条件下,可特异性降解出活性物质,对多种肿瘤细胞的增殖有抑制作用,IC50值与紫杉醇相当,但在紫杉醇耐药株细胞上显著优于紫杉醇,体外内均有抗紫杉醇耐药肿瘤的效果,在抗肿瘤药物领域具有极高应用价值。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
图1为本发明实施例1提供的一种化合物L1的1H-NMR谱图;
图2为本发明实施例1提供的一种化合物L2的1H-NMR谱图;
图3为本发明实施例1提供的一种化合物L3的1H-NMR谱图;
图4为本发明实施例1提供的一种化合物L3的质谱图;
图5为本发明实施例1提供的一种化合物L4的1H-NMR谱图;
图6为本发明实施例1提供的一种化合物L4的质谱图;
图7为本发明实施例1提供的一种化合物L5的1H-NMR谱图;
图8为本发明实施例1提供的一种化合物L5的质谱图;
图9为本发明实施例1提供的一种化合物L6的1H-NMR谱图;
图10为本发明实施例1提供的一种合物L6的FT-IR光谱图;
图11为本发明实施例2提供的纳米胶束DLS表征图;
图12为本发明实施例2提供的纳米胶束透射电镜表征图;
图13为本发明实施例2提供的纳米胶束释放试验结果;
图14为本发明实验例3提供的肿瘤体积结果图;
图15为本发明实验例3提供的肿瘤重量结果图;
图16为本发明实验例3提供的肿瘤照片。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所使用小分子化合物均购于Sigma,所使用的溶剂均购于泰坦化学,SPF级实验鼠均购于北京华阜康。
实验用恒温磁力搅拌器及十万级称量天平购于赛多利斯(北京)。核磁共振仪型号为Bruker AVANCE 400(1H NMR 400MHz,13C NMR 100MHz),购于德国布鲁克科学仪器公司;高分辨质谱仪型号为Orbitrap Exploris 480,购于赛默飞世尔科技有限公司;傅里叶变换红外光谱仪:德国布鲁克公司,型号为INVENIO R。
实施例1
本实施例提供一种聚乙二醇-药物偶联物的制备方法:
步骤1:化合物L14-甲氧基-N-甲基-3-硝基苯胺的制备
以50mL甲醇溶解4-甲氧基-3-硝基苯胺(12.5g,1.0eq),随后加入多聚甲醛(3.13g,1.4eq),随后将反应瓶置于冰浴条件下,分批缓慢加入甲醇钠(20.1g,5.0eq)。在0℃条件下反应30min,随后逐渐升高到室温,8h后在反应液中缓慢分批加入硼氢化钠(0.45g,1.0eq)。反应液在室温条件下搅拌过夜反应12h。用TLC监测反应进程。反应结束后,将反应液倒入1N的氢氧化钠溶液中淬灭。并用甲基叔丁基醚萃取三次,收集有机相减压浓缩,经柱层析分离(PE/EA 1:1v/v)纯化得红棕色油状液体(12.1g;产率89%)。
步骤2:化合物L2的制备
以50mL异丙醇溶解4-氯-2-甲基喹唑啉(14.2g,1.2eq),随后加入4-甲氧基-N-甲基-3-硝基苯胺(12.1g,1.0eq),随后在搅拌状态下滴加5滴浓盐酸,升温至70℃反应3.5h。用TLC监测反应进程。反应结束后,将浑浊的反应液抽滤,取滤饼用水溶解,用饱和碳酸氢钠溶液调PH至弱碱性,最后用乙酸乙酯萃取两次,合并有机相后,收集有机相旋干即得黄色固体(15.1g;产率70%)。
步骤3:化合物L3的制备
以100mL甲醇溶解15.1克化合物L2,加入钯碳1.51g(底物质量的10%)反应体系经氮气置换后,再通氢气还原。反应24h后,用TLC监测反应进程,待反应结束,将反应液用硅藻土过滤,滤液减压浓缩后,经柱层析分离(PE/EA/TEA 1:1:0.01v/v/v)纯化得淡黄色粉末(9.06g;产率66%)。
步骤4:化合物L4的制备
以50mL乙腈溶解化合物L3(8.73g,1.0eq),随后加入N,N,N',N'-四甲基氯甲脒六氟磷酸盐(TCFH)(9.22g,1.1eq),随后滴加N-甲基咪唑(NMI)(7.55mL,3.1eq)。在室温下搅拌30min后,加入N-[叔丁氧羰基]甘氨酰-L-脯氨酸(9.7g,1.2eq),反应液在室温条件下搅拌过夜反应24h。用TLC监测反应进程。反应结束后,将反应液减压浓缩,经柱层析分离(PE/EA 3:2v/v)纯化得淡黄色疏松粉末(10.16g产率62%)。
步骤5:化合物L5的制备
以10mL二氯甲烷溶解1克化合物L4,滴加10mL三氟乙酸(TFA),室温下搅拌反应1h,TLC监测反应进程。反应结束后,将反应液减压浓缩,二氯甲烷复溶后,再次减压浓缩,重复三次;经柱层析分离(PE/EA 7:3,v/v)纯化得黄色粉末NH2-GP-1809(0.61g产率75%)。
步骤6:化合物L6的制备
将化合物L5(0.5g,1.0eq)溶于二氯甲烷,加入甲氧基PEG活性酯(mPEG2000-NHS)(2.68g,1.2eq),室温下搅拌反应30min,TLC监测反应,发现有新的具荧光物质产生,且原料反应完毕。反应结束后,将反应液减压浓缩,并以去离子水溶解,装于截留分子量为1000的透析袋中,透析72h。以二氯甲烷萃取透析袋内液体,后用TLC分离色谱制备板纯化得淡黄色粉末(0.11g,产率4%)。
化合物L6即为聚乙二醇-药物偶联物。
化合物L1~L6的1H-NMR谱图、质谱谱图或FT-IR光谱图如图1~10所示。
化合物L1的表征数据如下:
如图1所示;1H NMR(400MHz,DMSO-d6)δ7.14(d,J=9.0Hz,1H),6.94(d,J=2.9Hz,1H),6.85(dd,J=9.0,2.9Hz,1H),5.80(d,J=5.2Hz,1H),3.79(s,3H),2.67(d,J=5.1Hz,3H).
化合物L2的表征数据如下:
如图2所示;1H NMR(400MHz,DMSO-d6)δ7.90(d,J=2.8Hz,1H),7.74–7.69(m,1H),7.66(dd,J=6.8,1.4Hz,1H),7.49(dd,J=9.0,2.8Hz,1H),7.35(d,J=9.0Hz,1H),7.17(dd,J=6.8,1.5Hz,1H),7.08(dd,J=8.6,1.4Hz,1H),3.94(s,3H),3.54(s,3H),2.62(s,3H).
化合物L3的表征数据如下:
如图3所示;1H NMR(400MHz,DMSO-d6)δ7.62(dd,J=8.4,1.5Hz,1H),7.57(ddd,J=8.3,6.6,1.5Hz,1H),7.14(dd,J=8.7,1.5Hz,1H),7.06(ddd,J=8.4,6.6,1.5Hz,1H),6.81(d,J=8.4Hz,1H),6.47(d,J=2.6Hz,1H),6.41(dd,J=8.4,2.6Hz,1H),4.91(s,2H),3.78(s,3H),3.44(s,3H),2.57(s,3H).
如图4所示;HRMS(ESI):calcd for C17H18N4O[M+H]+295.1560,found:295.1555.
化合物L4的表征数据如下:
如图5所示;1H NMR(400MHz,DMSO-d6)δ9.42(s,1H),8.01(d,J=2.7Hz,1H),7.64(s,1H),7.61–7.57(m,1H),7.07(d,J=2.6Hz,3H),6.91(dd,J=8.7,2.7Hz,1H),6.81(t,J=5.8Hz,1H),4.69–4.64(m,1H),3.88(s,3H),3.75(dt,J=37.2,5.0Hz,2H),3.49(d,J=7.7Hz,2H),3.46(s,3H),2.59(s,3H),1.98–1.82(m,4H),1.37(s,9H).
如图6所示;HRMS(ESI):calcd for C29H36N6O[M+H]+549.2826,found:549.2837.
化合物L5的表征数据如下:
如图7所示;1H NMR(400MHz,DMSO-d6)δ9.43(d,J=11.3Hz,1H),8.00(d,J=2.5Hz,1H),7.64(d,J=8.4Hz,1H),7.57(ddd,J=8.3,5.9,2.2Hz,1H),7.06(q,J=5.4,4.8Hz,3H),6.92(td,J=8.6,8.0,2.6Hz,1H),4.70–4.62(m,1H),3.87(s,3H),3.45(s,3H),3.33–3.21(m,6H),2.58(s,3H),2.03–1.82(m,4H).
如图8所示;HRMS(ESI):calcd for C24H28N6O3[M+H]+449.2302,found:449.2316.
化合物L6的表征数据如下:如图9所示;化合物L6的氢谱中,既存在代表酰胺键中氢原子的a(9.50ppm),b(8.08ppm)两峰;也存在代表脯氨酸残基中与羰基直接相连的氢原子c(4.74ppm);同时,代表甲氧基甲基和喹唑啉结构中2位甲基的峰分别位于d(3.83ppm),f(2.65ppm);还有代表芳环区域的的峰用图中的红色方框(6.98ppm-7.77ppm)表示;吡咯烷峰用图中黑色方框(1.98ppm-2.01ppm);其余未标出具体化学位移的氢均被掩盖在聚乙二醇片段3.00ppm-3.90ppm的区间中。与原料mPEG2000-NHS对比,原本的丁二酰亚胺峰消失了。与中间体6对比,原本只存在一个位于9.42ppm的酰胺键的峰;经此步反应后,出现了另一个位于8.08ppm的新酰胺键峰。证明化合物L6被成功合成;
如图10所示;通过FT-IR测定化合物L6的化学结构,化合物L6的特征吸收峰归属情况如下:3100cm-1处有较强吸收,在3000-3300cm-1范围内,峰形尖锐,为芳氢伸缩振动峰(ν=CH);1530cm-1、1650cm-1处有较强吸收,在1430-1650cm-1范围内,峰形尖锐,属于苯环骨架振动(νC=C);结合二者特征吸收,可判断分子中存在芳烃骨架。在2850cm-1有较强且尖锐的吸收峰,在2853±10cm-1范围内,为-CH2-片段的伸缩振动峰(νC-H);在500-1000cm-1低频吸收带范围内,有较强吸收峰,属于-CH2-片段的面内摇摆振动峰(ρC-H);可判断分子中存在大量的亚甲基(-CH2-)单位。在1500cm-1有较强尖锐吸收峰,属于脂肪酰胺羰基的伸缩振动峰(νC=O);1300cm-1处有较强吸收,在1250-1360cm-1范围内,属于酰胺结构碳氮键的伸缩振动峰(νC-N)。结合以上信息,可确认结构中的酰胺基团。红外光谱结果见10,它与化合物L6的1H-NMR谱图(图9)共同证明了化合物L6的结构正确。
实施例2
本实施例提供一种抗肿瘤制剂的制备:
称取化合物L625 mg,加入0.5mL二氯甲烷将L6溶解,得到油相,而后逐滴加入到1000rpm搅拌的去离子水5mL中,使油相和水相充分混合搅拌;待油相在水相中呈小颗粒状均匀分布,外观呈现乳状后,在40℃水浴条件下旋转蒸发至有机溶剂完全挥发后加入去离子水,手动振摇至薄膜完全溶解在水中,得到淡黄色澄清透明溶液。
使用纳米激光粒度仪(DLS)检测胶束的粒径以及聚合物分散性指数(结果见表1),考察胶束的粒径大小以及分散的均匀性(如图11所示)。同时,使用透射电镜扫描纳米粒外观(如图12所示)。
表1
Figure BDA0004090890400000101
由此可见,通过上述方法制备的纳米胶束制剂具有合适的平均纳米粒度,且粒度均一、稳定性高。
实施例3
本实施例提供一种抗肿瘤制剂的制备:
称取化合物L625 mg,加入到1000rpm搅拌的去离子水5mL中,在40℃水浴条件下搅拌24小时,得到淡黄色澄清透明溶液。
实施例4
本实施例提供一种抗肿瘤制剂的制备:
称取化合物L625 mg,以0.5mL乙醇将L6溶解,而后逐滴加入到1000rpm搅拌的去离子水8mL中,外观呈现带蓝色乳光的淡黄色溶液后,在40℃水浴条件下旋转蒸发至乙醇完全挥发后加入去离子水定容至5mL,得到淡黄色澄清透明溶液。
实验例1
本试验例提供一种体外抗肿瘤细胞增殖效果评价。
1、试验方法:
所用药物:紫杉醇(PTX),本发明实施例1制备的化合物L3和L6。
细胞增殖抑制实验(MTT实验):在多种紫杉醇敏感或耐药的实体瘤肿瘤细胞上筛选化合物。实验时,收集处于对数生长期的待测细胞,以每孔固定数目接种于96孔板中,在37℃、5%CO2的细胞培养箱中培养过夜。次日,用培养基稀释待测化合物到相应浓度并加入到96孔板相应孔中,每个样品3个复孔,同时设置溶剂对照组和只含培养基的空白对照组,将加药后的96孔板继续放入细胞培养箱中培养72h。72h后,向96孔板每孔中加入20μL MTT溶液(5mg/mL),并在细胞培养箱中孵育24h,随后加入50μL 20%的酸性SDS溶液,在37℃下溶解甲臜过夜,用酶标仪在570nm波长下检测吸光度,并根据以下公式计算药物对细胞的生长抑制率:
抑制率=[(C-X)/(C-C0)];
其中,C、C0和X分别代表溶剂对照组、空白对照组和药物处理组的平均吸光度值。
最后,使用Graphpad Prism 5.0软件拟合生长抑制曲线并计算IC50值。
2.实验结果见表2。
表2
Figure BDA0004090890400000111
从表2可以看出,将化合物L3制备为化合物L6后,其在多种肿瘤细胞上的IC50出现了显著变化,活性均下降5-107倍。这有可能是肿瘤细胞摄入化合物L6后,缓慢释放出化合物L3而起到抗肿瘤细胞增殖的效果。同时,对比在A2780S/T和A549/T肿瘤细胞上紫杉醇的抗增殖活性,可以发现化合物L3和L6都可以抗紫杉醇耐药。在肺癌、卵巢癌和乳腺癌的多种细胞上的数据可以明显发现,化合物L3和L6在卵巢癌上效果更佳。因此后续体外研究优选A2780T肿瘤细胞进行研究,并选择A2780S和A2780T肿瘤细胞建模进行体内抗肿瘤研究,以确认化合物L6的抗紫杉醇耐药的潜力。
实验例2
本试验例提供了对FAP-α酶响应性释放试验。
1、试验方法
为考察化合物L6对FAP-α酶的响应性释放,制备2mg/mL浓度的化合物L6胶束5mL,置于EP管中,加入最终浓度为5ng/mL的rhFAP-α酶,放置于37℃恒温孵箱中。然后,通过使用高效液相色谱仪在预定时间间隔检测化合物L6降解为化合物L3的情况。以加入同体积0.9%氯化钠溶液作为rhFAP-α酶的阴性对照,每个时间点平行取样三个,结果以平均值±标准偏差表示。
试验采用HPLC法测定化合物L3和L6在甲醇中的浓度。经预试验条件探索,确定其测定条件如下所示:
液相检测系统:Waters 2695-2996;
液相色谱柱型号:Agilent C184.6×150mm;
柱温:25℃;
流动相:甲醇和水;
进样体积:10μL;
测定波长:310nm;
检测流速:1mL/min;
色谱条件如表3所示:
表3
Figure BDA0004090890400000121
Figure BDA0004090890400000131
2、试验结果
如图13所示,当由化合物L6所制备的胶束溶液(Micelles组)中不添加rhFAP-α酶时,溶液中的化合物L6不会在37℃恒温孵育过程中降解出有效荷载化合物L3。当加入最终浓度为5ng/mL的rhFAP-α酶后,由化合物L6所制备的胶束会被破坏并水解释放出有效荷载化合物L3。本次实验结果说明,制备的化合物L6胶束对FAP-α酶十分敏感,当化合物L6胶束制剂随体循环分布至含有FAP-α酶的肿瘤外周环境中时,会迅速响应性释放有效荷载化合物L3,从而更高效地起到抗肿瘤效果。
实验例3
本试验例提供抗肿瘤制剂的抑瘤作用与毒副作用评价。
1、实验方法
所用药物:本发明实施例1制备的化合物L3、实施例2制备的抗肿瘤制剂(L6micelles)。
异种移植皮下瘤模型的建立:无菌条件下收集A2780T细胞,双无(无血清且无抗生素)DMEM培养基洗涤细胞2次后,用双无DMEM培养基重悬并混匀细胞,计数调节细胞浓度为5×107个/mL,用1mL注射器往BALB/C-nu裸鼠右侧肩胛位置皮下注射100μL细胞悬液(5×106个细胞)。待平均肿瘤体积长到150-200mm3左右的时候,淘汰肿瘤体积过大或过小的荷瘤小鼠,将合格动物随机分为4组(每组6只),即溶剂对照组(10%HS15)、阳性对照组(PTXi.p.20mg/kg Q4D;化合物L3普通溶液组和化合物L6纳米胶束组(以化合物L3含量计算i.v.0.5mg/kg Q2D)。分组当天即开始给药治疗,记为day 0,每周尾静脉注射含药溶液三次,同时测量肿瘤体积和实验动物体重,并观察毒性和死亡症状。治疗结束后,颈椎脱臼法处死动物,剥离肿瘤,测量肿瘤重量,统计并计算,按药效学评价标准评价化合物体内抗肿瘤药效。
肿瘤体积和肿瘤体积相对抑瘤率分别按下述公式进行计算:
肿瘤体积=0.5×a×b 2
其中,a、b分别代表肿瘤长径、短径。
肿瘤体积相对抑瘤率=[1-(Xn-X0)/(Cn-C0)]*100%
其中,X0、Xn分别为治疗组给药前和给药n天后的平均肿瘤体积,
C0、Cn分别为对照组给药前和给药n天后的平均肿瘤体积。
肿瘤瘤重相对抑瘤率按下述公式进行计算:
肿瘤瘤重相对抑瘤率=[1-(Xn-X0)/(Cn-C0)]*100%
其中,X0、Xn分别为治疗组给药前和给药n天后的平均肿瘤重量,
C0、Cn分别为对照组给药前和给药n天后的平均肿瘤重量。
2、实验结果
抑瘤率的计算结果如表4所示:
表4
Figure BDA0004090890400000141
由表4可见,制备的L6纳米胶束制剂具有优于紫杉醇及化合物L3的抗肿瘤效果(高效),且与紫杉醇及化合物L3相比对动物的体重影响更少(低毒),实现了本发明发现新型高效低毒抗肿瘤疗法的目的。
为了考察化合物L6纳米胶束是否在体内环境对紫杉醇耐药卵巢癌细胞有治疗作用,本发明选择了人源紫杉醇耐药肿瘤细胞建立人源卵巢癌A2780T异种移植瘤模型,以此模型考察化合物L6纳米胶束的抗紫杉醇耐药效果,确认其的应用价值。研究发现,仅化合物L6纳米胶束组及化合物L3组有明显的抗肿瘤效果,紫杉醇组丧失了抗肿瘤活性(如图14所示)。
瘤重相关数据统计如图15,各组小鼠处死后取出的肿瘤实体照片见图16,一周三次给药含化合物L3量为0.5mg/kg的化合物L6纳米胶束、四天一次给药的20mg/kg紫杉醇组、一周三次给药0.5mg/kg的化合物L3普通溶液相对于Control组的抑瘤率分别为81.29%、-1.25%、70.46%。相对肿瘤增值率T/C值分别为20.56%、108.20%、39.16%。化合物L6纳米胶束组的抑瘤效果略优于化合物L3普通溶液组,明显优于紫杉醇组。
同时,如图16结果所示,化合物L6纳米胶束制剂组荷瘤动物在治疗过程中,与化合物L3普通溶液组相比,体重增长较为正常,且化合物L6纳米胶束组动物在全程实验中状态良好,给药期间小鼠活动正常,无小鼠死亡情况,进食、饮水、活动和体重均正常。而紫杉醇组及化合物L3普通溶液组的小鼠出现了毛发不顺等中毒症状。说明化合物L6纳米胶束制剂,对比化合物L3,该胶束制剂毒性显著降低。
综上,本发明提供了一种新的聚乙二醇-药物偶联物L6及其制剂,L6具有非常优异的抑制肿瘤细胞增殖的作用,制备成制剂后能够进一步提升其抗肿瘤效果并同时降低毒性,在抗肿瘤药物领域具有极高应用价值和前景。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种聚乙二醇-药物偶联物,其特征在于,所述偶联物分子式如下:
Figure FDA0004090890390000011
2.一种聚乙二醇-药物偶联物的制备方法,其特征在于,包括:
步骤一,利用4-甲氧基-3-硝基苯胺、多聚甲醛、甲醇钠和硼氢化钠制备化合物L1;
步骤二,利用4-氯-2-甲基喹唑啉、化合物L1和浓盐酸制备化合物L2;
步骤三,利用钯碳作为催化剂,化合物L2经氢气还原后制得化合物L3;
步骤四,利用化合物L3与N,N,N',N'-四甲基氯甲脒六氟磷酸盐、N-甲基咪唑和N-[叔丁氧羰基]甘氨酰-L-脯氨酸制备得到化合物L4;
步骤五,利用化合物L4与三氟乙酸制得化合物L5;
步骤六,利用化合物L5与甲氧基PEG活性酯制得化合物L6;化合物L6即为聚乙二醇-药物偶联物。
3.一种聚乙二醇-药物偶联物在制备抗肿瘤产品中的应用。
4.一种药物制剂,其特征在于,包括聚乙二醇-药物偶联物。
5.根据权利要求4所述一种药物制剂,其特征在于,所述制剂还包括药学上可接受的常用辅料。
6.根据权利要求4所述一种药物制剂,其特征在于,所述制剂为液体制剂、固体制剂、半固体制剂或气体制剂。
7.一种抗肿瘤制剂,其特征在于,所述制剂是包括将聚乙二醇-药物偶联物溶解于水中,得到淡黄色澄清透明溶液。
8.一种抗肿瘤制剂,其特征在于,所述制剂是包括将聚乙二醇-药物偶联物溶解于二氯甲烷中,得到油相,而后油相逐滴加入到去离子水中,使油相和水相充分混合搅拌;待油相在水相中呈小颗粒状均匀分布,外观呈现乳状后,在水浴条件下旋转蒸发至有机溶剂完全挥发后加入去离子水,手动振摇至薄膜完全溶解在水中,得到淡黄色澄清透明溶液。
9.一种抗肿瘤制剂,其特征在于,所述制剂是包括用乙醇将聚乙二醇-药物偶联物溶解,而后逐滴加入到去离子水中,外观呈现带蓝色乳光的淡黄色溶液后,在水浴条件下旋转蒸发至乙醇完全挥发后加入去离子水定容,得到淡黄色澄清透明溶液。
CN202310151324.4A 2023-02-22 2023-02-22 一种聚乙二醇-药物偶联物及其制备方法和应用 Pending CN116115777A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310151324.4A CN116115777A (zh) 2023-02-22 2023-02-22 一种聚乙二醇-药物偶联物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310151324.4A CN116115777A (zh) 2023-02-22 2023-02-22 一种聚乙二醇-药物偶联物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116115777A true CN116115777A (zh) 2023-05-16

Family

ID=86310011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310151324.4A Pending CN116115777A (zh) 2023-02-22 2023-02-22 一种聚乙二醇-药物偶联物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116115777A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104689330A (zh) * 2013-12-06 2015-06-10 上海交通大学 抗肿瘤药物peg化及其在逆转肿瘤多药耐药上的应用
CN112843242A (zh) * 2019-11-28 2021-05-28 重庆阿普格雷生物科技有限公司 一种聚乙二醇偶联药物、其制备方法及应用
CN113135983A (zh) * 2021-04-12 2021-07-20 四川大学华西医院 一种抗肿瘤化合物及其制剂和制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104689330A (zh) * 2013-12-06 2015-06-10 上海交通大学 抗肿瘤药物peg化及其在逆转肿瘤多药耐药上的应用
CN112843242A (zh) * 2019-11-28 2021-05-28 重庆阿普格雷生物科技有限公司 一种聚乙二醇偶联药物、其制备方法及应用
CN113135983A (zh) * 2021-04-12 2021-07-20 四川大学华西医院 一种抗肿瘤化合物及其制剂和制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIANG LIANG等: "Novel cathepsin B-sensitive paclitaxel conjugate: Higher water solubility, better efficacy and lower toxicity", 《JOURNAL OF CONTROLLED RELEASE》, vol. 160, no. 03, 28 June 2012 (2012-06-28) *
PENG XIAO-HUI等: "Synthesis, Spectroscopic and Fibroblast Activation Protein (FAP)-Responsive Properties of Phthalocyanine-Doxorubicin Conjugates", 《CHEMISTRY SELECT》, vol. 03, no. 19, 22 May 2018 (2018-05-22), pages 6 - 23 *
徐正伟等主编: "《纳米科技探索:科普与实验.下册》", vol. 2022, 30 June 2022, 苏州大学出版社, pages: 148 - 150 *

Similar Documents

Publication Publication Date Title
Gajbhiye et al. The treatment of Glioblastoma Xenografts by surfactant conjugated dendritic nanoconjugates
KR100413029B1 (ko) 신규안트라시클린화합물유도체및이를함유하는의약제제
CN108144067B (zh) 四价铂化合物-双环双键两亲性聚合物前药、其纳米胶束及制备方法和应用
CN1895676B (zh) 聚乙二醇为载体的紫杉醇或多烯紫杉醇的前药
JP2000517304A (ja) 高分子量のポリマーを基剤とするプロドラッグ
CN107213466A (zh) 一种柱芳烃类复合物、其制备方法、药物组合物和用途
CN112843242B (zh) 一种聚乙二醇偶联药物、其制备方法及应用
KR20140046389A (ko) 신남알데하이드 유도체 함유 pH 민감성 블록 공중합체 및 이의 제조방법
US20100278932A1 (en) Polymer micelles containing sn-38 for the treatment of cancer
CN112089845A (zh) 紫杉烷类药物-阿霉素前药自组装纳米粒及其应用
CN107266384B (zh) 基于2-氨基十六烷酸的n-羧基内酸酐单体和聚氨基酸及其制备方法
CN107998405B (zh) 包含难溶性药物的no供体型聚合胶束组合物的制备方法及应用
CN101160354A (zh) 高分子型癌症治疗用药及其制造方法
CN109762099A (zh) 一种聚合物-抗肿瘤药物偶联物及其制备方法和用途
WO2021052212A1 (zh) 基于双硒键聚合物的智能纳米粒及其制备方法与应用
CN116115777A (zh) 一种聚乙二醇-药物偶联物及其制备方法和应用
CN109675048B (zh) 一种抗癌前药脂质体及青蒿素类脂质体纳米药物
CN103055321A (zh) 一种聚乙二醇单甲醚-聚磷酸酯两嵌段共聚物及其阿霉素键合药
CN108863992B (zh) 多氨基多羧酸修饰卡巴他赛化合物的制备方法及用途
CN113135983B (zh) 一种抗肿瘤化合物及其制剂和制备方法
CN106554329B (zh) 水溶性紫杉醇抗癌药物化合物及其制备方法和应用
Savadkouhi et al. Synthesis, characterization, and micelle formation of novel PEGylated derivatives of noscapine with anti-cancer activity
CN108578712B (zh) 一种聚合物-药物偶联物及其制备方法
CN112546236A (zh) 一种pH敏感的双药物骨架聚合物前药及其制备方法和应用
CN115212185A (zh) pH敏感型阿霉素-脂肪酸前药的白蛋白纳米粒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination