CN116034245A - 烟气处理设备和相关方法 - Google Patents

烟气处理设备和相关方法 Download PDF

Info

Publication number
CN116034245A
CN116034245A CN202180057285.0A CN202180057285A CN116034245A CN 116034245 A CN116034245 A CN 116034245A CN 202180057285 A CN202180057285 A CN 202180057285A CN 116034245 A CN116034245 A CN 116034245A
Authority
CN
China
Prior art keywords
heat exchange
flue gas
exchange chamber
flow
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180057285.0A
Other languages
English (en)
Inventor
恩佐·约瑟夫·奇亚鲁洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenova SpA
Original Assignee
Tenova SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenova SpA filed Critical Tenova SpA
Publication of CN116034245A publication Critical patent/CN116034245A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/26Arrangements of heat-exchange apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/003Extraction of waste gases, collection of fumes and hoods used therefor of waste gases emanating from an electric arc furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/06Energy from waste gas used in other processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种由工业工厂排出的热烟气的处理设备,该处理设备包括气体回路,并且气体回路具有沿着第一分支的第一热交换室和沿着第二分支的第二热交换室、烟气的温度测量装置和/或流量测量装置、能够至少在第一位置与第二位置之间移动的调节构件。在第一位置中,允许烟气运送到第一热交换室中,而阻止或减少烟气运送到第二热交换室中,以及在第二位置中,允许烟气运送到第一热交换室和第二热交换室两者中。控制单元配置成基于烟气的温度值和/或流量值来命令调节构件处于第一位置或处于第二位置。

Description

烟气处理设备和相关方法
技术领域
本发明涉及由工业工厂排出的烟气的处理设备,工业工厂即为用于黑色金属和有色金属的金属处理或铸造工厂,其中,烟气的热能至少部分被回收以便再使用。本发明的处理设备涉及消除或至少减少包括在烟气中的一种或更多种类型的污染物。本发明还涉及相应的烟气处理方法。
背景技术
在涉及高温热过程的工业过程中,特别地在原材料被聚合物元素污染时,烟气中存在高浓度的污染物。例如,这种情况发生在城市固体废物处理厂、垃圾焚烧发电厂或用于回收废金属的钢铁厂,特别地其中,黑色金属废料在炉中、比如电弧炉中熔融。在这些工业过程中引入的材料(废物转化能量工厂中的城市废物,电弧炉中的废金属)不可避免地包含有聚合物污染物,这些聚合物污染物由于高温和随后的冷却可能产生二恶英和呋喃,由工业过程产生的废气携带的二恶英和呋喃如果传播到大气中可能对人类健康构成威胁。
在金属废料、特别是黑色金属废料——它们经常被聚合物物质比如油漆、涂料或塑料元素污染——的回收处理的情况下,通常使用电弧炉(EAF)。聚合物物质易于燃烧,其产物最终进入在EAF中进行的处理所产生的气流中。EAF处理通常涉及非常高的温度、特别地高于1500℃,从而导致烟气中存在二恶英前体。此外,EAF处理的特点是由于进入EAF的材料装载操作、材料的熔融过程和随后的熔融金属铸造而造成的高度不连续性:这导致在分批类型的处理步骤期间要处理的烟气的流量改变。最后,由EAF处理排出的气体很高,有必要进行能量回收以供进一步使用。
减少烟气中污染物的已知方法是将这些气体保持在高于700℃至800℃、特别地高于850℃持续长于2秒的时间,然后在600℃与250℃的温度之间迅速冷却、优选地以高于200℃/秒至300℃/秒冷却这些烟气。也可以提供活性炭的注入以减少污染物。
烟气的快速冷却可以借助于淬火塔来获得,在淬火塔中,空气和水的混合物在环境压力和温度下被注射到烟气流中。与注射的混合物密切接触的这些气体释放混合物的液体部分蒸发所需的热,并在塔的体积内冷却下来。塔设计成使得烟气流的速度——该烟气流的速度与注射的水流的速度相结合——允许达到烟气的期望冷却速率。然而,与淬火塔有关的缺点是该过程不允许回收、至少部分地回收烟气中存在的热能:实际上,该过程产生的蒸汽分散到大气中。
从工业过程回收热能的系统被已知为“废热锅炉”(WHB),其中,工作流体在限定热交换器的多个管内流动,以接收来自烟气的热能:这些管流体地连接至蒸汽罐,该蒸汽罐接收气相的工作流体。工作流体循环由热本身来确定,这使气相的工作流体朝向蒸汽罐流动,并且液相的工作流体从蒸汽罐朝向热交换器流动,以从工业工厂的烟气中除去热:在这种类型WHB中,流体循环被称为“自然循环”,以指定不涉及泵来引起流体流动(也可以在辅助或强制循环中,在辅助或强制循环中,安装了用于工作流体循环的至少一个泵)。无论如何,由于工作流体的流量取决于与烟气交换的热能,烟气又如通常在EAF过程中发生的那样以不恒定的量产生,因此不可能在流量变化时获得充分的烟气冷却速率。在上述参数之外的烟尘冷却速率导致的情况是,通过新的合成,促成将分散在大气中的二恶英和呋喃的重组。
总之,申请人指出,两种上述技术、即快速淬火塔技术和废热锅炉技术在需要将减少烟气中的污染物和热能回收结合时具有重大缺陷。
发明范围
因此,本发明的范围是至少部分地解决先前解决方案的缺点和/或限制中的一者或更多者。
第一范围是提供这样的烟气处理设备和相关方法,所述烟气处理设备和相关方法能够减少包含在从涉及燃烧或高温过程的工业工厂排出的烟气中的一种或更多种污染物、特别是二恶英和呋喃。
另一范围是提供这样的烟气处理设备和相关方法,所述烟气处理设备和相关方法能够回收、至少部分地回收烟气中所包含的热能以供进一步使用。
另一范围是提供能够将能量回收和减少烟气中的污染物结合的烟气处理设备和相关方法。
另一范围是提供能够在污染物处理过程期间对烟气冷却速率的控制进行改善的烟气处理设备和相关方法。
另一范围是提供可靠、有效地减少污染物并且在能量回收方面高效的烟气处理设备和相关方法。
这些范围和将在以下描述中更多出现的更多范围大致上通过根据所附权利要求中的一项或更多项和/或以下各方面中的一个或更多个方面所述的烟气处理设备和相关方法来实现。
发明内容
第1方面涉及一种由工业工厂排出的热烟气的处理设备(1),该处理设备(1)包括气体回路和流体回路,气体回路包括:
-至少第一热交换室(11)和第二热交换室(12),第一热交换室(11)和第二热交换室(12)两者包括相应的气体入口(11a、12a)和气体出口(11b、12b),所述第一热交换室(11)和所述第二热交换室(12)配置成在入口中接收所述烟气;
-第一烟气供应管道(23)和第二烟气供应管道(24),所述第一烟气供应管道(23)和第二烟气供应管道(24)分别将所述第一热交换室(11)的入口(11a)和所述第二热交换室(12)的入口(12a)连接至烟气源(20);
-第一烟气排放管道(25)和第二烟气排放管道(26),所述第一烟气排放管道(25)和第二烟气排放管道(26)分别连接至所述第一热交换室(11)的出口(11b)和所述第二热交换室(12)的出口(12b),并且第一烟气排放管道(25)和第二烟气排放管道(26)配置成将烟气输送离开第一热交换室(11)和第二热交换室(12),
其中,第一烟气供应管道(23)、第一烟气排放管道(25)和第一热交换室(11)限定了气体回路的第一分支,同时第二烟气供应管道(24)、第二烟气排放管道(26)和第二热交换室(12)限定了气体回路的第二分支;
-温度测量装置(50、50a、51、51a)和流量测量装置(60、61)中的至少一者,温度测量装置(50、50a、51、51a)和流量测量装置(60、61)配置成分别提供烟气的温度的代表信号和流量的代表信号;
-至少一个调节构件(40、41),所述至少一个调节构件(40、41)能够至少在下述两者之间移动:
O第一位置,在第一位置中,允许烟气从烟气源(20)运送到第一热交换室(11)中,而阻止或减少烟气从烟气源(20)运送到第二热交换室(12)中,以及
O第二位置,在第二位置中,允许烟气从烟气源(20)运送到第一热交换室(11)和第二热交换室(12)两者中;
其中,流体回路配置成输送呈液相和气相的工作流体、特别是水,所述流体回路包括:
-至少第一热交换单元(101)和第二热交换单元(103),所述第一热交换单元(101)和第二热交换单元(103)分别布置在所述第一热交换室(11)和所述第二热交换室(12)中或者与所述第一热交换室(11)和所述第二热交换室(12)热接触,并且配置成允许烟气与工作流体之间进行热交换;
-蒸汽罐(110),所述蒸汽罐(110)至少流体地连接、可选地通过自然循环和/或辅助和/或强制循环流体地连接至第一热交换单元(101)和第二热交换单元(103);
其中,处理设备(1)还包括控制单元(200),该控制单元(200)配置成:
-接收烟气的温度的代表信号和流量的代表信号中的至少一者;
-基于相应的代表信号来确定温度代表值与流量代表值中的至少一者;
-基于烟气的温度值或流量值中的至少一者来确定至少一个参考参数;
-限定所述参考参数与至少一个阈值之间的比较;
-基于所述比较,命令所述至少一个调节构件(40、41)处于第一位置或处于第二位置。
第2方面涉及一种用于对由工业工厂排出的热烟气进行处理的方法,所述方法由可选地根据各方面中的任一方面的处理设备来执行,所述设备包括气体回路和流体回路,气体回路包括:
-至少第一热交换室(11)和第二热交换室(12),第一热交换室(11)和第二热交换室(12)两者包括相应的气体入口(11a、12a)和气体出口(11b、12b),所述第一热交换室(11)和所述第二热交换室(12)配置成在入口中接收所述烟气;
-第一烟气供应管道(23)和第二烟气供应管道(24),所述第一烟气供应管道(23)和第二烟气供应管道(24)分别将所述第一热交换室(11)的入口(11a)和所述第二热交换室(12)的入口(12a)连接至烟气源(20);
-第一烟气排放管道(25)和第二烟气排放管道(26),所述第一烟气排放管道(25)和第二烟气排放管道(26)分别连接至所述第一热交换室(11)的出口(11b)和所述第二热交换室(12)的出口(12b),并且第一烟气排放管道(25)和第二烟气排放管道(26)配置成将烟气输送离开第一热交换室(11)和第二热交换室(12),
其中,第一烟气供应管道(23)、第一烟气排放管道(25)和第一热交换室(11)限定了气体回路的第一分支,同时第二烟气供应管道(24)、第二烟气排放管道(26)和第二热交换室(12)限定了气体回路的第二分支;
-温度测量装置(50、50a、51、51a)和流量测量装置(60、61)中的至少一者,温度测量装置(50、50a、51、51a)和流量测量装置(60、61)配置成分别提供烟气的温度的代表信号和流量的代表信号;
-至少一个调节构件(40、41),所述至少一个调节构件(40、41)能够至少在下述两者之间移动:
O第一位置,在第一位置中,允许烟气从烟气源(20)运送到第一热交换室(11)中,而阻止或减少烟气从烟气源(20)运送到第二热交换室(12)中,以及
O第二位置,在第二位置中,允许烟气从烟气源(20)运送到第一热交换室(11)和第二热交换室(12)两者中;
其中,流体回路配置成输送呈液相和气相的工作流体、特别是水,所述流体回路包括:
-至少第一热交换单元(101)和第二热交换单元(103),所述第一热交换单元(101)和第二热交换单元(103)分别布置在所述第一热交换室(11)和所述第二热交换室(12)中或者与所述第一热交换室(11)和所述第二热交换室(12)热接触,并且配置成允许烟气与工作流体之间进行热交换;
-蒸汽罐(110),所述蒸汽罐(110)至少流体地连接至第一热交换单元(101)和第二热交换单元(103);
其中,所述方法至少包括由处理设备(1)执行的以下步骤:
-接收烟气的温度的代表信号和流量的代表信号中的至少一者;
-基于相应的代表信号来确定温度代表值和流量代表值中的至少一者;
-基于烟气的温度值或流量值中的至少一者来确定至少一个参考参数;
-限定所述参考参数与至少一个阈值之间的比较;
-基于所述比较,命令所述至少一个调节构件(40、41)处于第一位置或处于第二位置。
在根据前述方面中的任一方面所述的第3方面中,气体回路包括温度测量装置(50、50a、51、51a),所述温度测量装置(50、50a、51、51a)包括布置在第一热交换室(11)的上游的第一高温传感器(50、51)。
在根据前述方面中的任一方面所述的第4方面中,气体回路包括温度测量装置(50、50a、51、51a),所述温度测量装置(50、50a、51、51a)包括布置在第二热交换室(12)的上游的第二高温传感器(51)。
在根据前述方面中的任一方面所述的第5方面中,气体回路包括温度测量装置(50、50a、51、51a),所述温度测量装置(50、50a、51、51a)包括布置在第一热交换室(11)和/或第二热交换室(12)的下游的至少一个低温传感器(50a、51a)。
在根据前述方面中的任一方面所述的第6方面中,气体回路包括第一高温传感器(50),该第一高温传感器(50)位于第一热交换室(11)的上游、特别地布置在第一烟气供应管道(23)上。
在根据前述方面中的任一方面所述的第7方面中,气体回路包括第二高温传感器(51),该第二高温传感器(51)特别地与第一高温传感器(50)分离并不同、在第二热交换室(12)的上游布置在第二烟气供应管道(24)上。
在根据前述方面中的任一方面所述的第8方面中,气体回路包括第一低温传感器(50a),该第一低温传感器(50a)在第一热交换室(11)的下游布置在第一烟气排放管道(25)上。
在根据前述方面中的任一方面所述的第9方面中,气体回路包括第二低温传感器(51a),该第二低温传感器(51a)在第二热交换室(12)的下游布置在第二烟气排放管道(26)上。
在根据前述方面中的任一方面所述的第10方面中,控制单元配置成将温度变化参数确定为由至少一个高温传感器(50、51)测量的温度值与由至少一个低温传感器(50a、51a)测量的温度值之间的差,所述参考参数基于所述温度变化参数。
在根据前述方面中的任一方面所述的第11方面中,控制单元配置成确定第一温度变化参数,该第一温度变化参数代表烟气特别地在第一热交换室(11)的上游部段与下游部段之间的温度变化。
在根据前述方面中的任一方面所述的第12方面中,控制单元配置成确定第二温度变化参数,该第二温度变化参数代表烟气特别地在第二热交换室(12)的上游部段与下游部段之间的温度变化。
在根据前述方面中的任一方面所述的第13方面中,所述参考参数基于第一温度变化参数或第二温度变化参数或第一温度变化参数和第二温度变化参数的组合。
在根据前述方面中的任一方面所述的第14方面中,控制单元配置成:
-将所述第一温度变化参数和/或第二温度变化参数、可选地其组合与相应的温度变化阈值进行比较;
-如果所述温度变化参数低于所述相应的温度变化阈值,则命令所述至少一个调节构件(40、41)处于第一位置;或
-可选地,如果所述温度变化高于所述相应的温度变化阈值,则命令所述至少一个调节构件(40、41)处于第二位置,
特别地,其中,所述温度变化阈值包括在200℃与600℃之间、特别地在300℃与500°之间、更特别地在350℃与450℃之间。
在根据前述方面中的任一方面所述的第15方面中,控制单元配置成通过高温传感器来确定第一热交换室(11)和/或第二热交换室(12)上游的烟气的上游温度值,并将所述上游温度值与上游温度值阈值进行比较,特别地,控制单元还配置成基于所述比较来命令调节构件。
在根据前述方面的第16方面中,控制单元配置成在上游温度值相对于上游温度值阈值更高或更低的情况下发出告警信号。
在根据前述两个方面的第17方面中,上游温度值阈值包括在550℃与800℃之间、特别地在600℃与700℃之间、特别地在640℃与660℃之间。
在根据前述方面中的任一方面所述的第18方面中,第一热交换室(11)和第二热交换室(12)配置成确定通过第一热交换室和/或第二热交换室的烟气的冷却过程。
在根据前述方面中的任一方面所述的另一第18方面中,控制单元(200)配置成:
–基于特别地跨第一热交换室(11)和/或第二热交换室(12)的烟气的流量和温度变化参数,来确定代表当前烟气冷却速率的冷却参数;
-将所述冷却参数与冷却速率阈值进行比较,所述冷却速率阈值设定在200℃/秒与400℃/秒之间、例如在200℃/秒与250℃/秒之间、或在250℃/秒与300℃/秒之间、或在300℃/秒与350℃/秒之间、或在350℃/秒与400℃/秒之间;
-如果冷却参数低于冷却速率阈值,则命令调节构件处于第一位置;
-可选地,如果冷却参数高于冷却速率阈值,则命令所述至少一个调节构件(40、41)处于第二位置。
在根据前述方面的第19方面中,参考参数基于所述冷却速率参数,并且其中,所述至少一个阈值包括所述冷却速率阈值。
在根据前述方面中的任一方面所述的第20方面中,其中,冷却速率参数根据以下公式计算:
Figure BDA0004113434230000081
其中
Figure BDA0004113434230000082
其中:
C速率[ΔC°/s]=冷却参数;
ΔT[℃]=跨第一热交换室(11)和/或第二热交换室(12)的温度变化,特别地,所述温度变化被计算为由高温传感器测量的温度与由低温传感器测量的温度之间的差;
tpg[s]=气体颗粒从高温传感器行进至低温传感器所花费的时间;
Vc[m3]=限定为气体体积的控制体积,气体体积包括在高温传感器至低温传感器之间;
Fg[m3/s]=烟气的流量,特别地该烟气的流量由流量测量装置(60、61)测量。
在根据前述方面中的任一方面所述的第21方面中,参考参数基于烟气的温度值和流量值两者,特别地基于温度变化参数和流量值、更特别地基于第一温度变化参数和/或第二温度变化参数及流量值。
在根据前述方面中的任一方面所述的第22方面中,所述参考参数基于第一热交换室(11)和第二热交换室(12)上游的烟气的温度值。
在根据前述方面中的任一方面所述的第23方面中,流量测量装置(60、61)配置成提供代表由气体源(20)排放的烟气的总流量的信号,特别地其中,流动通过第一热交换室(11)和第二热交换室(12)的烟气的流量的总和对应于所述总流量,并且所述参考参数基于烟气的所述总流量。
在根据前述方面中的任一方面所述的第24方面中,限定参考参数的步骤包括确定烟气的流量、可选地所述总流量,控制单元还配置成:
–将所述流量、可选地所述总流量与相应的流量阈值进行比较;
-如果所述流量低于所述相应的流量阈值,则命令所述至少一个调节构件(40、41)处于第一位置;或
-可选地,如果所述流量高于所述相应的流量阈值,则命令所述至少一个调节构件(40、41)处于第二位置。
在根据前述方面中的任一方面所述的第25方面中,流量测量装置包括至少第一流量传感器(60)和第二流量传感器(61),第一流量传感器(60)和第二流量传感器(61)分别布置在气体回路的第一分支上和第二分支上,并且每个流量传感器配置成提供代表分别进入第一分支和第二分支中的烟气的流量的信号,控制单元配置成接收流量的所述代表信号并确定关于第一分支和第二分支的烟气的第一流量值和第二流量值。
在根据前述方面的第26方面中,参考参数基于所述第一流量值和所述第二流量值,并且可选地基于所述第一流量值和所述第二流量值的组合,可选地基于第一分支中的流量与第二分支中的流量之间的差。
在根据前述方面中的任一方面所述的第27方面中,第一流量传感器(60)和第二流量传感器(61)分别布置下述各者上:
-第一烟气供应管道(23)和第二烟气供应管道(24),或
-第一烟气排放管道(25)和第二烟气排放管道(26)。
在根据前述方面中的任一方面所述的第28方面中,气体回路包括主烟气供应管道(22),该主烟气供应管道(22)将第一烟气供应管道(23)和第二烟气供应管道(24)的入口(28)连接至烟气源(20),所述主烟气供应管道(22)配置成对由烟气源(20)排出的烟气、特别是烟气的总量朝向第一烟气供应管道(23)和第二烟气供应管道(24)两者输送。
在根据前述方面中的任一方面所述的第29方面中,流量测量装置包括上游流量传感器,该上游流量传感器布置在所述主烟气供应管道(22)上并且配置成提供代表由气体源(20)排出的烟气的流量的信号。
在根据前述方面中的任一方面所述的第30方面中,温度测量装置包括上游温度传感器,该上游温度传感器布置在所述主烟气供应管道(22)上并且配置成提供代表由气体源(20)排出的烟气的温度的信号。
在根据前述方面中的任一方面所述的第31方面中,第一烟气排放管道(25)的出口和第二烟气排放管道(26)的出口汇聚为主烟气排放管道(27),所述主烟气排放管道(27)配置成输送由烟气源(20)排出的烟气、特别是烟气的总量,其中,流量测量装置包括下游流量传感器,该下游流量传感器布置在所述主烟气排放管道(27)上并且配置成提供代表由气体源(20)排出的烟气的流量的信号。
在根据前述方面中的任一方面所述的第32方面中,所述至少一个调节构件包括布置在气体回路的第一分支上的第一阻尼器(40)。
在根据前述方面中的任一方面所述的第33方面中,所述至少一个调节构件包括布置在气体回路的第二分支上的第二阻尼器(41)。
在根据前述方面中的任一方面所述的第34方面中,所述至少一个调节构件包括布置在气体回路的第一分支上的第一助推器(40),所述助推器特别地包括风扇,该风扇配置成促进或阻止气体回路内的烟气的流量,所述助推器包括配置成使风扇旋转的电动马达。
在根据前述方面中的任一方面所述的第35方面中,所述至少一个调节构件包括布置在气体回路的第二分支上的第二助推器(41),所述助推器特别地包括风扇,该风扇配置成促进或阻止气体回路内的烟气的流量,所述助推器包括配置成使风扇旋转的电动马达。
在根据前述方面中的任一方面所述的第36方面中,第一阻尼器(40)和第二阻尼器(41)布置在下述各者上:
-第一烟气供应管道(23)和第二烟气供应管道(24),或
-第一烟气排放管道(25)和第二烟气排放管道(26)。
在根据前述方面中的任一方面所述的第37方面中,蒸汽罐(110)配置成从第一热交换单元(101)和第二热交换单元(103)中的至少一者接收气相的工作流体,并且将液相的工作流体递送至第一热交换单元(101)和第二热交换单元(103)中的至少一者。
在根据前述方面中的任一方面所述的第38方面中:
-在所述至少一个调节构件(40、41)布置成处于第一位置时,蒸汽罐(110)配置成从第一热交换单元(101)接收气相的工作流体,以及将液相的工作流体递送至第一热交换单元(101);以及
-在所述至少一个调节构件(40、41)布置成处于第二位置时,蒸汽罐(110)配置成从第一热交换单元(101)和第二热交换单元(103)两者接收气相的工作流体,以及将液相的工作流体递送至第一热交换单元(101)和第二热交换单元(103)两者。
在根据前述方面中的任一方面所述的第39方面中,烟气与工作流体之间的热交换确定了工作流体从液相转变为气相,所述转变确定了工作流体流动通过流体回路,并且其中,所述转变确定了气相的工作流体从第一热交换单元(101)和第二热交换单元(103)中的至少一者朝向蒸汽罐(110)运送。
在根据前述方面中的任一方面所述的第40方面中,其中:
-在所述至少一个调节构件(40、41)布置成处于第一位置时,在第一热交换室(11)中发生热交换,而在第二热交换室(12)中阻止热交换;以及
-在所述至少一个调节构件(40、41)布置成处于第二位置时,在第一热交换室(11)和第二热交换室(12)两者中发生热交换。
在根据前述方面中的任一方面所述的第41方面中,蒸汽罐(110)相对于地面布置在比第一热交换单元(101)和第二热交换单元(103)的相应高度高的高度处,可选地,蒸汽罐(110)相对于地面布置在比第一热交换室(11)和第二热交换室(12)的相应高度高的高度处。
在根据前述方面中的任一方面所述的第42方面中,流体回路包括第一递送管道(111),该第一递送管道(111)将第一热交换单元(101)的出口流体地连接至蒸汽罐(110),并且配置成将呈气相的所述工作流体从第一热交换单元(101)输送至蒸汽罐(110)。
在根据前述方面中的任一方面所述的第43方面中,流体回路包括第一返回管道(112),该第一返回管道(112)将第一热交换单元(101)的入口连接至蒸汽罐(110),并且配置成将呈液相的所述工作流体从蒸汽罐(110)输送至第一热交换单元(101)。
在根据前述方面中的任一方面所述的第44方面中,流体回路包括第二递送管道(113),该第二递送管道(113)将第二热交换单元(103)的出口流体地连接至蒸汽罐(110),并且配置成将呈气相的所述工作流体从第二热交换单元(103)输送至蒸汽罐(110)。
在根据前述方面中的任一方面所述的第45方面中,流体回路包括第二返回管道(114),该第二返回管道(114)将第二热交换单元(103)的入口连接至蒸汽罐(110),并且配置成将呈液相的所述工作流体从蒸汽罐(110)输送至第二热交换单元(103)。
在根据前述方面中的任一方面所述的第46方面中,流体回路包括工作流体源(70)和至少一个流体递送管道(73、74),所述至少一个流体递送管道(73、74)将工作流体源(70)连接至蒸汽罐(110),工作流体源(70)配置成将工作流体递送至蒸汽罐(110)。
在根据前述方面中的任一方面所述的第47方面中,气体回路包括具有气体入口(120a)和气体出口(120b)的辅助热交换室(120),流体回路包括布置在辅助热交换室(120)中或与辅助热交换室(120)热接触的辅助热交换单元(102’),特别地,辅助热交换室(120)与第一热交换室(11)和第二热交换室(12)分离并不同,辅助热交换室(120)配置成对来自流体源(70)的工作流体在进入蒸汽罐(110)之前进行预热。
在根据前述方面的第48方面中,辅助热交换单元(102’)包括入口(102’a)和出口(102’b),入口(102’a)通过流体递送管道(73)流体地连接至流体源(70),出口(102’b)流体地连接至蒸汽罐(110)的流体供应入口。
在根据前述方面中的任一方面所述的第49方面中,流体回路包括第一辅助热交换单元(102),该第一辅助热交换单元(102)布置在第一热交换室(11)中或与第一热交换室(11)热接触,并且配置成对从工作流体源(70)朝向蒸汽罐(110)流动的工作流体进行加热。
在根据前述方面中的任一方面所述的第50方面中,流体回路包括第二辅助热交换单元(104),该第二辅助热交换单元(104)布置在第二热交换室(12)中或与第二热交换室(12)热接触,并且配置成对从工作流体源(70)朝向蒸汽罐(110)流动的工作流体进行加热。
在根据前述方面中的任一方面所述的第51方面中,第一辅助热交换单元(102)包括流体地连接至流体源(70)的入口和流体地连接至蒸汽罐(110)的流体供应入口的出口。
在根据前述方面中的任一方面所述的第52方面中,第二辅助热交换单元(104)包括流体地连接至流体源(70)的入口和流体地连接至蒸汽罐(110)的流体供应入口的出口。
在根据前述方面中的任一方面所述的第53方面中,第一热交换室(11)和第二热交换室(12)、特别地第一热交换单元(101)和第二热交换单元(103)具有不同的大小,以实现烟气的不同流量和/或烟气与工作流体的不同热交换。
在根据前述方面的第54方面中,其中,第一热交换单元(101)限定了用于烟气与工作流体之间进行热交换的第一表面,并且第二热交换单元(103)限定了用于烟气与工作流体之间进行热交换的第二表面,所述第一表面不同于所述第二表面、特别地低于所述第二表面。
在根据前述方面的第55方面中,所述至少一个调节构件(40、41)能够在第三位置中移动,在第三位置中,阻止或减少烟气从烟气源(20)运送到第一热交换室(11)中,而允许烟气从烟气源(20)运送到第二热交换室(12)中。
在根据前述方面中的任一方面所述的第56方面中,流量测量装置(60、61)包括配置成提供表示压差的信号的压差传感器或皮托(Pitot)探测器,控制单元配置成基于所述代表信号来确定在气体回路内流动的烟气的流量或速度。
在根据前述方面中的任一方面所述的第57方面中,第一热交换室(11)包括一个或更多个、特别是两个或更多个第一热交换单元(101)。
在根据前述方面中的任一方面所述的第58方面中,第二热交换室(12)包括一个或更多个、特别是两个或更多个第二热交换单元(103)。
在根据前述方面中的任一方面所述的第59方面中,气体回路包括配置成在入口中接收烟气的其他热交换室,特别地第三交换室或第四交换室,具有相应的入口和出口的所述其他热交换室配置成接收和排放烟气,流体回路包括分别布置在每个其他热交换室中的其他热交换单元。
在根据前述方面中的任一方面所述的第60方面中,控制单元配置成通过低温传感器来确定第一热交换室(11)和/或第二热交换室(12)下游的烟气的下游温度值,并将所述下游温度值与下游温度值阈值进行比较,特别地,控制单元还配置成基于所述比较来命令调节构件。
在根据前述方面的第61方面中,下游温度值阈值包括在150℃与350℃之间、特别地在200℃与300℃之间、更特别地在230℃与270℃之间、更特别地大约250℃。
在根据前述方面中的任一方面所述的第62方面中,气体源(20)包括电弧炉(EAF)。
在根据前述方面中的任一方面所述的第63方面中,烟气回路的第一分支布置成与烟气回路的第二分支平行。
在根据前述方面中的任一方面所述的第64方面中,烟气源(20)配置成将所述烟气分配至第一热交换室(11)和/或第二热交换室(12)。
在根据前述方面中的任一方面所述的第65方面中,第一热交换室(11)通过第一烟气供应管道(23)直接连接至烟气源(20),并且第二热交换室(12)通过第二烟气供应管道(24)直接连接至烟气源(20),所述第一供应管道(23)和所述第二供应管道(24)不同且不连续,特别地布置成与彼此平行,
特别地其中,至少在一种操作条件下,第二热交换室(12)接收尚未通过第一热交换室(11)的大量烟气。
在根据前述方面中的任一方面所述的第66方面中,第一烟气供应管道(23)和第二烟气供应管道(24)根据烟气源(20)的烟气供应方向与彼此平行。
在根据前述方面中的任一方面所述的第67方面中,第一烟气供应管道(23)和第二烟气供应管道(24)根据同一烟气源(20)连接至彼此。
在根据前述方面中的任一方面所述的第68方面中,蒸汽罐(110)为第一热交换单元(101)和第二热交换单元(103)所共用。
在根据前述方面中的任一方面所述的第69方面中,流体回路包括:
-第一递送管道(111),该第一递送管道(111)连接至第一热交换室(11)的第一热交换单元(101)的出口,并且第一递送管道(111)配置成将所述工作流体、特别地呈气相的工作流体从第一热交换单元(101)输送至蒸汽罐(110);以及
-第二递送管道(113),该第二递送管道(113)连接至第二热交换室(12)的第二热交换单元(103)的出口,并且第二递送管道(113)配置成将所述工作流体、特别地呈气相的工作流体从第二热交换单元(103)输送至所述蒸汽罐(110)。
附图说明
以下将参照附图对本发明的一些实施方式和一些方面进行描述,附图仅出于说明目的而提供,在附图中:
-图1是根据本发明的实施方式的处理设备的示意图;
-图2是根据本发明的另一实施方式的处理设备的示意图。
定义
在该详细的描述中,各个图中所图示的对应部分都是用相同的附图标记来表示。附图可以借助于不按比例绘制的图示来说明本发明;因此,附图中所图示的与本发明的目的相关的部分和部件可以仅与示意图示相关。
上游和/下游
术语上游和下游是指配置成在处理设备的正常使用期间于流体管内流动的流体的前进的方向或轨迹。特别地,与气体回路相关的术语上游和下游是指从气体源、即工业工厂朝向处理设备的出口的气体方向。
具体实施方式
处理设备及方法
附图标记1指向由工业工厂排出的热烟气的处理设备,该处理设备分别根据第一实施方式和第二实施方式在图1和图2中被示出,工业工厂比如为城市固体废物处理厂、垃圾焚烧发电厂或电弧炉(EAF),在其中,废铁、特别是亚铁废料被熔融。排出的热烟气通常包含若干污染物,比如二恶英和/或呋喃排放物,这对人类的健康构成威胁。由工业工厂排出的烟气的特征在于高温,例如包括在800℃与1600℃之间的高温,这一方面允许进行热能的至少部分回收,并且另一方面在没有充分的热和化学处理的情况下会导致上述污染物的产生。
工业工厂被称为气体源20,如图1和图2中所示,气体源20包括炉,比如电弧炉(EAF):主烟气供应管道22配置成接收离开工业工厂的热烟气以及将离开工业工厂的热烟气朝向处理设备输送,以便允许进行气体处理和能量回收。主烟气供应管道22构造为将总流量的烟气从气体源20朝向处理设备输送。
主烟气供应管道22在分支点28处分支为第一烟气供应管道23和第二烟气供应管道24,其中,第一烟气供应管道23连接至第一热交换室11,同时第二烟气供应管道24连接至第二热交换室12。因此,烟气可以从气体源20流动到主烟气供应管道22中、分开进入第一烟气供应管道23和第二烟气供应管道24中、并进入到第一室11和第二室12。还可以在气体供应管道22上设置沉淀室30,其中——以已知的方式——烟气降低其速度并且悬浮物中的灰尘的最粗粒度部分因重力而沉淀并且收集在沉淀室30的底部中:根据过程要求,可以注入空气或氧气来完成比如CO和H2的气体的燃烧。
每个热交换室11、12具有分别流体地连接至第一烟气供应管道23和第二烟气供应管道24的相应入口11a、12a以及分别连接至第一烟气排放管道25和第二烟气排放管道26的相应出口11b、12b。第一热交换室11和第二热交换室12在内部限定有用于气体通道的内部体积:根据实施方式,第一热交换室11的大小等于第二热交换室12的大小。替代性地,根据另一实施方式,第一热交换室和第二热交换室以及因此相应的内部体积可以具有不同的大小:例如,第一热交换室11的内部体积可以高于第二热交换室12的内部体积。
根据图1和图2中所示的实施方式,第一烟气排放管道25和第二烟气排放管道26可以在汇聚点29处汇聚为共同烟气排放管道或主烟气排放管道27,主烟气排放管道27配置成输送由烟气源20排出的烟气、特别是烟气的总量。
第一烟气供应管道23、第一烟气排放管道25和第一热交换室11的组合限定了气体回路的第一分支:类似地,第二烟气供应管道24、第二烟气排放管道26和第二热交换室12的组合限定了气体回路的第二分支:值得注意的是,第一分支和第二分支地平行布置并且仅通过分支点28和汇聚点29彼此流体联通。换言之,在第一分支中流动的烟气被处理进入第一热交换室11,而在第二分支中流动的烟气被处理进入第二热交换室12。
气体回路还包括配置成分别提供烟气的温度和流量的代表信号的温度测量装置50、50a、51、51a和流量测量装置60、61中的至少一者。控制单元200被设置并且配置成接收相应的代表信号并确定烟气的温度和/或流量值。
更详细地,温度测量装置包括布置在第一热交换室11和第二热交换室12的上游的至少一个高温传感器50、51。高温传感器可以在分支点28的上游布置于主烟气供应管道22上:在这种情况下,根据可选实施方式,气体回路可以包括单个高温传感器。替代性地,如图1和图2的实施方式中所示的,高温传感器包括:第一高温传感器50,第一高温传感器50在第一热交换室11的上游布置于第一烟气供应管道23上;和第二高温传感器51,第二高温传感器51与第一高温传感器50分离且不同、在第二热交换室12的上游布置于第二烟气供应管道24上。
温度测量装置还可以包括布置在第一热交换室11和第二热交换室12的下游的至少一个低温传感器50a、51a。根据附图中未示出的实施方式,低温传感器可以在汇聚点29的下游布置于主烟气排放管道27上。替代性地,根据图1和图2中所示的实施方式,温度测量装置包括在第一热交换室11的下游布置于第一烟气排放管道25上的第一低温传感器50a以及在第二热交换室12的下游布置于第二烟气排放管道26上的第二低温传感器51a。
根据上述内容,控制单元配置成将温度变化参数确定为跨第一热交换室11和/或第二热交换室12的由高温传感器50、51和低温传感器50a、51a测量的温度值之间的差。更详细地,控制单元配置成将第一温度变化参数确定为由第一高温传感器50测量的温度值与由第一低温传感器50a测量的温度值之间的差:换言之,跨第一热交换室11的温度变化表示在第一分支中流动的烟气的冷却过程。
类似地,控制单元200配置成将第二温度变化参数确定为由第二高温传感器51测量的温度值与由第二低温传感器51a测量的温度值之间的差:跨第二热交换室12的温度变化表示在第二分支中流动的烟气的冷却过程。
处理设备还包括流量测量装置,该流量测量装置又包括分别布置在气体回路的第一分支和第二分支上的第一流量传感器60和第二流量传感器61,每个流量传感器配置成提供代表分别进入第一分支和第二分支中的烟气的流量的信号:然后控制单元配置成接收所述流量的代表信号,并确定关于第一分支和第二分支的烟气的第一流量值和第二流量值。更详细地,第一流量传感器60和第二流量传感器61可以分别布置在第一烟气供应管道23和第二烟气供应管道24上或者布置在第一烟气排放管道25和第二烟气排放管道26上。换言之,流量传感器60、61可以布置在热交换室的上游或下游:无论如何,下游布置由于所涉及的较低温度而出于安全和可靠性的原因是优选的。
流量测量装置60、61可以包括配置成提供代表压差的信号的压差传感器或皮托探测器,然后控制单元配置成基于所述压差的代表信号来确定在气体回路内流动的烟气的流量或速度。
气体回路还包括能够至少在第一位置与第二位置之间移动的至少一个调节构件40、41。在第一位置中,允许烟气从烟气源20运送到第一热交换室11中,而阻止或减少烟气从烟气源20运送到第二热交换室12中:在第二位置中,允许烟气从烟气源20运送到第一热交换室11和第二热交换室12两者中。换言之,调节构件配置成使烟气朝向第一热交换室偏移或替代性地朝向第一室和第二室两者偏移。因此,在调节构件处于第一位置时,烟气与工作流体之间的热交换表面低于在调节构件处于第二位置时相应的热交换表面。这也确定了在调节构件处于第一位置时与烟气热交换中涉及的工作流体的量低于在调节构件处于第二位置时与烟气热交换中涉及的工作流体的量。
此外,调节构件40、41还可以能够在第三位置中移动,在第三位置中,阻止或减少烟气从烟气源20运送到第一热交换室11中,而允许烟气从烟气源20运送到第二热交换室12中。该最后一种情况可以在第一热交换室的大小和第二热交换室的大小彼此不相同时特别有益:实际上,在这种情况下,第一热交换单元101中涉及热交换的工作流体的量不同于、例如低于第二热交换单元103中涉及的工作流体的量。在第一热交换室和第二热交换室具有不同大小的情况下,控制单元可以根据所需的热交换来命令调节构件处于第一位置、第二位置和第三位置:换言之,冷却过程中涉及的工作流体的量在调节构件的第一位置、第二位置与第三位置之间变化,并且因此交换的热能(并且因此冷却性能)也变化。因此,通过命令调节构件处于第一位置、第二位置和第三位置,可以在烟气与工作流体之间限定三个不同的能量交换水平。
在实施方式中,调节构件包括分别布置在气体回路的第一分支和第二分支上的第一阻尼器40和第二阻尼器41:这些阻尼器实际上是阻止或允许气体通过第一分支和/或第二分支的挡板。阻尼器的部分打开可以导致对烟气的流量进行调节。
替代性地,调节构件包括分别布置在气体回路的第一分支和第二分支上的第一助推器40和第二助推器41,并且其中,助推器包括风扇,该风扇配置成促进或阻止气体回路内的烟气的流量。助推器包括连接至控制单元并且由控制单元命令的电动马达,该电动马达配置成使风扇旋转:特别地,控制单元可以改变风扇的角速度以调节气体回路内的烟气的流量。
调节构件可以布置在热交换室11、12的上游或者替代性地布置在热交换室11、12的下游:特别地,调节构件可以布置在第一烟气供应管道23和第二烟气供应管道24两者上,或者布置在第一烟气排放管道25和第二烟气排放管道26上,如图1和图2中所示。此外,调节构件可以布置在热交换室11、12的上游和下游两者。
处理设备1还包括流体回路,该流体回路配置成输送呈液相和气相的工作流体、例如水,以在烟气通过热交换室11、12时引起烟气的冷却。流体回路包括工作流体源70、至少一个流体递送管道73、74和蒸汽罐110,其中,流体递送管道73、74将工作流体源70流体地连接至蒸汽罐110。工作流体源70配置成将工作流体通过流体递送管道77、74递送至蒸汽罐110:在流体递送管道77、74上可以设置有泵、即电动泵,以确定工作流体朝向蒸汽罐流动。
流体回路还包括至少第一热交换单元101和第二热交换单元103,第一热交换单元101和第二热交换单元103分别布置在第一热交换室11和第二热交换室12中或者与第一热交换室11和第二热交换室12热接触,并且第一热交换单元101和第二热交换单元103配置成允许烟气与工作流体之间进行热交换。第一热交换单元101包括配置成接收工作流体的至少一个入口101a和配置成递送工作流体的至少一个出口101b:第一热交换单元101的入口101a通过第一返回管道112流体地连接至蒸汽罐110的出口,而第一热交换单元101的出口101b通过第一递送管道111流体地连接至蒸汽罐110的入口。类似地,第二热交换单元103包括配置成从蒸汽罐接收工作流体的至少一个入口103a和配置成将工作流体递送至蒸汽罐的至少一个出口103b:第二热交换单元103的入口103a通过第二返回管道114流体地连接至蒸汽罐110的出口,而第二热交换单元103的出口103b通过第二递送管道113流体地连接至蒸汽罐110的入口。值得注意的是,第一热交换室11可以包括两个或更多个第一热交换单元101:类似地,第二热交换室12包括两个或更多个第二热交换单元103。
根据实施方式,第一热交换单元101限定了用于烟气与工作流体之间热交换的第一表面,并且第二热交换单元103限定了用于烟气与工作流体之间热交换的第二表面:第一表面可以不同于第二表面。以此方式,在第一热交换室11中进行交换的热量将与在第二热交换室12中进行交换的热量不同。
基于上述内容,与第一热交换单元101和第二热交换单元103结合的第一热交换室11和第二热交换室12配置成确定在气体回路中流动的热烟气与在流体回路中流动的工作流体之间的热交换。烟气与工作流体之间的热交换确定了工作流体从液相至气相的状态转变:这种转变确定了工作流体流动通过流体回路:这也被称为自然循环,因为没有设置泵来引起流体回路内工作流体的循环(在其他实施方式中,可以设置一个或更多个泵来获得辅助或强制循环)。特别地,这种状态转变确定了气相的工作流体从第一热交换单元101和/或第二热交换单元103朝向蒸汽罐110递送。因此,蒸汽罐110配置成通过第一递送管道111和第二递送管道113接收呈气态的工作流体:然后呈液态的工作流体通过第一返回管道112和第二返回管道114返回至热交换单元101、103。
更详细地,在调节构件40、41布置成处于第一位置时,在第一热交换室11中发生热交换,而在第二热交换室12中阻止热交换。因此在该条件下,工作流体以气态从第一热交换单元101流动至蒸汽罐110,而没有流体从第二热交换单元103流动至蒸汽罐。
相反地,在调节构件40、41布置成处于第二位置时,在第一热交换室11和第二热交换室12两者中发生热交换。因此在该条件下,工作流体以气态从第一热交换单元101和第二热交换单元103两者流动至蒸汽罐110。
在实施方式中,蒸汽罐110相对于地面布置在比第一热交换单元101和第二热交换单元103的相应高度高的高度处:更详细地,蒸汽罐110相对于地面布置在比第一热交换室11和第二热交换室12的相应高度高的高度处,以便促进呈气态的工作流体从热交换单元递送至蒸汽罐110。
蒸汽罐还包括蒸汽递送管道130,该蒸汽递送管道130配置成将呈气态的工作流体递送至回收能量装置,以至少部分地回收蒸汽中所包含的热能。回收能量装置可以包括涡轮机,该涡轮机用以将呈气态的工作流体的压力转换为机械能或电能。在本文件中没有详细描述回收能量装置,因为能量回收装置的实施方式对于本发明的目的不是必要的。
在优选实施方式中,流体回路包括至少一个辅助热交换单元102、104,所述至少一个辅助热交换单元102、104布置到第一热交换室11与第二热交换室12中的至少一者中或者与第一热交换室11和第二热交换室12中的至少一者热接触:辅助热交换单元102、104配置成对从工作流体源70朝向蒸汽罐110流动的工作流体进行加热。换言之,辅助热交换单元102、104确定工作流体在进入蒸汽罐之前被预热。
特别地,处理设备可以包括布置在第一热交换室11或第二热交换室12中的单个辅助热交换单元102:替代性地,如图1中所示的,处理设备可以包括分别布置在第一热交换室11和第二热交换室12中或与第一热交换室11和第二热交换室12热接触的第一辅助热交换单元102和第二辅助热交换单元104。
根据图2中所示的第二实施方式,流体回路可以包括辅助热交换室120,该辅助热交换室120具有连接至主烟气排放管道27的气体入口120a、及气体出口120b。流体回路还包括布置在辅助热交换室120中或与辅助热交换室120热接触的辅助热交换单元102’,辅助热交换单元102’配置成对来自流体源70的工作流体在进入蒸汽罐110中之前进行预热。特别地,辅助热交换单元102’的入口102’a通过流体递送管道73流体地连接至流体源70,并且辅助热交换单元102’的出口102’b通过另一流体递送管道75流体地连接至蒸汽罐。值得注意的是,辅助热交换室120和辅助热交换单元102’是不同的,并且与第一热交换室11和第二热交换室12以及第一热交换单元101和第二热交换单元103分离。根据第二实施方式,辅助热交换室120配置成在调节构件40、41的第一位置、第二位置和可选的第三位置中接收烟气。
根据第一实施方式和第二实施方式两者,辅助热交换单元102、104、102’相对于第一热交换单元101和第二热交换单元103布置在下游。
处理设备的控制单元200配置成基于烟气的温度值或流量值中的至少一者来限定参考参数:例如,参考参数可以通过由第一流量传感器或第二流量传感器测量的流量值来限定,或者由布置在主烟气供应管道22上或主烟气排放管道27上的流量传感器测量的流量值来限定。替代性地,参考参数可以由在主烟气供应管道22中或第一分支和/或第二分支中测量的烟气的温度值来确定。替代性地,参考参数可以基于由温度测量装置测量的温度值和流量测量装置测量的流量值的组合。此外,在具体实施方式中,参考参数基于第一温度变化参数或第二温度变化参数、或第一温度变化参数和第二温度变化参数两者、或其组合。此外,参考参数基于在第一分支中测量的第一温度变化参数和流量值的组合:类似地,参考参数可以基于在第二分支中测量的第二温度变化参数和流量值的组合。在另一实施方式中,参考参数可以基于在第一分支和第二分支中测量的第一温度变化参数和第二温度变化参数以及流量值的组合。
参考参数也可以基于由控制单元确定的冷却参数,其中,冷却参数基于跨第一热交换室11和/或第二热交换室12流动的烟气的流量和温度变化参数来表示烟气的当前冷却速率。特别地,控制单元200可以配置成根据以下公式计算冷却参数:
Figure BDA0004113434230000221
其中
Figure BDA0004113434230000222
其中:
C速率[ΔC°/s]是冷却参数;
ΔT[℃]是跨第一热交换室11和/或第二热交换室12的温度变化,特别地,所述温度变化被计算为由第一分支和/或第二分支的高温传感器和低温传感器测量的温度之间的差;
tpg[s]是气体颗粒从高温传感器行进至低温传感器所花费的时间;
Vc[m3]是限定为气体体积的控制体积,气体体积包括在高温传感器至低温传感器之间;
Fg[m3/s]是烟气的流量,特别地该烟气的流量由流量测量装置60、61测量。
此外,控制单元配置成限定参考参数与至少一个阈值之间的比较。阈值可以包括关于参考参数的温度值和或流量值。换言之,如果参考参数基于温度或流量,则相关阈值将是温度或流量阈值。
例如,如果基于冷却参数的参考参数低于冷却速率阈值,则控制单元命令调节构件处于第一位置:替代性地,如果冷却参数高于冷却速率阈值,则控制单元命令调节构件40、41处于第二位置。冷却速率阈值可以设定在200℃/秒与400℃/秒之间、特别地即200℃/秒与250℃/秒之间、或250℃/秒与300℃/秒之间、或300℃/秒与350℃/秒之间或350℃/秒与400℃/秒之间:该冷却速率区间可以有助于阻止或减少烟气中二恶英和呋喃的增长。
替代性地,如果基于跨第一热交换室11和/或第二热交换室12的温度变化的参考参数低于相应的温度变化阈值,则控制单元命令调节构件处于第一位置:替代性地,如果温度变化高于温度变化阈值,则控制单元命令调节构件40、41处于第二位置。
根据总体构思,处理设备配置成将烟气从包括在550℃至700℃之间的温度(即与来自气体源20的烟气的输出温度接近的温度)冷却至包括在150℃与300℃之间、更特别地在230℃与270℃之间、更特别地250℃的较低温度。因此,温度变化阈值——该温度变化阈值代表跨热交换室所需的温度变化——包括在280℃与550℃之间、更特别地在350℃与450℃之间。
尽管以上描述是指第一热交换室11和第二热交换室12,但是处理设备1可以包括其他热交换室,特别是第三交换室或第四交换室,第三交换室或第四交换室具有配置成分别接收和排放烟气的入口和出口。其他热交换室可以包括其他热交换单元,所述其他热交换单元分别布置在每个其他热交换室中并具有与前面所述的热交换单元相同的特征。
从工作流体的角度来看,这些附加的交换室连接至单个蒸汽罐110,因此,单个蒸汽罐110允许系统进行正确的操作,即使在热烟的流仅在某些分支中而不在其他分支中活动时也是如此。

Claims (23)

1.一种由工业工厂排出的热烟气的处理设备(1),所述处理设备(1)包括气体回路和流体回路,
所述气体回路包括:
-至少第一热交换室(11)和第二热交换室(12),所述第一热交换室(11)和所述第二热交换室(12)两者包括相应的气体入口(11a、12a)和气体出口(11b、12b),所述第一热交换室(11)和所述第二热交换室(12)配置成在入口中接收所述烟气;
-第一烟气供应管道(23)和第二烟气供应管道(24),所述第一烟气供应管道(23)和所述第二烟气供应管道(24)分别将所述第一热交换室(11)的入口(11a)和所述第二热交换室(12)的入口(12a)连接至烟气源(20);
-第一烟气排放管道(25)和第二烟气排放管道(26),所述第一烟气排放管道(25)和所述第二烟气排放管道(26)分别连接至所述第一热交换室(11)的出口(11b)和所述第二热交换室(12)的出口(12b),并且所述第一烟气排放管道(25)和所述第二烟气排放管道(26)配置成将所述烟气输送离开所述第一热交换室(11)和所述第二热交换室(12),
其中,所述第一烟气供应管道(23)、所述第一烟气排放管道(25)和所述第一热交换室(11)限定了所述气体回路的第一分支,同时所述第二烟气供应管道(24)、所述第二烟气排放管道(26)和所述第二热交换室(12)限定了所述气体回路的第二分支;
-温度测量装置(50、50a、51、51a)与流量测量装置(60、61)中的至少一者,所述温度测量装置(50、50a、51、51a)和所述流量测量装置(60、61)配置成分别提供所述烟气的温度的代表信号和流量的代表信号;
-至少一个调节构件(40、41),所述至少一个调节构件(40、41)能够至少在下述两者之间移动:
ο第一位置,在所述第一位置中,允许所述烟气从所述烟气源(20)运送到所述第一热交换室(11)中,而阻止或减少烟气从所述烟气源(20)运送到所述第二热交换室(12)中,以及
ο第二位置,在所述第二位置中,允许所述烟气从所述烟气源(20)运送到所述第一热交换室(11)和所述第二热交换室(12)两者中;
其中,所述流体回路配置成输送呈液相和气相的工作流体、特别是水,所述流体回路包括:
-至少第一热交换单元(101)和第二热交换单元(103),所述第一热交换单元(101)和所述第二热交换单元(103)分别布置在所述第一热交换室(11)和所述第二热交换室(12)中或者与所述第一热交换室(11)和所述第二热交换室(12)热接触并且配置成允许所述烟气与所述工作流体之间进行热交换;
-蒸汽罐(110),所述蒸汽罐(110)至少流体地连接至所述第一热交换单元(101)和所述第二热交换单元(103);
并且其中,所述处理设备(1)还包括控制单元(200),所述控制单元(200)配置成:
-接收所述烟气的温度的代表信号与流量的代表信号中的至少一者;
-基于相应的代表信号来确定温度值与流量值中的至少一者;
-基于所述烟气的温度值或流量值中的至少一者来限定至少一个参考参数;
-限定所述参考参数与至少一个阈值之间的比较;
-基于所述比较,命令所述至少一个调节构件(40、41)处于所述第一位置或处于所述第二位置。
2.根据权利要求1所述的处理设备(1),其中,所述气体回路包括所述温度测量装置(50、50a、51、51a)和所述流量测量装置(60、61)两者,所述参考参数基于所述烟气的温度值和流量值两者。
3.根据前述权利要求中的任一项所述的处理设备(1),其中,所述气体回路包括所述温度测量装置(50、50a、51、51a),所述温度测量装置(50、50a、51、51a)包括布置在所述第一热交换室(11)和/或所述第二热交换室(12)的上游的至少一个高温传感器(50、51),
并且其中,所述温度测量装置(50、50a、51、51a)包括布置在所述第一热交换室(11)和/或所述第二热交换室(12)的下游的至少一个低温传感器(50a、51a),
所述控制单元配置成将温度变化参数确定为由所述至少一个高温传感器(50、51)测量的温度值与由所述至少一个低温传感器(50a、51a)测量的温度值之间的差,
所述参考参数基于所述温度变化参数。
4.根据前述权利要求中的任一项所述的处理设备(1),其中,所述温度测量装置(50、50a、51、51a)包括:第一高温传感器(50),所述第一高温传感器(50)在所述第一热交换室(11)的上游布置于所述第一烟气供应管道(23)上;和第二高温传感器(51),所述第二高温传感器(51)与所述第一高温传感器(50)分离并不同、在所述第二热交换室(12)的上游布置于所述第二烟气供应管道(24)上,
并且其中,所述温度测量装置(50、50a、51、51a)还包括:第一低温传感器(50a),所述第一低温传感器(50a)在所述第一热交换室(11)的下游布置于所述第一烟气排放管道(25)上;和第二低温传感器(51a),所述第二低温传感器(51a)在所述第二热交换室(12)的下游布置于所述第二烟气排放管道(26)上。
5.根据前述权利要求3或4所述的处理设备(1),其中,所述控制单元(200)配置成确定下述各者中的至少一者:
-第一温度变化参数,所述第一温度变化参数代表所述烟气在所述第一热交换室(11)的上游部段与下游部段之间的温度差,以及
-第二温度变化参数,所述第二温度变化参数代表所述烟气在所述第二热交换室(12)的上游部段与下游部段之间的温度差,
所述参考参数基于所述第一温度变化参数与所述第二温度变化参数中的至少一者或所述第一温度变化参数和所述第二温度变化参数的组合。
6.根据前述权利要求所述的处理设备(1),其中,所述控制单元配置成:
-将所述第一温度变化参数和所述第二温度变化参数中的至少一者、可选地所述第一温度变化参数和所述第二温度变化参数的组合与相应的温度变化阈值进行比较;
-如果所述温度变化参数低于所述相应的温度变化阈值,则命令所述至少一个调节构件(40、41)处于所述第一位置;
-如果所述温度变化高于所述相应的温度变化阈值,则命令所述至少一个调节构件(40、41)处于所述第二位置,
特别地,其中,所述温度变化阈值包括在200℃与600℃之间、特别地在300℃与500°之间、更特别地在350℃与450℃之间。
7.根据前述权利要求2至6中的任一项所述的处理设备(1),其中,所述第一热交换室(11)和所述第二热交换室(12)配置成确定所述烟气的冷却过程,所述控制单元(200)配置成:
-基于所述烟气的所述流量值和所述温度变化参数、特别是所述第一温度变化参数和/或所述第二温度变化参数来确定冷却参数,所述冷却参数代表所述烟气的当前冷却速率;
-设定冷却速率阈值,所述冷却速率阈值包括在200℃/秒与400℃/秒之间,例如在200℃/秒与250℃/秒之间或在250℃/秒与300℃/秒之间或在300℃/秒与350℃/秒之间或在350℃/秒与400℃/秒之间;
-将所述冷却参数与所述冷却速率阈值进行比较,
-如果所述冷却参数低于所述冷却速率阈值,则命令所述调节构件处于所述第一位置;
-可选地,如果所述冷却参数高于所述冷却速率阈值,则命令所述至少一个调节构件(40、41)处于所述第二位置,
所述参考参数基于所述冷却参数和包括所述冷却速率阈值的所述至少一个阈值。
8.根据前述权利要求所述的处理设备(1),其中,所述冷却参数根据以下公式计算:
Figure FDA0004113434220000041
其中,
Figure FDA0004113434220000042
其中:
C速率[ΔC°/s]是冷却参数;
ΔT[℃]是跨所述第一热交换室(11)和/或所述第二热交换室(12)的温度变化,特别地,所述温度变化被计算为由所述高温传感器测量的温度与由所述低温传感器测量的温度之间的差;
tpg[s]是气体颗粒从所述高温传感器行进至所述低温传感器所花费的时间;
Vc[m3]是限定为气体体积的控制体积,所述气体体积包括在所述高温传感器至所述低温传感器之间;
Fg[m3/s]是所述烟气的流量,特别地所述烟气的流量由所述流量测量装置(60、61)测量。
9.根据前述权利要求中的任一项所述的处理设备(1),其中,限定所述参考参数的步骤包括确定所述烟气的流量、可选地总流量,所述控制单元还配置成:
-将所述流量、可选地总流量与相应的流量阈值进行比较;
-如果所述流量低于所述相应的流量阈值,则命令所述至少一个调节构件(40、41)处于所述第一位置;
-可选地,如果所述流量高于所述相应的流量阈值,则命令所述至少一个调节构件(40、41)处于所述第二位置。
10.根据前述权利要求中的任一项所述的处理设备(1),其中,所述流量测量装置包括至少第一流量传感器(60)和第二流量传感器(61),所述第一流量传感器(60)和所述第二流量传感器(61)分别布置在所述气体回路的所述第一分支和所述第二分支上并且每个流量传感器配置成提供代表分别进入所述第一分支和所述第二分支中的所述烟气的流量的信号,
所述控制单元配置成接收所述流量的代表信号并确定关于所述第一分支和所述第二分支的烟气的第一流量值和第二流量值,
所述参考参数基于所述第一流量值和所述第二流量值,并且可选地基于所述第一流量值和所述第二流量值的组合,
特别地,其中,所述第一流量传感器(60)和所述第二流量传感器(61)分别布置在下述各者上:
-所述第一烟气供应管道(23)和所述第二烟气供应管道(24),或
-所述第一烟气排放管道(25)和所述第二烟气排放管道(26)。
11.根据前述权利要求中的任一项所述的处理设备(1),其中,所述至少一个调节构件包括下述各者中的至少一者:
-第一阻尼器(40)和第二阻尼器(41),所述第一阻尼器(40)和所述第二阻尼器(41)分别布置在所述气体回路的所述第一分支上和所述第二分支上,特别地所述第一阻尼器(40)和所述第二阻尼器(41)布置在下述各者上:
ο所述第一烟气供应管道(23)和所述第二烟气供应管道(24),或
ο所述第一烟气排放管道(25)和所述第二烟气排放管道(26),以及
-第一助推器(40)和第二助推器(41),所述第一助推器(40)和所述第二助推器(41)分别布置在所述气体回路的所述第一分支上和所述第二分支上,所述助推器特别地包括风扇,所述风扇配置成促进或阻止所述气体回路内的所述烟气的流量,所述助推器包括配置成使所述风扇旋转的电动马达。
12.根据前述权利要求中的任一项所述的处理设备(1),其中,所述烟气与所述工作流体之间的热交换确定了所述工作流体从液相转变为气相,所述转变确定了所述工作流体流动通过所述流体回路,
并且其中,所述转变还确定了气相的所述工作流体从所述第一热交换单元(101)和所述第二热交换单元(103)中的至少一者朝向所述蒸汽罐(110)运送,
并且其中:
-在所述至少一个调节构件(40、41)布置成处于所述第一位置时,所述蒸汽罐(110)配置成从所述第一热交换单元(101)接收气相的所述工作流体,以及将液相的所述工作流体递送至所述第一热交换单元(101),特别地没有工作流体从所述第二热交换单元流动至所述蒸汽罐;以及
-在所述至少一个调节构件(40、41)布置成处于所述第二位置时,所述蒸汽罐(110)配置成从所述第一热交换单元(101)和所述第二热交换单元(103)两者接收气相的所述工作流体,以及将液相的所述工作流体递送至所述第一热交换单元(101)和所述第二热交换单元(103)两者。
13.根据前述权利要求中的任一项所述的处理设备(1),其中:
-在所述至少一个调节构件(40、41)布置成处于所述第一位置时,在所述第一热交换室(11)中发生热交换,而在所述第二热交换室(12)中阻止热交换;以及
-在所述至少一个调节构件(40、41)布置成处于所述第二位置时,在所述第一热交换室(11)和所述第二热交换室(12)两者中发生热交换。
14.根据前述权利要求中的任一项所述的处理设备(1),其中,所述流体回路包括:
-第一递送管道(111),所述第一递送管道(111)将所述第一热交换单元(101)的出口流体地连接至所述蒸汽罐(110),并且所述第一递送管道(111)配置成将呈气相的所述工作流体从所述第一热交换单元(101)输送至所述蒸汽罐(110);
-第一返回管道(112),所述第一返回管道(112)将所述第一热交换单元(101)的入口连接至所述蒸汽罐(110),并且所述第一返回管道(112)配置成将呈液相的所述工作流体从所述蒸汽罐(110)输送至所述第一热交换单元(101);
-第二递送管道(113),所述第二递送管道(113)将所述第二热交换单元(103)的出口流体地连接至所述蒸汽罐(110),并且所述第二递送管道(113)配置成将呈气相的所述工作流体从所述第二热交换单元(103)输送至所述蒸汽罐(110);
-第二返回管道(114),所述第二返回管道(114)将所述第二热交换单元(103)的入口连接至所述蒸汽罐(110),并且所述第二返回管道(114)配置成将呈液相的所述工作流体从所述蒸汽罐(110)输送至所述第二热交换单元(103)。
15.根据前述权利要求中的任一项所述的处理设备(1),其中,所述流体回路包括工作流体源(70)和至少一个流体递送管道(73、74),所述至少一个流体递送管道(73、74)将所述工作流体源(70)连接至所述蒸汽罐(110),所述工作流体源(70)配置成将工作流体递送至所述蒸汽罐(110),
并且其中,所述流体回路包括至少一个辅助热交换单元(102、104),所述至少一个辅助热交换单元(102、104)布置在所述第一热交换室(11)和/或所述第二热交换室(12)中或者与所述第一热交换室(11)和/或所述第二热交换室(12)热接触,并且所述至少一个辅助热交换单元(102、104)配置成对从所述工作流体源(70)朝向所述蒸汽罐(110)流动的所述工作流体进行加热,
其中,所述流体回路包括第一辅助热交换单元(102)和第二辅助热交换单元(104),所述第一辅助热交换单元(102)和所述第二辅助热交换单元(104)分别布置在所述第一热交换室(11)和所述第二热交换室(12)中或者与所述第一热交换室(11)和所述第二热交换室(12)热接触,并且所述第一辅助热交换单元(102)和所述第二辅助热交换单元(104)配置成对从所述工作流体源(70)朝向所述蒸汽罐(110)流动的所述工作流体进行加热。
16.根据前述权利要求中的任一项所述的处理设备(1),其中,所述第一热交换单元(101)限定了用于所述烟气与所述工作流体之间进行热交换的第一表面,并且所述第二热交换单元(103)限定了用于所述烟气与所述工作流体之间进行热交换的第二表面,所述第一表面不同于所述第二表面、特别地低于所述第二表面,
所述至少一个调节构件(40、41)能够在第三位置中移动,在所述第三位置中,阻止或减少所述烟气从所述烟气源(20)运送到所述第一热交换室(11)中,而允许所述烟气从所述烟气源(20)运送到所述第二热交换室(12)中,
可选地,其中,所述第一交换器室(11)相对于所述第二热交换器室(12)具有不同的通道部段,以实现所述烟气的不同流量。
17.根据前述权利要求中的任一项所述的处理设备(1),其中,烟气回路的所述第一分支根据所述烟气源(20)的烟气供应方向布置成与所述烟气回路的所述第二分支平行。
18.根据前述权利要求中的任一项所述的处理设备(1),其中,所述第一热交换室(11)通过所述第一烟气供应管道(23)直接连接至所述烟气源(20),并且所述第二热交换室(12)通过所述第二烟气供应管道(24)直接连接至所述烟气源(20),所述第一供应管道(23)和所述第二供应管道(24)是不同的,特别地布置成与彼此平行。
19.根据前述权利要求中的任一项所述的处理设备(1),其中,至少在一种操作条件下,所述第二热交换室(12)配置成接收尚未通过所述第一热交换室(11)的大量烟气。
20.根据前述权利要求中的任一项所述的处理设备(1),其中,所述第一烟气供应管道(23)和所述第二烟气供应管道(24)连接至同一烟气源(20)。
21.根据前述权利要求中的任一项所述的处理设备(1),其中,所述蒸汽罐(110)为所述第一热交换单元(101)和所述第二热交换单元(103)所共用。
22.根据前述权利要求中的任一项所述的处理设备(1),其中,所述流体回路包括:
-第一递送管道(111),所述第一递送管道(111)连接至所述第一热交换室(11)的所述第一热交换单元(101)的出口并且配置成将所述工作流体、特别地呈气相的所述工作流体从所述第一热交换单元(101)输送至所述蒸汽罐(110);以及
-第二递送管道(113),所述第二递送管道(113)连接至所述第二热交换室(12)的所述第二热交换单元(103)的出口并且配置成将所述工作流体、特别地呈气相的所述工作流体从所述第二热交换单元(103)输送至所述蒸汽罐(110)。
23.一种用于对由工业工厂排出的热烟气进行处理的方法,所述方法由可选地根据上述权利要求中的任一项所述的处理设备来执行,所述设备包括气体回路和流体回路,
所述气体回路包括:
-至少第一热交换室(11)和第二热交换室(12),所述第一热交换室(11)和所述第二热交换室(12)两者包括相应的气体入口(11a、12a)和气体出口(11b、12b),所述第一热交换室(11)和所述第二热交换室(12)配置成在入口中接收所述烟气;
-第一烟气供应管道(23)和第二烟气供应管道(24),所述第一烟气供应管道(23)和所述第二烟气供应管道(24)分别将所述第一热交换室(11)的入口(11a)和所述第二热交换室(12)的入口(12a)连接至烟气源(20);
-第一烟气排放管道(25)和第二烟气排放管道(26),所述第一烟气排放管道(25)和所述第二烟气排放管道(26)分别连接至所述第一热交换室(11)的出口(11b)和所述第二热交换室(12)的出口(12b),并且所述第一烟气排放管道(25)和所述第二烟气排放管道(26)配置成将所述烟气输送离开所述第一热交换室(11)和所述第二热交换室(12),
其中,所述第一烟气供应管道(23)、所述第一烟气排放管道(25)和所述第一热交换室(11)限定了所述气体回路的第一分支,同时所述第二烟气供应管道(24)、所述第二烟气排放管道(26)和所述第二热交换室(12)限定了所述气体回路的第二分支;
-温度测量装置(50、50a、51、51a)和流量测量装置(60、61)中的至少一者,所述温度测量装置(50、50a、51、51a)和所述流量测量装置(60、61)配置成分别提供所述烟气的温度的代表信号和流量的代表信号;
-至少一个调节构件(40、41),所述至少一个调节构件(40、41)能够至少在下述两者之间移动:
ο第一位置,在所述第一位置中,允许所述烟气被从所述烟气源(20)运送到所述第一热交换室(11)中,而阻止或减少烟气被从所述烟气源(20)运送到所述第二热交换室(12)中,以及
ο第二位置,在所述第二位置中,允许所述烟气被从所述烟气源(20)运送到所述第一热交换室(11)和所述第二热交换室(12)两者中;
其中,所述流体回路配置成输送呈液相和气相的工作流体、特别是水,所述流体回路包括:
-至少第一热交换单元(101)和第二热交换单元(103),所述第一热交换单元(101)和所述第二热交换单元(103)分别布置在所述第一热交换室(11)和所述第二热交换室(12)中或者与所述第一热交换室(11)和所述第二热交换室(12)热接触并且配置成允许所述烟气与所述工作流体之间进行热交换;
-蒸汽罐(110),所述蒸汽罐(110)至少流体地连接至所述第一热交换单元(101)和所述第二热交换单元(103);
其中,所述方法至少包括由所述处理设备(1)执行的下述步骤:
-接收所述烟气的温度的代表信号和流量的代表信号中的至少一者;
-基于相应的代表信号来确定温度代表值和流量代表值中的至少一者;
-基于所述烟气的温度值或流量值中的至少一者来限定至少一个参考参数;
-限定所述参考参数与至少一个阈值之间的比较;
-基于所述比较,命令所述至少一个调节构件(40、41)处于所述第一位置或处于所述第二位置。
CN202180057285.0A 2020-08-04 2021-07-28 烟气处理设备和相关方法 Pending CN116034245A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT202000019201 2020-08-04
IT102020000019201 2020-08-04
PCT/IB2021/056880 WO2022029568A1 (en) 2020-08-04 2021-07-28 Flue gas treatment apparatus and relative method

Publications (1)

Publication Number Publication Date
CN116034245A true CN116034245A (zh) 2023-04-28

Family

ID=72885992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180057285.0A Pending CN116034245A (zh) 2020-08-04 2021-07-28 烟气处理设备和相关方法

Country Status (5)

Country Link
EP (1) EP4193105A1 (zh)
KR (1) KR20230044221A (zh)
CN (1) CN116034245A (zh)
CA (1) CA3190333A1 (zh)
WO (1) WO2022029568A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659375A (zh) * 2022-04-22 2022-06-24 无锡红旗除尘设备有限公司 一种电炉烟气超净处理方法
CN115979041B (zh) * 2022-12-29 2024-05-31 苏州新锐低温设备有限公司 一种烟气智能回收装置、方法、系统及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1364535A (fr) * 1963-07-26 1964-06-19 Siemens Ag Générateur de vapeur à circulation pour récupérer la chaleur dégagée par des convertisseurs métallurgiques ou des installations analogues
FR2464305A1 (fr) * 1979-08-30 1981-03-06 Siderurgie Fse Inst Rech Procede et dispositif de captage des gaz au four a arc
EP2562270A4 (en) * 2010-04-20 2018-07-04 JP Steel Plantech Co. Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making

Also Published As

Publication number Publication date
WO2022029568A1 (en) 2022-02-10
KR20230044221A (ko) 2023-04-03
CA3190333A1 (en) 2022-02-10
EP4193105A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
CN116034245A (zh) 烟气处理设备和相关方法
US6089169A (en) Conversion of waste products
EP1816396B1 (en) Treatment method for combustible gas in waste melting furnace
KR20010095028A (ko) 고온 배기가스용 온도 제어 장치 및 온도 제어 방법
RU2291998C2 (ru) Сжигание отходов на основе замкнутого цикла
CN110892222A (zh) 去涂层窑炉的流体温度控制系统及方法
JP2007205689A (ja) 廃棄物燃焼排ガス処理方法と装置
KR100689106B1 (ko) 유동층 연소로에서의 질소산화물 저감 장치 및 방법
JP7126215B2 (ja) システム制御装置及び制御方法
HUT65602A (en) Apparatus for using hayardous waste to form non-hazardous aggregate
JPH10165752A (ja) 廃棄物処理設備における排ガス処理方法
JP2008020123A (ja) ロータリキルン炉への燃焼空気の供給制御方法および供給制御装置
JPH11114361A (ja) 製鋼用電気炉の排ガス処理方法
JP2002113327A (ja) 排ガス処理脱塩剤の供給量制御方法
US20050077658A1 (en) Fume treatment system and method
JP2006524308A (ja) 資材、特に廃棄物およびごみの処理方法および処理用プラント
JP4070646B2 (ja) 燃焼制御方法及び廃棄物処理装置
JP2007187338A (ja) 灰溶融炉の排ガス処理方法とその装置
JP4283254B2 (ja) ガス化溶融システムの運転制御方法及び装置
JPH09250722A (ja) 廃棄物処理装置
JP3998302B2 (ja) ごみ焼却炉の二次燃焼方法
JP5019327B2 (ja) 排ガスの処理設備および排ガスの処理方法
JP3308363B2 (ja) 廃棄物の焼却、灰溶融方法と装置
JP3821309B2 (ja) 飛灰溶融炉の排気ダクト閉塞防止方法および装置
KR101845889B1 (ko) 연소용 공기에 의한 열손실을 최소화하는 연소설비

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination