CN116082050B - 纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用 - Google Patents

纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用 Download PDF

Info

Publication number
CN116082050B
CN116082050B CN202310048322.2A CN202310048322A CN116082050B CN 116082050 B CN116082050 B CN 116082050B CN 202310048322 A CN202310048322 A CN 202310048322A CN 116082050 B CN116082050 B CN 116082050B
Authority
CN
China
Prior art keywords
fiber
carbon aerogel
absorbing
reinforced
aerogel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310048322.2A
Other languages
English (en)
Other versions
CN116082050A (zh
Inventor
程明
王才良
危伟
潘蕾
张浩然
蒋文良
于帅
刘柳
鄢柳柳
李慧敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Science And Industry Wuhan Magnetism Electron Co ltd
Original Assignee
Aerospace Science And Industry Wuhan Magnetism Electron Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Science And Industry Wuhan Magnetism Electron Co ltd filed Critical Aerospace Science And Industry Wuhan Magnetism Electron Co ltd
Priority to CN202310048322.2A priority Critical patent/CN116082050B/zh
Publication of CN116082050A publication Critical patent/CN116082050A/zh
Application granted granted Critical
Publication of CN116082050B publication Critical patent/CN116082050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明提供了一种纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用,该材料以蛋白质衍生的纤维预聚体为模板,多糖生物质为碳源,半导体纤维为增强体,经碳化和超临界干燥后,即可得到纤维增强的多糖碳气凝胶。本发明的制备方法简单,条件温和,原料来源广、成本低廉。制备的复合材料具有三维多孔交联结构、高强度、高比表面积、低密度的特点,在2~18GHz低频范围内具备宽频吸波,在2~6KHz中高频范围内实现高效吸声。

Description

纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复 合材料中的应用
技术领域
本发明属于材料领域,涉及吸波、吸声材料,具体为一种纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用。
背景技术
随着电子信息技术在广播通信、家用电器、交通运输等领域的广泛运用,其在给人类带来便利的同时,也带来了电磁辐射污染和噪音污染。为了降低飞机、汽车以及各类电子电器设备产生的电磁波与噪声,需要开发多功能集成的新型材料。吸波/吸声材料需要对电磁波和噪音具备较强的吸收能力,此外还需考虑其适用性及成本性,如轻量化、低成本,这对于产业化应用具有重要意义。
相比于传统的金属基吸波材料,碳材料具有低密度、低填充率、高电磁响应能力、高稳定性等优点,已成为当前最具潜力的吸波材料之一。将碳材料设计成多孔结构,如碳气凝胶,在促进电磁波吸收的同时,还可以赋予降噪的功能。然而,传统的碳气凝胶的合成方法复杂、实验条件苛刻,原材料价格昂贵,且很难精确控制微观结构。此外较差的阻抗匹配和较高的相对介电常数,使得吸波性能有所不足,限制了其实际应用。
发明内容
本发明提供一种纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用,该材料具有三维多孔交联结构、高比表面积、高强度、低密度,在2~18GHz低频范围内具备宽频吸波,在2~6KHz中高频范围内实现高效吸声。
本发明的技术方案是,一种纤维增强的多糖碳气凝胶材料的制备方法,包括以下步骤:
S1、将蛋白质在酸性溶液中经过水热处理,得到纤维预聚体溶液;
S2、将多糖生物质、半导体纤维和上述预聚体溶液进行碳化处理,除去杂质,制备复合水凝胶前驱体;
S3、将复合水凝胶前驱体进行超临界干燥处理,得到纤维增强的多糖碳气凝胶材料。
进一步地,所述蛋白质为乳清蛋白、玉米蛋白、牛乳蛋白中的一种或几种混合,酸性溶液为pH 3.5~5.5的盐酸溶液。蛋白质与酸性溶液的质量比为0.005~0.042:1。
进一步地,S1中水热处理温度为100~130℃,处理时间为0.5~3.5h。
进一步地,所述多糖生物质为壳聚糖、细菌纤维素、竹豆淀粉中的一种或几种混合;半导体纤维为SiC纤维、ZnS纤维、SnO2纤维中的一种或几种混合;多糖生物质、半导体纤维和上述预聚体溶液的质量比为5:0.05~0.5:50~55。
进一步地,半导体纤维的直径大小为200~500nm。
进一步地,S2中碳化温度为105~155℃,处理时间为12~32h。
进一步地,超临界干燥前加入乙醇,干燥温度为200~320℃,干燥压力为7.8~16.5Mpa。
进一步地,乙醇的加入量与复合水凝胶前驱体的质量比为4.8~9.2:1。
本发明还涉及所述方法制备得到的纤维增强多糖碳气凝胶材料。
本发明还涉及所述纤维增强多糖碳气凝胶材料在吸波/吸声复合材料中的应用。
本发明具有以下有益效果:
本发明以多糖生物质和半导体纤维为原料,在纤维预聚体模板的帮助下,经碳化和超临界干燥,转化为纤维增强的多糖碳气凝胶。其采用来源广泛、价格低廉的多糖生物质作原料来合成碳气凝胶,价格便宜、来源广泛、环保无污染,可以有效降低生产成本;另一方面,以纤维预聚体为模板,定向碳化和超临界干燥来合成碳气凝胶,操作简单,实验条件温和,还能对微观结构进行精准调控,制备过程稳定易重复。
本发明以纤维预聚体为模板来辅助合成多糖碳气凝胶,通过改变制备条件如模板浓度、碳化温度、碳化时间等,可以精细控制多糖碳气凝胶的微观结构。获得的多糖碳气凝胶呈纤维状,形状规则,大小均一,并形成三维多孔交联结构,这有助于电磁波及噪音的吸收。半导体纤维穿插在碳气凝胶形成的三维多孔交联结构中,有效增加了力学强度,并改善了材料的阻抗匹配性,优化了电磁参数,有利于电磁波吸收。
采用本发明提供的方法制备的纤维增强的多糖碳气凝胶具有低密度、高比表面积、高断裂强度的特点,并且吸波和降噪性能优越,在2~18GHz低频范围内具备宽频吸波,在2~6KHz中高频范围内实现高效吸声。
附图说明
图1为实施例1制备的SiC纤维增强的壳聚糖碳气凝胶复合材料的SEM形貌图。
图2为实施例1制备的SiC纤维增强的壳聚糖碳气凝胶复合材料的吸波性能测试图。
图3为实施例1制备的SiC纤维增强的壳聚糖碳气凝胶复合材料的吸声性能测试图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。
实施例1:
一种SiC纤维增强的壳聚糖碳气凝胶复合材料的制备,按以下步骤进行。
步骤1:称取4.0g乳清蛋白于烧杯中,加入100mL去离子水,充分搅拌。待乳清蛋白完全溶解之后,加入浓盐酸调节pH值到3.5。将溶液加热至125℃,保持2h,获得纤维预聚体溶液。
步骤2:称取5g壳聚糖,0.25g直径为200nm的SiC纤维于烧杯中,加入50ml步骤1中纤维预聚体溶液,超声至溶液中固体完全分散。将烧杯中的溶液转入100ml反应釜中,在135℃温度下碳化处理24h,得到复合水凝胶前驱体粗样品。将复合水凝胶前驱体粗样品浸泡在丙酮中,保持48h,获得复合水凝胶前驱体。
步骤3:将步骤2中获得的复合水凝胶前驱体放入体积为100ml的干燥釜中,加入35ml乙醇,在280℃温度、14Mpa压力条件下进行超临界干燥处理,获得SiC纤维-碳气凝胶复合材料,其测试结果见表1及图1~图3。
表1
实施例2
实施例2与实施例1基本相同,不同之处在于,
实施例2-1:在步骤1中加入的蛋白质为玉米蛋白,加入质量为0.5g。结果见表2。
表2
实施例2-2:在步骤1中加入浓盐酸调节pH值到4.5。结果见表3。
表3
实施例2-3:在步骤1中将溶液加热至105℃。结果见表4。
表4
通过实施例2-1与实施例1的对比,可以看出将玉米蛋白的加入量减少之后,碳气凝胶的纤维直径变大,这是因为步骤1中纤维预聚体的浓度不足,没有足够模板帮助碳气凝胶生长所致。而碳气凝胶的纤维直径变大会降低断裂强度。同时SiC纤维-碳气凝胶复合材料的密度增加,比表面积降低,这不利于电磁波和噪声与材料充分接触,吸波和降噪性能在一定程度上有所降低。
实施例2-2、实施例2-3与实施例1对比,可以看出步骤1中减小溶液的酸性或溶液的温度,最终获得的SiC纤维-碳气凝胶复合材料的纤维直径变大,并且还存在粗细不均、纤维断裂等现象。因此,在步骤1中需要控制纤维预聚体的制备条件,如蛋白质加入量、溶液的pH、溶液温度等,以保证其质量、浓度,从而为后续碳气凝胶生长提供良好条件。
实施例3
实施例3与实施例1基本相同,不同之处在于,
实施例3-1:在步骤3中加入的SiC纤维质量为0.1g。结果见表5。
表5
通过实施例3-1与实施例1的对比,可以发现减少SiC纤维的添加量,会导致SiC纤维-碳气凝胶复合材料的断裂强度下降,这是因为SiC纤维在复合材料中起到增韧的作用。同时,SiC纤维-碳气凝胶的比表面积提高,这有利于促进噪声的吸收。然而,SiC纤维-碳气凝胶的纤维直径、密度变化不大。在吸波性能方面,SiC纤维的减少不利于调节复合材料的阻抗匹配和电磁参数,从而导致吸波性能降低。
实施例3-2:在步骤3中加入的SiC纤维的直径为400nm。结果见表6。
表6
对比实施例3-2与实施例1,发现增大SiC纤维的直径并不影响SiC纤维-碳气凝胶的纤维直径和密度,但会令断裂强度下降,这源于400nm的SiC纤维的断裂强度要低于200nm的SiC纤维。400nm-SiC纤维-碳气凝胶的吸波和吸声性能均低于200nm-SiC纤维-碳气凝胶。
实施例3-3:在步骤3中加入的纤维为SnO2纤维。结果见表7。
表7
对比实施例3-3与实施例1,发现将SiC纤维改为SnO2纤维,主要影响的是复合材料的断裂强度和吸波性能。不同纤维的电磁参数和力学强度不同,将它们添加到碳气凝胶中,对纤维-碳气凝胶复合材料的力学强度、阻抗匹配度和电磁参数的调控也会不同,最终导致不同的断裂强度和吸波性能。
实施例4与实施例1基本相同,不同之处在于,
实施例4-1:在步骤2中碳化温度为150℃,碳化时间为32h。结果见表8。
表8
对比实施例4-1与实施例1,可以观察到碳化温度和碳化时间很大程度上影响SiC纤维-碳气凝胶复合材料的各项参数。当碳化温度和碳化时间的过高过长,生长的碳气凝胶的纤维直径变大,SiC纤维-碳气凝胶复合材料的断裂强度减小,密度增大,比表面积降低。这不利于复合材料吸波和吸声。
实施例4-2:在步骤2中碳化温度为110℃,碳化时间为12h。结果见表9。
表9
对比实施例4-2与实施例1,可以看到碳化温度较低、碳化时间较短时,会导致SiC纤维-碳气凝胶复合材料的性能下降。这是由于该条件生长的碳气凝胶的纤维直径较小、长度较短,团聚在一起,无法形成三维多孔交联结构,最终导致复合材料的各项性能均不足。
实施例5
实施例5与实施例1基本相同,不同之处在于:在步骤3中超临界干燥的条件为220℃温度、12.4Mpa压力。结果见表10。
表10
对比实施例5与实施例1,可以看到更改超临界干燥条件,会对SiC纤维-碳气凝胶复合材料的密度、比表面积、断裂强度、吸波/吸声等均有影响。干燥温度、干燥压力决定了复合水凝胶前驱体的脱水速率、进一步碳化过程,对于碳气凝胶微观结构的控制十分重要。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (4)

1.一种纤维增强的多糖碳气凝胶材料的制备方法,其特征在于,包括以下步骤:
S1、将蛋白质在酸性溶液中经过100~130℃水热处理0.5~3.5h,得到纤维预聚体溶液;所述蛋白质为乳清蛋白、玉米蛋白、牛乳蛋白中的一种或几种混合,酸性溶液为pH 3.5~5.5的盐酸溶液;
S2、将多糖生物质、半导体纤维和上述纤维预聚体溶液进行碳化处理,除去杂质,制备复合水凝胶前驱体;所述多糖生物质为壳聚糖、细菌纤维素、竹豆淀粉中的一种或几种混合;碳化温度为105~155℃,处理时间为12~32h;半导体纤维为SiC纤维、ZnS纤维、SnO2纤维中的一种或几种混合;多糖生物质、半导体纤维和上述纤维预聚体溶液的质量比为5:0.05~0.5:50~55;半导体纤维的直径大小为200~500nm;
S3、将复合水凝胶前驱体进行超临界干燥处理,超临界干燥前加入乙醇,干燥温度为200~320℃,干燥压力为7.8~16.5MPa;得到纤维增强的多糖碳气凝胶材料。
2.根据权利要求1所述的制备方法,其特征在于:乙醇的加入量与复合水凝胶前驱体的质量比为4.8~9.2:1。
3.根据权利要求1~2任意一项所述方法制备得到的纤维增强的多糖碳气凝胶材料。
4.权利要求3所述纤维增强的多糖碳气凝胶材料在吸波/吸声复合材料中的应用。
CN202310048322.2A 2023-01-31 2023-01-31 纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用 Active CN116082050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310048322.2A CN116082050B (zh) 2023-01-31 2023-01-31 纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310048322.2A CN116082050B (zh) 2023-01-31 2023-01-31 纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用

Publications (2)

Publication Number Publication Date
CN116082050A CN116082050A (zh) 2023-05-09
CN116082050B true CN116082050B (zh) 2024-03-19

Family

ID=86200498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310048322.2A Active CN116082050B (zh) 2023-01-31 2023-01-31 纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用

Country Status (1)

Country Link
CN (1) CN116082050B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178797A1 (en) * 2013-05-03 2014-11-06 National University Of Singapore A Polysaccharide Aerogel
DE102015107235A1 (de) * 2015-05-08 2016-11-10 Elringklinger Ag Verfahren zum Herstellen von Formkörpern aus Aerogelen oder enthaltend Aerogele
CN106698389A (zh) * 2016-12-30 2017-05-24 华南理工大学 一种木质素/细菌纤维素复合柔性碳气凝胶及其制备方法与应用
CN107287698A (zh) * 2017-06-20 2017-10-24 中国科学技术大学 一种碳纳米纤维气凝胶的制备方法
CN108285556A (zh) * 2017-01-17 2018-07-17 武汉力诚生物科技有限公司 一种植物多糖气凝胶吸音降噪材料及制备方法
CN111925194A (zh) * 2020-08-18 2020-11-13 航天特种材料及工艺技术研究所 一种耐高温高性能气凝胶复合材料及其制备方法
CN112661154A (zh) * 2020-12-11 2021-04-16 河北工业大学 一种含石墨烯的高吸附性植物蛋白质碳气凝胶的制备方法
CN113634048A (zh) * 2021-09-10 2021-11-12 武汉纺织大学 天然蚕丝微纳米纤维复合多孔材料及其应用
CN115605010A (zh) * 2022-09-27 2023-01-13 刘莉(Cn) 一种复合电磁吸收材料、制备方法及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178797A1 (en) * 2013-05-03 2014-11-06 National University Of Singapore A Polysaccharide Aerogel
DE102015107235A1 (de) * 2015-05-08 2016-11-10 Elringklinger Ag Verfahren zum Herstellen von Formkörpern aus Aerogelen oder enthaltend Aerogele
CN106698389A (zh) * 2016-12-30 2017-05-24 华南理工大学 一种木质素/细菌纤维素复合柔性碳气凝胶及其制备方法与应用
CN108285556A (zh) * 2017-01-17 2018-07-17 武汉力诚生物科技有限公司 一种植物多糖气凝胶吸音降噪材料及制备方法
CN107287698A (zh) * 2017-06-20 2017-10-24 中国科学技术大学 一种碳纳米纤维气凝胶的制备方法
CN111925194A (zh) * 2020-08-18 2020-11-13 航天特种材料及工艺技术研究所 一种耐高温高性能气凝胶复合材料及其制备方法
CN112661154A (zh) * 2020-12-11 2021-04-16 河北工业大学 一种含石墨烯的高吸附性植物蛋白质碳气凝胶的制备方法
CN113634048A (zh) * 2021-09-10 2021-11-12 武汉纺织大学 天然蚕丝微纳米纤维复合多孔材料及其应用
CN115605010A (zh) * 2022-09-27 2023-01-13 刘莉(Cn) 一种复合电磁吸收材料、制备方法及其应用

Also Published As

Publication number Publication date
CN116082050A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
RU2703170C1 (ru) Композиционный материал, содержащий углеродную наноструктуру, высокомолекулярный материал, в котором он используется, и способ получения
CN107555432B (zh) 一种由甘蔗渣制备高比表面积氮气碳分子筛的方法
HU223262B1 (hu) Eljárás munkadarabok és formatestek előállítására cellulózból és/vagy cellulóztartalmú rostanyagokból
CN109293982B (zh) 一种具有高机械强度的复合气凝胶的制备方法
CN107722932B (zh) 一种碳/聚苯胺吸波微球的制备方法
JP2003082535A (ja) セルロース原料由来の微細繊維状炭素材料およびその製造方法
CN111647196A (zh) 一种木基碳纳米管复合导电薄膜的制备方法
CN111944068B (zh) 一种生物质海绵及其制备方法和应用
CN116082050B (zh) 纤维增强的多糖碳气凝胶材料制备方法及其在吸波/吸声复合材料中的应用
CN113174751A (zh) 多级异质结构复合材料及其制备方法和电磁微波吸收应用
CN111410185B (zh) 一种在高浓度盐溶液中水热碳化制备碳微球的方法
CN113462357A (zh) 一种吸波粒子及其复合材料的制备方法和应用
CN110078943B (zh) 层状矿化的纳米几丁质复合水凝胶、制备方法及复合材料
CN112094441A (zh) 一种基于纳米纤维素的复合板材及其制备方法
CN114605747B (zh) 一种碳酸钙改性植物纤维复合材料的制备方法
CN111924822A (zh) 一种低频高效吸波的SiC/多孔碳复合材料的制备方法
CN115557494A (zh) 导电纤维素纳米烯及其制备方法和应用
CN113999322A (zh) 一种高羧基含量的tempo氧化纤维素的低能耗制备方法
CN112938964A (zh) 一种采用一锅法制备氮掺杂多孔石墨化碳气凝胶微球的方法
CN112897505B (zh) 一种介孔炭材料的制备方法
CN111690155A (zh) 一种纳米纤维素/羟基磷灰石纳米球的制备方法
CN111039273A (zh) 碳分子筛及生产方法以及制成的变压吸附制氮机
CN111391352A (zh) 一种溶解浆纤维缓冲包装材料的成型方法
CN110446413B (zh) 用于电磁屏蔽的氮杂碳/纳米金属线复合材料及制备方法
CN117248386B (zh) 一种利用天然植物纤维制备纳米纤维素的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant