CN115967011A - 发光装置及其制造方法 - Google Patents

发光装置及其制造方法 Download PDF

Info

Publication number
CN115967011A
CN115967011A CN202310108428.7A CN202310108428A CN115967011A CN 115967011 A CN115967011 A CN 115967011A CN 202310108428 A CN202310108428 A CN 202310108428A CN 115967011 A CN115967011 A CN 115967011A
Authority
CN
China
Prior art keywords
layer
refractive index
light
different refractive
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310108428.7A
Other languages
English (en)
Inventor
广瀬和义
黑坂刚孝
泷口优
杉山贵浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of CN115967011A publication Critical patent/CN115967011A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06246Controlling other output parameters than intensity or frequency controlling the phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • H01S5/2215Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides using native oxidation of semiconductor layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本实施方式涉及具备能够将±1次光中的一方的功率相对于另一方的功率降低的构造的发光装置等。该发光装置具备基板、发光部、包含基本层以及多个不同折射率区域的相位调制层。多个不同折射率区域的各个具有由面对基板的第一面、相对于第一面而位于基板的相反侧的第二面、以及侧面规定的立体形状。在该立体形状中,第一面、第二面以及侧面中的至少任一者包含相对于主面倾斜的部分。

Description

发光装置及其制造方法
本申请是申请日为2018年11月28日、申请号为201880078841.0、发明名称为发光 装置及其制造方法的专利申请的分案申请。
技术领域
本发明涉及一种发光装置及其制造方法。
背景技术
在专利文献1中记载了涉及作为发光装置的半导体发光元件的技术。该半导体发光元件具备活性层、夹持该活性层的一对包覆层、以及与该活性层光学耦合的相位调制层。相位调制层包含基本层和分别具有与基本层的折射率不同的折射率的多个不同折射率区域。在设定了以相位调制层的厚度方向为Z轴方向的XYZ正交坐标系,进一步在相当于该相位调制层的设计面的X-Y平面内设定了晶格间隔a的假想的正方晶格的情况下,不同折射率区域分别以各重心位置从假想的正方晶格中的晶格点(关联于不同折射率区域的任一者的晶格点)偏移距离r的方式配置。距离r满足0<r≤0.3a。
现有技术文献
专利文献
专利文献1:国际公开第2016/148075号
发明内容
发明所要解决的技术问题
本发明人们对现有的发光装置进行了研究,结果发现了以下问题。即,研究通过控制光的相位谱和强度谱来输出任意的光学图像的发光装置。作为这样的发光装置的构造之一,存在包含设置于基板上的相位调制层的构造。相位调制层包含基本层和分别具有与基本层的折射率不同的折射率的多个不同折射率区域。在正交于该相位调制层的厚度方向的面(设计面)上设定有假想的正方晶格的情况下,以对应于各重心位置分别应当输出的光学图像而从假想的正方晶格的相对应的晶格点的位置偏移的方式,分别配置有不同折射率区域。这种发光装置被称为S-iPM(Static-integrable Phase Modulating(静态可积分相位调制))激光器,沿相对于垂直于基板的主面的方向倾斜的方向输出任意形状的光学图像。
从这样的发光装置输出1次光、调制成与1次光相反方向的-1次光。1次光沿相对于垂直于基板的主面的方向(法线方向)倾斜的第一方向形成期望的输出光学图像。-1次光是沿与基板的主面交叉并且关于沿该主面的法线方向延伸的轴线与上述第一方向对称的第二方向形成与上述输出光学图像旋转对称的光学图像。然而,根据用途,存在不需要1次光和-1次光中的任一方的光的情况。在该情况下,希望将1次光和-1次光中的不需要的光相对于需要的光进行减光。
本发明为了解决上述问题而完成,其目的在于,提供一种能够将1次光和-1次光中的一方的光相对于另一方的光进行减光的发光装置及其制造方法。
解决问题的技术手段
本发明所涉及的发光装置是一种沿基板的主面的法线方向以及相对于该法线方向倾斜的倾斜方向中的至少任一者的方向输出用于形成光学图像的光的发光装置,具备用于解决上述问题的构造。即,该发光装置具备:基板,其具有主面;发光部,其设置于基板上;相位调制层,其在与发光部光学耦合的状态下设置于基板上。相位调制层包含基本层、以及具有与基本层的折射率不同的折射率的多个不同折射率区域。在正交于法线方向的相位调制层的设计面上,多个不同折射率区域根据用于形成光学图像的配置图案,配置于基本层中的规定位置。特别地,多个不同折射率区域的各个具有由面对主面的第一面、相对于该第一面位于主面的相反侧的第二面、以及连接第一面和所述第二面的侧面规定的立体形状,在该立体形状中,第一面、第二面以及侧面中的至少任一者包含相对于主面倾斜的部分。还有,在本说明书中,“相对于主面倾斜的面或其一部分”是指,在与主面的位置关系中,除了相对于主面平行的状态和相对于主面垂直的状态这两者以外的、满足位置关系的面或其一部分。
另外,本发明所涉及的发光装置的制造方法是一种具有上述的构造的发光装置的制造方法,作为一个例子,包含:第一工序,其在基板上设置基本层;以及第二工序,其通过干蚀刻,将应当成为多个不同折射率区域的多个空位或凹部(depression)形成于基本层。特别地,在第二工序中,干蚀刻从相对于法线方向倾斜的方向对基本层施加蚀刻反应气体。根据该制造方法,多个空位或凹部的侧面相对于主面倾斜。因此,能够容易地实现多个不同折射率区域与其周围的层的界面的至少一部分相对于主面或该主面的法线方向倾斜的结构。
发明的效果
根据本发明所涉及的发光装置及其制造方法,能够将1次光和-1次光中的一方的光相对于另一方的光进行减光。
附图说明
图1是示出作为本发明的第一实施方式所涉及的发光装置的半导体发光元件的结构的立体图。
图2是示意性地示出半导体发光元件的层叠构造的图。
图3是示出在包覆层11和活性层12之间设置有相位调制层的情况的图。
图4是相位调制层的俯视图。
图5是示出相位调制层中的不同折射率区域的位置关系的图。
图6是示出仅在相位调制层的特定区域内应用了图4的折射率大致周期构造的例子的俯视图。
图7是用于说明半导体发光元件的输出光束图案成像所得到的光学图像与相位调制层中的相位分布的关系的图。
图8是用于说明从球面坐标向XYZ正交坐标系的坐标的坐标转换的图。
图9是用于说明从光学图像的傅里叶变换结果求得相位角分布来决定不同折射率区域的配置时的注意点的图。
图10是示出半导体发光元件的制造方法中的各工序的图。
图11是示出从半导体发光元件输出的光束图案(光学图像)的例子的图、以及示出包含与半导体发光元件的发光面交叉并垂直于发光面的轴线的截面的光强度分布的图表。
图12是示出对应于图11的(a)所示的光束图案的相位分布的图、以及图12的(a)的局部放大图。
图13是概念性地示出各方向的行波的光束图案的例子的图。在该例子中,将相对于X轴和Y轴的直线D的倾斜角设为45°。
图14是示出在相位调制层的面内行进的行波散射或反射的样子的图。
图15是示出作为本发明的第二实施方式所涉及的发光装置的半导体发光元件的截面结构的图。
图16是示出在包覆层11和活性层12之间设置有相位调制层的情况的图。
图17是从表面侧观察半导体发光元件的俯视图。
图18是示出不同折射率区域的X-Y平面内的形状的例子的俯视图。
图19是示出不同折射率区域的X-Y平面内的形状的例子的俯视图。
图20是示出不同折射率区域的X-Y平面内的形状的例子的俯视图。
图21是示出不同折射率区域的X-Y平面内的形状的例子的俯视图。
图22是示出X-Y平面内的不同折射率区域的形状的其它的例子的俯视图。
图23是示出X-Y平面内的不同折射率区域的形状的其它的例子的俯视图。
图24是示出不同折射率区域的沿Z轴的截面形状的变形例的图。
图25是示意性地示出作为第三变形例的半导体发光元件的截面构造的图。
图26是用于说明第三变形例的相位调制层的制造方法的图。
图27是示意性地示出作为第四变形例的半导体发光元件的截面构造的图。
图28是用于说明第四变形例的相位调制层的制造方法的图。
图29是示出第五变形例所涉及的发光装置的结构的图。
图30是示出半导体发光元件由GaAs类化合物半导体构成的情况(发光波长940nm带)的层构造的表。
图31是具备图30所示的层构造的半导体发光元件的折射率分布和模式分布。
图32是示出半导体发光元件由InP类化合物半导体构成的情况(发光波长1300nm带)的层构造的表。
图33是具备图32所示的层构造的半导体发光元件的折射率分布和模式分布。
图34是示出在半导体发光元件由氮化物类化合物半导体构成的情况(发光波长405nm带)的层构造的表。
图35是具备图34所示的层构造的半导体发光元件的折射率分布和模式分布。
图36是用于说明通过6层平板型波导来近似波导构造的情况的截面图和折射率分布。
图37是用于说明通过5层平板型波导来近似波导构造的情况的截面图和折射率分布。
图38是示出在6层平板型波导中关于光波导层的3层平板构造的截面图和折射率分布。
图39是示出在6层平板型波导中关于接触层的3层平板构造的截面图和折射率分布。
图40是示出在5层平板型波导中关于光波导层的3层平板构造的截面图和折射率分布。
图41是示出在5层平板型波导中关于接触层的3层平板构造的截面图和折射率分布。
图42是示出由包覆层11、光波导层31、以及包覆层13构成的3层平板结构的截面图以及其折射率分布。
图43是示出半导体发光元件由GaAs类化合物半导体构成的情况下的5层平板构造的例子的表。
图44是示出在计算中使用的折射率n1、n2和n3、不对称参数a’以及包覆层11的折射率nclad的表、以及示出下限值和上限值的计算结果的表。
图45是示出由式(1)和式(2)表示的光波导层的标准化波导宽度V1与标准化传播系数b的关系的图表。
图46是示出在计算中使用的折射率n4、n5和n6、不对称参数a’以及包覆层11的折射率nclad的表、以及示出上限值的计算结果的表。
图47是示出由式(5)和式(6)表示的接触层的标准化波导宽度V2与标准化传播系数b的关系的图表。
图48是具备图43所示的层构造的半导体发光元件的折射率分布和模式分布。
图49是示出半导体发光元件由InP类化合物半导体构成的情况下的6层平板构造的例子的表。
图50是示出在计算中使用的折射率n1、n2和n3、不对称参数a’以及包覆层11的折射率nclad的表、以及示出下限值和上限值的计算结果的表。
图51是示出由式(1)和式(2)表示的光波导层的标准化波导宽度V1与标准化传播系数b的关系的图表。
图52是示出在计算中使用的折射率n4、n5和n6、不对称参数a’以及包覆层11的折射率nclad的表、以及示出上限值的计算结果的表。
图53是示出由式(5)和式(6)表示的接触层的标准化波导宽度V2与标准化传播系数b的关系的图表。
图54是具备图49所示的层构造的半导体发光元件的折射率分布和模式分布。
图55是示出半导体发光元件由氮化物类化合物半导体构成的情况下的6层平板构造的例子的表。
图56是示出在计算中使用的折射率n1、n2和n3、不对称参数a’以及包覆层11的折射率nclad的表、以及示出下限值和上限值的计算结果的表。
图57是示出由式(1)和式(2)表示的光波导层的标准化波导宽度V1与标准化传播系数b的关系的图表。
图58是示出在计算中使用的折射率n4、n5和n6、不对称参数a’以及包覆层11的折射率nclad的表、以及示出上限值的计算结果的表。
图59是示出由式(5)和式(6)表示的接触层的标准化波导宽度V2与标准化传播系数b的关系的图表。
图60是具备图55所示的层构造的半导体发光元件的折射率分布和模式分布。
具体实施方式
[本申请发明的实施方式的说明]
首先,对本申请发明的实施方式的内容分别单独地举例而进行说明。
(1)本实施方式所涉及的发光装置是一种沿主面的法线方向以及相对于该法线方向倾斜的倾斜方向中的至少任一者的方向输出形成光学图像的光的发光装置,具备用于将1次光和-1次光中的一方的光相对于另一方的光进行减光的构造。即,该发光装置作为其一个方式,具备:基板,其具有主面;发光部,其设置于基板上;相位调制层,其在与发光部光学耦合的状态下设置于基板上。相位调制层包含基本层、以及具有与基本层的折射率不同的折射率的多个不同折射率区域。在正交于法线方向的相位调制层的设计面上,多个不同折射率区域根据用于形成光学图像的配置图案,配置于基本层中的规定位置。
特别地,在该发光装置中,多个不同折射率区域与其周围的层的界面的至少一部分相对于主面倾斜。具体地,多个不同折射率区域的各个具有由面对主面的第一面、相对于该第一面而位于主面的相反侧的第二面、以及连接第一面和所述第二面的侧面规定的立体形状。在该情况下,在多个不同折射率区域各自的立体形状中,第一面、第二面以及侧面中的至少任一者包含相对于主面倾斜的部分。该倾斜部分可以是对象面的整体,或者,也可以是一部分区域。此外,“相对于主面倾斜的部分(面整体或面的一部分)”不包含相对于主面或法线方向正交的部分、以及平行于主面和该主面的法线方向的部分中的任一者。换言之,在以主面为基准的情况下,相对于该主面平行的部分以及相对于该主面垂直的部分这两者从“相对于主面倾斜的部分”中排除。
如上所述,在各不同折射率区域与其周围的层的界面的至少一部分相对于主面及该主面的法线方向倾斜的情况下,沿平行于主面的面(行进面)在相位调制层内行进的光在界面的至少一部分上沿与该行进面交叉的方向散射或反射。此时,在行进面上向互相反向行进的两个光(1次光和-1次光),在向互相不同的方向的散射的大小中产生差,或者,在向互相不同的方向的反射的大小中产生差。即,1次光(或-1次光)朝向基板较强地散射(或反射),-1次光(或1次光)朝向基板的相反侧较强地散射(或反射)。在包含1次光作为主要分量的光和包含-1次光作为主要分量的光中,由于向装置外部输出为止的光路不同,因此,光路变长的一方的光与光路变短的一方的光相比更加衰减。因此,根据该发光装置,能够将1次光和-1次光中的一方的光相对于另一方的光进行减光。此外,在1次光和-1次光中,考虑如上所述由在相位调制层内的行进面(相对于主面平行的面)上互相反向地行进的光引起的分量和由向单一方向行进的光引起的分量(根据相位调制方式(不同折射率区域的位置的确定方法)或相位调制量(不同折射率区域的偏移量)较少的情况等,由理想的相位分布与相对于实际的光波产生的相位分布的差所产生)的2个。但是,在本说明书中,设为抑制前者的分量(互相反向地行进的光分量的一方)。
(2)作为本实施方式的一个方式,也可以为:多个不同折射率区域分别是由所述基本层、以及与所述基本层接触的一个或一个以上的层(例如,包覆层或活性层等)规定的密闭空间。此外,在应当成为不同折射率区域的密闭空间,也可以封入有氩气等不活泼气体、氮气、氢气或者空气。在相位调制层的设计面上,优选多个不同折射率区域分别具有沿该设计面上的第一方向的宽度沿与第一方向交叉的第二方向逐渐减小的平面形状。在该情况下,当在相位调制层上再次生长其它的半导体层(例如包覆层)时,该半导体层与不同折射率区域的界面相对于基板的主面倾斜。因此,能够容易地实现多个不同折射率区域与其周围的层的界面的至少一部分相对于主面倾斜的结构。另外,作为本实施方式的一个方式,在多个不同折射率区域分别为密闭空间的情况下,第一面的至少一部分也可以相对于第二面倾斜。当满足这样的第一面和第二面的位置关系的状态下,侧面也可以包含相对于主面倾斜的部分(倾斜部)。
(3)作为多个不同折射率区域的配置的一个例子,例如,当在垂直于相位调制层的厚度方向(与法线方向一致)的面(相位调制层的设计面)上设定了假想的正方晶格时,多个不同折射率区域各自的重心位置配置于通过假想的正方晶格的对应的晶格点的直线、即相对于正方晶格倾斜的直线上。此时,不同折射率区域各自的重心与对应的晶格点的距离对应于光学图像个别地设定。根据这样的构造,与上述专利文献1所记载的构造(各不同折射率区域的重心在各晶格点周围具有对应于光学图像的旋转角度的构造)同样地,沿相对于基板的主面的法线方向倾斜的倾斜方向能够输出形成任意形状的光学图像的光。
更具体地,作为本实施方式的一个方式,在相位调制层的设计面上,多个不同折射率区域分别以与假想的正方晶格的任一晶格点一对一对应的方式配置。但是,不需要相对于所有的晶格点分配对应的不同折射率区域。因此,在本说明书中,将构成假想的正方晶格的晶格点中的任一不同折射率区域所关联的晶格点记为“有效晶格点”。在由此规定的多个有效晶格点中,优选连结任意的特定晶格点与关联于该特定晶格点的特定不同折射率区域的重心的线段分别相对于连结相对于特定晶格点以最短距离邻接的多个周边晶格点和分别关联于该多个周边晶格点的多个周边不同折射率区域的重心的线段平行。
此外,作为本实施方式的一个方式,在多个有效晶格点中,也可以为:连结任意的特定晶格点与关联于该特定晶格点的特定不同折射率区域的重心的线段分别相对于连结除了特定晶格点的其余的有效晶格点和分别关联于该其余的有效晶格点的其余的不同折射率区域的线段平行。在该情况下,可以容易地进行不同折射率区域各自的重心配置的设计。另外,倾斜角度(以晶格点为起点的线段中的平行于正方晶格的线段的任一者与通过该晶格点的上述直线所成的角度)也可以是除了0°、90°、180°和270°以外的角度。此外,倾斜角度也可以是45°、135°、225°或者315°。通过这样的角度设定,沿正方晶格行进的四个基波(在设定了沿正方晶格的X轴和Y轴时的情况下,沿X轴正方向行进的光、沿X轴负方向行进的光、沿Y沿正方向行进的光、以及沿Y轴负方向行进的光)可以均等地有助于光学图像。此外,当上述倾斜角度为0°、90°、180°或者270°时,上述直线对应于正方晶格的X轴或者Y轴。例如在倾斜角度为0°或180°且上述直线沿X轴的情况下,由于四个基波中的在Y轴方向相对的两个行波不受到相位调制,因此对信号光无贡献。另外,在倾斜角度为90°或270°且上述直线沿Y轴的情况下,在X轴方向相对的两个行波对信号光无贡献。因此,在倾斜角为0°、90°、180°或者270°的情况下,信号光的生成效率会降低。
(4)作为本实施方式的一个方式,发光部优选为设置于基板上的活性层。在该情况下,发光部与相位调制层可以容易地光耦合。
(5)本实施方式所涉及的发光装置的制造方法制造具备如上所述的构造的发光装置。具体地,该制造方法作为其一个方式,包含:第一工序,其在基板上设置基本层;以及第二工序,其通过干蚀刻,将应当成为多个不同折射率区域的多个空位或凹部形成于基本层。特别地,在第二工序中,干蚀刻从相对于基板的主面的法线方向倾斜的方向对基本层施加蚀刻反应气体。根据该制造方法,多个空位或凹部的侧面相对于基板的主面的法线方向倾斜。因此,可以容易地实现多个不同折射率区域与其周围的层的界面的至少一部分相对于主面或该主面的法线方向倾斜的结构。
(6)另外,本实施方式所涉及的发光装置的制造方法,作为其一个方式,也可以包含:第一工序,其在基板上设置基本层;第二工序,其通过干蚀刻,将应当成为多个不同折射率区域的多个空位或凹部形成于基本层;以及第三工序,其将堵塞形成于基本层的多个空位或凹部的开口部分的盖层形成于该基本层上。在该情况下,优选在第三工序中,用于形成盖层的原料气体从相对于基板的主面的法线方向倾斜的方向施加于基本层。根据该制造方法,在第三工序中,覆盖多个空位或凹部的开口部分的盖层的面相对于基板的主面倾斜。因此,可以容易地实现多个不同折射率区域与其周围的层的界面的至少一部分相对于主面或该主面的法线方向倾斜的结构。
(7)作为本实施方式的一个方式,用于形成多个空位或凹部的蚀刻反应气体被供给的方向也可以与原料气体被供给的方向不同。
如上所述,在[本申请发明的实施方式的说明]一栏中列举的各方式能够适用于其余的所有方式的各个、或者这些其余的方式的所有的组合。
[本申请发明的实施方式的细节]
以下,参照附图对本发明所涉及的发光装置及其制造方法的具体的结构进行详细的说明。另外,本发明并不限定于这些例示,而是意图包含由权利要求的范围表示且与权利要求的范围等同的意思和范围内的所有的变更。另外,在附图的说明中,对相同的要素标注相同的符号,省略重复的说明。
以下,参照附图对本发明的发光装置及其制造方法的实施方式进行详细的说明。另外,在附图的说明中,对相同的要素标注相同的符号,省略重复的说明。
(第一实施方式)
图1是示出作为本发明的第一实施方式所涉及的发光装置的半导体发光元件1A的结构的立体图。此外,定义将通过半导体发光元件1A的中心且沿半导体发光元件1A的厚度方向延伸的轴设为Z轴的XYZ正交坐标系。半导体发光元件1A是形成沿X-Y平面的驻波,且沿Z轴方向输出经相位控制的平面波的S-iPM激光器,如后面所述,沿垂直于半导体基板10的主面10a的方向(即Z轴方向)或相对于其倾斜的方向、或其两者,输出二维的任意形状的光学图像。
图2是示意性地示出半导体发光元件1A的层叠构造的图。如图1和图2所示,半导体发光元件1A具备:设置于半导体基板10的主面10a上的作为发光部的活性层12;设置于主面10a上且夹持活性层12的一对包覆层11、13;以及设置于包覆层13上的接触层14。这些半导体基板10和各层11~14由例如GaAs类半导体、InP类半导体、或者氮化物类半导体等的化合物半导体构成。包覆层11的能带隙和包覆层13的能带隙比活性层12的能带隙大。半导体基板10和各层11~14的厚度方向与Z轴方向一致。此外,光引导层也可以包含用于有效地将载流子关入到活性层12的载流子势垒层。
半导体发光元件1A还包含与活性层12光学耦合的相位调制层15A。在本实施方式中,相位调制层15A设置于活性层12和包覆层13之间。根据需要,也可以在包覆层11和包覆层13之间设置有光引导层。相位调制层15A的厚度方向与Z轴方向一致。
如图3所示,相位调制层15A也可以设置于包覆层11和活性层12之间。根据需要,也可以在包覆层11和包覆层13之间设置有光引导层。
如图2所示,相位调制层15A包含基本层15a、存在于该基本层15a内的多个不同折射率区域15b。基本层15a由第一折射率介质构成,并且多个不同折射率区域15b的各个由具有与第一折射率介质的折射率不同的折射率的第二折射率介质构成。本实施方式的不同折射率区域15b由设置于基本层15a内的凹部规定。在凹部内,也可以封入有氩气、氮气、氢气等不活泼气体或者空气。此外,不同折射率区域15b也可以是设置于基本层15a内的空位。另外,多个不同折射率区域15b包含大致周期构造。在将相位调制层15A的有效折射率设定为n的情况下,相位调制层15A所选择的波长λ0(=a×n,a为晶格间隔)包含于活性层12的发光波长范围内。相位调制层15A可以选择活性层12的发光波长中的波长λ0并输出至外部。输入于相位调制层15A内的光在相位调制层15A内形成对应于不同折射率区域15b的配置的规定的模式,并且作为具有期望的图案的激光光束,从半导体发光元件1A的背面输出至外部。
各不同折射率区域15b具有与基本层15a的折射率界面以及与包覆层13的折射率界面。于是,各不同折射率区域15b与其周围的层的折射率界面的至少一部分(规定各不同折射率区域15b的立体形状的面的至少一部分)相对于主面10a(平行于X-Y平面的面)和主面10a的法线方向(Z轴方向)倾斜。
在本实施方式中,各不同折射率区域15b的底面(面对主面10a的第一面)和侧面构成与基本层15a的折射率界面。各不同折射率区域15b的上表面(相对于第一面位于主面10a的相反侧的第二面)构成与包覆层13的折射率界面。各不同折射率区域15b的底面垂直于相位调制层15A的厚度方向(相对于X-Y平面平行)。另外,各不同折射率区域15b的侧面沿着垂直于主面10a的方向(Z轴方向)。另一方面,各不同折射率区域15b的上表面(即,与包覆层13的折射率界面)的一部分或全部相对于主面10a(相对于X-Y平面平行)和垂直于主面10a的方向(Z轴方向)倾斜。上表面的倾斜方向在多个不同折射率区域15b中互相一致。这样的上表面的形状通过包覆层13的一部分进入不同折射率区域15b的凹部内,或者,不同折射率区域15b的一部分进入包覆层13内来实现。
半导体发光元件1A还具备设置于接触层14上的电极16和设置于半导体基板10的背面10b上的电极17。电极16与接触层14欧姆接触,电极17与半导体基板10欧姆接触。此外,电极17具有开口17a。电极16设置于接触层14的中央区域。接触层14上的电极16以外的部分被保护膜18(参照图2)覆盖。此外,也可以去除不与电极16接触的接触层14。半导体基板10的背面10b中的电极17以外的部分(包含开口17a内)被反射防止膜19覆盖。也可以去除处于开口17a以外的区域的反射防止膜19。
当对电极16和电极17之间供给驱动电流时,在活性层12内发生电子与空穴的再结合,并且在活性层12内产生光。有助于该发光的电子和空穴、以及产生的光被有效地关入到包覆层11和包覆层13之间。
从活性层12输出的光进入相位调制层15A的内部,并且形成对应于形成于相位调制层15A内的晶格构造的规定的模式。从相位调制层15A输出的激光直接地从背面10b通过开口17a输出至半导体发光元件1A的外部,或者在电极16被反射,随后从背面10b通过开口17a输出至半导体发光元件1A的外部。此时,激光所包含的0次光向垂直于主面10a的方向(法线方向)输出。相对于此,激光所包含的信号光(1次光和-1次光)向包含垂直于主面10a的方向和相对于其倾斜的方向的二维的任意方向输出。形成期望的光学图像的是信号光。
作为一个例子,半导体基板10是GaAs基板,并且包覆层11、活性层12、包覆层13、接触层14和相位调制层15A分别是由III族元素和V族元素构成的化合物半导体层。具体地,例如,包覆层11由AlGaAs构成。活性层12具有多量子阱结构(势垒层:AlGaAs/阱层:InGaAs)。在相位调制层15A中,基本层15a由GaAs构成,并且不同折射率区域15b是凹部或空位。包覆层13由AlGaAs构成,接触层14由GaAs构成。
在AlGaAs中,可以通过改变Al的组成比,容易地改变能带隙和折射率。在AlxGa1- xAs中,当使相对地原子半径小的Al的组成比x减少(增加)时,与此正相关的能带隙变小(变大)。另外,当使原子半径大的In混入于GaAs而设为InGaAs时,能带隙变小。即,包覆层11、13的Al组成比比活性层12的势垒层(AlGaAs)的Al组成比大。包覆层11、13的Al组成比例如被设定为0.2~1.0(例如0.4)。活性层12的势垒层的Al组成比设定为例如0~0.3(例如0.15)。
此外,在从半导体发光元件1A输出的相当于光学图像的光束图案中,存在具有网眼状的暗部的噪声光重叠的情况。根据发明人们的研究,具有该网眼状的暗部的噪声光由在半导体发光元件1A的内部的层叠方向的高次模式引起。在此,层叠方向的基本模式是指,遍及包含活性层12且被包覆层11和包覆层13夹持的区域而具有存在一个峰的强度分布的模式。另外,高次模式是指,具有存在两个以上的峰的强度分布的模式。此外,基本模式的强度分布的峰形成于活性层12附近,相对于此,高次模式的强度分布的峰也形成于包覆层11、包覆层13、接触层14等。另外,作为层叠方向的模式存在波导模式和泄漏模式,但是泄漏模式未稳定地存在。因此,在以下的说明中仅着眼于波导模式。另外,在波导模式中,具有在沿X-Y平面的方向存在电场向量的TE模式和在垂直于X-Y平面的方向上存在电场向量的TM模式,但是此处仅着眼于TE模式。当活性层12与接触层之间的包覆层13的折射率比活性层12与半导体基板之间的包覆层11的折射率大时,如上所述的高次模式显著地发生。通常,活性层12以及接触层14的折射率明显地大于包覆层11、13的折射率。因此,当包覆层13的折射率比包覆层11的折射率大时,在包覆层13,光也被关入,形成波导模式。由此,产生高次模式。
在本实施方式的半导体发光元件1A中,包覆层13的折射率为包覆层11的折射率以下。由此,抑制了如上所述的高次模式的产生,并且能够降低重叠于光束图案的具有网眼状的暗部的噪声光。
此处,对包含活性层12的光波导层的适合的厚度进行说明。作为前提,在相位调制层15A的折射率比包覆层11的折射率小的情况下,光波导层作为仅包含活性层12的层(光波导层不包含包覆层11、包覆层13和相位调制层15A),被视为由这样的光波导层、以及邻接于该光波导层的上下2层构成的3层平板波导构造。另一方面,在相位调制层15A的折射率为包覆层11的折射率以上的情况下,光波导层作为包含相位调制层15A和活性层12的层(不包含包覆层11和包覆层13),被视为由这样的光波导层、以及邻接于该光波导层的上下2层构成的3层平板波导构造。此外,层厚方向的波导模式设为TE模式。此时,光波导层的标准化波导宽度V1和TE模式的标准化传播常数b由以下的式(1)规定。
[式1]
Figure BDA0004075853380000151
然而,当波导模式形成于光波导层时(模式次数为N1),为了不使波导模式经包覆层11泄漏于半导体基板10,TE模式的等效折射率需要比包覆层11的折射率高,并且标准化传播常数b需要满足以下的式(2)。
[式2]
Figure BDA0004075853380000152
此时,如果在满足上述式(1)和式(2)的标准化波导宽度V1的解仅为一个的范围内,则对光波导层进行导波的模式是单一的。a’、b分别表示3层平板波导中的不对称参数和标准化传播常数,并且是分别满足以下的式(3)和式(4)的实数。此外,在式(3)和式(4)中,nclad是包覆层11的折射率,n1是包含活性层12的光波导层的折射率,n2是邻接于光波导层的层中的折射率高的层的折射率、n3是邻接于光波导层的层中的折射率低的层的折射率,neff是对于由光波导层和邻接于光波导层的上下2层构成的3层平板波导构造的TE模式的等效折射率。
[式3]
Figure BDA0004075853380000153
[式4]
Figure BDA0004075853380000161
根据发明人们的研究,可知在包含活性层12的光波导层(高折射率层)中也产生高次模式。于是,发明人们发现了,通过适当地控制光波导层的厚度和折射率,可以抑制高次模式。即,通过使光波导层的标准化波导宽度V1的值满足上述的条件,可以进一步抑制高次模式的产生,并且可以更进一步降低重叠于光束图案的具有网眼状的暗部的噪声光。
接触层14的优选厚度如下所述。即,在由接触层14和邻接于接触层14的上下2层构成的3层平板波导构造中,标准化波导宽度V2和TE模式的标准化传播常数b由以下的式(5)规定。
[式5]
Figure BDA0004075853380000162
然而,当波导模式形成于接触层时(模式次数为N2),为了不使波导模式经包覆层11泄漏于半导体基板10,TE模式的等效折射率需要比包覆层11的折射率高,并且标准化传播常数b需要满足以下的式(6)。
[式6]
Figure BDA0004075853380000163
此时,如果在满足上述式(5)和式(6)的标准化波导宽度V2无解的范围内,则对接触层14进行导波的模式连基本模式都不存在。
a’、b分别表示3层平板波导中的不对称参数和标准化传播常数,并且是分别满足以下的式(7)和式(8)的实数。此外,在式(7)和式(8)中,n4是接触层14的折射率,n5是邻接于接触层14的层中的折射率高的层的折射率、n6是邻接于接触层14的层中的折射率低的层的折射率,neff是对于由接触层14和邻接的上下2层构成的3层平板波导构造的TE模式的等效折射率。
[式7]
Figure BDA0004075853380000171
[式8]
Figure BDA0004075853380000172
如上所述,通过适当地控制接触层14的厚度,可以抑制由接触层14引起的波导模式的产生,并且可以进一步抑制发生于半导体发光元件中的高次模式的产生。
作为另一例子,半导体基板10是InP基板,并且包覆层11、活性层12、相位调制层15A、包覆层13和接触层14例如由InP类化合物半导体构成。具体地,例如,包覆层11由InP构成。活性层12具有多量子阱结构(势垒层:GaInAsP/阱层:GaInAsP)。在相位调制层15A中,基本层15a由GaInAsP构成,不同折射率区域15b是凹部(也可以是空位)。包覆层13由InP构成。接触层14由GaInAsP构成。
另外,作为又一例子,半导体基板10是GaN基板,并且包覆层11、活性层12、相位调制层15A、包覆层13和接触层14例如由氮化物类化合物半导体构成。具体地,例如,包覆层11由AlGaN构成。活性层12具有多量子阱结构(势垒层:InGaN/阱层:InGaN)。在相位调制层15A中,基本层15a由GaN构成,不同折射率区域15b是凹部(也可以是空位)。包覆层13由AlGaN构成。接触层14由GaN构成。
对包覆层11赋予与半导体基板10相同的导电类型,对包覆层13和接触层14赋予与半导体基板10相反的导电类型。作为一个例子,半导体基板10和包覆层11为n型,包覆层13和接触层14为p型。相位调制层15A在设置于活性层12和包覆层11之间的情况下,具有与半导体基板10相同的导电类型。另一方面,相位调制层15A在设置于活性层12和包覆层13之间的情况下,具有与半导体基板10相反的导电类型。此外,杂质浓度例如为1×1017~1×1021/cm3。活性层12是没有有意地添加任意的杂质的本征(i型),其杂质浓度为1×1015/cm3以下。另外,对于相位调制层15A的杂质浓度,在需要抑制由经由杂质等级的光吸收造成的损失的影响的情况等下,也可以设为本征(i型)。
半导体基板10的厚度例如为150μm。包覆层11的厚度例如为2000nm。活性层12的厚度例如为175nm。相位调制层15A的厚度例如为280nm。不同折射率区域15b的深度例如为200nm。包覆层13的厚度例如为2000nm。接触层14的厚度例如为150nm。
反射防止膜19例如由硅氮化物(例如SiN)、硅氧化物(例如SiO2)等的电介质单层膜、或者电介质多层膜构成。作为电介质多层膜,例如,可以使用层叠了选自氧化钛(TiO2)、二氧化硅(SiO2)、一氧化硅(SiO)、氧化铌(Nb2O5)、五氧化钽(Ta2O5)、氟化镁(MgF2)、氧化钛(TiO2)、氧化铝(Al2O3)、氧化铈(CeO2)、氧化铟(In2O3)、氧化锆(ZrO2)等的电介质层组中的2种以上的电介质层的膜。例如,以相对于波长λ的光的光学膜厚,层叠λ/4的厚度的膜。另外,保护膜18例如是硅氮化物(例如SiN)、硅氧化物(例如SiO2)等的绝缘膜。在半导体基板10和接触层14由GaAs类半导体构成的情况下,电极16可以由包含Cr、Ti、和Pt中的至少一种、以及Au的材料构成,例如,具有Cr层和Au层的层叠构造。电极17可以由包含AuGe和Ni中的至少一种、以及Au的材料构成,例如具有AuGe层和Au层的层叠构造。此外,电极16、17的材料不限于这些范围,只要可以实现欧姆结合即可。
图4是相位调制层15A的俯视图。如上所述,相位调制层15A包含基本层15a和不同折射率区域15b。基本层15a由第一折射率介质构成,不同折射率区域15b由具有与第一折射率介质的折射率不同的折射率的第二折射率介质构成。在此,在相位调制层15A中,在与X-Y平面一致的相位调制层15A的设计面上设定有假想的正方晶格。正方晶格的一边与X轴平行,另一边与Y轴平行。此时,以正方晶格的晶格点O为中心的正方形状的单位构成区域R可以遍及沿X轴的多列和沿Y轴的多行而二维状地设定。此时,以正方晶格的晶格点O为中心的正方形状的单位构成区域R可以遍及沿X轴并列地排列的多列(x1~x4)和沿Y轴并列地排列的多行(y1~y3)而二维状地设定。当将各个单位构成区域R的坐标以各个单位构成区域R的重心位置来赋予时,该重心位置与假想的正方晶格的晶格点O一致。不同折射率区域15b在各单位构成区域R内各一个地设置。晶格点O可以位于不同折射率区域15b的外部,也可以被包含于不同折射率区域15b的内部。
此外,多个不同折射率区域15b各自的平面形状是在X-Y平面上某一方向的宽度沿与该方向交叉的方向逐渐变窄的形状。在图4中,作为这一形状的例子,示出了三角形形状。即,是宽度从某一边朝向与该边相对的顶点逐渐变窄的形状。该三角形例如是等腰三角形。如图2和图3所示,在本实施方式中,由不同折射率区域15b和包覆层11以及活性层12中的至少任一者规定的折射率界面相对于主面10a(X-Y平面)和相对于主面10a垂直的方向(Z轴方向)倾斜。该倾斜方向与从某一边朝向与该边相对的顶点的方向一致。该方向在多个不同折射率区域15b中互相一致。在一个例子中,该方向与X轴方向所成的角度为45°或135°。
此外,将在一个单位构成区域R内所占的不同折射率区域15b的面积SA的比率称为填充系数(FF)。当将正方晶格的晶格间隔设定为a时,不同折射率区域15b的填充系数FF被赋予为SA/a2。SA是X-Y平面中的不同折射率区域15b的面积,例如,在三角形形状的情况下,使用某一边的长度LA以及与该一边相对的顶点与该一边的距离h而作为SA=LA·h/2来赋予。正方晶格的晶格间隔a为波长除以等效折射率的程度,例如设定为300nm左右。
图5是示出相位调制层15A中的不同折射率区域15b的位置关系的图。如图5所示,各不同折射率区域15b的重心G配置于直线D上。直线D是通过单位构成区域R(x,y)的对应的晶格点O(x,y)且相对于正方晶格的各边倾斜的直线。换言之,直线D是相对于规定单位构成区域R(x,y)的s轴(平行于X轴)和t轴(平行于Y轴)两者倾斜的直线。相对于s轴的直线D的倾斜角度(以晶格点为起点的s轴的一部分为基准的倾斜角度)为θ。倾斜角度θ在相位调制层15A内是一定的(相位调制层15A内的一部分也可以是一定的)。另外,倾斜角度θ满足0°<θ<90°,并且在一个例子中,θ=45°。另外,倾斜角度θ满足180°<θ<270°,并且在一个例子中,θ=225°。在倾斜角度θ满足0°<θ<90°或180°<θ<270°的情况下,直线D从由s轴和t轴规定的坐标平面的第一象限跨至第三象限而延伸。或者,倾斜角度θ满足90°<θ<180°,并且在一个例子中,θ=135°。或者,倾斜角度θ满足270°<θ<360°,并且在一个例子中,θ=315°。在倾斜角度θ满足90°<θ<180°或270°<θ<360°的情况下,直线D从由s轴和t轴规定的坐标平面的第二象限跨至第四象限而延伸。这样,倾斜角度θ是除了0°、90°、180°和270°以外的角度。在此,将晶格点O(x,y)与重心G的距离设定为r(x,y)。x表示X轴上的第x个晶格点的位置,y表示Y轴上的第y个晶格点的位置。在距离r(x,y)为正的值的情况下,重心G位于第一象限(或第二象限)。在距离r(x,y)为负的值的情况下,重心G位于第三象限(或第四象限)。在距离r(x,y)为0的情况下,晶格点O和重心G互相一致。
如图5所示,各不同折射率区域15b的重心G与单位构成区域R(x,y)的对应的晶格点O(x,y)的距离r(x,y)对应于光束图案(光学图像)而个别地设定于每个不同折射率区域15b。即,距离r(x,y)的分布在由x(在图4的例子中x1~x4)和y(在图4的例子中y1~y3)的值确定的每个位置具有特定的值,但是不限于一定由特定的函数来表示。距离r(x,y)的分布由提取对输出光束图案进行傅里叶逆变换所得到的复振幅分布中的相位分布来确定。即,在下述的单位构成区域R(x,y)中的相位P(x,y)为P0的情况下,距离r(x,y)被设定为0,在相位P(x,y)为π+P0的情况下,距离r(x,y)被设定为最大值R0,并且在相位P(x,y)为-π+P0的情况下,距离r(x,y)被设定为-R0。于是,相对于其中间的相位P(x,y),以使r(x,y)={P(x,y)-P0}×R0/π的方式设定距离r(x,y)。在此,初始相位P0可以任意设定。当将正方晶格的晶格间隔设定为a时,r(x,y)的最大值R0例如为以下的式(9)的范围。
[式9]
Figure BDA0004075853380000201
此外,在从输出光束图案求出复振幅分布时,通过应用通常在全息图生成的计算时所使用的Gerchberg-Saxton(GS)法那样的重复算法,光束图案的再现性提高。
图6是示出仅在相位调制层的特定区域内应用了图4的折射率大致周期构造的例子的俯视图。在图6所示的例子中,与图4所示的例子同样地,在正方形的内侧区域RIN的内部形成有用于输出期望的光束图案的大致周期构造。另一方面,在包围内侧区域RIN的外侧区域ROUT,在正方晶格的晶格点位置,配置有重心位置一致的正圆形的不同折射率区域。在内侧区域RIN和外侧区域ROUT,设定为假想的正方晶格的晶格间隔互相相同(=a)。在该构造的情况下,由于光也分布于外侧区域ROUT内,因此可以抑制在内侧区域RIN的周边部通过光强度急剧变化所产生的高频噪声(所谓的窗函数噪声)的产生。另外,可以抑制向平行于X-Y平面的方向的光泄漏,并且可以期待阈值电流的降低。
图7是用于说明来自半导体发光元件1A的输出光束图案(光学图像)与相位调制层15A中的距离的分布的关系的图。之后对细节进行描述,但考虑将作为输出光束图案的投影范围的光束投影区域转换至波数空间上所得到的Kx-Ky平面。规定该Kx-Ky平面的Kx轴和Ky轴互相正交,并且分别关联于将输出光束图案的投影方向从主面10a的法线方向(Z轴方向)转向该主面10a的面内方向时的相对于该法线方向的角度(细节在之后说明)。在该Kx-Ky平面上,包含输出光束图案的特定区域设为分别由正方形形状的M2(1以上的整数)×N2(1以上的整数)个图像区域FR构成。另外,设定于相位调制层15A的设计面(X-Y平面)上的假想的正方晶格由M1(1以上的整数)×N1(1以上的整数)单位构成区域R构成。此外,整数M2不需要与整数M1一致。同样地,整数N2不需要与整数N1一致。此时,将由Kx轴方向的坐标分量kx(0以上且M2-1以下的整数)与Ky轴方向的坐标分量ky(0以上且N2-1以下的整数)所特定的Kx-Ky平面上的图像区域FR(kx,ky)分别二维傅里叶逆变换为由X轴方向的坐标分量x(1以上且M1以下的整数)与Y轴方向的坐标分量y(1以上且N1以下的整数)所特定的单位构成区域R(x,y)的、单位构成区域R(x,y)中的复振幅F(x,y)由振幅项A(x,y)和相位项P(x,y)规定。另外,如图7所示,在坐标分量x=1~M1和y=1~N1的范围内,单位构成区域R(x,y)的复振幅F(x,y)中的振幅项A(x,y)的分布相当于X-Y平面上的振幅分布。另外,在x=1~M1且y=1~N1的范围内,单位构成区域R(x,y)的复振幅F(x,y)中的相位项P(x,y)的分布相当于X-Y平面上的相位分布。单位构成区域R(x,y)中的距离r(x,y)从P(x,y)得到,并且在坐标分量x=1~M1和y=1~N1的范围内,单位构成区域R(x,y)的距离r(x,y)的分布相当于X-Y平面上的距离分布。
此外,Kx-Ky平面上的输出光束图案的中心Q位于相对于主面10a垂直的轴线上,并且图7示出了以中心Q为原点的四个象限。在图7中,作为一个例子示出了在第一象限和第三象限中获得光学图像的情况,但是也可以在第二象限和第四象限或所有象限中获得图像。在本实施方式中,如图7所示,获得关于原点点对称的图案。图7作为一个例子,示出了在第三象限中获得文字“A”、在第一象限中获得将文字“A”旋转180°后的图案的情况。此外,在为旋转对称的光学图像(例如,十字、圆、双重圆等)的情况下,重叠并作为一个光学图像被观察。
半导体发光元件1A的输出光束图案(光学图像)是对应于以光点(spot)、由3点以上构成的光点组、直线、十字架、线条画、晶格图案、照片、条纹图案、CG(计算机图形)、以及文字中的至少一种来表现的设计上的光学图像(原图像)的光学图像。在此,为了获得输出光束图案所期望的光学图像,通过以下的顺序来确定相位调制层15A的不同折射率区域15b的距离r(x,y)的分布。
首先,作为第一前提条件,在XYZ正交坐标系中,在X-Y平面上,设定由分别具有正方形形状的M1(1以上的整数)×N1(1以上的整数)的单位构成区域R构成的假想的正方晶格。接下来,作为第二前提条件,XYZ正交坐标系中的坐标(ξ,η,ζ)如图8所示设为相对于由动径的长度d1、自Z轴起的倾斜角θtilt、X-Y平面上特定的自X轴起的旋转角θrot规定的球面坐标(d1,θtiltrot),满足由以下的式(10)~式(12)所表示的关系的坐标。此外,图8是用于说明从球面坐标(d1,θtiltrot)向XYZ正交坐标系中的坐标(ξ,η,ζ)的坐标转换的图,并且通过坐标(ξ,η,ζ),表现了作为实空间的XYZ正交坐标系中所设定的规定平面上的设计上的光学图像。当将相当于从半导体发光元件输出的光学图像的光束图案设为朝向由角度θtilt和θrot所规定的方向的亮点的集合时,角度θtilt和θrot设为换算成由以下的式(13)所规定的标准化波数、即对应于X轴的Kx轴上的坐标值kx、以及由以下的式(14)所规定的标准化波数、即对应于Y轴且正交于Kx轴的Ky轴上的坐标值ky。标准化波数是指将相当于假想的正方晶格的晶格间隔的波数设为1.0而标准化的波数。此时,在由Kx轴和Ky轴所规定的波数空间中,包含相当于光学图像的光束图案的特定的波数范围由分别为正方形形状的M2(1以上的整数)×N2(1以上的整数)个图像区域FR构成。此外,整数M2不需要与整数M1一致。同样地,整数N2不需要与整数N1一致。另外,式(13)和式(14)例如在以下的文献(1)中记载。
(1)Y.Kurosaka et al.,“Effects of non-lasing band in two-dimensionalphotonic-crystal lasers clarified using omnidirectional band structure,”Opt.Express 20,21773-21783(2012)
[式10]
ξ=d1sinθtiltcosθrot……(10)
[式11]
η=d1sinθtiltsinθrot……(11)
[式12]
ζ=d1cosθtilt……(12)
[式13]
Figure BDA0004075853380000231
[式14]
Figure BDA0004075853380000241
a:假想的正方晶格的晶格常数
λ:振荡波长
作为第三前提条件,在波数空间中,将由Kx轴方向的坐标分量kx(0以上且M2-1以下的整数)和Ky轴方向的坐标分量ky(0以上且N2-1以下的整数)所特定的图像区域FR(kx,ky)分别二维傅里叶逆变换为由X轴方向的坐标分量x(1以上且M1以下的整数)与Y轴方向的坐标分量y(1以上且N1以下的整数)所特定的X-Y平面上的单位构成区域R(x,y)所得到的复振幅F(x,y),以j为虚部,由以下的式(15)赋予。另外,该复振幅F(x,y)在将振幅项设为A(x,y)且将相位项设为P(x,y)时,由以下的式(16)规定。再有,作为第四前提条件,单位构成区域R(x,y)由分别平行于X轴和Y轴并且在作为单位构成区域R(x,y)的中心的晶格点O(x,y)正交的s轴和t轴规定。
[式15]
Figure BDA0004075853380000242
[式16]
F(x,y)=A(x,y)×exp[jP(x,y)]……(16)
在上述第一~第四前提条件下,相位调制层15A以满足以下的条件的方式构成。即,以从晶格点O(x,y)至对应的不同折射率区域15b的重心G为止的距离r(x,y)满足以下关系:
r(x,y)=C×(P(x,y)-P0)
C:比例常数,例如R0
P0:任意常数,例如0
的方式,该对应的不同折射率区域15b配置于单位构成区域R(x,y)内。即,距离r(x,y)在某一坐标(x,y)处的相位P(x,y)为P0的情况下被设定为0,在相位P(x,y)为π+P0的情况下被设定为最大值R0,在相位P(x,y)为-π+P0的情况下被设定为最小值-R0。在要得到期望的图像的情况下,对该光学图像进行傅里叶逆变换,可以将对应于其复振幅的相位P(x,y)的距离r(x,y)的分布赋予多个不同折射率区域15b。相位P(x,y)和距离r(x,y)可以互相成比例。
此外,激光光束的傅里叶变换后的远场图像可以采取单一或者多个光点形状、圆环形状、直线形状、文字形状、双重圆形状、或者拉盖尔-高斯光束形状等各种形状。由于可以控制光束方向,因此通过将半导体发光元件1A一维或二维地阵列化,可以实现例如电气地进行高速扫描的激光加工机。此外,由于光束图案由远场中的角度信息表示,因此在作为目标的光束图案是由二维的位置信息表示的位图图像等的情况下,一旦转换成角度信息,则可以在转换成其波数空间之后进行傅里叶逆变换。
作为从傅里叶逆变换所得到的复振幅分布获得振幅分布和相位分布的方法,例如对于振幅分布A(x,y),可以通过使用MathWorks公司的数值解析软件“MATLAB”的abs函数来进行计算,并且对于相位分布P(x,y),可以通过使用MATLAB的angle函数来进行计算。
此处,对当从光学图像的傅里叶逆变换结果求得相位分布P(x,y)并且确定各不同折射率区域15b的距离r(x,y)时,使用一般的离散傅里叶变换(或快速傅里叶变换)进行计算的情况的留意点进行描述。作为期望的光学图像的通过由图9的(a)的傅里叶逆变换所得到的复振幅分布计算出的输出光束图案如图9的(b)所示。如图9的(a)和图9的(b)所示当分别分割成A1、A2、A3和A4四个象限时,在图9的(b)的输出光束图案的第一象限中,出现了将图9的(a)的第一象限的图案旋转180度后的图案与图9的(a)的第三象限的图案的重叠图案。在光束图案的第二象限中,出现了将图9的(a)的第二象限的图案旋转180度后的图案与图9的(a)的第四象限的图案的重叠图案。在光束图案的第三象限中,出现了将图9的(a)的第三象限的图案旋转180度后的图案与图9的(a)的第一象限的图案的重叠图案。在光束图案的第四象限中,出现了将图9的(a)的第四象限的图案旋转180度后的图案与图9的(a)的第二象限的图案的重叠图案。此时,旋转180度后的图案是根据-1次光分量的图案。
因此,在作为傅里叶变换前的光学图像(原图像)使用仅在第一象限具有值的光束图案的情况下,在所得到的光束图案的第三象限中出现原图像的第一象限,并且在所得到的光束图案的第一象限中出现将原图像的第一象限旋转180度后的图案。
此外,在上述的构造中,只要是包含活性层12和相位调制层15A的构造,就可以多样地改变材料系、膜厚、层的结构。在此,关于在自假想的正方晶格起的扰动为0的情况下的所谓的正方晶格的光子晶体激光器缩放规则成立。即,在波长为常数α倍的情况下,可以通过将正方晶格构造整体设为α倍来获得同样的驻波状态。同样地,在本实施方式中,也可以根据对应于波长的缩放规则来确定相位调制层15A的构造。因此,可以通过使用发出蓝色、绿色、红色等的光的活性层12而适用对应于波长的缩放规则,来实现输出可视光的半导体发光元件1A。
当制造半导体发光元件1A时,各化合物半导体层通过金属有机化学气相沉积(MOCVD)法或分子束外延法(MBE)形成。在使用了AlGaAs的半导体发光元件1A的制造用,可以将AlGaAs的生长温度设定为500℃~850℃。利用了TMA(三甲基铝)作为生长时的Al原料,利用了TMG(三甲基镓)和TEG(三乙基镓)作为镓原料,利用了AsH3(砷化氢)作为As原料,利用了Si2H6(乙硅烷)作为N型杂质用的原料,利用了DEZn(二乙基锌)作为P型杂质用的原料。在GaAs的生长中,利用了TMG和砷化氢,但没有利用TMA。InGaAs是使用TMG、TMI(三甲基铟)和砷化氢制造的。绝缘膜的形成通过使用其构成物质作为原料而溅射靶材,或者通过PCVD(等离子体CVD)法形成。
图10的(a)~图10的(c)是示出半导体发光元件1A的制造方法中的各工序的图。首先,如图10的(a)所示,在半导体基板10的主面10a上,通过例如使用了MOCVD(有机金属气相沉积)法的外延生长法,依次设置包覆层11、活性层12和基本层15a。
接着,在基本层15a涂布其它的抗蚀剂,在抗蚀剂上通过电子光束描绘装置描绘出二维微细图案。通过显影描绘有图案的抗蚀剂,在抗蚀剂形成有二维微细图案。之后,将抗蚀剂作为掩模,通过干蚀刻,将二维微细图案转印于基本层15a。由此,如图10的(b)所示,形成成为不同折射率区域15b的多个凹部(也可以是空位)。如上所述,多个凹部的平面形状是某一方向的宽度沿与该方向交叉的方向逐渐变窄的状(例如三角形,参照图4)。此外,在抗蚀剂形成之前,可以依次进行:SiN层或SiO2层通过PCVD法形成于基本层15a上的工序、在形成的这些层(SiN层或SiO2层)上形成抗蚀剂掩模的工序、通过反应性离子蚀刻(RIE)在SiN层或SiO2层转印微细图案的工序、以及在去除抗蚀剂之后进行干蚀刻的工序。在该情况下,可以提高抗干蚀刻的耐性。
接着,如图10的(c)所示,通过MOCVD法依次设置包覆层13和接触层14。当包覆层13生长时,作为不同折射率区域15b的多个凹部被包覆层13填塞。此时,包覆层13的一部分进入于凹部内,但是由凹部的平面形状引起,其进入的程度在凹部内发生变化。即,在凹部的宽度宽的部分和凹部的宽度窄的部分包覆层13的进入的程度发生变化。因此,包覆层13和不同折射率区域15b的折射率界面相对于基本层15a和包覆层13的界面倾斜。由于基本层15a和包覆层13的界面相对于主面10a平行,因此包覆层13和不同折射率区域15b的折射率界面相对于主面10a和垂直于该主面10a的方向倾斜。在图10的(c)中,示出了包覆层13的一部分进入凹部的例子,但是相反地,凹部也可以进入包覆层13。此外,在以下的文献(2)中记载有这一方法。
(2)Kazuyoshi Hirose et al.,“Watt-class high-power,high-beam-qualityphotonic-crystal lasers”,Nature Phoronics 8,pp.406-411(2014)
之后,通过蒸镀法、溅射法等形成图2所示的电极16、17。另外,根据需要,通过溅射法或PCVD法等形成保护膜18和反射防止膜19。经过以上的工序,制作本实施方式的半导体发光元件1A。此外,在将相位调制层15A设置于活性层12和包覆层11之间的情况下,在活性层12的形成之前,在包覆层11上形成相位调制层15A。
此外,在晶格间隔a的正方晶格的情况下,当设正交坐标的单位向量为x、y时,基本平移向量a1=ax、a2=ay,相对于平移向量a1、a2的基本倒易晶格向量为b1=(2π/a)x、b2=(2π/a)y。当存在于晶格之中的波的波数向量为k=nb1+mb2(n、m为任意的整数)时,波数k存在于Γ点,但是在其中波数向量的大小等于基本倒易晶格向量的情况下,获得晶格间隔a等于波长λ的共振模式(X-Y平面内的驻波)。在本实施方式中,获得这样的共振模式(驻波状态)下的振荡。此时,考虑在与正方晶格平行的面内存在电场的TE模式时,如上所述波长与晶格间隔相等的驻波状态根据正方晶格的对称性存在四种模式。在本实施方式中,在以这四个驻波状态的任一模式振荡的情况下,可以同样地获得期望的光束图案。
在半导体发光元件1A中,上述的相位调制层15A内的驻波被具有规定形状的不同折射率区域15b散射,并且由于在垂直方向(Z轴方向)上获得的波面被相位调制而获得期望的光束图案。因此,即使没有偏光板,也可得到期望的光束图案。该光束图案不仅是一对单峰光束(光点),如上所述,也能够设为文字形状、2个以上的相同形状光点组、或者、相位、强度分布在空间上不均匀的向量光束等。
基本层15a的折射率优选为3.0~3.5,不同折射率区域15b的折射率优选为1.0~3.4。另外,基本层15a的凹部(不同折射率区域15b)的平均半径为940nm带的情况下,为例如20nm~120nm。向Z轴方向的衍射强度由于各不同折射率区域15b的大小变化而变化。该衍射效率与以将不同折射率区域15b的形状傅里叶变换时的一次系数表示的光耦合系数κ1成比例。关于光耦合系数,例如,在以下的文献(3)中记载。
(3)K.Sakai et al.,“Coupled-Wave Theory for Square-Lattice PhotonicCrystal Lasers With TE Polarization“,IEEE J.Q.E.46,788-795(2010)
对通过具备以上的结构的本实施方式的半导体发光元件1A所获得的效果进行说明。在本实施方式的半导体发光元件1A中,与活性层12光学耦合的相位调制层15A包含基本层15a和具有与基本层15a的折射率不同的折射率的多个不同折射率区域15b。另外,在包含设定于相位调制层15A的设计面上的假想的正方晶格的晶格点O(x,y)的单位构成区域R(x,y)中,在通过该晶格点O(x,y)并且相对于该正方晶格的各边(平行于规定单位构成区域R(x,y)的s轴和t轴)倾斜的直线D上,配置有对应的不同折射率区域15b的重心G。于是,不同折射率区域15b的重心G与对应的晶格点O(x,y)的距离r(x,y)对应于光学图像个别地对每个晶格点进行设定。在该情况下,对应于晶格点O(x,y)与重心G的距离,光束的相位变化。因此,仅通过改变重心G的位置,就可以控制从各不同折射率区域15b输出的光束的相位,并且能够将作为整体形成的光束图案控制为期望的形状。即,该半导体发光元件1A是S-iPM激光器,根据这种构造,与各不同折射率区域15b的重心G在各晶格点O(x,y)周围具有对应于光学图像的旋转角度的现有的构造(旋转方式)同样地,可以沿相对于垂直于半导体基板10的主面10a的方向(法线方向)倾斜的方向,输出形成任意形状的光学图像的光。
在此,图11的(a)示出了从半导体发光元件1A输出的光束图案(光学图像)的例子。图11的(a)的中心对应于与半导体发光元件1A的发光面交叉并且垂直于发光面的轴线。另外,图11的(b)是示出包含该轴线的截面中的光强度分布的图表。图11的(b)是通过使用FFP光学系统(Hamamatsu Photonics制造的A3267-12)、照相机(Hamamatsu Photonics制造的ORCA-05G)和光束轮廓仪(Hamamatsu Photonics制造的Lepas-12)所取得的远场图像,并且对1344点×1024点的图像数据的纵向的计数进行累计并绘制的图像。此外,为了将图11的(a)的最大计数以255标准化,另外,清楚地示出±1次光的强度比,而使中央的0次光B0饱和。从图11的(b),可以容易地理解1次光和-1次光的强度差。另外,图12的(a)是示出对应于图11的(a)所示的光束图案的相位分布的图。图12的(b)是图11的(a)的局部放大图。在图12的(a)和图12的(b)中,相位调制层15A的各部位上的相位通过浓淡来表示,越是暗部,相位角越接近0°,越是亮部,相位角越接近360°。但是,由于可以任意地设定相位角的中心值,因此也可以不一定将相位角设定于0°~360°的范围内。如图11的(a)和图11的(b)所示,半导体发光元件1A输出包含沿相对于该轴线倾斜的第一方向输出的第一光学图像部分B1的1次光、以及沿关于该轴线与第一方向对称的第二方向输出且关于该轴线与第一光学图像部分B1为旋转对称的第二光学图像部分B2的-1次光。典型地,第一光学图像部分B1出现于X-Y平面内的第一象限,第二光学图像部分B2出现于X-Y平面内的第三象限。然而,根据用途,存在不需要1次光和-1次光中的任一方的光的情况。在该情况下,希望将1次光和-1次光中的不需要的光相对于需要的光进行减光。
图13是概念性地示出各方向的行波的光束图案的例子的图。在该例子中,相对于s轴和t轴的直线D的倾斜角设为45°,各不同折射率区域15b的重心G和在单位构成区域R(x,y)中与对应的晶格点O(x,y)的距离r(x,y)的最大值R0如以下的式(17)那样设定。
[式17]
Figure BDA0004075853380000301
在正方晶格型的S-iPM激光器的相位调制层中,产生沿X-Y平面的基本的行波AU、AD、AR和AL。行波AU和AD是沿正方晶格的各边中的沿Y轴方向延伸的边行进的光。行波AU在Y轴正方向上行进,行波AD在Y轴负方向上行进。另外,行波AR和AL是沿正方晶格的各边中的沿X轴方向延伸的边行进的光。行波AR在X轴正方向上行进,行波AL在X轴负方向上行进。在该情况下,从向互相相反方向行进的行波获得分别反方向的光束图案。例如,从行波AU获得仅包含第二光学图像部分B2的光束图案BU,从行波AD获得仅包含第一光学图像部分B1的光束图案BD。同样地,从行波AR获得仅包含第二光学图像部分B2的光束图案BR,从行波AL获得仅包含第一光学图像部分B1的光束图案BL。换句话说,在向互相相反方向行进的行波彼此中,一方为1次光、另一方为-1次光。
根据本实施方式的相位调制层15A,相对于单一行波,1次光和-1次光的各光量中产生差,例如在倾斜角度θ为45°、135°、225°或315°的情况下,偏移量R0越接近上述式(9)的上限值,则获得越理想的相位分布。其结果,降低了0次光,并且在行波AU、AD、AR和AL的各个中,选择性地降低了1次光和-1次光中的一方。因此,通过选择性地减小向互相相反方向行进的行波中的任一方来对1次光和-1次光的光量赋予差,在原理上是可能的。
在此,不同折射率区域15b在图5所示的通过晶格点O(x,y)并在相对于正方晶格的各边倾斜的直线D上移动的本实施方式的方式中,对能够选择性地降低1次光和-1次光中的任一者的理由进行说明。相对于某一位置上的设计相位φ(x,y),考虑作为四个行波的一个例子的图12的(a)和图12的(b)所示的t轴(平行于Y轴)的正的方向的行波AU。此时,根据几何学上的关系,相对于行波AU,从晶格点O起的偏差为r·sinθ·{φ(x,y)-φ0}/π,因此相位差为作为(2π/a)r·sinθ·{φ(x,y)-φ0}/π的关系。在此,为了简化,将倾斜角度设为θ=45°,将相位角设为φ0=0°。在不同折射率区域15b的大小的影响较小而可以忽略的情况下,关于行波AU的相位分布Φ(x,y)由以下的式(18)赋予。
[式18]
Figure BDA0004075853380000311
该相位分布Φ(x,y)对0次光和±1次光的贡献以由exp{nΦ(x,y)}(n:整数)展开的情况下的n=0和n=±1的分量赋予。然而,当对由下述的式(19)表示且满足以下的式(20)的条件的函数f(z)进行Laurent级数展开时,以下的式(21)的数学公式成立。
[式19]
f(z)=zc……(19)
[式20]
Figure BDA0004075853380000312
z=exp{jφ(x,y)}
[式21]
Figure BDA0004075853380000313
在此,sinc(x)=x/sin(x)。当使用该数学公式时,可以级数展开相位分布Φ(x,y),并且可以说明0次光和±1次光的各光量。此时,当注意到上述式(21)的指数项exp{jπ(c-n)}的绝对值为1时,相位分布Φ(x,y)的0次光分量的大小由以下的式(22)表示,1次光分量的大小由以下的式(23)表示,再有,-1次光分量的量由以下的式(24)表示。
[式22]
Figure BDA0004075853380000321
[式23]
Figure BDA0004075853380000322
[式24]
Figure BDA0004075853380000323
于是,在上述式(22)~(24)中,除了由以下的式(25)规定的条件以外,除了1次光分量以外出现0次光分量和-1次光分量。然而,±1次光分量的大小互相不相等。
[式25]
Figure BDA0004075853380000324
在以上的说明中,考虑作为四个行波的一个例子的t轴方向(Y轴正方向)的行波AU,但是对其他3个波(行波AD、AR、AL)也成立同样的关系,±1次光分量的大小中产生差。出于以上的讨论,根据不同折射率区域15b在通过晶格点O并相对于正方晶格倾斜的直线D上移动的本实施方式的方式,对±1次光分量的光量赋予差在原理上是可能的。因此,通过降低-1次光或1次光来选择性地仅去除期望的图像(第一光学图像部分B1或第二光学图像部分B2),在原理上是可能的。在上述的图11的(b)中,也可知在1次光和-1次光之间产生强度的差。
在本实施方式的半导体发光元件1A中,不同折射率区域15b与其上层(包覆层13或活性层12)的界面相对于主面10a倾斜。由此,如图14所示,在相位调制层15A内与主面10a平行地行进的行波AU、AD、AR和AL在不同折射率区域15b和上层的界面,在与相位调制层15A的设计面(平行于X-Y平面的面)交叉的方向(例如,Z轴方向)上散射或反射。此时,在相位调制层15A内沿主面10a互相相反方向地行进的两个行波AU、AD在互相不同方向上散射或反射,并且互相分离。同样地,在相位调制层15A的面内向互相相反方向行进的两个行波AR、AL在互相不同方向上散射或反射,并且互相分离。
即,作为1次光(或-1次光)的行波AU、AR向半导体基板10散射或反射,作为-1次光(或1次光)的行波AD、AL向与半导体基板10相反侧(电极16侧)散射或反射。因此,在1次光和-1次光中,输出至装置外部为止的光路不同。由于行波AU、AR向半导体基板10散射或反射,因此原样地透过半导体基板10并输出至外部,并且其光路变短。相对于此,行波AD、AL向与半导体基板10相反侧散射或反射,因此光路比行波AU、AR变长了在电极16反射并到达半导体基板10的量。因此,由于半导体中的光吸收作用、在电极16的不完全的反射、伴随着光传播的散射等的影响,行波AD、AL与行波AU、AR相比更衰减。因此,根据本实施方式的半导体发光元件1A,能够使1次光和-1次光中的一方的光相对于另一方的光减光。在对应于实验结果的图11的(b)中,也可以看出在1次光和-1次光中产生强度的差。
此外,在本实施方式中,不同折射率区域15b与其上层的界面相对于主面10a倾斜,但这是一个例子。上述的效果可以优选地通过多个不同折射率区域15b与其周围的层的界面的至少一部分相对于主面10a倾斜来获得。
此外,在上述的说明中,通过在半导体发光元件1A内的衰减可以对一方的光进行减光,但是半导体发光元件1A或者具备半导体发光元件1A的发光装置可以进一步具备用于对一方的光进行减光的结构(例如设置于相位调制层15A与半导体基板10之间的光吸收层、设置于半导体发光元件1A的外部的光吸收部件等)。另外,也可以是一方的光从与另一方的光相反侧的表面(即,相对于活性层12为包覆层13侧的表面)输出的结构。
此外,如本实施方式那样,也可以是多个不同折射率区域15b是凹部,多个不同折射率区域15b各自的平面形状为某一方向上的宽度沿与该方向交叉的方向逐渐变窄的形状。由此,当在相位调制层15A上使其它的半导体层(例如,包覆层13)再生长时,该半导体层与不同折射率区域15b的界面相对于主面10a倾斜。因此,可以容易地实现多个不同折射率区域15b与其周围的层的界面的至少一部分相对于主面10a倾斜的结构。
如本实施方式那样,相对于正方晶格的直线D的倾斜角度θ也可以在设定于相位调制层15A的全部的晶格点一致。由此,可以容易地进行不同折射率区域15b的重心G的配置的设计。另外,在该情况下,倾斜角度θ也可以是45°、135°、225°或315°。由此,沿正方晶格行进的互相正交的两个波(例如行波AD、AR)可以均等地有助于期望的光学图像的形成。此外,在倾斜角度θ为45°、135°、225°或315°的情况下,通过选择适当的带端模式,直线D上的电磁场的方向与一个方向一致,因而可以获得直线偏光。作为这样的模式的一个例子,存在以下的文献(4)的图3所示的模式A、B。
(4)C.Peng et al.,“Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls,”Optics Express Vol.19,No.24,pp.24672-24686(2011).
此外,在倾斜角度θ为0°、90°、180°或270°的情况下,由于四个行波AU、AD、AR和AL中在Y轴方向或X轴方向行进的一对行波不对1次光(信号光)作出贡献,因此难以将信号光高效率化。
再有,如本实施方式那样,发光部也可以是设置于半导体基板10上的活性层12。由此,可以容易地将发光部和相位调制层15A光耦合。
(第二实施方式)
图15是示出作为本发明的第二实施方式所涉及的发光装置的半导体发光元件1B的截面结构的图。该半导体发光元件1B是沿X-Y平面形成驻波,并且沿Z轴方向输出经相位控制的平面波的激光光源,与第一实施方式同样地,沿包含垂直于半导体基板10的主面10a的方向(法线方向)和相对于该法线方向倾斜的倾斜方向的方向输出形成二维的任意形状的光学图像的光。然而,第一实施方式的半导体发光元件1A将透过半导体基板10的光束图案(光学图像)从背面输出,但是本实施方式的半导体发光元件1B相对于活性层12从包覆层13侧的表面输出光束图案(光学图像)。
半导体发光元件1B具备包覆层11、活性层12、包覆层13、接触层14、相位调制层15A和电流狭窄层21。包覆层11设置于半导体基板10上。活性层12设置于包覆层11上。包覆层13设置于活性层12上。接触层14设置于包覆层13上。相位调制层15A设置于活性层12和包覆层13之间。电流狭窄层21设置于包覆层13内。各层11~14、15A的结构(合适的材料、带隙、折射率等)与第一实施方式相同。
相位调制层15A的构造与在第一实施方式中说明的相位调制层15A的构造(参照图4和5)相同。根据需要,在包覆层11和包覆层13之间也可以设置有光引导层。如图16所示,也可以在包覆层11和活性层12之间设置有相位调制层15A。此外,光引导层也可以包含用于有效地将载流子关入到活性层12的载流子势垒层。
半导体发光元件1B还具备设置于接触层14上的电极23和设置于半导体基板10的背面10b上的电极22。电极23与接触层14欧姆接触,电极22与半导体基板10欧姆接触。图17是从电极23侧(表面侧)观察半导体发光元件1B的俯视图。如图17所示,电极23具有框状(环状)的平面形状(具有开口23a)。此外,在图17中例示了正方形的框状的电极23,但是对于电极23的平面形状,可以应用圆环状等的各种形状。另外,图17中由虚线示出的电极22的形状与电极23的开口23a的形状相似,例如是正方形或圆形。电极23的开口23a的内径(在开口23a的形状为正方形的情况下为一边的长度)例如为20μm~50μm。
再次参照图15。本实施方式的接触层14具有与电极23相同的平面形状。即,接触层14的中央部通过蚀刻被去除,成为开口14a。接触层14具有框状(环状)的平面形状。从半导体发光元件1B输出的光通过接触层14的开口14a和电极23的开口23a。由于光通过接触层14的开口14a,因此可以避免接触层14中的光吸收,并且可以提高光输出效率。然而,在可以允许接触层14中的光吸收的情况下,接触层14也可以不具有开口14a而覆盖包覆层13上的整个面。由于光通过电极23的开口23a,因此可以从半导体发光元件1B的表面侧适当地输出光,而不被电极23遮挡。
从接触层14的开口14a露出的包覆层13的表面(或者,在未设置有开口14a的情况下为接触层14的表面)被反射防止膜25覆盖。此外,反射防止膜25也可以设置于接触层14的外侧。另外,半导体基板10的背面10b上的电极22以外的部分被保护膜24覆盖。保护膜24的材料与第一实施方式的保护膜18的材料相同。反射防止膜25的材料与第一实施方式的反射防止膜19的材料相同。
电流狭窄层21具有难以使(或不使)电流通过的构造,并且在中央部具有开口21a。如图17所示,开口21a的平面形状与电极23的开口23a的形状相似,例如是正方形或圆形。电流狭窄层21例如是以高浓度包含Al的层氧化而成的Al氧化层。或者,电流狭窄层21也可以是通过在包覆层13内注入质子(H+)而形成的层。或者,电流狭窄层21也可以具有依次层叠与半导体基板10相反的导电类型的半导体层和与半导体基板10相同的导电类型的半导体层而成的反pn接合构造。
当对电极22和电极23之间供给驱动电流时,驱动电流到达活性层12。此时,在电极23和活性层12之间流动的电流在厚的包覆层13中充分地扩散,并且通过电流狭窄层21的开口21a。其结果,电流在活性层12的中央部附近均匀地扩散。于是,在活性层12内产生电子和空穴的再结合,在活性层12内产生光。有助于该发光的电子和空穴、以及产生的光被有效地关入到包覆层11和包覆层13之间。从活性层12输出的激光进入相位调制层15A的内部,并且形成对应于相位调制层15A的内部的晶格构造的规定的模式。从相位调制层15A内输出的激光从包覆层13通过开口14a和开口23a输出至外部。
在本实施方式中,也可以起到与上述的第一实施方式相同的效果。即,沿平行于主面10a的面(行进面)在相位调制层15A内行进的行波AU、AD、AR和AL在不同折射率区域15b和其上层的界面上在与相位调制层15A的设计面交叉的方向(例如Z轴方向)上散射或反射。此时,在相位调制层15A的行进面上向互相相反方向行进的两个行波AU、AD在互相不同方向上散射或反射,并且互相分离(参照图13)。同样地,在相位调制层15A的行进面上向互相相反方向行进的两个行波AR、AL在互相不同方向上散射或反射,并且互相分离(参照图13)。
由于行波AD、AL向包覆层13散射或反射,因此原样地透过包覆层13并输出至外部,并且其光路变短。相对于此,行波AD、AL向与包覆层13相反侧散射或反射,因此光路比行波AD、AL变长在电极22反射并到达包覆层13的量。因此,由于半导体中的光吸收作用,行波AU、AR与行波AD、AL相比更衰减。因此,根据本实施方式的半导体发光元件1B,能够使1次光和-1次光中的一方的光相对于另一方的光减光。
(第一变形例)
图18的(a)~图18的(h)是示出不同折射率区域15b的X-Y平面内的形状的例子的俯视图。在上述的第一实施方式中,不同折射率区域15b的平面形状为某一方向的宽度沿在与该方向交叉的方向上延伸的轴AX逐渐变窄的形状。作为这种平面形状的例子,图18的(a)、图18的(d)和图18的(f)示出了具有沿某一方向的斜边的等腰直角三角形。另外,图18的(b)和18的(g)示出了具有沿某一方向的上底和下底的梯形。图18的(c)和图18的(h)示出了具有沿某一方向的上底和下底并且连结上底和下底的线弯曲的例子。图18的(e)示出了任意的角都不是直角的不等边的三角形。这些形状具有沿与轴AX正交或交叉的方向延伸的边S。
如图18的(a)~图18的(d)和图18的(f)~图18的(h)所示,轴AX与X轴所成的角也可以为45°或135°。由此,可以将由不同折射率区域15b的倾斜的折射率界面引起的散射或反射作用均匀地施加于行波AU、AD和行波AR、AL。另外,不同折射率区域15b的平面形状也可以关于轴AX是线对称的。轴AX也可以与图5所示的直线D或图19所示的连结晶格点O和重心G的向量一致。
图19的(a)和图19的(b)是示出不同折射率区域15b的X-Y平面内的形状的其它的例子的俯视图。如这些图所示,轴AX也可以沿X轴或Y轴。即使在这些情况下,也可以将由不同折射率区域15b的倾斜的折射率界面引起的散射或反射作用均匀地施加于行波AU、AD和行波AR、AL。其结果,能够使1次光和-1次光中的一方的光相对于另一方的光减光。
图20的(a)~图20的(g)和图21的(a)~图21的(k)是示出不同折射率区域15b的X-Y平面内的形状的例子的俯视图。在除了上述第一实施方式的其它实施方式和变形例中,X-Y平面内的不同折射率区域15b的形状可以是除了图18的(a)~图18的(h)、图19的(a)和图19的(b)所示的形状以外的以下那样的各种形状。例如,X-Y平面内的不同折射率区域15b的形状也可以具有镜像对称性(线对称性)。在此,镜像对称(线对称)是指夹着沿X-Y平面的某一直线,位于该直线的一侧的不同折射率区域15b的平面形状和位于该直线的另一侧的不同折射率区域15b的平面形状能够成为互相镜像对称性(线对称)。作为具有镜像对称性(线对称性)的形状,例如,可以列举图20的(a)所示的正圆、图20的(b)所示的正方形、图20的(c)所示的正六边形、图20的(d)所示的正八边形、图20的(e)所示的正十六边形、图20的(f)所示的长方形和图20的(g)所示的椭圆等。由此,X-Y平面内的不同折射率区域15b的形状具有镜像对称性(线对称性)。在该情况下,由于在单位构成区域R的各个中是简单的形状,因此可以自晶格点O高精度地确定对应的不同折射率区域15b的重心G的方向和位置,从而可以高精度地进行图案化。
另外,X-Y平面内的不同折射率区域15b的形状也可以是不具有180°的旋转对称性的形状。作为这一形状,例如可以列举图21的(a)所示的等边三角形、图21的(b)所示的等腰直角三角形、图21的(c)所示的两个圆或椭圆的一部分重叠的形状、图21的(d)所示的以沿椭圆的长轴的一个端部附近的短轴方向的尺寸比另一个端部附近的短轴方向的尺寸小的方式变形的形状(蛋形)、图21的(e)所示的将沿椭圆的长轴的一个端部变形成沿长轴方向突出的尖的端部的形状(水滴型)、图21的(f)所示的等腰三角形、图21的(g)所示的矩形的一边凹成三角形形状且其相对的一边变尖成三角形形状的形状(箭头形)、图21的(h)所示的梯形、图21的(i)所示的五边形、图21的(j)所示的两个矩形一部分彼此重叠的形状、以及图21的(k)所示的两个矩形一部分彼此重叠且不具有镜像对称性的形状等。如上所述,由于X-Y平面内的不同折射率区域15b的形状不具有180°的旋转对称性,因此可以获得更高的光输出。
图22的(a)~图22的(k)和图23是示出X-Y平面内的不同折射率区域的形状的其它的例子的俯视图。在本变形例中,还设置有与多个不同折射率区域15b不同的多个不同折射率区域15c(第二不同折射率区域)。各不同折射率区域15c由折射率与基本层15a的第一折射率介质不同的第二折射率介质构成。不同折射率区域15c与不同折射率区域15b同样地,可以是凹部(或者空位),也可以在凹部埋入化合物半导体而构成。不同折射率区域15c与不同折射率区域15b分别一对一对应地设置。于是,将不同折射率区域15c的重心与不同折射率区域15b的重心合成而得的重心G位于通过晶格点O的直线D上。此外,任一不同折射率区域15b、15c均包含于构成假想的正方晶格的单位校准区域R的范围内。单位构成区域R是被将假想的正方晶格的晶格点间二等分的直线包围的区域。
不同折射率区域15c的平面形状例如为圆形,但是与不同折射率区域15b同样地,可以具有各种形状。图22的(a)~图22的(k)示出了不同折射率区域15b、15c的X-Y平面内的形状和相对关系的例子。图22的(a)和图22的(b)示出了不同折射率区域15b、15c具有相同形状的图形的方式。图22的(c)和图22的(d)示出了不同折射率区域15b、15c具有相同形状的图形,并且互相的一部分彼此重叠的方式。图22的(e)示出了不同折射率区域15b、15c具有相同形状的图形,并且在每个晶格点不同折射率区域15b、15c的重心间的距离任意地设定的方式。图22的(f)示出了不同折射率区域15b、15c具有互相不同的形状的图形的方式。图22的(g)示出了不同折射率区域15b、15c具有互相不同的形状的图形,并且在每个晶格点不同折射率区域15b、15c的重心间的距离任意地设定的方式。
另外,如图22的(h)~图22的(k)所示,不同折射率区域15b也可以包含互相分开的两个区域15b1、15b2而构成。于是,可以任意地设定使区域15b1、15b2合并后的重心(相当于单一不同折射率区域15b的重心)和不同折射率区域15c的重心的距离。另外,在该情况下,如图22的(h)所示,区域15b1、15b2以及不同折射率区域15c也可以具有相同形状的图形。另外,如图22的(i)所示,区域15b1、15b2和不同折射率区域15c中的两个图形也可以与其它的不同。另外,如图22的(j)所示,除了连结区域15b1、15b2的直线相对于X轴的角度以外,还可以任意地设定不同折射率区域15c相对于X轴的角度。另外,如图22的(k)所示,可以原样地使区域15b1、15b2与不同折射率区域15c维持互相相同的相对角度,并且任意地设定相对于连结区域15b1、15b2的直线的相对于X轴的角度。
不同折射率区域的X-Y平面内的形状在各晶格点间也可以是互相相同的。即,不同折射率区域在所有的晶格点可以具有相同的图形,并且可以通过平移操作、或者平移操作和旋转操作,在晶格点间互相重叠。在该情况下,可以抑制光束图案中的噪声光和成为噪声的0次光的产生。另外,不同折射率区域的X-Y平面内的形状在各晶格点不必相同,例如如图23所示,在相邻的晶格点间形状也可以相互不同。此外,如图5的例子所示,图18的(a)~图18的(g)、图19的(a)、图19的(b)、图20的(a)~图20的(g)、图21的(a)~图21的(k)、图22的(a)~图22的(k)、以及图23的任一情况下均可以以使通过各晶格点的直线D的中心以与晶格点O一致的方式设定。
例如,即使是本变形例那样的相位调制层的结构,由于不同折射率区域15b的侧面相对于Z轴倾斜,因此可以适宜地起到上述实施方式的效果。
(第二变形例)
图24的(a)~图24的(c)是示出不同折射率区域15b的沿Z轴的截面形状的变形例的图。不同折射率区域15b的沿Z轴的截面形状只要是与其周围的层的界面的至少一部分相对于主面10a(X-Y平面)倾斜即可,不限于图24的(a)~图24的(c)所例示出的形状。此外,图24的(a)示出了一边相对于X-Y平面倾斜的三角形形状的截面。图24的(b)示出了上底和下底相对于X-Y平面倾斜的梯形形状的截面。图24的(c)示出了斜边相对于X-Y平面倾斜的等腰直角三角形形状的截面。即使是这些截面形状,由于在相对于X-Y平面倾斜的折射率界面上各行波AU、AD、AR、AL也散射或反射,因此可以起到与上述的各实施方式同样的效果。
(第三变形例)
图25是示意性地示出作为第一实施方式的一个变形例(第三变形例)的半导体发光元件1C的截面构造的图。本变形例与第一实施方式之间的区别在于相位调制层中的不同折射率区域15b的截面形状。即,在本变形例的相位调制层15AC中,不同折射率区域15b的深度方向相对于Z轴倾斜。换句话说,作为与基本层15a的折射率界面的不同折射率区域15b的侧面相对于主面10a的法线方向倾斜。不同折射率区域15b的内径在深度方向上大致一定。即使是这样的结构,由于在相对于主面10a或该主面10a的法线方向倾斜的折射率界面上各行波AU、AD、AR、AL也散射或反射,因此可以起到与上述的各实施方式同样的效果。
图26的(a)~图26的(c)是用于说明本变形例的相位调制层15C的制造方法的图。首先,如图26的(a)所示,在半导体基板10的主面10a上通过外延生长法设置包覆层11、活性层12和基本层15a(第一工序)。接下来,通过使用电子线描绘法等的微细加工技术在基本层15a上形成蚀刻掩模。随后,如图26的(b)所示,通过对基本层15a进行干蚀刻,形成应当成为不同折射率区域15b的多个凹部(也可以是空位)(第二工序)。在该第二工序中,从相对于Z轴方向倾斜的方向对基本层15a施加蚀刻反应气体EG。例如,如以下的文献(5)所示,通过将鞘电场控制板等配置于基本层15a上,并且使电场的方向相对于主面10a的法线方向倾斜,可以使蚀刻反应气体EG的行进方向倾斜。然后,如图26的(c)所示,使用MOCVD法进行包覆层13和接触层14的再生长。由此,凹部被包覆层13填塞,形成不同折射率区域15b(密闭空间)。之后,图25所示的电极16、17通过蒸镀法、溅射法等形成。另外,根据需要,保护膜18和反射防止膜19通过溅射等形成。经过以上的工序,制作本变形例的半导体发光元件1C。此外,使蚀刻反应气体EG的行进方向倾斜的方法也在以下的文献(6)和文献(7)中记载。
(5)Shigeki Takahashi et al.,“Direct creation of three-dimentionalphotonic crystals by a top-down approach″,Nature Materials 8,pp.721-725(2009)
(6)Masaya Nishimoto et al.,“Design of photonic-crystal surface-emitting lasers with circularly-polarized beam″,OPTICS EXPRESS 25,pp.6104-6111(2017)
(7)Katsuyoshi Suzuki et al.,“Three-dimensional photonic crystalscreated by single-step multi-directional plasma etching″,OPTICS EXPRESS 22,pp.17099-17106(2014)
另外,在本变形例中,也与第二实施方式同样地,可以设为表面输出型的结构。另外,不同折射率区域15b的配置能够设为第一实施方式的配置(参照图5)。另外,在本变形例中,不同折射率区域15b可以通过将折射率与基本层15a不同的半导体埋入凹部内来形成(此时,凹部也可以进入包覆层13)。在这种情况下,例如基本层15a的凹部也可以通过蚀刻形成,使用金属有机化学气相沉积法、溅射法或外延法将半导体埋入凹部。例如,在基本层15a由GaAs构成的情况下,不同折射率区域15b也可以由AlGaAs构成。另外,通过在基本层15a的凹部内埋入半导体而形成不同折射率区域15b之后,也可以在该凹部上进一步层叠与基本层15a或不同折射率区域15b相同的半导体。
(第四变形例)
图27是示意性地示出作为一个变形例(第四变形例)的半导体发光元件1D的截面构造的图。本变形例与第一实施方式之间的区别在于相位调制层中的不同折射率区域15b的截面形状。即,在本变形例的相位调制层15AD中,与第五变形例同样地,不同折射率区域15b的深度方向也相对于Z轴倾斜。换句话说,作为与基本层15a的折射率界面的不同折射率区域15b的侧面相对于主面10a或主面10a的法线方向倾斜。但是,与上述第三变形例不同,不同折射率区域15b的内径在深度方向(Z轴方向)上变化。即使是这样的结构,由于在相对于主面10a倾斜的折射率界面上各行波波AU、AD、AR、AL也散射或反射,因此可以起到与上述的各实施方式同样的效果。
图28的(a)~图28的(c)是用于说明本变形例的相位调制层15D的制造方法的图。首先,如图28的(a)所示,通过外延生长法在半导体基板10的主面10a上设置包覆层11、活性层12和基本层15a(第一工序)。随后,如图26的(b)所示,通过对基本层15a进行干蚀刻,形成应当成为不同折射率区域15b的多个凹部(也可以是空位)(第二工序)。随后,如图28的(c)所示,使用MBE法进行包覆层13和接触层14的再生长(第三工序)。由此,凹部被包覆层13填塞,形成不同折射率区域15b(密闭空间)。在该第三工序中,至少在包覆层13的外延生长时,从相对于Z轴方向倾斜的方向对基本层15a施加原料光束。即,第二工序中的蚀刻反应气体的供给方向与第三工序中的原料气体的供给方向不同。上述第三工序那样的方法例如在以下的文献(8)中记载。由此,由于原料从相对于凹部的深度方向倾斜的方向飞来,因此通过堆积于凹部的侧面的材料,凹部的侧面也相对于深度方向倾斜。之后,图27所示的电极16、17通过蒸镀法或溅射法形成。另外,根据需要,保护膜18和反射防止膜19通过溅射等形成。经过以上的工序,制作本变形例的半导体发光元件1D。
(8)Masaya Nishimoto et al.,“Fabrication of photonic crystal lasers byMBE air-hole retained growth",Applied Physics Express 7,092703(2014)
在本变形例中,与第三变形例同样地,作为不同折射率区域15b的平面形状不限于上述各实施方式的形状(某一方向的宽度沿与该方向交叉的方向逐渐变窄的形状),可以为各种形状(参照图20的(a)~图20的(g)、图21的(a)~图21的(k)、图22的(a)~图22的(k)和图23)。另外,在本变形例中,也可以与第二实施方式同样地,设为表面输出型的结构。另外,不同折射率区域15b的配置可以设为第一实施方式的配置(参照图5)。另外,在本变形例中,包覆层13以外的半导体层(例如,由与基本层15a相同的材料构成的半导体层)可以通过与上述包覆层13相同的方法来再生长。
(第五变形例)
图29是示出第五变形例所涉及的发光装置1E的结构的图。该发光装置1E具备:支撑基板6、在支撑基板6上一维或二维地排列的多个半导体发光元件1A、以及个别地驱动多个半导体发光元件1A的驱动电路4。各半导体发光元件1A的结构与上述第一实施方式相同。然而,在多个半导体发光元件1A中可以包含输出红色波长范围的光学图像的激光元件、输出蓝色波长范围的光学图像的激光元件、以及输出绿色波长范围的光学图像的激光元件。输出红色波长范围的光学图像的激光元件例如由GaAs半导体构成。输出蓝色波长范围的光学图像的激光元件和输出绿色波长范围的光学图像的激光元件例如由氮化物类半导体构成。驱动电路4设置于支撑基板6的背面或内部,并且个别地驱动各半导体发光元件1A。驱动电路4根据来自控制电路7的指令,向各个半导体发光元件1A供给驱动电流。
如本变形例所示,通过设置个别地驱动的多个半导体发光元件1A,从各半导体发光元件1A提取期望的光学图像(通过适当地驱动必要的元件),对预先排列了对应于多个图案的半导体发光元件的模块,可以适宜地实现平视显示器等。另外,通过在多个半导体发光元件1A中包含有输出红色波长范围的光学图像的激光元件、输出蓝色波长范围的光学图像的激光元件、以及输出绿色波长范围的光学图像的激光元件,可以适当地实现彩色平视显示器等。此外,在本变形例中,半导体发光元件1A也可以被置换为第二实施方式的半导体发光元件1B或上述各变形例的半导体发光元件。
(第一实施方式的具体例)
发明人们对于包含活性层的光波导层的厚度和折射率、以及接触层的厚度和折射率,研究了不产生高次模式的条件。其讨论过程和结果在下文中进行说明。
首先,对在本具体例中作为讨论对象的半导体发光元件1A的具体的构造进行说明。图30是示出半导体发光元件1A由GaAs类化合物半导体构成的情况(发光波长940nm带)的层构造的表。在图30的表中示出了各层的导电类型、组成、层厚度和折射率。此外,层号1表示接触层14,层号2表示包覆层13,层号3表示相位调制层15A,层号4表示光引导层和活性层12,层号5表示包覆层11。图31示出具备图30所示的层构造的半导体发光元件1A的折射率分布G21a和模式分布G21b。横轴表示层叠方向位置(范围为2.5μm)。此时,可以看出仅产生基本模式,抑制了高次模式。
图32是示出半导体发光元件1A由InP类化合物半导体构成的情况(发光波长1300nm带)的层构造的表。层号1表示接触层14,层号2表示包覆层13,层号3表示相位调制层15A,层号4表示光引导层和活性层12,层号5表示包覆层11。图33示出具备图32所示的层构造的半导体发光元件1A的折射率分布G22a和模式分布G22b。横轴表示层叠方向位置(范围为2.5μm)。此时,可以看出仅产生基本模式,抑制了高次模式。
图34是示出半导体发光元件1A由氮化物类化合物半导体构成的情况(发光波长405nm带)的层构造的表。层号1表示接触层14,层号2表示包覆层13,层号3表示载流子势垒层,层号4表示活性层12,层号5表示光引导层,层号6表示相位调制层15A,层号7表示包覆层11。图35示出具备图34所示的层构造的半导体发光元件1A的折射率分布G23a和模式分布G23b。横轴表示层叠方向位置(范围为2.5μm)。此时,可以看出仅产生基本模式,抑制了高次模式。
此外,在上述的各构造中,相位调制层15A的填充系数(Filling Factor:FF)为15%。填充系数是指一个单位构成区域R内所占的不同折射率区域15b的面积的比率。
接下来,对讨论的前提条件进行说明。在以下的讨论中,以TE模式作为前提。即,不考虑泄漏模式和TM模式。另外,包覆层11足够厚,并且可以忽略半导体基板10的影响。另外,包覆层13的折射率为包覆层11的折射率以下。于是,除非另有说明,否则活性层12(MQW层)和光引导层被视为具有平均介电常数和合计膜厚的一个光波导层(芯层)。此外,相位调制层15A的介电常数是基于填充系数的平均介电常数。
由活性层12和光引导层构成的光波导层的平均折射率和膜厚的计算式如下所述。即,εcore是光波导层的平均介电常数,由以下的式(26)规定。εi是各层的介电常数,di是各层的厚度,ni是各层的折射率。ncore是光波导层的平均折射率,由以下的式(27)规定。dcore是光波导层的膜厚,由以下的式(28)规定。
[式26]
Figure BDA0004075853380000461
[式27]
Figure BDA0004075853380000462
[式28]
Figure BDA0004075853380000463
另外,相位调制层15A的平均折射率的计算式如下所述。即,nPM是相位调制层15A的平均折射率,由以下的式(29)规定。εPM是相位调制层15A的介电常数,n1是第一折射率介质的折射率,n2是第二折射率介质的折射率,FF是填充系数。
[式29]
Figure BDA0004075853380000464
在以下的讨论中,通过5层或6层平板型波导来进行波导构造的近似。图36的(a)和图36的(b)是用于说明通过6层平板型波导来近似波导构造的情况的截面图和折射率分布。图37的(a)和图37的(b)是用于说明通过5层平板型波导来近似波导构造的情况的截面图和折射率分布。如图36的(a)和图36的(b)所示,由于在相位调制层15A的折射率比包覆层11的折射率小的情况下,相位调制层15A不具有波导功能,因此对6层平板型波导进行近似。即,光波导层具有包含活性层12和光引导层,而不包含包覆层11、包覆层13和相位调制层15A的构造。这样的近似可以应用于例如图32和图34所示的构造(在本具体例中为InP类化合物半导体或氮化物类化合物半导体)。
此外,如图37的(a)和图37的(b)所示,由于在相位调制层15A的折射率为包覆层11的折射率以上的情况下,相位调制层15A具有波导功能,因此对5层平板型波导进行近似。即,光波导层具有包含相位调制层15A和活性层12,而不包含包覆层11和包覆层13的构造。这样的近似可以应用于例如图30所示的构造(在本实施例中为GaAs类化合物半导体)。
此外,为了进一步简化计算,将计算范围限定于折射率比半导体发光元件1A的等效折射率高的光波导层和接触层各自的周边部分。即,由光波导层和邻接于该光波导层的上下层规定关于光波导层的3层平板构造,并且由接触层14和邻接的上下层规定关于接触层14的3层平板构造。
图38的(a)和图38的(b)是用于说明6层平板型波导(参照图36的(a)和图36的(b))中的关于光波导层的3层平板构造的截面图和折射率分布。在该情况下,基于在图38的(b)的折射率分布中由实线表示的折射率分布,计算出光波导层的波导模式。另外,图39的(a)和图39的(b)是用于说明6层平板型波导(参照图36的(a)和图36的(b))中的关于接触层14的3层平板构造的截面图和折射率分布。在该情况下,基于在图39的(b)中由实线表示的折射率分布,计算出接触层14的波导模式。
图40的(a)和图40的(b)是用于说明5层平板型波导(参照图37的(a)和图37的(b))中的关于光波导层的3层平板构造的截面图和折射率分布。在该情况下,基于在图40的(b)由实线表示的折射率分布,计算出光波导层的波导模式。另外,图41的(a)和图41的(b)是用于说明5层平板型波导(参照图37的(a)和图37的(b))中的关于接触层14的3层平板构造的截面图和折射率分布。在该情况下,基于在图41的(b)中由实线表示的的折射率分布,计算出接触层14的波导模式。
此外,在根据上述的3层平板构造的近似时,为了使波导模式经过包覆层11而泄漏于半导体基板10,要求包覆层11的折射率为半导体发光元件1A的等效折射率以下。
在此,对3层平板构造的解析式进行说明。图42的(a)和图42的(b)示出由包覆层11、光波导层31、以及包覆层13构成的3层平板结构30及其折射率分布。在此,将包覆层11的折射率设定为n2,将光波导层31的折射率设定为n1,将包覆层13的折射率设定为n3。于是,当光波导层31的标准化波导宽度V1由上述式(1)规定时,如果在标准化波导宽度V1的解仅为一个的范围内,则波导模式仅为基本模式。但是,在通过3层平板构造的解析式,调查上述的5层平板构造和6层平板构造的波导模式时,需要同时满足上述式(2)所示的条件。
关于接触层14,在图42的(a)和图42的(b)中可以将包覆层11置换为包覆层13,将光波导层31置换为接触层14,将包覆层13置换为空气层。于是,当将接触层14的折射率设定为n4,将空气层的折射率设定为n5时,得到关于接触层14的标准化波导宽度V2的上述式(5)。于是,如果在标准化波导宽度V2的解为无的范围内,则波导模式不存在于接触层14。但是,在通过3层平板构造的解析式,调查上述的5层平板构造和6层平板构造的波导模式时,由于需要使波导模式不泄漏于包覆层11,因此需要同时满足上述式(6)所示的条件。
此外,通过解析使包覆层13的膜厚改变所产生的波导模式,可以确认包覆层13的膜厚不对波导模式造成影响。
(半导体发光元件1A由GaAs类化合物半导体构成的情况)
图43是示出半导体发光元件1A由GaAs类化合物半导体构成的情况下的5层平板构造的例子的表。该5层平板构造中的光波导层(层号4)和接触层(层号2)的膜厚的范围通过以下的计算求出。
图44的(a)是示出在计算中使用的折射率n1、n2和n3、不对称参数a’以及包覆层11的折射率nclad的表。在该情况下,由上述式(1)和式(2)表示的光波导层的标准化波导宽度V1与标准化传播系数b之间的关系在图45中示出。图45中,图表G31a~G31f分别示出了模式次数N=0~5的情况。在该图表中,波导模式仅为基本模式(即N=0)的是标准化波导宽度V1的解为一个的范围,即范围H1的内侧。范围H1是将当标准化传播系数b为0时的对应于N=0的标准化波导宽度V1的值设定为下限值,将当标准化传播系数b为0时的对应于N=1的标准化波导宽度V1的值设定为上限值的范围。图44的(b)是示出这样的下限值和上限值的计算结果的表。
另外,图46的(a)是示出在计算中使用的折射率n4、n5和n6、不对称参数a’以及包覆层11的折射率nclad的表。在该情况下,由上述式(5)和式(6)表示的接触层14的标准化波导宽度V2与标准化传播系数b之间的关系在图47中示出。图47中,图表G32a~G32f分别示出了模式次数N=0~5的情况。在该图表中,不产生由接触层14引起的波导模式,并且半导体发光元件1A的波导模式仅为光波导层的基本模式的是标准化波导宽度V2的解为无的范围,即范围H2的内侧。范围H2是将0设定为下限值,将当标准化传播系数b为对应于包覆层11的折射率的值b1时的对应于N=0的标准化波导宽度V2的值设定为上限值的范围。图46的(b)是示出这样的上限值的计算结果的表。
图48示出具备图43所示的层构造的半导体发光元件1A的折射率分布G24a和模式分布G24b。可以看出仅显著地产生基本模式,抑制了高次模式。
(半导体发光元件1A由InP类化合物半导体构成的情况)
图49是示出半导体发光元件1A由InP类化合物半导体构成的情况下的6层平板构造的例子的表。该6层平板构造中的光波导层(层号6)和接触层(层号2)的膜厚的范围通过以下的计算求出。
图50的(a)示出在计算中使用的折射率n1、n2和n3、不对称参数a’以及包覆层11的折射率nclad的表。在该情况下,由上述式(1)和式(2)表示的光波导层的标准化波导宽度V1与标准化传播系数b之间的关系在图51中示出。图51中,图表G33a~G33f分别示出了模式次数N=0~5的情况。在该图表中,波导模式仅为基本模式(即N=0),的是标准化波导宽度V1的解为一个的范围,即范围H1的内侧。此外,范围H1的定义与上述的GaAs类化合物半导体的情况相同。图50的(b)是示出这样的下限值和上限值的计算结果的表。
另外,图52的(a)示出在计算中使用的折射率n4、n5和n6、不对称参数a’以及包覆层11的折射率nclad的表。在该情况下,由上述式(5)和式(6)表示的接触层14的标准化波导宽度V2与标准化传播系数b之间的关系在图53中示出。图53中,图表G34a~G34f分别示出了模式次数N=0~5的情况。在该图表中,不产生由接触层14引起的波导模式,并且半导体发光元件1A的波导模式仅为光波导层的基本模式的是标准化波导宽度V2的解为无的范围,即范围H2的内侧。范围H2的定义与上述的GaAs类化合物半导体的情况相同。图52的(b)是示出这样的上限值的计算结果的表。
图54具备图49所示的层构造1A的半导体发光元件的折射率分布G25a和模式分布G25b。可以看出仅显著地产生基本模式,抑制了高次模式。
(半导体发光元件1A由氮化物类化合物半导体构成的情况)
图55是示出半导体发光元件1A由氮化物类化合物半导体构成的情况下的6层平板构造的例子的表。该6层平板构造中的光波导层(层号4)和接触层(层号2)的膜厚的范围通过以下的计算求出。
图56的(a)示出在计算中使用的折射率n1、n2和n3、不对称参数a’以及包覆层11的折射率nclad的表。在该情况下,由上述式(1)和式(2)表示的光波导层的标准化波导宽度V1与标准化传播系数b之间的关系在图57中示出。图57中,图表G35a~G35f分别示出了模式次数N=0~5的情况。在该图表中,波导模式仅为基本模式(即N=0)的是标准化波导宽度V1的解为一个的范围,即范围H1的内侧。范围H1是将当标准化传播系数b为值b1时的对应于N=0的标准化波导宽度V1的值设定为下限值,将当标准化传播系数b为b1时的对应于N=1的标准化波导宽度V1的值设定为上限值的范围。图56的(b)是示出这样的下限值和上限值的计算结果的表。
另外,图58的(a)示出在计算中使用的折射率n4、n5和n6、不对称参数a’以及包覆层11的折射率nclad的表。在该情况下,由上述式(5)和式(6)表示的接触层14的标准化波导宽度V2与标准化传播系数b之间的关系在图59中示出。图59中,图表G36a~G36f分别示出了模式次数N=0~5的情况。在该图表中,不产生由接触层14引起的波导模式,并且半导体发光元件1A的波导模式仅为光波导层的基本模式的是标准化波导宽度V2的解为无的范围,即范围H2的内侧。范围H2的定义与上述的GaAs类化合物半导体的情况相同。图58的(b)是示出这样的上限值的计算结果的表。
图60示出具备图55所示的层构造的半导体发光元件1A的折射率分布G26a和模式分布G26b。可以看出仅显著地产生基本模式,抑制了高次模式。
根据本发明的发光装置及其制造方法不限于上述的实施方式,并且可以进行各种变形。例如,在上述实施方式中,例示了由GaAs类、InP类和氮化物类(特别是GaN类)的化合物半导体构成的半导体发光元件,但是本发明可以应用于由这些以外的各种半导体材料构成的半导体发光元件。
另外,在上述实施方式中,说明了将设置于与相位调制层15A共同的半导体基板10上的活性层12设定为发光部的例子,但是在本发明中,发光部也可以从半导体基板10分开地设置。只要发光部是与相位调制层光学耦合并且向相位调制层供给光的部分,即使是这种分离结构也可以适当地起到与上述实施方式同样的效果。
符号的说明
1A、1B、1C、1D…半导体发光元件;1E…发光装置;4…驱动电路;6…支撑基板;7…控制电路;10…半导体基板;10a…主面、10b…背面;11、13…包覆层;12…活性层;14…接触层;14a…开口;15A…相位调制层;15a…基本层;15b、15c…不同折射率区域;16、17…电极;17a…开口;18、24…保护膜;19、25…反射防止膜;21…电流狭窄层;21a…开口;22、23…电极;23a…开口;AU、AD、AR、AL…行波、AX…轴;BD、BL、BR、BU…光束图案;D…直线;EG…蚀刻反应气体;G…重心;O…晶格点;Q…中心;R…单位构成区域;RIN…内侧区域;ROUT…外侧区域;θ…倾斜角度。

Claims (7)

1.一种发光装置,其特征在于,
是沿主面的法线方向以及相对于所述法线方向倾斜的倾斜方向的至少任一者的方向输出形成光学图像的光的发光装置,
具备:
基板,其具有所述主面;
发光部,其设置于所述基板上;
相位调制层,其在与所述发光部光学耦合的状态下设置于所述基板上,且包含基本层、以及具有与所述基本层的折射率不同的折射率的多个不同折射率区域,
在正交于所述法线方向的所述相位调制层的设计面上,所述多个不同折射率区域根据用于形成所述光学图像的配置图案,配置于所述基本层中的规定位置,
所述多个不同折射率区域的各个具有由面对所述主面的第一面、相对于所述第一面位于所述主面的相反侧的第二面、以及连接所述第一面和所述第二面的侧面规定的立体形状,
在所述立体形状中,所述第一面、所述第二面以及所述侧面中的至少任一者包含相对于所述主面倾斜的部分,
在所述相位调制层的所述设计面上,所述多个不同折射率区域分别以与假想的正方晶格的任一晶格点一对一对应的方式配置,
在构成所述假想的正方晶格的晶格点中的所述多个不同折射率区域所关联的多个有效晶格点中,连结任意的特定晶格点与关联于所述特定晶格点的特定不同折射率区域的重心的线段、与连结相对于所述特定晶格点以最短距离邻接的多个周边晶格点和分别关联于所述多个周边晶格点的多个周边不同折射率区域的重心的各个线段平行,
并且作为由相对于连结所述特定晶格点和所述多个周边晶格点的线段中的相互正交的线段分别平行的轴规定的、以所述特定晶格点为原点的正交坐标系上的距离表现,在从所述原点至位于第一象限或第二象限的所述特定不同折射率区域的重心的距离以正的值表现并且从所述原点至位于第三象限或第四象限的所述特定不同折射率区域的重心的距离以负的值表现时,以形成所述光学图像的方式,关于所述多个有效晶格点的各个,所述特定晶格点与所述特定不同折射率区域的重心的距离被设定为正的值、0及负的值中的任一值。
2.一种发光装置,其特征在于,
是沿主面的法线方向以及相对于所述法线方向倾斜的倾斜方向的至少任一者的方向输出形成光学图像的光的发光装置,
具备:
基板,其具有所述主面;
发光部,其设置于所述基板上;
相位调制层,其在与所述发光部光学耦合的状态下设置于所述基板上,且包含基本层、以及具有与所述基本层的折射率不同的折射率的多个不同折射率区域,
在正交于所述法线方向的所述相位调制层的设计面上,所述多个不同折射率区域根据用于形成所述光学图像的配置图案,配置于所述基本层中的规定位置,
所述多个不同折射率区域的各个具有由面对所述主面的第一面、相对于所述第一面位于所述主面的相反侧的第二面、以及连接所述第一面和所述第二面的侧面规定的立体形状,
在所述立体形状中,所述第一面、所述第二面以及所述侧面中的至少任一者包含相对于所述主面倾斜的部分,
在所述相位调制层的所述设计面上,所述多个不同折射率区域分别以与假想的正方晶格的任一晶格点一对一对应的方式配置,
在构成所述假想的正方晶格的晶格点中的所述多个不同折射率区域所关联的多个有效晶格点中,连结任意的特定晶格点和关联于所述特定晶格点的特定不同折射率区域的重心的线段、与连结除了所述特定晶格点的其余的有效晶格点和分别关联于所述其余的有效晶格点的其余的不同折射率区域的各个线段平行,
并且作为由相对于连结所述特定晶格点和相对于所述特定晶格点以最短距离邻接的多个周边晶格点的线段中的相互正交的线段分别平行的轴规定的、以所述特定晶格点为原点的正交坐标系上的距离表现,在从所述原点至位于第一象限或第二象限的所述特定不同折射率区域的重心的距离以正的值表现并且从所述原点至位于第三象限或第四象限的所述特定不同折射率区域的重心的距离以负的值表现时,以形成所述光学图像的方式,关于所述多个有效晶格点的各个,所述特定晶格点与所述特定不同折射率区域的重心的距离被设定为正的值、0及负的值中的任一值。
3.根据权利要求1或2所述的发光装置,其特征在于,
所述多个不同折射率区域分别是由所述基本层和与所述基本层接触的一个或一个以上的层规定的密闭空间,
在所述相位调制层的所述设计面上,所述多个不同折射率区域分别具有沿所述设计面上的第一方向的宽度沿与所述第一方向交叉的第二方向逐渐减小的平面形状。
4.根据权利要求1或2所述的发光装置,其特征在于,
发光部是设置于所述基板上的活性层。
5.一种发光装置的制造方法,其特征在于,
是权利要求1~4中任一项所述的发光装置的制造方法,
包含:
第一工序,其在所述基板上设置所述基本层;以及
第二工序,其通过干蚀刻,将应当成为所述多个不同折射率区域的多个空位或凹部形成于所述基本层,
在所述第二工序中,干蚀刻从相对于所述法线方向倾斜的方向对所述基本层施加蚀刻反应气体。
6.一种发光装置的制造方法,其特征在于,
是权利要求1~4中任一项所述的发光装置的制造方法,
包含:
第一工序,其在所述基板上设置所述基本层;
第二工序,其通过干蚀刻,将应当成为所述多个不同折射率区域的多个空位或凹部形成于所述基本层;以及
第三工序,其将堵塞形成于所述基本层的所述多个空位或凹部的开口部分的盖层形成于所述基本层上,
在所述第三工序中,用于形成所述盖层的原料气体从相对于所述法线方向倾斜的方向施加于所述基本层。
7.根据权利要求6所述的发光装置的制造方法,其特征在于,
用于形成所述多个空位或凹部的蚀刻反应气体被供给的方向与所述原料气体被供给的方向不同。
CN202310108428.7A 2017-12-08 2018-11-28 发光装置及其制造方法 Pending CN115967011A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-236201 2017-12-08
JP2017236201 2017-12-08
CN201880078841.0A CN111448726B (zh) 2017-12-08 2018-11-28 发光装置及其制造方法
PCT/JP2018/043813 WO2019111786A1 (ja) 2017-12-08 2018-11-28 発光装置およびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880078841.0A Division CN111448726B (zh) 2017-12-08 2018-11-28 发光装置及其制造方法

Publications (1)

Publication Number Publication Date
CN115967011A true CN115967011A (zh) 2023-04-14

Family

ID=66750222

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310108428.7A Pending CN115967011A (zh) 2017-12-08 2018-11-28 发光装置及其制造方法
CN201880078841.0A Active CN111448726B (zh) 2017-12-08 2018-11-28 发光装置及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880078841.0A Active CN111448726B (zh) 2017-12-08 2018-11-28 发光装置及其制造方法

Country Status (5)

Country Link
US (1) US11309687B2 (zh)
JP (1) JP7241694B2 (zh)
CN (2) CN115967011A (zh)
DE (1) DE112018006286T5 (zh)
WO (1) WO2019111786A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019002892T5 (de) * 2018-06-08 2021-02-25 Hamamatsu Photonics K.K. Lichtemittierendes Element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200735496A (en) * 2005-09-05 2007-09-16 Univ Kyoto Two-dimensional photonic crystal surface light emitting laser light source
JP4310297B2 (ja) * 2005-09-05 2009-08-05 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ光源
JP5373717B2 (ja) * 2010-08-12 2013-12-18 日本電信電話株式会社 光導波路部品の作製方法
WO2013039503A1 (en) * 2011-09-15 2013-03-21 Hewlett-Packard Development Company, L.P. Vertical-cavity surface-emitting lasers
US9748737B2 (en) * 2013-03-07 2017-08-29 Hamamatsu Photonics K.K. Laser element and laser device
JP6309947B2 (ja) * 2013-04-26 2018-04-11 浜松ホトニクス株式会社 半導体レーザ装置
WO2016031965A1 (ja) * 2014-08-29 2016-03-03 国立大学法人京都大学 2次元フォトニック結晶面発光レーザ
WO2016148075A1 (ja) 2015-03-13 2016-09-22 浜松ホトニクス株式会社 半導体発光素子
JP6265229B2 (ja) * 2016-06-17 2018-01-24 国立大学法人京都大学 半導体レーザ素子
US9991669B2 (en) * 2016-07-25 2018-06-05 Hamamatsu Photonics K.K. Semiconductor light-emitting device and manufacturing method for the same

Also Published As

Publication number Publication date
WO2019111786A1 (ja) 2019-06-13
US20200373740A1 (en) 2020-11-26
CN111448726B (zh) 2023-04-04
US11309687B2 (en) 2022-04-19
CN111448726A (zh) 2020-07-24
JPWO2019111786A1 (ja) 2020-11-26
DE112018006286T5 (de) 2020-12-17
JP7241694B2 (ja) 2023-03-17

Similar Documents

Publication Publication Date Title
CN111448725B (zh) 发光装置及其制造方法
JP6978868B2 (ja) 半導体発光素子およびその製造方法
US10734786B2 (en) Semiconductor light emitting element and light emitting device including same
WO2018030523A1 (ja) 発光装置
CN112119548A (zh) 发光器件
CN109690890B (zh) 半导体发光元件和包含其的发光装置
US11923655B2 (en) Light emission device
JPWO2016148075A1 (ja) 半導体発光素子
CN112272906B (zh) 发光元件
JP7109179B2 (ja) 発光装置
CN111448726B (zh) 发光装置及其制造方法
WO2019239960A1 (ja) 発光装置
JP6925249B2 (ja) 発光装置
JP7015684B2 (ja) 位相変調層設計方法
WO2023021803A1 (ja) 位相変調層の設計方法、及び、発光素子の製造方法
CN117178447A (zh) 面发光激光元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination