CN115983062A - 一种基于有限元模型修正的高拱坝地震损伤评估方法及系统 - Google Patents

一种基于有限元模型修正的高拱坝地震损伤评估方法及系统 Download PDF

Info

Publication number
CN115983062A
CN115983062A CN202211574626.4A CN202211574626A CN115983062A CN 115983062 A CN115983062 A CN 115983062A CN 202211574626 A CN202211574626 A CN 202211574626A CN 115983062 A CN115983062 A CN 115983062A
Authority
CN
China
Prior art keywords
arch dam
finite element
element model
damage
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211574626.4A
Other languages
English (en)
Other versions
CN115983062B (zh
Inventor
杜文琪
王刚
李典庆
唐小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202211574626.4A priority Critical patent/CN115983062B/zh
Publication of CN115983062A publication Critical patent/CN115983062A/zh
Application granted granted Critical
Publication of CN115983062B publication Critical patent/CN115983062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于有限元模型修正的高拱坝地震损伤评估方法及系统,该方法首先由拱坝原型振动响应计算得到拱坝工作模态参数,并建立拱坝‑水库‑地基系统三维有限元模型,通过模态参数识别值优化更新有限元模型参数;其次,基于粘弹性人工边界,对修正的有限元模型施加边界条件,并采用等效节点力来模拟不同入射角度的地震动输入;最后,利用混凝土塑性损伤本构模型来模拟混凝土坝体的损伤开裂,通过对拱坝‑水库‑地基三维有限元修正模型进行动力时程分析,得到不同地震动入射角度下高拱坝损伤结果。本发明构建了反映真实动力特性的有限元模型,有效降低了高拱坝有限元模型的误差,定量评估了不同地震动入射角度下高拱坝的损伤。

Description

一种基于有限元模型修正的高拱坝地震损伤评估方法及系统
技术领域
本发明属于拱坝抗震性能研究领域,更具体地,涉及一种基于有限元模型修正的高拱坝地震损伤评估方法及系统。
背景技术
拱坝作为最重要的水利枢纽工程之一,在防洪、发电、灌溉、航运等方面发挥着重要作用。但我国高拱坝多建在区域构造稳定性较差的西南地区,发生强震的可能性和频率都比较大。高拱坝一旦在强地震作用下溃坝或倒塌,将对当地居民生命财产造成巨大威胁,因此,有必要开展高拱坝抗震性能研究。
目前,很多学者主要依靠振动台试验和数值模拟来开展高拱坝抗震性能研究,由于计算成本低、分析效率高的优点,有限元数值模型被引入到拱坝的地震分析中,并取得了相当丰硕的成果。然而,基于有限元方法的拱坝地震分析极其依赖所建立的有限元模型。对于已服役多年的拱坝而言,拱坝真实材料参数是未知的。考虑到必须真实地构成一个包含大坝-库水-地基系统的三维有限元模型,可采用模型修正方法来降低有限元模型的计算误差。此外,由于断层走向与拱坝方位之间的水平夹角往往是多种多样的,地震动入射存在不确定性,而这种不确定性将不可避免地增大了拱坝抗震性能评估的偏差,而现有的考虑地震动入射角的研究成果十分有限,且一定程度忽略了地震作用下拱坝的强非线性行为。因此,有必要提出一种能够较好地评估不同地震动入射角度下高拱坝地震损伤的方法。
发明内容
本发明的目的在于针对现有方法的不足,提出一种基于有限元模型修正的高拱坝地震损伤评估方法。该方法可以构建出较为准确的拱坝-库水-地基三维有限元模型,并能够较好评估地震动入射角度的不确定性对拱坝地震损伤的影响。
为了解决上述技术问题,本发明采用如下技术方案:
一种基于有限元模型修正的高拱坝地震损伤评估方法,包括以下步骤:
步骤1、基于原型振动响应,采用随机子空间法辨识出拱坝工作模态参数;
步骤2、构建拱坝-库水-地基三维有限元模型,并基于模态参数识别值采用反分析方法对模型参数进行修正;
步骤3、根据具体高拱坝抗震设计条件,挑选一组双向地震动加速度时间历程
Figure BDA0003988806360000021
Figure BDA0003988806360000022
k表示地震动编号;
步骤4、根据所选地震动的断层走向,将
Figure BDA0003988806360000023
Figure BDA0003988806360000024
旋转至平行断层和垂直断层方向,得到
Figure BDA0003988806360000025
Figure BDA0003988806360000026
步骤5、定义地震动入射角度β,得到不同β下有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程
Figure BDA0003988806360000027
Figure BDA0003988806360000028
并计算对应的等效节点力
Figure BDA0003988806360000029
Figure BDA00039888063600000210
b表示节点编号;
步骤6、利用混凝土塑性损伤本构模型来模拟混凝土坝体的损伤开裂,将不同地震动入射角度下的等效节点力施加在修正的高拱坝-库水-地基有限元模型中,计算
Figure BDA00039888063600000211
Figure BDA00039888063600000212
下高拱坝损伤结果。
进一步地,步骤1中,拱坝原型振动响应为拱坝正常服役过程中由环境激励或泄流激励下所引起的位移时程响应或加速度时程响应,可通过布置相应的传感器采集获得;
在数值计算平台中编写随机子空间算法,将拱坝原型振动响应作为输入,得到拱坝工作模态参数。
进一步地,步骤2中,基于拱坝工程设计资料和地质勘测信息,在有限元软件中建立拱坝-地基有限元模型,采用附加质量法模拟库水作用,并计算不同材料参数组合下的拱坝模态参数,基于反分析理论,以模态参数识别值和计算值之间相对误差最小来构建目标函数,从而修正高拱坝-库水-地基有限元模型。
进一步地,步骤3中,根据高拱坝抗震标准、所在地区和场地条件拟定地震设计目标谱,挑选一组反应谱与该目标谱相匹配的双向地震动加速度时间历程
Figure BDA0003988806360000031
Figure BDA0003988806360000032
其中包含脉冲型和非脉冲型地震动。
进一步地,步骤4中,根据所选地震动的断层走向α,将所选地震动
Figure BDA0003988806360000033
Figure BDA0003988806360000034
旋转至平行断层和垂直断层方向,如下式所示:
Figure BDA0003988806360000035
式中:
Figure BDA0003988806360000036
Figure BDA0003988806360000037
分别表示平行断层和垂直断层方向的地震动加速度时间历程。
进一步地,步骤5中,定义地震动入射角度β,由下式计算得到
Figure BDA0003988806360000038
式中:
Figure BDA0003988806360000039
Figure BDA00039888063600000310
分别表示有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程,ak通过积分可得到对应的速度时间历程vk和位移时间历程sk,由此计算等效节点力,其表达式如下:
Fb=(Kbsk+Cbvkb)Ab                           (3)
式中:Fb表示节点b上要施加的等效节点力;Kb和Cb分别表示节点b上的弹簧刚度系数阻尼系数,包括法向和切向;Ab表示节点b的控制面积;σb表示原自由场中介质的应力,可由胡克定律得到:
σb=ρbcbvk                               (4)
式中:ρb表示节点b所处介质的质量密度;cb表示节点b所处介质的波速。
进一步地,步骤6中,可由步骤2得到修正的混凝土初始动弹性模量E0,根据混凝土塑性损伤本构模型,当最大拉应力超过抗拉强度后,混凝土表现出非线性行为可通过刚度退化的方式反映,其表达式如下:
E=(1-dt)E0                               (5)
式中:E表示退化后的刚度;dt表示拉伸损伤结果,其值在0-1之间变化,当dt=0时表示混凝土完好无损,当dt=1时表示混凝土完好损伤破坏。
本发明提供一种基于有限元模型修正的高拱坝地震损伤评估系统,包括:
拱坝工作模态辨识模块,其基于原型振动响应辨识出拱坝工作模态参数;
有限元构建模块,其构建拱坝-库水-地基三维有限元模型,并基于模态参数识别值采用反分析方法进行模型参数修正;
等效节点力计算模块,其基于一组双向地震动加速度时间历程
Figure BDA0003988806360000041
Figure BDA0003988806360000042
计算不同入射角度β下的等效节点力;
损伤结果评估模块,其将不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,得到对应地震工况下的拱坝损伤结果。
进一步地,所述等效节点力计算模块选一组反应谱与该目标谱相匹配的双向地震动加速度时间历程
Figure BDA0003988806360000043
Figure BDA0003988806360000044
即包含脉冲型和非脉冲型地震动,根据所选地震动的断层走向α,将所选地震动
Figure BDA0003988806360000045
Figure BDA0003988806360000046
旋转至平行断层和垂直断层方向得到有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程
Figure BDA0003988806360000047
Figure BDA0003988806360000048
并通过积分可得到对应的速度时间历程vk和位移时间历程sk,由此计算等效节点力。
进一步地,所述损伤结果评估模块将有限元构建模块修正的混凝土初始动弹性模量E0,根据混凝土塑性损伤本构模型,当最大拉应力超过抗拉强度后,混凝土表现出非线性行为可通过刚度退化的方式反映,其表达式如下:
E=(1-dt)E0
式中:E表示退化后的刚度;dt表示拉伸损伤结果,其值在0-1之间变化,当dt=0时表示混凝土完好无损,当dt=1时表示混凝土完好损伤破坏;
其将不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,得到对应地震工况下的拱坝损伤结果。与现有技术相比,本申请具有如下有益效果:
(1)本发明提供了一种能够准确评估地震动入射角度不确定性对高拱坝地震损伤的方法,可应用于高拱坝抗震设计实践;
(2)本发明采用拱坝-库水-地基三维有限元模型修正方法,有效降低了有限元模型的误差,提高了高拱坝地震损伤评估的准确性;
(3)本发明的方法同时考虑地震动入射角度的不确定性和坝体混凝土材料的非线性,通过等效节点力来实现地震动的输入,实现地震作用下高拱坝损伤评估。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中的具体流程示意图;
图2是本发明实施例中所采集的振动响应时程曲线图;
图3是本发明实施例中高拱坝-库水-地基有限元模型图;
图4是本发明实施例中有限元模型修正前后的模态振型对比图;
图5是本发明实施例中所选地震动的反应谱;
图6是本发明实施例中地震动入射角度示意图;
图7是本发明实施例中坝体损伤体积率随时间的变化图;
图8是本发明实施例中超过不同损伤程度的坝体损伤体积比。
具体实施方式
以下结合附图和实施例详细说明本发明的技术方案。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合附图,对本发明进行详细说明,基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:本发明所提的一种基于有限元模型修正的高拱坝地震损伤评估方法,以二滩高拱坝为例,并结合附图,对本发明提出的技术方案做进一步阐述。
如图1所示是本发明实施例的具体流程图,主要包括以下几个步骤。
步骤1、开展拱坝原型振动测试,获取环境激励下拱坝原型振动响应(如图2),在数值计算平台Matlab中编写随机子空间算法,基于随机子空间法识别出拱坝工作模态参数,识别结果如表1所示。
表1.拱坝工作模态参数识别结果
Figure BDA0003988806360000061
步骤2、依据拱坝工程资料和地质勘测信息,确定拱坝材料参数分区和横缝位置,在有限元软件Abaqus中建立考虑坝体材料参数分区和横缝的拱坝-库水-地基三维有限元模型(如图3),并进行有限元网格划分,其初始材料参数如表2所示。根据步骤1所识别的拱坝工作模态参数,以此为基准,采用反分析方法来修正有限元模型。将动弹性模量作为待更新的材料参数变量,得到坝体A、坝体B、坝体C和地基的动弹性模量修正值分别为38.13、36.54、34.96和33.83(Gpa)。为验证修正后的拱坝-库水-地基三维有限元模型的有效性,将修正前后的模态参数结果(固有频率如表3所示,模态振型如图4所示)进行对比,从固有频率的对比结果来看,通过模态修正可将最大相对误差由10.33%提高到1.88%。而更新后的模态振型在数值和规律上与实测值基本一致,说明更新结果合理可靠。
表2.拱坝-地基分区材料参数取值
Figure BDA0003988806360000071
表3.拱坝固有频率对比结果
Figure BDA0003988806360000072
步骤3、根据具体高拱坝抗震设计条件,挑选一组双向地震动加速度时间历程
Figure BDA0003988806360000073
Figure BDA0003988806360000074
k表示地震动编号,所选地震动反应谱如图5所示;
步骤4、根据所选地震动的断层走向,将
Figure BDA0003988806360000075
Figure BDA0003988806360000076
旋转至平行断层(FN)和垂直断层(FP)方向,得到
Figure BDA0003988806360000077
Figure BDA0003988806360000078
根据所选地震动的断层走向α,将所选地震动
Figure BDA0003988806360000079
Figure BDA00039888063600000710
旋转至平行断层(FN)和垂直断层(FP)方向,如下式所示:
Figure BDA00039888063600000711
式中:
Figure BDA00039888063600000712
Figure BDA00039888063600000713
分别表示FN和FP方向的地震动加速度时间历程。
步骤5中,定义地震动入射角度β(如图6),由下式计算得到
Figure BDA00039888063600000714
式中:
Figure BDA00039888063600000715
Figure BDA00039888063600000716
分别表示有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程。
以45°为间隔,将双向地震动旋转至8个不同方向,由此得到8组双向地震动加速度时间历程,并通过积分可得到对应的速度时间历程vk和位移时间历程sk,由此计算等效节点力,其表达式如下:
Fb=(Kbsk+Cbvkb)Ab                           (3)
式中:Fb表示节点b上要施加的等效节点力;Kb和Cb分别表示节点b上的弹簧刚度系数阻尼系数,包括法向和切向;Ab表示节点b的控制面积;σb表示原自由场中介质的应力,可由胡克定律得到:
σb=ρbcbvk                               (4)
式中:ρb表示节点b所处介质的质量密度;cb表示节点b所处介质的波速。
步骤6中,可由步骤2得到修正的混凝土初始动弹性模量E0,根据混凝土塑性损伤本构模型,当最大拉应力超过抗拉强度后,混凝土表现出非线性行为可通过刚度退化的方式反映,其表达式如下:
E=(1-dt)E0                               (5)
式中:E表示退化后的刚度;dt表示拉伸损伤结果,其值在0-1之间变化,当dt=0时表示混凝土完好无损,当dt=1时表示混凝土完好损伤破坏。
基于粘弹性人工边界,对修正的有限元模型施加边界条件,并将步骤5中计算的不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,可得到对应地震工况下的坝体损伤体积率随时间的变化图(图7)和超过不同损伤程度的坝体损伤体积比(图8)。
本实施例还提供一种基于有限元模型修正的高拱坝地震损伤评估系统,包括:
拱坝工作模态辨识模块,其基于原型振动响应辨识出拱坝工作模态参数;
有限元构建模块,其构建拱坝-库水-地基三维有限元模型,并基于模态参数识别值采用反分析方法进行模型参数修正;
等效节点力计算模块,其基于一组双向地震动加速度时间历程
Figure BDA0003988806360000091
Figure BDA0003988806360000092
计算不同入射角度β下的等效节点力;
损伤结果评估模块,其将不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,得到对应地震工况下的拱坝损伤结果。
进一步地,所述等效节点力计算模块选一组反应谱与该目标谱相匹配的双向地震动加速度时间历程
Figure BDA0003988806360000093
Figure BDA0003988806360000094
即包含脉冲型和非脉冲型地震动,根据所选地震动的断层走向α,将所选地震动
Figure BDA0003988806360000095
Figure BDA0003988806360000096
旋转至平行断层和垂直断层方向得到有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程
Figure BDA0003988806360000097
Figure BDA0003988806360000098
并通过积分可得到对应的速度时间历程vk和位移时间历程sk,由此计算等效节点力。
进一步地,所述损伤结果评估模块将有限元构建模块修正的混凝土初始动弹性模量E0,根据混凝土塑性损伤本构模型,当最大拉应力超过抗拉强度后,混凝土表现出非线性行为可通过刚度退化的方式反映,其表达式如下:
E=(1-dt)E0
式中:E表示退化后的刚度;dt表示拉伸损伤结果,其值在0-1之间变化,当dt=0时表示混凝土完好无损,当dt=1时表示混凝土完好损伤破坏;
其将不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,得到对应地震工况下的拱坝损伤结果。本发明利用拱坝原型振动响应,识别出拱坝工作模态参数,并以此构建和修正了坝体-库水-地基三维有限元模型,有效降低了有限元模型的误差。基于粘弹性人工边界,对修正的有限元模型施加边界条件以考虑辐射阻尼效应,并采用等效节点力来实现不同入射角度的地震动输入。利用混凝土塑性损伤本构模型来模拟混凝土坝体的损伤非线性开裂,通过对拱坝-水库-地基三维有限元修正模型进行动力时程分析,得到不同地震动入射角度下高拱坝损伤结果,从而定量评估了不同入射角度下高拱坝地震损伤,本发明可为地震作用下的高拱坝损伤评估提供了新的思路。
需要指出的是以上实施例仅用于说明本发明而不用于限制本发明的范围。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下获得的所有其他实施例,均落入本发明的保护范围之内。
以上是对本发明技术方案所做的具体实施例与所运用的技术原理。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

Claims (10)

1.一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于,包括以下步骤:
步骤1、基于原型振动响应,采用随机子空间法辨识出拱坝工作模态参数;
步骤2、构建拱坝-库水-地基三维有限元模型,并基于模态参数识别值采用反分析方法对模型参数进行修正;
步骤3、根据具体高拱坝抗震设计条件,挑选一组双向地震动加速度时间历程
Figure FDA0003988806350000011
Figure FDA0003988806350000012
k表示地震动编号;
步骤4、根据所选地震动的断层走向,将
Figure FDA0003988806350000013
Figure FDA0003988806350000014
旋转至平行断层和垂直断层方向,得到
Figure FDA0003988806350000015
Figure FDA0003988806350000016
步骤5、定义地震动入射角度β,得到不同β下有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程
Figure FDA0003988806350000017
Figure FDA0003988806350000018
并计算对应的等效节点力
Figure FDA0003988806350000019
Figure FDA00039888063500000110
b表示节点编号;
步骤6、利用混凝土塑性损伤本构模型来模拟混凝土坝体的损伤开裂,将不同地震动入射角度下的等效节点力施加在修正的高拱坝-库水-地基有限元模型中,计算
Figure FDA00039888063500000111
Figure FDA00039888063500000112
下高拱坝损伤结果。
2.根据权利要求1所述的一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于:步骤1中,拱坝原型振动响应为拱坝正常服役过程中由环境激励或泄流激励下所引起的位移时程响应或加速度时程响应,可通过布置相应的传感器采集获得;
在数值计算平台中编写随机子空间算法,将拱坝原型振动响应作为输入,得到拱坝工作模态参数。
3.根据权利要求1所述的一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于:步骤2中,基于拱坝工程设计资料和地质勘测信息,在有限元软件中建立拱坝-地基有限元模型,采用附加质量法模拟库水作用,并计算不同材料参数组合下的拱坝模态参数,基于反分析理论,以模态参数识别值和计算值之间相对误差最小来构建目标函数,从而修正高拱坝-库水-地基有限元模型。
4.根据权利要求1所述的一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于:步骤3中,根据高拱坝抗震标准、所在地区和场地条件拟定地震设计目标谱,挑选一组反应谱与该目标谱相匹配的双向地震动加速度时间历程
Figure FDA0003988806350000021
Figure FDA0003988806350000022
其中包含脉冲型和非脉冲型地震动。
5.根据权利要求1所述的一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于:步骤4中,根据所选地震动的断层走向α,将所选地震动
Figure FDA0003988806350000023
Figure FDA0003988806350000024
旋转至平行断层和垂直断层方向,如下式所示:
Figure FDA0003988806350000025
式中:
Figure FDA0003988806350000026
Figure FDA0003988806350000027
分别表示平行断层和垂直断层方向的地震动加速度时间历程。
6.根据权利要求1所述的一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于:步骤5中,定义地震动入射角度β,由下式计算得到
Figure FDA0003988806350000028
式中:
Figure FDA0003988806350000029
Figure FDA00039888063500000210
分别表示有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程,ak通过积分可得到对应的速度时间历程vk和位移时间历程sk,由此计算等效节点力,其表达式如下:
Fb=(Kbsk+Cbvkb)Ab                           (3)
式中:Fb表示节点b上要施加的等效节点力;Kb和Cb分别表示节点b上的弹簧刚度系数阻尼系数,包括法向和切向;Ab表示节点b的控制面积;σb表示原自由场中介质的应力,可由胡克定律得到:
σb=ρbcbvk                               (4)
式中:ρb表示节点b所处介质的质量密度;cb表示节点b所处介质的波速。
7.根据权利要求1所述的一种基于有限元模型修正的高拱坝地震损伤评估方法,其特征在于:步骤6中,可由步骤2得到修正的混凝土初始动弹性模量E0,根据混凝土塑性损伤本构模型,当最大拉应力超过抗拉强度后,混凝土表现出非线性行为可通过刚度退化的方式反映,其表达式如下:
E=(1-dt)E0                               (5)
式中:E表示退化后的刚度;dt表示拉伸损伤结果,其值在0-1之间变化,当dt=0时表示混凝土完好无损,当dt=1时表示混凝土完好损伤破坏。
8.一种基于有限元模型修正的高拱坝地震损伤评估系统,其特征在于:包括:
拱坝工作模态辨识模块,其基于原型振动响应辨识出拱坝工作模态参数;
有限元构建模块,其构建拱坝-库水-地基三维有限元模型,并基于模态参数识别值采用反分析方法进行模型参数修正;
等效节点力计算模块,其基于一组双向地震动加速度时间历程
Figure FDA0003988806350000031
Figure FDA0003988806350000032
计算不同入射角度β下的等效节点力;
损伤结果评估模块,其将不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,得到对应地震工况下的拱坝损伤结果。
9.根据权利要求8所述的一种基于有限元模型修正的高拱坝地震损伤评估系统,其特征在于:所述等效节点力计算模块选一组反应谱与该目标谱相匹配的双向地震动加速度时间历程
Figure FDA0003988806350000033
Figure FDA0003988806350000034
即包含脉冲型和非脉冲型地震动,根据所选地震动的断层走向α,将所选地震动
Figure FDA0003988806350000035
Figure FDA0003988806350000036
旋转至平行断层和垂直断层方向得到有限元模型x坐标轴和y坐标轴方向的地震动加速度时间历程
Figure FDA0003988806350000037
Figure FDA0003988806350000038
并通过积分可得到对应的速度时间历程vk和位移时间历程sk,由此计算等效节点力。
10.根据权利要求8所述的一种基于有限元模型修正的高拱坝地震损伤评估系统,其特征在于:所述损伤结果评估模块将有限元构建模块修正的混凝土初始动弹性模量E0,根据混凝土塑性损伤本构模型,当最大拉应力超过抗拉强度后,混凝土表现出非线性行为可通过刚度退化的方式反映,其表达式如下:
E=(1-dt)E0
式中:E表示退化后的刚度;dt表示拉伸损伤结果,其值在0-1之间变化,当dt=0时表示混凝土完好无损,当dt=1时表示混凝土完好损伤破坏;
其将不同地震动入射角度下的等效节点力施加在拱坝-库水-地基三维有限元模型中,得到对应地震工况下的拱坝损伤结果。
CN202211574626.4A 2022-12-08 2022-12-08 一种基于有限元模型修正的高拱坝地震损伤评估方法及系统 Active CN115983062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211574626.4A CN115983062B (zh) 2022-12-08 2022-12-08 一种基于有限元模型修正的高拱坝地震损伤评估方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211574626.4A CN115983062B (zh) 2022-12-08 2022-12-08 一种基于有限元模型修正的高拱坝地震损伤评估方法及系统

Publications (2)

Publication Number Publication Date
CN115983062A true CN115983062A (zh) 2023-04-18
CN115983062B CN115983062B (zh) 2023-09-12

Family

ID=85960323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211574626.4A Active CN115983062B (zh) 2022-12-08 2022-12-08 一种基于有限元模型修正的高拱坝地震损伤评估方法及系统

Country Status (1)

Country Link
CN (1) CN115983062B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116306170A (zh) * 2023-05-10 2023-06-23 石家庄铁道大学 跨断层海底隧道地震反应分析方法、装置、终端及介质
CN116562087A (zh) * 2023-04-28 2023-08-08 北京工业大学 一种预测中子辐照下混凝土力学性能退化的数值模拟方法
CN116882037A (zh) * 2023-09-07 2023-10-13 清华大学 一种拱坝应力计算处理方法及装置
CN116975969A (zh) * 2023-07-19 2023-10-31 武汉大学 爆炸荷载下混凝土坝裂缝扩展实时定位与损伤量化方法及系统
CN117631045A (zh) * 2023-12-04 2024-03-01 石家庄铁道大学 穿越断层地下结构地震反应分析方法、装置、终端和介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020021390A (ko) * 2002-01-04 2002-03-20 김용성 다층지반의 지진응답해석을 위한 동적 점탄-점소성구성모델 및 이를 이용한 해석방법
US6397168B1 (en) * 1999-07-30 2002-05-28 Xerxes Corporation Seismic evaluation method for underground structures
US20100160778A1 (en) * 2008-11-03 2010-06-24 University Of British Columbia Method and apparatus for determining viscoelastic parameters in tissue
JP2013152197A (ja) * 2012-01-26 2013-08-08 Daiwa House Industry Co Ltd 建物の地震被害損失の評価装置・評価方法・評価プログラム
CN107895086A (zh) * 2017-11-27 2018-04-10 中国电建集团成都勘测设计研究院有限公司 一种拱坝全坝体的等效应力分析方法
JP6425358B1 (ja) * 2017-06-24 2018-11-21 忠義 中村 建築物が受ける地震の応力低減構造
CN109035730A (zh) * 2018-07-16 2018-12-18 河海大学 一种考虑服役环境影响的混凝土坝损伤动力预警方法
CN109063327A (zh) * 2018-08-01 2018-12-21 清华大学 基于动力弹塑性和地面运动的地震破坏力评价方法及装置
CN109858064A (zh) * 2018-11-22 2019-06-07 南昌大学 一种基于原型振动响应的大坝及地基弹模动力反演方法
CN111125954A (zh) * 2019-12-23 2020-05-08 中国水利水电科学研究院 拱坝损伤预测方法及装置
CN111814374A (zh) * 2020-07-07 2020-10-23 中国水利水电科学研究院 拱坝施工期地震反应分析及安全评估方法
CN113486543A (zh) * 2021-05-11 2021-10-08 中国长江三峡集团有限公司 基于扩展有限元法的坝-基系统地震响应及破坏分析方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397168B1 (en) * 1999-07-30 2002-05-28 Xerxes Corporation Seismic evaluation method for underground structures
KR20020021390A (ko) * 2002-01-04 2002-03-20 김용성 다층지반의 지진응답해석을 위한 동적 점탄-점소성구성모델 및 이를 이용한 해석방법
US20100160778A1 (en) * 2008-11-03 2010-06-24 University Of British Columbia Method and apparatus for determining viscoelastic parameters in tissue
JP2013152197A (ja) * 2012-01-26 2013-08-08 Daiwa House Industry Co Ltd 建物の地震被害損失の評価装置・評価方法・評価プログラム
JP6425358B1 (ja) * 2017-06-24 2018-11-21 忠義 中村 建築物が受ける地震の応力低減構造
CN107895086A (zh) * 2017-11-27 2018-04-10 中国电建集团成都勘测设计研究院有限公司 一种拱坝全坝体的等效应力分析方法
CN109035730A (zh) * 2018-07-16 2018-12-18 河海大学 一种考虑服役环境影响的混凝土坝损伤动力预警方法
CN109063327A (zh) * 2018-08-01 2018-12-21 清华大学 基于动力弹塑性和地面运动的地震破坏力评价方法及装置
CN109858064A (zh) * 2018-11-22 2019-06-07 南昌大学 一种基于原型振动响应的大坝及地基弹模动力反演方法
CN111125954A (zh) * 2019-12-23 2020-05-08 中国水利水电科学研究院 拱坝损伤预测方法及装置
CN111814374A (zh) * 2020-07-07 2020-10-23 中国水利水电科学研究院 拱坝施工期地震反应分析及安全评估方法
CN113486543A (zh) * 2021-05-11 2021-10-08 中国长江三峡集团有限公司 基于扩展有限元法的坝-基系统地震响应及破坏分析方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DURUO HUANG, F. JIN, GANG WANG, KEWEI FENG: "Towards Physics-Based Large-Deformation Analyses of Earthquake-Induced Dam Failure", 《GEOLOGY》, pages 118 - 124 *
WANG M X, HUANG D, WANG G, ET AL.: "Vine Copula‐Based Dependence Modeling of Multivariate Ground‐Motion Intensity Measures and the Impact on Probabilistic Seismic Slope Displacement Hazard Analysis", 《BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA》, pages 2967 - 2990 *
WU Q , LI D Q , LIU Y , ET AL.: "Seismic performance of earth dams founded on liquefiable soil layer subjected to near-fault pulse-like ground motions", 《SOIL DYNAMICS AND EARTHQUAKE ENGINEERING》, pages 1 - 11 *
张建伟;刘鹏飞;王涛;焦延涛;李兆恒;: "基于混凝土塑性损伤本构的高拱坝损伤开裂分析", 中国农村水利水电, no. 04, pages 158 - 165 *
徐海滨;杜修力;赵密;王进廷;: "地震波斜入射对高拱坝地震反应的影响", 水力发电学报, no. 06, pages 159 - 165 *
王进廷;潘坚文;张楚汉;: "地基辐射阻尼对高拱坝非线性地震反应的影响", 水利学报, no. 04, pages 413 - 420 *
耿萍;陈昌健;王琦;郭翔宇;卢志楷;: "地震P波对圆形隧道最不利入射角研究", 现代隧道技术, no. 2, pages 579 - 587 *
邱流潮;刘桦;金峰;: "二维土-结构地震动力相互作用时域有限元分析", 工程力学, no. 09, pages 114 - 119 *
陈平;何蕴龙;陈海霞;: "地基边界对五嘎冲拱坝地震动力响应的影响", 武汉大学学报(工学版), no. 05, pages 554 - 559 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116562087A (zh) * 2023-04-28 2023-08-08 北京工业大学 一种预测中子辐照下混凝土力学性能退化的数值模拟方法
CN116562087B (zh) * 2023-04-28 2023-12-08 北京工业大学 一种预测中子辐照下混凝土力学性能退化的数值模拟方法
CN116306170A (zh) * 2023-05-10 2023-06-23 石家庄铁道大学 跨断层海底隧道地震反应分析方法、装置、终端及介质
CN116306170B (zh) * 2023-05-10 2023-08-01 石家庄铁道大学 跨断层海底隧道地震反应分析方法、装置、终端及介质
CN116975969A (zh) * 2023-07-19 2023-10-31 武汉大学 爆炸荷载下混凝土坝裂缝扩展实时定位与损伤量化方法及系统
CN116975969B (zh) * 2023-07-19 2024-02-09 武汉大学 爆炸荷载下混凝土坝裂缝扩展实时定位与损伤量化方法及系统
CN116882037A (zh) * 2023-09-07 2023-10-13 清华大学 一种拱坝应力计算处理方法及装置
CN116882037B (zh) * 2023-09-07 2023-12-19 清华大学 一种拱坝应力计算处理方法及装置
CN117631045A (zh) * 2023-12-04 2024-03-01 石家庄铁道大学 穿越断层地下结构地震反应分析方法、装置、终端和介质
CN117631045B (zh) * 2023-12-04 2024-06-04 石家庄铁道大学 穿越断层地下结构地震反应分析方法、装置、终端和介质

Also Published As

Publication number Publication date
CN115983062B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN115983062B (zh) 一种基于有限元模型修正的高拱坝地震损伤评估方法及系统
Bajrić et al. Evaluation of damping estimates by automated operational modal analysis for offshore wind turbine tower vibrations
Velarde et al. Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine
CN103559383B (zh) 核电站防波堤抗强震性能预测与评价方法
Aasen et al. Effect of foundation modelling on the fatigue lifetime of a monopile-based offshore wind turbine
CN102567632B (zh) 基于概率累积损伤的岸桥结构风振疲劳寿命预报方法
CN105843780A (zh) 一种机械结构冲击载荷识别的稀疏解卷积方法
CN110414183A (zh) 配置frp筋的综合管廊抗震分析方法
CN108090268A (zh) 一种粘弹性边界下地震时程波的集成化添加方法
CN114218835A (zh) 一种考虑风致疲劳效应的输电塔结构全寿命抗多灾性能评估方法
Asareh Dynamic behavior of operational wind turbines considering aerodynamic and seismic load interaction
Lemos et al. Earthquake analysis of concrete gravity dams on jointed rock foundations
CN117010053A (zh) 一种混凝土面板堆石坝力学行为有限元模拟方法
Oliveira et al. Seismic and structural health monitoring systems for large dams: theoretical, computational and practical innovations
Tagliafierro et al. A new open source solver for modelling fluid-structure interaction: case study of a point-absorberwave energy converter with power take-off unit
CN106980735B (zh) 脆性材料热破裂的数值模拟方法
CN113536646B (zh) 一种单层球壳地震失效荷载计算方法
CN112485106B (zh) 一种控制土体状态参数的物理模型分层制备与试验方法
Conte Influence of the earthquake ground motion process and structural properties on response characteristics of simple structures
Zacchei et al. Seismic hazard and structural analysis of the concrete arch dam (Rules Dam on Guadalfeo River)
Kim et al. Development of offshore structural analysis software X-SEA coupled with FAST
Taborda et al. Alternative formulations for cyclic nonlinear elastic models: Parametric study and comparative analyses
Taddei et al. Seismic analysis of onshore wind turbine including soil-structure interaction effects
Shabakhty et al. Sensitivity of fatigue assessment for offshore jacket platform to different pile–soil–structure interaction models
Jia et al. Combined Seismic and Scoured Numerical Model for Bucket-Supported Offshore Wind Turbines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant