CN116102567B - 一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用 - Google Patents

一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用 Download PDF

Info

Publication number
CN116102567B
CN116102567B CN202211581807.XA CN202211581807A CN116102567B CN 116102567 B CN116102567 B CN 116102567B CN 202211581807 A CN202211581807 A CN 202211581807A CN 116102567 B CN116102567 B CN 116102567B
Authority
CN
China
Prior art keywords
mmol
reaction
cdcl
compound
dcm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211581807.XA
Other languages
English (en)
Other versions
CN116102567A (zh
Inventor
芦逵
周鑫权
贾晓东
刘瑞月
赵东强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202211581807.XA priority Critical patent/CN116102567B/zh
Publication of CN116102567A publication Critical patent/CN116102567A/zh
Application granted granted Critical
Publication of CN116102567B publication Critical patent/CN116102567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种7位取代的喜树碱衍生物,其结构通式如下:其中,R基选自‑(CH2)n‑SCN、‑(CH2)n‑SeCN、‑(CH2)n‑SCF3和‑(CH2)n‑SeCF3,其中n=2‑6。本发明将三氟甲硫基、三氟甲硒基、硫氰基和硒氰基引入到喜树碱中合成了一类7位具有新颖取代基的喜树碱衍生物,本发明制备的这类喜树碱衍生物,与其母体化合物乙酰基喜树碱相比有更好的抑制人白血病细胞K562和人肝癌细胞HepG2的增殖,该类喜树碱衍生物对人白血病细胞K562和人肝癌细胞HepG2的增殖具有较强的抗抑制作用。

Description

一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的 应用
技术领域
本发明属于药物化学技术领域,尤其是一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用,特别是一类含有三氟甲硫基、三氟甲硒基、硫氰基和硒氰基的喜树碱衍生物的制备方法及其作为抗肿瘤药物的应用。
背景技术
喜树碱(Camptothecin)是从珙桐科落叶植物喜树的种子或根皮中提取出的一种细胞毒性喹啉类生物碱,其直接破坏DNA结构与DNA结合而使DNA易受内切酶的攻击,同时抑制DNA拓扑异构酶,主要对增殖细胞较为敏感,是一种细胞周期特异性药物,作用于S期,对多种动物肿瘤有一定的抑制作用,是一种光谱性的抗肿瘤药物,与常用抗肿瘤药无交叉耐药性。静注后大部分药物与血浆蛋白结合,在血浆、肾、肝内的半衰期为短,胃肠、骨髓、肾脏含量最高。本品排泄较慢,主要以原形由尿排泄,用于胃癌、直肠癌、结肠癌、头颈部癌及膀胱癌等疗效较好。
喜树碱由于其新颖的结构和在体内体外的活性测试中表现出显著的抗肿瘤活性,迅速被广大学者引起了普遍关注。到目前为止,Toptecan、Irinotecan和Belotecan已在临床应用,一些衍生物正在临床开发中。然而,由于其严重的毒性、内酯的不稳定性等缺陷,促使人们对喜树碱的构效关系(SAR)进行了深入的研究,从SAR来看,7位取代基对喜树碱衍生物的活性非常重要。研究表明,一些7位取代的喜树碱衍生物显示出增强的生物特性,比如吉马替康和karenitecin等。
由于喜树碱是一种特殊的、中性的生物碱,不溶于酸,难溶于一般的有机溶剂,与酸不容易成盐。也不溶于水。因此如何改善其水溶性和脂溶性是把它开发成药物的研究重点。目前通过在喜树碱上引入三级胺的结构来增加其水溶性的研究较多,得到了如拓扑替康和伊立替康等药物,但通过在喜树碱上引入亲脂基团来提高其脂溶性的研究较少。
三氟甲基硫代化合物(SCF3)由于其高亲脂性(Hansch's疏水参数π=1.44)和强吸电子特性(Hammett常数σm=0.40和σp=0.50)在制药、农化和材料化学领域越来越受到关注,可用于调节新设计分子的亲脂性、生物利用度和代谢稳定性。此外在分子中引入硫氰基也可以增加分子的脂溶性。
喜树碱中引入硒元素的修饰很少,硒作为抗癌元素之首,有机硒能清除体内自由基,排除体内毒素、抗氧化、能有效的抑制过氧化脂质的产生,防止血凝块,清除胆固醇,增强人体免疫功能。硒与氰基,三氟甲基或二氟甲基结合可以成为硒氰基(SeCN),三氟甲硒基(-SeCF3)或二氟甲硒基(-SeCF2)。这些基团都是较好的脂溶性基团,将这些基团引入到喜树碱中,可以改善喜树碱的脂溶性。
因此,我们认为在喜树碱的7位引入三氟甲硫基、三氟甲硒基、硫氰基和硒氰基,有望在增强对肿瘤细胞抑制的同时增加喜树碱的脂溶性。
通过检索,尚未发现与本发明专利申请相关的专利公开文献。
发明内容
本发明的目的在于克服现有技术上存在的问题,提供一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用。
本发明解决技术问题所采用的技术方案是:
一种7位取代的喜树碱衍生物,其结构通式如下:
其中,R基选自-(CH2)n-SCN、-(CH2)n-SeCN、-(CH2)n-SCF3和-(CH2)n-SeCF3,其中n=2-6。
进一步地,所述喜树碱衍生物为一类7位含有三氟甲硫基、三氟甲硒基、硫氰基和硒氰基的喜树碱衍生物。
如上所述的7位取代的喜树碱衍生物的合成方法,所述方法的合成路线如下:
其中n=1、2、3、4、5。
进一步地,包括如下步骤:
利用Sonogashira偶联反应作为关键的合成步骤,以喜树碱为起始原料,首先对喜树碱20位的羟基乙酰化,随后通过合成氮氧化物,在7位引入氯原子,接着利用7位含氯原子的喜树碱衍生物与端炔经过Sonogashira偶联制备含炔烷基喜树碱衍生物;
然后再由喜树碱7位炔羟基衍生物经过对甲苯磺酸酯化和亲核取代反应,制备含有硫氰基、硒氰基的各类喜树碱衍生物;
最后由含有硫氰基的喜树碱衍生物制备含有三氟甲硫基的喜树碱衍生物,由含有硒氰基的喜树碱衍生物制备含三氟甲硒基的喜树碱衍生物。
如上所述的7位取代的喜树碱衍生物在制备治疗肝癌和/或白血病药物方面中的应用。
进一步地,所述喜树碱衍生物为其中任一个化合物和/或其药学上可接受的盐。
进一步地,所述肝癌为人肝癌细胞HepG2,所述白血病为人白血病细胞K562。
本发明取得的优点和有益效果:
1、本发明将三氟甲硫基、三氟甲硒基、硫氰基和硒氰基引入到喜树碱中合成了一类7位具有新颖取代基的喜树碱衍生物,本发明制备的这类喜树碱衍生物,与其母体化合物乙酰基喜树碱相比能更好的溶于二氯甲烷等有机溶剂,同时能更好的抑制人白血病细胞K562和人肝癌细胞HepG2的增殖。细胞水平的活性评价结果表明,该类喜树碱衍生物对人白血病细胞K562和人肝癌细胞HepG2的增殖具有较强的抗抑制作用。
2、本发明一类7位含有三氟甲硫基、三氟甲硒基、硫氰基和硒氰基的喜树碱衍生物,提高喜树碱类化合物的抗肿瘤活性和脂溶性。
附图说明
图1为本发明中化合物1的氢谱图;
图2为本发明中化合物2的氢谱图;
图3为本发明中化合物3的氢谱图;
图4为本发明中化合物4的氢谱图;
图5为本发明中化合物5的氢谱图;
图6为本发明中化合物6的质谱图;
图7为本发明中化合物7的氢谱图;
图8为本发明中化合物8的氢谱图;
图9为本发明中化合物9的氢谱图;
图10为本发明中化合物10的氢谱图;
图11为本发明中化合物11的氢谱图;
图12为本发明中化合物12的氢谱图;
图13为本发明中化合物13的氢谱图;
图14为本发明中化合物14的氢谱图;
图15为本发明中化合物15的氢谱图;
图16为本发明中化合物16的氢谱图;
图17为本发明中化合物17的氢谱图;
图18为本发明中化合物18的氢谱图;
图19为本发明中化合物19的氢谱图;
图20为本发明中化合物20的氢谱图;
具体实施方式
为更好理解本发明,下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例所表示的范围。
本发明中所使用的原料,如无特殊说明,均为常规市售产品,本发明中所使用的方法,如无特殊说明,均为本领域常规方法,本发明所使用的各物质质量均为常规使用质量。
一种7位取代的喜树碱衍生物,其结构通式如下:
其中,R基选自-(CH2)n-SCN、-(CH2)n-SeCN、-(CH2)n-SCF3和-(CH2)n-SeCF3,其中n=2-6。
较优地,所述喜树碱衍生物为一类7位含有三氟甲硫基、三氟甲硒基、硫氰基和硒氰基的喜树碱衍生物。
如上所述的7位取代的喜树碱衍生物的合成方法,所述方法的合成路线如下:
其中n=1、2、3、4、5。
较优地,包括如下步骤:
利用Sonogashira偶联反应作为关键的合成步骤,以喜树碱为起始原料,首先对喜树碱20位的羟基乙酰化,随后通过合成氮氧化物,在7位引入氯原子,接着利用7位含氯原子的喜树碱衍生物与端炔经过Sonogashira偶联制备含炔烷基喜树碱衍生物;
然后再由喜树碱7位炔羟基衍生物经过对甲苯磺酸酯化和亲核取代反应,制备含有硫氰基、硒氰基的各类喜树碱衍生物;
最后由含有硫氰基的喜树碱衍生物制备含有三氟甲硫基的喜树碱衍生物,由含有硒氰基的喜树碱衍生物制备含三氟甲硒基的喜树碱衍生物。
如上所述的7位取代的喜树碱衍生物在制备治疗肝癌和/或白血病药物方面中的应用。
进一步地,所述喜树碱衍生物为其中任一个化合物和/或其药学上可接受的盐。
较优地,所述肝癌为人肝癌细胞HepG2,所述白血病为人白血病细胞K562。
本发明提供的合成7位取代的喜树碱衍生物的方法及其反应式如下所示:
其中n=1、2、3、4、5。
具体地,相关制备及检测如下:
实施例1
取25ml烧瓶,将3.48g(10.00mmol)喜树碱和0.24g(2.00mmol)4-二甲氨基吡啶加入到带有磁力搅拌子的烧瓶中,再将乙酸酐(10ml)加入其中,磁力搅拌5min,缓慢升温至55℃,反应18h,TLC监测反应完全,反应液由原来的奶白色变为奶黄色。将反应液倒入100ml的水中,转移到250ml的分液漏斗中,加入50ml×3的二氯甲烷萃取3次,收集有机相,饱和NaCl水溶液分3次洗涤,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=30:1),获得淡黄色固体3.70g,产率95%。
取上述淡黄色固体3.70g(9.50mmol)于50ml烧瓶中,加入20mlAcOH溶解,在冰浴下缓慢加入5.46ml(57mmol)30%H2O2,缓慢升温至65℃反应4h,TLC监测反应完全,冷却至室温,将反应液倒入250ml的分液漏斗中,加入100ml水和80ml的DCM萃取3次,收集有机相,饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=20:1),获得红色固体3.08g,产率80%。
取上述红色固体3.08g(7.61mmol)于50ml烧瓶中,加入20mlDCM溶解后,在冰浴条件下加入255mg(3.5mmol)N,N-二甲基甲酰胺(DMF)和5.4g(42.6mmol)草酰氯,保持此温度过夜。TLC监测基本反应完全,缓慢加入5ml的冰水于反应液中淬灭,待反应液不再冒泡,将混合液倒入250ml的分液漏斗中,加入100ml×2萃取两次,收集有机相,饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得中间体C,1.52g,产率45%。
将支口瓶连上三通之后接上真空泵抽真空,再用800℃热风枪对支口瓶除水除氧,待支口瓶冷却至室温后,再进行反应。取中间体C(50mg,0.11mmol)于支口瓶中,加入碘化亚铜4mg(0.022mmol)和双三苯基磷二氯化钯15mg(0.022mmol),所有固体化合物加料完毕后,再将反应瓶进行无水无氧操作,再加入无水四氢呋喃5ml,三乙胺0.05ml(0.33mmol),3-丁炔-1-醇0.18ml(0.17mmol),氩气保护条件下缓慢升温至80℃。TLC监测反应大部分反应完,先将反应液在硅藻土上过滤,加水100ml,50ml二氯甲烷萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=50:1),获得中间体D-1,38mg,产率75%。
取中间体D-1(80mg,0.17mmol)于25ml圆底烧瓶中,在冰浴条件下加入二氯甲烷10ml、对甲苯磺酰氯97mg(0.57mmol)和10mg(0.08mmol)DMAP、70mg(0.68mmol)三乙胺,反应在冰浴下反应4h。TLC监测反应完全,将反应液在旋转蒸发仪上除去溶剂,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得中间体E-1,75mg,产率72%。
取中间体E-1(150mg,0.24mmol)于10ml烧瓶中,加入37mg(0.488mmol)硫氰酸铵和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物1,93mg,产率82%。其核磁共振氢谱如图1所示。
1HNMR(400MHz,CDCl3)δ8.34(d,J=8.4,1.4Hz,1H),8.22(d,J=8.4Hz,1H),7.86(t,J=7.9Hz,1H),7.74(t,J=7.9Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(d,J=17.3Hz,1H),5.32(d,J=3.1Hz,2H),3.35(dd,J=6.3,1.4Hz,2H),3.27(dd,J=7.2,5.2Hz,2H),2.31-2.28(m,1H),2.22(s,3H),2.15(m,1H),0.98(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.91,167.52,157.28,151.74,148.88,146.25,145.90,131.04,130.97,130.04,128.65,127.74,125.90,125.09,120.62,111.07,100.65,96.26,75.87,67.07,50.28,32.37,31.81,29.32,21.61,20.76,7.58.
实施例2
将支口瓶连上三通之后接上真空泵抽真空,再用800℃热风枪对支口瓶除水除氧,待支口瓶冷却至室温后,再进行反应。取中间体C(50mg,0.11mmol)于支口瓶中,加入碘化亚铜4mg(0.022mmol)和双三苯基磷二氯化钯15mg(0.022mmol),所有固体化合物加料完毕后,再将反应瓶进行无水无氧操作,再加入无水四氢呋喃5ml,三乙胺0.05ml(0.33mmol),3-丁炔-1-醇0.18ml(0.17mmol),氩气保护条件下缓慢升温至80℃。TLC监测反应大部分反应完,先将反应液在硅藻土上过滤,加水100ml,50ml二氯甲烷萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=50:1),获得中间体D-2,38mg,产率75%。
取中间体D-2(130mg,0.27mmol)于25ml圆底烧瓶中,在冰浴条件下加入二氯甲烷10ml、对甲苯磺酰氯154mg(0.81mmol)和16mg(0.13mmol)DMAP、110mg(1.08mmol)三乙胺,反应在冰浴下反应4h。TLC监测反应完全,将反应液在旋转蒸发仪上除去溶剂,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=80:1),获得中间体E-2,112mg,产率66%。
取中间体E-2(300mg,0.47mmol)于25ml烧瓶中,加入143mg(1.88mmol)硫氰酸铵和2.5mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物2,208mg,产率86%。其核磁共振氢谱如图2所示。
1HNMR(400MHz,CDCl3)δ8.31(d,J=8.4Hz,1H),8.21(d,J=8.4Hz,1H),7.85(t,J=7.9Hz,1H),7.73(t,J=7.9Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(d,J=17.3Hz,1H),5.31(s,2H),3.22(t,J=7.0Hz,2H),2.94(t,J=6.9Hz,2H),2.31(dd,J=24.4,7.2Hz,3H),2.22(s,3H),2.18-2.13(m,1H),0.98(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.92,167.53,157.30,151.69,148.87,146.33,145.92,130.92,130.80,130.02,128.57,127.83,125.85,125.66,120.54,111.60,103.51,96.24,75.87,75.40,67.07,50.32,32.89,31.80,28.50,20.77,18.45,7.58.
实施例3
将支口瓶连上三通之后接上真空泵抽真空,再用800℃热风枪对支口瓶除水除氧,待支口瓶冷却至室温后,再进行反应。取中间体C(100mg,0.23mmol)于支口瓶中,加入碘化亚铜8.5mg(0.046mmol)和双三苯基磷二氯化钯33mg(0.046mmol),所有固体化合物加料完毕后,再将反应瓶进行无水无氧操作,再加入无水四氢呋喃5ml,三乙胺0.13ml(0.92mmol),5-己炔-1-醇56mg(0.575mmol),氩气保护条件下缓慢升温至80℃。TLC监测反应大部分反应完,先将反应液在硅藻土上过滤,加水100ml,50ml二氯甲烷萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=80:1),获得中间体D-3,81mg,产率72%。
取中间体D-3(250mg,0.51mmol)于50ml圆底烧瓶中,在冰浴条件下加入二氯甲烷25ml、对甲苯磺酰氯290mg(1.53mmol)和31mg(0.255mmol)DMAP、207mg(2.04mmol)三乙胺,反应在冰浴下反应4h。TLC监测反应完全,将反应液在旋转蒸发仪上除去溶剂,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得中间体E-3,295mg,产率90%
取化中间体E-3(100mg,0.15mmol)于10ml烧瓶中,加入47mg(0.62mmol)硫氰酸铵和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物3,31mg,产率39%。其核磁共振氢谱如图3所示。
1HNMR(400MHz,CDCl3)δ8.40(d,J=8.4Hz,1H),8.28(d,J=8.4Hz1H),7.90(tJ=7.9Hz,1H),7.78(t,J=7.9Hz1H),7.23–7.13(m,1H),5.71(d,J=17.3Hz,1H),5.53–5.39(m,1H),5.35(s,2H),3.14(dd,J=8.7,5.2Hz,2H),2.84(t,J=6.7Hz,2H),2.34(dd,J=14.2,7.3Hz,1H),2.29(s,3H),2.20-2.01(m,3H),2.06–1.97(m,2H),1.04(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.92,167.53,157.30,151.69,148.87,146.33,145.92,130.92,130.80,130.02,128.57,127.83,125.85,125.66,120.54,111.60,103.51,96.24,75.87,75.40,67.07,50.32,32.89,31.80,28.20,28.50,20.77,18.45,7.58.
实施例4
将支口瓶连上三通之后接上真空泵抽真空,再用800℃热风枪对支口瓶除水除氧,待支口瓶冷却至室温后,再进行反应。取中间体C(100mg,0.23mmol)于支口瓶中,加入碘化亚铜8.5mg(0.044mmol)和双三苯基磷二氯化钯33mg(0.044mmol),所有固体化合物加料完毕后,再将反应瓶进行无水无氧操作,再加入无水四氢呋喃8ml,三乙胺0.13ml(0.92mmol),6-庚炔醇64mg(0.575mmol),氩气保护条件下缓慢升温至80℃。TLC监测反应大部分反应完,先将反应液在硅藻土上过滤,加水100ml,50ml二氯甲烷萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得中间体D-4,73mg,产率63.4%。
取中间体D-4(190mg,0.0.38mmol)于50ml圆底烧瓶中,在冰浴条件下加入二氯甲烷25ml、对甲苯磺酰氯215.4mg(1.13mmol)和23mg(0.19mmol)DMAP、0.2ml(1.52mmol)三乙胺,反应在冰浴下反应4h。TLC监测反应完全,将反应液在旋转蒸发仪上除去溶剂,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得中间体E-4,220mg,产率88%。
取中间体E-4(210mg,0.4mmol)于50ml圆底烧瓶中,在冰浴条件下加入二氯甲烷25ml、对甲苯磺酰氯228mg(1.2mmol)和25mg(0.2mmol)DMAP、163mg(1.6mmol)三乙胺,反应在冰浴下反应4h。TLC监测反应完全,将反应液在旋转蒸发仪上除去溶剂,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物4,195mg,产率73%。其核磁共振氢谱如图4所示。
1HNMR(400MHz,CDCl3)δ8.33(d,J=8.4Hz,1H),8.20(d,J=8.4Hz,1H),7.83(t,J=7.9Hz,1H),7.71(t,J=7.9Hz,1H),7.19(s,1H),5.67(d,J=17.3Hz,1H),5.40(d,J=17.3Hz,1H),5.29(d,J=2.4Hz,2H),3.03(t,J=7.1Hz,2H),2.74(t,J=6.9Hz,2H),2.28(dd,J=14.1,7.3Hz,1H),2.21(s,3H),2.14(dd,J=14.1,7.3Hz,1H),1.96(q,J=7.3Hz,2H),1.87–1.80(m,2H),1.79–1.72(m,2H),0.97(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.91,167.56,157.33,151.67,148.90,146.48,145.88,130.81,130.71,129.94,128.36,127.97,126.35,126.01,120.47,112.17,106.16,96.18,75.88,74.47,67.10,53.45,52.97,50.39,33.81,31.82,29.44,27.78,27.29,20.77,19.91,7.58.
实施例5
将支口瓶连上三通之后接上真空泵抽真空,再用800℃热风枪对支口瓶除水除氧,待支口瓶冷却至室温后,再进行反应。取中间体C(200mg,0.46mmol)于支口瓶中,加入碘化亚铜17mg(0.092mmol)和双三苯基磷二氯化钯66mg(0.092mmol),所有固体化合物加料完毕后,再将反应瓶进行无水无氧操作,再加入无水四氢呋喃10ml,三乙胺0.26ml(1.84mmol),7-辛炔醇145mg(1.15mmol),氩气保护条件下缓慢升温至80℃。TLC监测反应大部分反应完,先将反应液在硅藻土上过滤,加水100ml,50ml二氯甲烷萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得中间体D-5,181mg,产率77%。
取中间体D-5(210mg,0.4mmol)于50ml圆底烧瓶中,在冰浴条件下加入二氯甲烷25ml、对甲苯磺酰氯228mg(1.2mmol)和25mg(0.2mmol)DMAP、163mg(1.6mmol)三乙胺,反应在冰浴下反应4h。TLC监测反应完全,将反应液在旋转蒸发仪上除去溶剂,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得中间体E-5,195mg,产率73%。
取中间体E-5(100mg,0.15mmol)于10ml烧瓶中,加入47mg(0.62mmol)硫氰酸铵和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物5,60mg,产率71%。其核磁共振氢谱如图5所示。
1HNMR(400MHz,CDCl3)δ8.27(d,J=8.4Hz,1H),8.14(d,J=8.4Hz,1H),7.78(t,J=7.9Hz,1H),7.66(t,J=7.9Hz,1H),7.14(s,1H),5.63(d,J=17.2Hz,1H),5.36(d,J=17.2Hz,1H),5.22(d,J=2.0Hz,2H),2.95(t,J=7.2Hz,2H),2.66(t,J=7.1Hz,2H),2.23(dd,J=14.1,7.3Hz,2H),2.18(s,3H),2.10(dd,J=14.1,7.3Hz,1H),1.87(p,J=7.2Hz,2H),1.75(q,J=7.1Hz,2H),1.55(dd,J=11.0,5.4Hz,5H),0.93(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.84,167.53,162.49,157.26,151.59,148.83,146.51,145.83,130.73,130.62,129.88,128.28,127.93,126.39,125.96,120.32,112.29,106.71,96.07,75.85,74.19,67.05,50.34,36.45,33.88,31.88,31.75,31.38,29.76,29.66,29.32,28.32,28.22,28.19,27.44,26.13,22.66,20.74,19.92,14.11,7.56.
实施例6
取化合物1(50mg,0.1mmol)于10ml烧瓶中,加入48mg(0.15mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加28mg(0.2mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物6,30mg,产率55%。其核磁共振氢谱如图6所示。
1HNMR(400MHz,CDCl3)δ8.33(d,J=8.4Hz,1H),8.20(m,1H),7.85(m,1H),7.73(t,J=7.9Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(dd,J=17.3,1.8Hz,1H),5.29(d,J=2.4Hz,2H),3.35(m,1H),3.31–3.22(m,1H),2.28(dd,J=14.1,7.3Hz,1H),2.23(s,3H),2.19–2.08(m,1H),0.98(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ170.03,167.64,157.40,151.86,149.00,146.37,146.02,131.16,131.10,130.16,128.77,127.86,126.02,125.21,120.74,111.19,100.77,96.38,75.99,67.19,50.41,32.49,31.93,29.45,21.73,20.89,7.70.
19FNMR(400MHz,CDCl3)δ-40.74.
实施例7
取化合物2(40mg,0.077mmol)于10ml烧瓶中,加入37mg(0.115mmol)碳酸铯和无水乙腈5ml,在冰浴下缓慢滴加22mg(0.155mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物7,22mg,产率52%。其核磁共振氢谱如图7所示。
1HNMR(400MHz,CDCl3)δ8.29(d,J=8.4Hz,1H),8.19(m,1H),7.84(m,1H),7.72(d,J=7.9Hz,1H),7.19(s,1H),5.67(d,J=17.3Hz,1H),5.39(d,J=17.3Hz,1H),5.27(d,J=2.2Hz,2H),3.21(t,J=7.0Hz,2H),2.92(t,J=6.9Hz,2H),2.29(s,3H),2.21(s,3H),2.19-2.13(m,1H),0.96(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.91,167.53,157.29,151.68,148.86,146.34,145.92,130.91,130.79,130.01,128.57,128.46,127.82,125.85,125.65,120.52,111.61,103.52,96.24,75.87,75.38,67.06,53.47,50.31,32.89,31.79,28.50,20.76,18.44,7.58.
19FNMR(400MHz,CDCl3)δ-40.85.
实施例8
取化合物3(90mg,0.17mmol)于10ml烧瓶中,加入83mg(0.255mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加48mg(0.34mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=80:1),获得化合物8,34mg,产率35%。其核磁共振氢谱如图8所示。
1HNMR(400MHz,CDCl3)δ8.31(d,J=8.4Hz,1H),8.18(d,J=8.4Hz,1H),7.83(t,J=7.9Hz,1H),7.71(t,J=7.9Hz,1H),7.19(s,1H),5.71(d,J=17.3Hz1H),5.40(d,J=17.3Hz,1H),5.28(s,2H),3.06(t,J=7.1Hz,2H),2.77(t,J=7.0Hz,2H),2.27(dd,J=14.1,7.3Hz,1H),2.21(s,3H),2.17–2.08(m,3H),1.94(p,J=7.1Hz,2H),0.96(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.90,167.55,157.31,151.65,148.87,146.45,145.87,130.84,130.74,129.94,128.48,127.91,126.06,125.96,120.46,111.94,105.21,96.16,75.88,74.80,67.09,53.47,50.35,33.43,31.80,29.70,29.32,29.26,27.21,26.71,20.77,19.58,7.58.
19FNMR(400MHz,CDCl3)δ-40.98.
实施例9
取化合物4(100mg,0.18mmol)于10ml烧瓶中,加入50mg(0.18mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加52mg(0.36mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物9,72mg,产率68.4%。其核磁共振氢谱如图9所示。
1HNMR(400MHz,CDCl3)δ8.29(d,J=8.4Hz,1H),8.16(d,J=8.4Hz,1H),7.80(t,J=8.4Hz,1H),7.72–7.64(t,J=7.32Hz1H),7.17(s,1H),5.65(d,J=17.2Hz,1H),5.38(d,J=17.2Hz,1H),5.24(d,J=2.1Hz,2H),3.00(t,J=7.1Hz,2H),2.71(t,J=7.0Hz,2H),2.26(dt,J=14.3,7.5Hz,1H),2.20(s,3H),2.12(dd,J=14.1,7.3Hz,1H),1.94(p,J=7.3Hz,2H),1.85–1.78(m,2H),1.72(qd,J=7.4,3.0Hz,2H),0.95(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.89,167.56,157.29,151.59,148.83,146.47,145.91,130.79,130.66,129.89,128.36,127.93,126.30,125.97,120.35,112.19,106.20,96.17,75.87,74.41,67.05,50.37,33.79,31.76,29.42,27.75,27.26,20.75,19.88,14.12,7.57.
19FNMR(400MHz,CDCl3)δ-41.03.
实施例10
取化合物5(70mg,0.12mmol)于10ml烧瓶中,加入58mg(0.18mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加34mg(0.24mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物10,52mg,产率76%。其核磁共振氢谱如图10所示。
1HNMR(400MHz,CDCl3)δ8.30(d,J=8.4Hz,1H),8.17(d,J=8.4Hz,1H),7.81(t,J=7.9Hz,1H),7.64(t,J=7.9Hz1H),7.17(s,1H),5.66(d,J=17.3Hz,1H),5.39(d,J=17.3Hz,1H),5.25(s,2H),3.01–2.94(m,2H),2.68(t,J=6.9Hz,2H),2.26(dd,J=14.1,7.3Hz,1H),2.20(s,3H),2.13(dd,J=14.1,7.3Hz,1H),1.89(p,J=7.0Hz,2H),1.77(p,J=7.3Hz,2H),1.58(m,J=13.3,7.0Hz,4H),0.95(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.88,167.56,157.30,151.62,148.86,146.51,145.85,130.77,130.65,129.90,128.31,127.97,126.44,126.00,120.39,112.30,106.73,96.13,75.87,74.22,67.08,50.37,33.91,31.79,29.79,28.35,28.22,27.47,20.76,19.96,7.58.
19FNMR(400MHz,CDCl3)δ-41.11.
实施例11
取中间体E-1(150mg,0.24mmol)于10ml烧瓶中,加入37mg(0.488mmol)硒氰酸钾和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物11,93mg,产率82%。其核磁共振氢谱如图11所示。
1HNMR(400MHz,CDCl3)δ8.34(d,J=8.4,Hz,1H),8.22(d,J=8.4Hz,1H),7.86(t,J=7.9Hz,1H),7.70(t,J=7.9Hz1H),7.20(s,1H),5.69(d,J=17.3,1H),5.41(d,J=17.3,1H),5.35–5.29(m,2H),3.42-3.35(m,3H),2.28(dd,J=14.2,7.4Hz,1H),2.22(s,3H),2.14(dd,J=14.7,7.4Hz,1H),0.98(t,J=7.5Hz,3H).
13CNMR(101MHz,CDCl3)δ170.03,167.64,157.40,151.86,149.00,146.37,146.02,131.16,131.10,130.16,128.77,128.10,127.86,126.02,125.21,120.74,111.19,100.77,96.38,75.99,67.19,50.41,32.49,31.93,21.73,20.89,7.70.
实施例12
取中间体E-2(200mg,0.318mmol)于10ml烧瓶中,加入288mg(2mmol)硒氰酸钾和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物12,121mg,产率68%。其核磁共振氢谱如图12所示。
1HNMR(400MHz,CDCl3)δ8.31(d,J=8.4Hz,1H),8.21(d,J=8.4Hz,1H),7.85(t,J=7.0Hz,1H),7.73(t,J=7.2Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(d,J=17.3Hz,1H),5.33(s,2H),3.31(t,J=7.1Hz,2H),2.93(d,J=6.8Hz,2H),2.42(q,J=6.9Hz,2H),2.32–2.25(m,1H),2.22(s,3H),2.15(dd,J=14.1,7.3Hz,1H),0.97(d,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.69,167.31,157.07,151.46,148.65,146.14,145.69,130.68,130.57,129.79,128.34,127.62,125.66,125.48,120.29,103.48,100.67,95.99,75.65,75.17,66.85,50.11,31.57,29.25,27.89,20.55,19.39,7.36.
实施例13
取中间体E-3(80mg,0.12mmol)于10ml烧瓶中,加入106mg(0.74mmol)硒氰酸钾和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物13,32mg,产率46%。其核磁共振氢谱如图13所示。
1HNMR(400MHz,CDCl3)δ8.30(t,J=8.4Hz,1H),8.19(d,J=8.4Hz,1H),7.84(t,J=7.9Hz,1H),7.73(t,J=7.9Hz1H),7.20(s,1H),5.65(dd,J=22.5,17.3Hz,1H),5.46–5.36(m,1H),5.36–5.23(m,1H),3.17(t,J=7.2Hz,2H),2.79(t,J=7.1Hz,2H),2.32–2.19(m,6H),2.19–2.11(m,1H),1.96(dd,J=14.6,7.1Hz,2H),0.98(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.88,167.55,157.28,151.60,148.83,146.46,145.89,130.82,130.71,129.91,128.47,127.88,126.02,125.95,120.36,105.27,96.22,96.15,83.28,75.87,74.75,67.05,53.51,50.35,33.41,31.75,29.24,26.67,20.75,19.55,7.57.
实施例14
取中间体E-4(60mg,0.09mmol)于10ml烧瓶中,加入79mg(0.548mmol)硒氰酸钾和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物14,51mg,产率51%。其核磁共振氢谱如图14所示。
1HNMR(400MHz,CDCl3)δ8.35(m,1H),8.18(d,J=8.4Hz,1H),7.88–7.79(m,1H),7.19(s,1H),7.16–7.06(m,1H),5.70–5.54(m,1H),5.47–5.36(m,1H),5.30(s,2H),3.18-3.15(m,2H),2.76–2.72(m,2H),2.27(dd,J=13.3,6.5Hz,1H),2.22(s,3H),2.19–2.09(m,1H),2.08–1.99(m,2H),1.90–1.81(m,2H),1.76(dd,J=8.5,3.6Hz,2H),0.98(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.91,167.56,157.32,151.64,148.89,146.48,145.89,130.81,130.71,129.92,128.36,127.96,126.37,126.02,120.44,106.24,101.44,96.18,75.88,74.47,67.09,50.40,31.80,30.40,29.24,28.42,27.69,20.77,19.90,7.58.
实施例15
取中间体E-5(60mg,0.09mmol)于10ml烧瓶中,加入80mg(0.56mmol)硒氰酸钾和2mlDMF溶解,逐渐升温至80℃反应12h。TLC监测反应完全,冷却至室温,加入100ml水和50mlDCM于250ml分液漏斗中萃取3次,合并有机相,再用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物15,22mg,产率40%。其核磁共振氢谱如图15所示。
1HNMR(400MHz,CDCl3)δ8.34(d,J=8.4Hz,1H),8.20(d,J=8.4Hz,1H),7.80(t,J=7.9Hz,1H),7.69(t,J=7.9Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(d,J=17.3Hz,1H),5.29(d,J=2.3Hz,2H),3.10(t,J=7.3Hz,2H),2.71(t,J=7.0Hz,2H),2.28(dd,J=14.1,7.3Hz,1H),2.22(s,3H),2.15(dd,J=14.0,7.4Hz,1H),2.00(t,J=7.2Hz,2H),1.80(q,J=7.3Hz,2H),1.69–1.59(m,4H),0.97(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.90,167.56,157.32,151.68,148.90,146.45,145.86,130.84,130.75,129.95,128.48,127.93,126.11,125.99,120.50,105.31,101.14,96.17,77.35,77.03,76.71,75.88,74.81,67.11,50.36,31.82,30.29,28.67,27.86,20.77,19.54,7.58.
实施例16
取化合物11(54mg,0.1mmol)于10ml烧瓶中,加入48mg(0.15mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加28mg(0.2mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物16,27mg,产率45.8%。其核磁共振氢谱如图16所示。
1HNMR(400MHz,CDCl3)δ8.36(d,J=8.4Hz,1H),8.20(t,J=3.7,Hz,1H),7.85(m,1H),7.67(dd,J=15.1,7.24Hz,1H),7.20(d,J=1.9Hz,1H),5.68(s,1H),5.41(dd,J=17.3,1.7Hz,1H),5.30(s,2H),3.51–3.02(m,3H),2.28(dd,J=14.1,7.3Hz,1H),2.23(d,J=2.4Hz,3H),2.20–2.10(m,1H),0.98(t,J=7.5Hz,3H).
13CNMR(101MHz,CDCl3)δ169.91,167.52,157.28,151.74,148.88,146.25,145.90,131.04,130.97,130.04,129.92,128.65,127.98,127.74,125.90,125.09,120.62,111.07,100.65,96.26,75.87,67.07,50.28,32.37,31.81,21.61,20.76,7.58.
19FNMR(376MHz,CDCl3)δ-33.92.
实施例17
取化合物12(60mg,0.1mmol)于10ml烧瓶中,加入52mg(0.16mmol)碳酸铯和无水乙腈5ml,在冰浴下缓慢滴加31mg(0.22mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=100:1),获得化合物17,25mg,产率37%。其核磁共振氢谱如图17所示。
1HNMR(400MHz,CDCl3)δ8.31(d,J=8.4Hz,1H),8.20(d,J=8.5Hz,1H),7.85(dd,J=15.3,7.2Hz,1H),7.64(t,J=7.3Hz1H),7.20(s,1H),5.68(d,J=17.2Hz,1H),5.41(d,J=17.2Hz,1H),5.32–5.26(m,2H),3.37–3.22(m,2H),2.98–2.84(m,2H),2.40(p,J=6.9Hz,2H),2.34–2.25(m,1H),2.22(s,3H),2.15(dd,J=14.0,7.2Hz,1H),0.98(t,J=7.5Hz,3H).
13CNMR(101MHz,CDCl3)δ168.00,165.64,155.37,149.76,146.95,144.48,144.00,128.99,128.88,128.09,126.65,125.92,123.98,123.79,118.54,114.55,101.87,99.10,94.28,73.98,73.43,65.15,48.42,29.86,27.57,26.24,18.86,17.69,5.68.
19FNMR(376MHz,CDCl3)δ-33.86.
实施例18
取化合物13(57.4mg,0.1mmol)于10ml烧瓶中,加入48mg(0.15mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加28mg(0.2mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物18,42mg,产率68%。其核磁共振氢谱如图18所示。
1HNMR(400MHz,CDCl3)δ8.33(d,J=8.4Hz,1H),8.20(d,J=8.4Hz,1H),7.84(t,J=7.9Hz,1H),7.73(t,J=7.9Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(d,J=17.3Hz,1H),5.30(t,J=1.5Hz,2H),3.17(t,J=7.2Hz,2H),2.79(t,J=7.0Hz,2H),2.30–2.13(m,7H),1.96(d,J=7.1Hz,2H),0.98(t,J=7.5Hz,3H).
13CNMR(101MHz,CDCl3)δ170.04,167.69,157.45,151.81,149.03,146.58,146.00,130.97,130.89,130.08,128.61,128.06,126.24,126.13,120.64,105.44,101.27,96.30,76.01,74.94,67.24,50.49,31.96,30.43,28.80,28.00,20.90,19.67,7.71.
19FNMR(400MHz,CDCl3)δ-33.93.
实施例19
取化合物14(80mg,0.13mmol)于10ml烧瓶中,加入42mg(0.13mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加39mg(0.27mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物19,44mg,产率54%。其核磁共振氢谱如图19所示。
1HNMR(400MHz,Chloroform-d)δ8.33(d,J=8.4Hz,1H),8.20(d,J=8.4Hz,1H),7.84(t,J=7.9Hz,1H),7.72(t,J=7.9Hz,1H),7.20(s,1H),5.68(d,J=17.3Hz,1H),5.41(d,J=17.3Hz,1H),5.29(s,2H),3.13(t,J=7.2Hz,2H),2.74(t,J=6.9Hz,2H),2.29(dd,J=14.2,7.5Hz,1H),2.23(s,3H),2.15(dd,J=14.1,7.3Hz,1H),2.05(q,J=7.3Hz,2H),1.85(p,J=7.1Hz,2H),1.76(dd,J=8.5,5.5Hz,2H),0.98(t,J=7.5Hz,3H).
13CNMR(400MHz,CDCl3)δ169.90,167.56,157.32,151.64,148.88,146.49,145.89,130.80,130.70,129.92,128.36,127.96,126.37,126.02,120.43,106.24,101.44,96.17,75.88,74.46,67.09,50.40,31.80,30.40,29.69,29.25,28.42,27.69,20.76,19.90,7.58.
19FNMR(400MHz,CDCl3)δ-33.99.
实施例20
取化合物15(40mg,0.06mmol)于10ml烧瓶中,加入19mg(0.06mmol)碳酸铯和无水乙腈4ml,在冰浴下缓慢滴加19mg(0.13mmol)的三氟甲基三甲基硅烷,在冰浴下反应15min。TLC监测反应完全,除去溶剂,用二氯甲烷萃取反应液,合并有机相,用饱和氯化钠水溶液洗涤3次,经无水Na2SO4除水干燥后,浓缩后用200-300目硅胶柱层析分离并纯化(DCM:MeOH=150:1),获得化合物20,22mg,产率56.8%。其核磁共振氢谱如图20所示。
1HNMR(400MHz,CDCl3)δ8.28–8.22(m,1H),8.11(d,J=8.4Hz,1H),7.76(m,1H),7.63(m,1H),7.12(s,1H),5.60(d,J=17.3Hz,1H),5.33(d,J=17.3Hz,1H),5.20(d,J=2.2Hz,2H),3.03(t,J=7.3Hz,2H),2.67–2.59(m,2H),2.21(dd,J=14.2,7.5Hz,1H),2.15(s,3H),2.07(dd,J=14.1,7.3Hz,1H),1.92(d,J=3.1Hz,2H),1.73(q,J=6.9Hz,2H),1.54(m,4H),0.90(t,J=7.5Hz,3H).
13CNMR(101MHz,CDCl3)δ169.86,167.54,162.50,157.28,151.60,148.85,146.52,145.84,130.75,130.64,129.89,128.30,127.94,126.41,125.98,120.33,112.30,106.73,96.08,75.87,74.20,67.06,50.36,36.47,33.90,31.76,29.78,28.34,28.20,27.45,20.76,19.94,7.57.
19FNMR(400MHz,CDCl3)δ-34.05.。
本发明喜树碱衍生物的抗肿瘤活性测定:
溶液的配制:
PRMI1640培养液的配制:购买GibcoB.R.LPRMI1640培养基,每瓶500mL,加入10%的胎牛血清和1%的双抗溶液,即每瓶培养基加入50mL的胎牛血清和5mL的双抗,培养基的配置在超净工作台中进行,后放置冰箱4℃保存。
PBS缓冲液的配制:购买GibcoPBS缓冲液。
MTT溶液的配制:称取MTT干粉0.5g,溶于100mLPBS缓冲液中,用0.22μM滤膜过滤除菌后,放置冰箱-12℃保存。
实验步骤:
(1)复苏细胞:取冻存在-80℃冰箱中的HepG2肝癌细胞或人慢性髓原白血病细胞,将细胞迅速融化在37℃的水浴锅中,当细胞中还存在少量冰块时停止,将细胞迅速吸入至培养基中,1000r/min离心3min以除去冻存液中的DMSO,将细胞吹匀后放入培养皿中,加入新的培养基,置于37℃培养箱中培养(5%的CO2),第二天观察细胞形态并进行换液。
(2)细胞传代:当细胞长到约为95%以上,并且其形态良好时进行传代,除去旧的培养基,加入2mlPBS溶液洗涤细胞2次,除去PBS溶液,然后用1ml0.25%胰蛋白酶消化细胞,经过几分钟后,通过显微镜下观察细胞形态变为小球形后说明细胞消化完全,移去胰酶,在培养皿中加入培养基轻轻将细胞吹匀,使其均匀分散,按照适当的比例进行传代,将细胞置于相应培养皿中进行培养。
(3)细胞换液:细胞经传代后,置于37℃、5%CO2的培养箱中,观察其生长变化的情况,每1-2天给细胞换液一次。
(4)细胞冻存:步骤同“细胞传代”,直至胰酶吸走后,将细胞吹匀,置于1ml冻存液中(按DMSO与胎牛血清1:9的比例配制成细胞冻存液),封口,4℃恒温30min,然后在-20℃放置30min,而后再转移至-80℃冰箱长期存放。
(5)细胞铺板:将状态良好的细胞消化处理后,接种到96孔板中,进过细胞计数后,每个孔中加入约8000个细胞,培养24h,设置空白组、对照组、实验组,每组设置4个复孔。加药:用DMSO溶解各组药物,配制成相应浓度梯度,然后在96孔板中加药,置于培养箱中培养48h。检测:取出96孔板,将培养基吸出,避光加500μg/mL的MTT溶液,随后置于细胞培养箱培养4h。然后弃去MTT溶液,加入DMSO溶解结晶,轻轻震荡晃匀,在570nm下检测其吸光度值。
细胞存活率公式如下:
表1喜树碱类衍生物细胞活性测试结果(/代表未测)
注:人白血病细胞K562、人肝癌细胞HepG2乙酰基喜树碱为阳性对照药物。
实验结果显示,所有的化合物对HepG2细胞和K562细胞的增殖抑制活性都比其母体化合物乙酰基喜树碱好。其中化合物7对HepG2细胞的增殖抑制活性最好,化合物10对K562细胞的增殖抑制活性最好。
尽管为说明目的公开了本发明的实施例,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例所公开的内容。

Claims (5)

1.一种7位取代的喜树碱衍生物,其特征在于:其结构通式如下:
其中,R基选自-(CH2)n-SCN、-(CH2)n-SeCN、-(CH2)n-SCF3和-(CH2)n-SeCF3,其中n=2-6。
2.一种7位取代的喜树碱衍生物的合成方法,其特征在于:所述方法的合成路线如下:
其中n=1、2、3、4、5。
3.如权利要求1所述的7位取代的喜树碱衍生物在制备治疗肝癌和/或白血病药物方面中的应用。
4.根据权利要求3所述的应用,其特征在于:所述喜树碱衍生物为其中任一个化合物和/或其药学上可接受的盐。
5.根据权利要求3或4所述的应用,其特征在于:所述肝癌为人肝癌细胞HepG2,所述白血病为人白血病细胞K562。
CN202211581807.XA 2022-12-09 2022-12-09 一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用 Active CN116102567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211581807.XA CN116102567B (zh) 2022-12-09 2022-12-09 一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211581807.XA CN116102567B (zh) 2022-12-09 2022-12-09 一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用

Publications (2)

Publication Number Publication Date
CN116102567A CN116102567A (zh) 2023-05-12
CN116102567B true CN116102567B (zh) 2024-03-22

Family

ID=86253515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211581807.XA Active CN116102567B (zh) 2022-12-09 2022-12-09 一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用

Country Status (1)

Country Link
CN (1) CN116102567B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007809A (zh) * 2007-01-12 2007-08-01 浙江大学 一类水溶性喜树碱衍生物及其制备方法和应用
CN103864810A (zh) * 2012-12-07 2014-06-18 天津科技大学 一种新颖的10-羟基喜树碱10位衍生物制备方法及其在抗肿瘤药物中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007809A (zh) * 2007-01-12 2007-08-01 浙江大学 一类水溶性喜树碱衍生物及其制备方法和应用
CN103864810A (zh) * 2012-12-07 2014-06-18 天津科技大学 一种新颖的10-羟基喜树碱10位衍生物制备方法及其在抗肿瘤药物中的应用

Also Published As

Publication number Publication date
CN116102567A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN105315321B (zh) 具有抗肿瘤作用的化合物及其制备方法和应用
CN109206610B (zh) 一种适用于点击化学反应的多臂多爪聚乙二醇衍生物
CN107163011A (zh) 3‑(3,4,5‑三甲氧基苯甲酰)‑苯并呋喃类微管蛋白抑制剂及其制备方法和用途
CN113480559B (zh) 一种蒿甲醚衍生物及其制备方法和应用
CN108467394B (zh) 一类α-硫辛酸类H2S供体与吴茱萸碱拼合物及其制备方法和用途
CN114380864A (zh) 一种双氢青蒿素衍生物、制备方法、药物组合物和其在制备抗肿瘤药物中的应用
CN116102567B (zh) 一种7位取代的喜树碱衍生物、合成方法及作为抗肿瘤药物的应用
CN111635449B (zh) 一种羽扇豆醇吡啶季铵盐衍生物及其制备方法与应用
CN111471080B (zh) ocotillol型人参皂苷元A环并氨基噻唑环衍生物及制备方法
CN111253411B (zh) 一种小檗碱亚油酸缀合物及其制备方法和用途
CN110183459B (zh) α-倒捻子素衍生物及其制备方法和应用
CN113717138B (zh) 一类氮芥类色原酮衍生物与应用
CN110922450B (zh) Psma激活式抗肿瘤前药cpt-x及其制备方法和应用
CN110759961B (zh) 一类熊果酸吲哚醌酰胺衍生物及其制备方法和应用
CN110272337B (zh) 6-姜酚衍生物及其制备和应用
CN113234117A (zh) 常春藤皂苷元c-28位聚乙二醇修饰的衍生物及其制备方法
CN113788809B (zh) 一类色原酮的3位拼合氮芥衍生物与应用
CN115636863B (zh) 含有马来酰亚胺片段的地塞米松衍生物及其制备方法
CN111620912B (zh) 含香豆素配体的半三明治型金属配合物及制备方法与应用
CN116332931B (zh) 苦参碱-二硫代氨基甲酸酯杂化物及其制备方法和应用
CN111303175B (zh) 一种10-羟基喜树碱类衍生物及其制备方法、药物、应用
CN113788810B (zh) 一类色原酮氮芥衍生物与抗肿瘤应用
CN113527405B (zh) 常春藤皂苷元聚乙二醇修饰的衍生物制备肿瘤耐药逆转剂的应用
CN116217585A (zh) 一种鬼臼毒素/表鬼臼毒素衍生物、制备方法及其应用
CN109824642B (zh) 一种具有抗肺癌活性的白杨素苯丙氨酸衍生物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant