CN116110955A - 一种栅控Resurf高压LDMOS结构 - Google Patents
一种栅控Resurf高压LDMOS结构 Download PDFInfo
- Publication number
- CN116110955A CN116110955A CN202310376829.0A CN202310376829A CN116110955A CN 116110955 A CN116110955 A CN 116110955A CN 202310376829 A CN202310376829 A CN 202310376829A CN 116110955 A CN116110955 A CN 116110955A
- Authority
- CN
- China
- Prior art keywords
- gate
- region
- oxide layer
- ldmos structure
- top layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 36
- 229920005591 polysilicon Polymers 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 28
- 238000000407 epitaxy Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 9
- 230000005684 electric field Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种栅控Resurf高压LDMOS结构,包括LDMOS结构,LDMOS结构中的栅控电极为双栅极结构,包括第一多晶硅栅和第二多晶硅栅,LDMOS结构的P‑top层上方设有第一栅氧化层,且第一栅氧化层上方制作有第一多晶硅栅;LDMOS结构的沟道区上方设有第二栅氧化层,且第二栅氧化层上方制作有第二多晶硅栅;第一多晶硅栅和第二多晶硅栅均包覆在场氧化层内,且第一多晶硅栅和第二多晶硅栅通过栅极金属短接。本发明通过新加入的栅极,一方面使得LDMOS结构在关态下接近于一个常规关态Resurf LDMOS,另一方面通过在开态时将P‑top层开启,在漂移区内形成反型沟道以降低比导通电阻,从而实现更优异的“耐压‑比导”特性。
Description
技术领域
本发明属于MOSFET器件领域,特别涉及一种栅控Resurf高压LDMOS结构。
背景技术
横向双扩散金属-氧化物-半导体场效应晶体管(LDMOS)器件是一种常用的高压功率器件,其在电机驱动,开关电源等领域具有广泛应用。当LDMOS器件作为高压开关电源时,其关态需要足够高的击穿电压(BV),而开态需要低的比导通电阻(Ron,sp)。因此,为了实现高击穿电压并降低比导通电阻,Resurf技术被提出且广泛使用于横向双扩散金属-氧化物-半导体场效应晶体管器件。但是,传统的Resurf LDMOS器件只有在开态时对比导通电阻有益,关态反而会降低器件耐压,因此难以做到极限状态。
发明内容
为了进一步降低LDMOS结构的比导通电阻,本发明公开了一种栅控Resurf高压LDMOS结构,通过新加入的栅极,一方面使得LDMOS结构在关态下接近于一个常规的关态Resurf LDMOS结构,另一方面通过在开态时将P-top层开启,在漂移区内形成反型沟道以降低比导通电阻,从而实现更优异的“耐压-比导”特性。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种栅控Resurf高压LDMOS结构,包括LDMOS结构,所述LDMOS结构中的栅控电极为双栅极结构,包括第一多晶硅栅和第二多晶硅栅,所述LDMOS结构的P-top层上方设有第一栅氧化层,且第一栅氧化层上方制作有第一多晶硅栅;所述LDMOS结构的沟道区上方设有第二栅氧化层,且第二栅氧化层上方制作有第二多晶硅栅;
所述第一多晶硅栅和第二多晶硅栅均包覆在场氧化层内,且第一多晶硅栅和第二多晶硅栅通过栅极金属短接。
优选地,所述第一栅氧化层的厚度根据P-top层的离子浓度调整。
优选地,所述的LDMOS结构的衬底为P型衬底,且P型衬底上方设有N型外延。
优选地,所述N型外延内设有P-body区、漏端N+区和P-top层,所述P-body区和漏端N+区分别位于N型外延内部两侧,所述P-top层位于P-body区和漏端N+区之间,且所述P-top层与漏端N+区之间存在间隔,所述P-body区、漏端N+区和P-top层的上表面均与N型外延的上表面齐平。
优选地,所述P-body区内部的表面区域内设有源端N+区和背栅P+区,且所述源端N+区和背栅P+区上表面与所述P-body区上表面齐平,所述源端N+区与N型外延之间的P-body区为沟道区。
优选地,所述P-body区的阈值电压和所述P-top层的阈值电压相差0~±10%。
优选地,所述LDMOS结构还包括漏极金属、源极金属和背栅金属,其中,所述漏极金属穿过场氧化层与漏端N+区相连;所述源极金属穿过场氧化层与所述源端N+区相连;所述背栅金属穿过场氧化层与背栅P+区相连。
有益效果:本发明公开一种栅控Resurf高压LDMOS结构,具有如下优点:
(1)在原有的Resurf P-top层技术基础上,增加了P-top层的栅控电极并与栅极相连,使得LDMOS器件处于关闭状态时,其电场分布接近于一个传统的Resurf LDMOS器件,而当LDMOS器件处于开启状态时,由于P-top层的场开启,会在传统Resurf LDMOS器件的漂移区中额外形成一条导电沟道从而降低器件的比导通电阻,进而实现优于Resurf结构的比导通电阻,显著降低LDMOS器件开态功耗。
(2)本发明可以根据P-top层的浓度大小,调整第一栅氧化层的厚度,从而实现最优的P-top层阈值电压,获得最佳比导。
附图说明
图1为实施例1的栅控Resurf LDMOS结构图;
图2为实施例1中栅控Resurf LDMOS在关态下的电场分布;
图3为实施例1中栅控Resurf LDMOS在开态下的沟道位置与电流路径示意图;
图4为实施例2的栅控Resurf LDMOS结构图;
图中:10、P型衬底;11、P-body区;21、漏端N+区;22、源端N+区;12、背栅P+区;13、P-top层;20、N型外延;31、场氧化层;321、第一栅氧化层;322、第二栅氧化层;41、第一多晶硅栅;42、第二多晶硅栅;51、漏极金属;52、栅极金属;53、源极金属;54、背栅金属。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,一种栅控Resurf高压LDMOS结构,包括P型衬底10、N型外延20、P-body区11、漏端N+区21、源端N+区22,背栅P+区12、场氧化层31、第一栅氧化层321、第二栅氧化层322、第一多晶硅栅41、第二多晶硅栅42、漏极金属51、栅极金属52、源极金属53、背栅金属54、P-top层13,其中,
N型外延20位于P型衬底10上方;
P-body区11、漏端N+区21和P-top层13均位于N型外延20内部,且P-body区11和漏端N+区21分别位于N型外延20内部两侧,P-top层13位于P-body区11和漏端N+区21之间,且P-top层13与漏端N+区21之间存在间隔(满足全耗尽条件),P-body区11、漏端N+区21和P-top层13的上表面均与N型外延20的上表面齐平;
源端N+区22和背栅P+区12位于P-body区11内部的表面区域,且源端N+区22和背栅P+区12上表面与P-body区11上表面齐平;
P-top层13的上表面设有第一栅氧化层321,且第一栅氧化层321上表面制作有第一多晶硅栅41;
源端N+区22与N型外延20之间的P-body区11为沟道区,沟道区上表面设有第二栅氧化层322,第二栅氧化层322上表面设有第二多晶硅栅42;
实施例1中,P-body区11的阈值电压和P-top层13的阈值电压相同,第一栅氧化层321的厚度与第二栅氧化层322的厚度相等,第一栅氧化层321的厚度根据P-top层13的离子浓度调整。本实施例1中,第一栅氧化层321与第二栅氧化层322的厚均为50-100nm。
实施例1中, N型外延20上表面设有场氧化层31,且场氧化层31包覆第一多晶硅栅41、第一栅氧化层321、第二多晶硅栅42和第二栅氧化层322;
漏极金属51穿过场氧化层31与漏端N+区21相连;
栅极金属52穿过场氧化层31分别连接第一多晶硅栅41和第二多晶硅栅42,使得第一多晶硅栅41和第二多晶硅栅42短接;
源极金属53穿过场氧化层31与源端N+区22相连;
背栅金属54穿过场氧化层31与背栅P+区12相连。
本实施例1的工作原理如下:
当器件栅极接地处于关态时(如图2所示),由于其P-top层的Resurf效应,该器件的N型外延的浓度相比传统LDMOS器件得以提高,此时当该器件由于满足Resurf条件时,N型外延层得以全部耗尽,大大抑制了表面电场从而实现最大化器件耐压,由于P-top层13上方的栅极金属52接地,此时该栅极有一场板效果会提高表面电场,从而使该器件耐压略低于Resurf结构。而由于N型外延浓度的提升,其比导通电阻也相较于传统LDMOS得以降低。当器件的栅极接入开启电压VG时,P-top层在栅压影响下也随之开启。如图3所示,电子流除了会通过N型外延通道以外还会有一部分流过P-top层反型获得的表面沟道,因此其比导通电阻相较于传统Resurf LDMOS会更低。
实施例2
如图4所示,与实施例1相比,实施例2的第一栅氧化层321厚度大于第二栅氧化层322的厚度,P-body区11的阈值电压和P-top层13的阈值电压相差10%,其余结构与工艺参数与实施例1相同。
本发明中,可以根据P-top层13的掺杂浓度(1E16/cm3)大小,调整第一栅氧化层321的厚度,从而来实现最优的P-top层阈值电压,获得最佳比导通电阻。例如,当P-top层浓度较高时,在相同VG条件下可以制作更薄的第一栅氧化层321以实现更好的反型,防止共用的VG对其无法实现有效的开启。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
Claims (7)
1.一种栅控Resurf高压LDMOS结构,包括LDMOS结构,其特征在于,所述LDMOS结构中的栅控电极为双栅极结构,包括第一多晶硅栅(41)和第二多晶硅栅(42),所述LDMOS结构的P-top层(13)上方设有第一栅氧化层(321),且第一栅氧化层(321)上方制作有第一多晶硅栅(41);所述LDMOS结构的沟道区上方设有第二栅氧化层(322),且第二栅氧化层(322)上方制作有第二多晶硅栅(42);
所述第一多晶硅栅(41)和第二多晶硅栅(42)均包覆在场氧化层内,且第一多晶硅栅(41)和第二多晶硅栅(42)通过栅极金属(52)短接。
2.根据权利要求1所述的栅控Resurf高压LDMOS结构,其特征在于,所述第一栅氧化层(321)的厚度根据P-top层(13)的离子浓度调整。
3.根据权利要求1或2所述的栅控Resurf高压LDMOS结构,其特征在于,所述的LDMOS结构的衬底为P型衬底(10),且P型衬底(10)上方设有N型外延(20)。
4.根据权利要求3所述的栅控Resurf高压LDMOS结构,其特征在于,所述N型外延(20)内设有P-body区(11)、漏端N+区(21)和P-top层(13),所述P-body区(11)和漏端N+区(21)分别位于N型外延(20)内部两侧,所述P-top层(13)位于P-body区(11)和漏端N+区(21)之间,且所述P-top层(13)与漏端N+区(21)之间存在间隔,所述P-body区(11)、漏端N+区(21)和P-top层(13)的上表面均与N型外延(20)的上表面齐平。
5.根据权利要求4所述的栅控Resurf高压LDMOS结构,其特征在于,所述P-body区(11)内部的表面区域内设有源端N+区(22)和背栅P+区(12),且所述源端N+区(22)和背栅P+区(12)上表面与所述P-body区(11)上表面齐平,所述源端N+区(22)与N型外延(20)之间的P-body区(11)为沟道区。
6.根据权利要求4所述的栅控Resurf高压LDMOS结构,其特征在于,所述P-body区的阈值电压和所述P-top层的阈值电压相差0~±10%。
7.根据权利要求5所述的栅控Resurf高压LDMOS结构,其特征在于,所述LDMOS结构还包括漏极金属(51)、源极金属(53)和背栅金属(54),其中,所述漏极金属(51)穿过场氧化层(31)与漏端N+区(21)相连;所述源极金属(53)穿过场氧化层(31)与所述源端N+区(22)相连;所述背栅金属(54)穿过场氧化层(31)与背栅P+区(12)相连。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310376829.0A CN116110955B (zh) | 2023-04-11 | 2023-04-11 | 一种栅控Resurf高压LDMOS结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310376829.0A CN116110955B (zh) | 2023-04-11 | 2023-04-11 | 一种栅控Resurf高压LDMOS结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116110955A true CN116110955A (zh) | 2023-05-12 |
CN116110955B CN116110955B (zh) | 2023-06-27 |
Family
ID=86256442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310376829.0A Active CN116110955B (zh) | 2023-04-11 | 2023-04-11 | 一种栅控Resurf高压LDMOS结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116110955B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117614432A (zh) * | 2023-10-30 | 2024-02-27 | 南京邮电大学 | 提升体硅ldmos性能的动态背栅控制系统及体硅ldmos的制造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102870218A (zh) * | 2010-03-31 | 2013-01-09 | 沃特拉半导体公司 | 具有减小电容的双栅ldmos装置 |
CN103594517A (zh) * | 2013-10-24 | 2014-02-19 | 中国科学院上海微系统与信息技术研究所 | 一种多栅soi-ldmos器件结构 |
CN109216276A (zh) * | 2018-09-17 | 2019-01-15 | 深圳市心版图科技有限公司 | 一种mos管及其制造方法 |
-
2023
- 2023-04-11 CN CN202310376829.0A patent/CN116110955B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102870218A (zh) * | 2010-03-31 | 2013-01-09 | 沃特拉半导体公司 | 具有减小电容的双栅ldmos装置 |
CN103594517A (zh) * | 2013-10-24 | 2014-02-19 | 中国科学院上海微系统与信息技术研究所 | 一种多栅soi-ldmos器件结构 |
CN109216276A (zh) * | 2018-09-17 | 2019-01-15 | 深圳市心版图科技有限公司 | 一种mos管及其制造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117614432A (zh) * | 2023-10-30 | 2024-02-27 | 南京邮电大学 | 提升体硅ldmos性能的动态背栅控制系统及体硅ldmos的制造方法 |
CN117614432B (zh) * | 2023-10-30 | 2024-05-28 | 南京邮电大学 | 提升体硅ldmos性能的动态背栅控制系统及体硅ldmos的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116110955B (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9318547B2 (en) | Wide bandgap insulated gate semiconductor device | |
US7531888B2 (en) | Integrated latch-up free insulated gate bipolar transistor | |
US5710455A (en) | Lateral MOSFET with modified field plates and damage areas | |
CN113690321B (zh) | 一种碳化硅沟槽栅mosfet及其制造方法 | |
EP3385993B1 (en) | Lateral diffused metal oxide semiconductor field effect transistor | |
KR20030036239A (ko) | 전력 mosfet, 그 제조방법 및 작동방법 | |
CN104183646A (zh) | 一种具有延伸栅结构的soi ldmos器件 | |
KR20110063161A (ko) | 반도체 장치 | |
CN102005473B (zh) | 具有改进终端的igbt | |
CN116110955B (zh) | 一种栅控Resurf高压LDMOS结构 | |
WO2019085850A1 (zh) | Igbt功率器件 | |
US9520493B1 (en) | High voltage integrated circuits having improved on-resistance value and improved breakdown voltage | |
CN103296081A (zh) | 一种横向双扩散金属氧化物半导体场效应晶体管 | |
US20230019004A1 (en) | Lateral double-diffused metal oxide semiconductor field effect transistor | |
CN117059667A (zh) | 一种双沟道soi-ldmos晶体管 | |
US7642596B2 (en) | Insulated gate field effect transistor | |
Kaur et al. | A review on power MOSFET device structures | |
CN115020474A (zh) | 半导体结构及其形成方法 | |
CN103887332A (zh) | 一种新型功率半导体器件 | |
CN112186028A (zh) | 一种集成npn穿通三极管的屏蔽栅mosfet器件 | |
CN118136677B (zh) | 平面栅型功率金属-氧化物场效应晶体管以及功率器件 | |
CN219303670U (zh) | 一种4H-SiC基超结功率MOSFET | |
CN118136678B (zh) | 双栅双沟道ldmos器件及制造方法 | |
CN109244121B (zh) | 带栅场板结构的纵向隧穿场效应晶体管 | |
KR20050065564A (ko) | 바이폴라 pmos 디바이스 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |