CN115966462A - 一种复合工程衬底及其制备方法 - Google Patents

一种复合工程衬底及其制备方法 Download PDF

Info

Publication number
CN115966462A
CN115966462A CN202211665182.5A CN202211665182A CN115966462A CN 115966462 A CN115966462 A CN 115966462A CN 202211665182 A CN202211665182 A CN 202211665182A CN 115966462 A CN115966462 A CN 115966462A
Authority
CN
China
Prior art keywords
substrate
dielectric layer
silicon substrate
barrier layer
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211665182.5A
Other languages
English (en)
Inventor
范谦
倪贤锋
顾星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTHEAST UNIVERSITY SUZHOU INSTITUTE
Original Assignee
SOUTHEAST UNIVERSITY SUZHOU INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTHEAST UNIVERSITY SUZHOU INSTITUTE filed Critical SOUTHEAST UNIVERSITY SUZHOU INSTITUTE
Priority to CN202211665182.5A priority Critical patent/CN115966462A/zh
Publication of CN115966462A publication Critical patent/CN115966462A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种复合工程衬底的制备方法,通过制备氮化铝陶瓷基底和内有阻挡层的硅衬底,分别在氮化铝陶瓷基底和上层硅衬底表面形成第一介质层和第二介质层,键合第一介质层和第二介质层,去除下层硅衬底和阻挡层,得到多晶的氮化铝陶瓷基底和单晶的硅衬底组合的复合工程衬底。上述复合工程衬底从下往上依次包括氮化铝陶瓷基底、组合介质层和硅衬底,组合介质层为电绝缘体。该复合工程衬底可以兼顾氮化铝陶瓷基底的高导热、同氮化物半导体材料热膨胀匹配以及硅衬底的外延生长兼容性、尺寸大等优点,提高了GaN功率器件的外延质量以及GaN功率器件的可靠性。

Description

一种复合工程衬底及其制备方法
技术领域
本发明涉及半导体材料及其制备方法,尤其涉及一种复合工程衬底及其制备方法。
背景技术
目前的功率电力电子器件主要是基于第一代半导体硅材料的金属-氧化物-半导体场效应晶体管(MOSFET)和绝缘栅双极型晶体管(IGBT)功率电子器件,它最高能达到的电能转换效率在90%左右,而以第三代半导体材料特别是氮化镓为代表的新型宽禁带半导体材料,具有载流子迁移率高,击穿场强大,高温稳定性好等优点。基于此类材料的功率电子器件的转换效率一般比硅要高5%以上。另外,相同的转换效率下,其工作频率可以提高很多,能够显著缩小转换电路系统的体积,提升其功率密度。因此,以氮化镓为代表的第三代半导体材料是目前高效节能功率电子器件的最佳候选之一。
氮化镓功率电子器件的制造过程包括衬底制备、外延生长、器件工艺、封装测试等多个环节。就材料外延而言,目前常用的衬底材料包括氮化镓(同质)、硅、蓝宝石、碳化硅等,其中,单晶氮化镓、单晶氮化铝和碳化硅衬底虽然同氮化镓之间的晶格失配小,容易进行高质量外延,但是由于单价过高,晶圆面积小,因此在很多场合难以满足大规模量产的需求。蓝宝石衬底成本低廉,目前广泛地使用于LED光电器件外延,但是由于衬底导热性差,会导致制作的电子器件在工作时发热严重,制约了电路系统功率因数和可靠性的提高。目前,氮化镓功率电子器件外延主要在(111)晶向的硅衬底上进行,可以充分利用衬底导电、成本低、导热率适中、同传统硅器件工艺兼容等优点,已经成为了主流的制备方式。但是,基于硅衬底的氮化镓外延,存在着比较大的晶体质量问题。这主要是因为硅衬底同氮化物之间的晶格失配和热膨胀失配都比较大,由于材料外延的温度较高,因此生长过程中积累的应力较大,导致硅基氮化镓外延晶体位错缺陷密度可以达到109cm-2。还导致大尺寸外延的晶圆翘曲较大,不利于器件的制作。其次由于硅材料同金属有机源副反应强烈,需要先沉积较厚的氮化铝或者超晶格结构作为缓冲层,进一步恶化热失配,生长工艺复杂,均匀性控制难度大,而且无法完全隔绝位错缺陷引起的漏电通道,导致器件的耐压性能难以从本质上得到提高。
发明内容
发明目的:本发明旨在提供一种可以解决氮化镓外延在硅衬底上晶体质量差,耐压低,大尺寸均匀性差等问题的复合层级结构的衬底的制备方法,本发明另一目的是提供一种上述方法制备的复合工程衬底。
技术方案:本发明所述复合工程衬底的制备方法,包括如下步骤:
氮化铝陶瓷基底上形成第一介质层;
通过离子注入和高温退火在硅衬底内生成阻挡层,形成上层硅衬底、阻挡层和下层硅衬底的三层结构;
在上层硅衬底表面形成第二介质层;
将第一介质层和第二介质层键合得到组合介质层;
去除下层硅衬底,露出阻挡层;
去除阻挡层,得到复合工程衬底。
优选的,氮化铝陶瓷基底的厚度为350μm~1000μm。
优选的,所述硅衬底的材质为晶向方向向量的坐标为<111>的单晶硅,硅衬底厚度为300μm~1000μm。晶体中各种方向上的原子列叫晶向,在晶胞上建立坐标系,即晶体立方系,则<111>就是方向向量的坐标,即<111>表示过原点和点x=1,y=1,z=1的直线上所经过的原子,如果晶体为体心立方晶胞,则此晶向经过正方体对角线上的原子。
优选的,所述阻挡层距离注入表面距离为300nm~1000nm,厚度为50nm~500nm。硅衬底内部形成的阻挡层,可以阻挡刻蚀,精确的形成转移硅薄膜层。如果没有阻挡层,仅凭研磨或者刻蚀工艺无法满足均匀性的要求。
可选的,所述离子注入为氮离子注入,阻挡层为氮化硅。
可选的,所述离子注入为氧离子注入,阻挡层为二氧化硅。
优选的,所述去除下层硅衬底的方法为先研磨再干法刻蚀,去除下层硅衬底后露出阻挡层。进一步地,所述干法刻蚀去除的硅衬底的厚度为10μm~50μm。
优选的,通过CMP抛光工艺去除阻挡层。
优选的,所述第一介质层和所述第二介质层的总厚度为100nm~2000nm。
所述复合工程衬底,从下往上依次包括氮化铝陶瓷基底、组合介质层和硅衬底,组合介质层为电绝缘体。
有益效果:本发明与现有技术相比,其显著优点是:1、本发明制备方法简洁,充分利用材料的物理优势,将不同材料复合在一起,形成一种复合层级结构的衬底,不需要使用临时衬底和转移衬底,减少生产步骤,提高生产效率;2、多晶的氮化铝陶瓷基底和单晶的硅衬底组合的复合工程衬底可以兼顾氮化铝陶瓷基底的高导热、同氮化物半导体材料热膨胀匹配以及硅衬底的外延生长兼容性、尺寸大等优点,从根本上提高后续氮化物外延晶体质量,最大程度的释放氮化镓在电子器件领域的潜力;3、所述复合工程衬底可以承受后续制备GaN外延时候所需的高温,同时减少杂质的扩散,提高了GaN功率器件的外延质量以及GaN功率器件的可靠性。
附图说明
图1为复合工程衬底制备方法的流程图;
图2到图7为本发明方法实施例期间形成的中间结构的简化横截面图。
具体实施方式
下面结合附图对本发明作进一步说明。
本发明所述复合工程衬底的制备方法,包括如下步骤:
氮化铝陶瓷基底上形成第一介质层;
通过离子注入和高温退火在硅衬底内生成阻挡层,形成上层硅衬底、阻挡层和下层硅衬底的三层结构;
在上层硅衬底表面形成第二介质层;
将第一介质层和第二介质层键合得到组合介质层;
去除下层硅衬底,露出阻挡层;
去除阻挡层,得到复合工程衬底。
如图2所示,在氮化铝陶瓷基底100上形成第一介质层111。具体的,氮化铝陶瓷基底100是陶瓷氮化铝,由于表面较粗糙,需要进行表面抛光。所述氮化铝陶瓷基底100的厚度为350μm~1000μm。本实施例中所述氮化铝陶瓷基底100由氮化铝粉体原料和烧结助剂制成而,在制备过程中,使用合适颗粒大小氮化铝粉体原料,以及适宜的烧结助剂如CaF2,Y2O3,Li2CO3等,上述烧结助剂可以促进氮化铝胚体的致密烧结。此外,烧结助剂除了能够产生液相促进烧结,还能够与氮化铝晶格中的氧反应起到去除氧杂质的作用,从而提高所述氮化铝陶瓷基底100的热导性能,生长工艺温度可以为超过1500℃。第一介质层111的材质为二氧化硅、氮化硅、氧化铝或者氧化锆等任一材料,或是上述至少两种材料的组合。
如图3所示,通过离子注入和高温退火在硅衬底200内生成阻挡层201,形成上层硅衬底、阻挡层201和下层硅衬底的三层结构。具体的,硅衬底200的材质为晶向方向向量的坐标为<111>的单晶硅,对所述硅衬底200分别进行氮离子注入工艺和高温退火工艺以在所述硅衬底200中形成阻挡层201,从而所述阻挡层201的材质为氮化硅。此处也可以选择氧离子注入工艺形成二氧化硅阻挡层201。阻挡层201至注入表面的距离与注入离子的能量成正比,距离为300nm~1000nm,阻挡层201的厚度与注入离子的剂量成正比,厚度为50nm~500nm。
如图4所示在上层硅衬底表面形成第二介质层112。在上层硅衬底表面形成第二介质层112。第二介质层112的材质可以是二氧化硅、氮化硅、氧化铝或者氧化锆等任一材料,也可以是上述至少两种材料的组合。
如图5所示将第一介质层111和第二介质层112键合得到组合介质层。具体的,对第一介质层111和第二介质层112的表面进行抛光,使得键合前第一介质层111和第二介质层112的表面粗糙度降低。然后进行表面激活,将第一介质层111和第二介质层112贴近后,在界面处得以形成范德华力化学键,将第一介质层111与第二介质层112键合。键合之后,第一介质层111和第二介质层112的总厚度可以为100nm~2000nm。此时,下层硅衬底位于复合工程衬底最上层。
如图6所示,去除下层硅衬底,露出阻挡层。具体的,先研磨以去除不少于二分之一的下层硅衬底,再采用干法刻蚀工艺去除剩余的下层硅衬底,露出阻挡层201。其中,采用干法刻蚀工艺去除的下层硅衬底的厚度优选为10μm~50μm。
通过CMP抛光工艺去除阻挡层,得到复合工程衬底。
由上述方法制备的复合工程衬底从下往上依次包括氮化铝陶瓷基底100、组合介质层和硅衬底200,组合介质层为电绝缘体,氮化铝陶瓷基底100厚度为350μm~1000μm,组合介质层厚度为100nm~2000nm,如图7所示。

Claims (10)

1.一种复合工程衬底的制备方法,其特征在于,所述制备方法包括:
在氮化铝陶瓷基底上形成第一介质层;
通过离子注入和高温退火在硅衬底内生成阻挡层,形成上层硅衬底、阻挡层和下层硅衬底的三层结构;
在上层硅衬底表面形成第二介质层;
将第一介质层和第二介质层键合得到组合介质层;
去除下层硅衬底,露出阻挡层;
去除阻挡层,得到复合工程衬底。
2.根据权利要求1所述复合工程衬底的制备方法,其特征在于,氮化铝陶瓷基底的厚度为350μm~1000μm。
3.根据权利要求1所述复合工程衬底的制备方法,其特征在于,所述硅衬底的材质为晶向方向向量的坐标为<111>的单晶硅,硅衬底厚度为300μm~1000μm。
4.根据权利要求1所述复合工程衬底的制备方法,其特征在于,所述阻挡层距离注入表面距离为300nm~1000nm,厚度为50nm~500nm。
5.根据权利要求1所述复合工程衬底的制备方法,其特征在于,所述离子注入为氮离子注入,阻挡层为氮化硅。
6.根据权利要求1所述复合工程衬底的制备方法,其特征在于,所述离子注入为氧离子注入,阻挡层为二氧化硅。
7.根据权利要求1所述复合工程衬底的制备方法,其特征在于,所述去除下层硅衬底的方法为先研磨再干法刻蚀,去除下层硅衬底,露出阻挡层。
8.根据权利要求1所述复合工程衬底的制备方法,其特征在于,通过CMP抛光工艺去除阻挡层。
9.根据权利要求1所述复合工程衬底的制备方法,其特征在于,所述第一介质层和所述第二介质层的总厚度为100nm~2000nm。
10.一种根据权利要求1-9任一项所述方法制备的复合工程衬底,其特征在于,所述复合工程衬底从下往上依次包括氮化铝陶瓷基底、组合介质层和硅衬底,组合介质层为电绝缘体。
CN202211665182.5A 2022-12-23 2022-12-23 一种复合工程衬底及其制备方法 Pending CN115966462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211665182.5A CN115966462A (zh) 2022-12-23 2022-12-23 一种复合工程衬底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211665182.5A CN115966462A (zh) 2022-12-23 2022-12-23 一种复合工程衬底及其制备方法

Publications (1)

Publication Number Publication Date
CN115966462A true CN115966462A (zh) 2023-04-14

Family

ID=87352464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211665182.5A Pending CN115966462A (zh) 2022-12-23 2022-12-23 一种复合工程衬底及其制备方法

Country Status (1)

Country Link
CN (1) CN115966462A (zh)

Similar Documents

Publication Publication Date Title
US11735460B2 (en) Integrated circuit devices with an engineered substrate
US10355120B2 (en) Gallium nitride epitaxial structures for power devices
JP7190244B2 (ja) 加工基板に集積されているrfデバイス
US7023010B2 (en) Si/C superlattice useful for semiconductor devices
TWI741094B (zh) 具有整合式夾鉗二極體之橫向高電子遷移率電晶體
CN101325154B (zh) 混合图形化单晶硅的绝缘层上锗结构、方法及应用
US11164743B2 (en) Systems and method for integrated devices on an engineered substrate
US9824891B1 (en) Method of manufacturing the thin film
US10312378B2 (en) Lateral gallium nitride JFET with controlled doping profile
JP7118069B2 (ja) 縦型パワーデバイスのための方法およびシステム
US20190181121A1 (en) Method and system for electronic devices with polycrystalline substrate structure interposer
CN115966462A (zh) 一种复合工程衬底及其制备方法
US20220115340A1 (en) Methods and systems for fabrication of mmic and rf devices on engineered substrates
CN106783616B (zh) 半导体结构以及制备方法
CN112530855B (zh) 复合异质集成半导体结构、半导体器件及制备方法
CN116646247A (zh) 一种氮化镓高电子迁移率晶体管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination