CN115950871A - 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备 - Google Patents

聚羟基脂肪酸酯含量的检测方法、装置、系统、设备 Download PDF

Info

Publication number
CN115950871A
CN115950871A CN202211167876.6A CN202211167876A CN115950871A CN 115950871 A CN115950871 A CN 115950871A CN 202211167876 A CN202211167876 A CN 202211167876A CN 115950871 A CN115950871 A CN 115950871A
Authority
CN
China
Prior art keywords
pha
raman spectrum
fermentation
content
spectrum information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211167876.6A
Other languages
English (en)
Other versions
CN115950871B (zh
Inventor
周瑶瑶
吴雅琨
汪东升
李腾
张浩千
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bluepha Co ltd
Original Assignee
Bluepha Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluepha Co ltd filed Critical Bluepha Co ltd
Priority to CN202211167876.6A priority Critical patent/CN115950871B/zh
Publication of CN115950871A publication Critical patent/CN115950871A/zh
Priority to PCT/CN2023/119116 priority patent/WO2024061126A1/zh
Application granted granted Critical
Publication of CN115950871B publication Critical patent/CN115950871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及生物检测领域,具体提供了一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备。所述聚羟基脂肪酸酯含量的检测方法包括:采集待检测发酵液的拉曼光谱信息;输入拉曼光谱信息至PHA含量的检测模型;基于PHA含量的检测模型处理拉曼光谱信息,并输出PHA含量值;PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息及样本PHA含量值训练得到的定量关系。本发明能够克服因发酵生产PHA时的组分复杂、发酵周期长而导致无法实时检测的技术问题,通过所构建的PHA检测模型实现对发酵液中PHA的无损、高效、准确检测。

Description

聚羟基脂肪酸酯含量的检测方法、装置、系统、设备
技术领域
本发明涉及生物检测领域,尤其涉及一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备。
背景技术
聚羟基脂肪酸酯(PHA)主要通过微生物发酵的方式来制备,为了有效提高生产效率和降低生产成本,监测发酵过程中的PHA含量、浓度、纯度等指标对发酵过程控制至关重要。
传统的PHA的检测方法大多需要经过取样洗涤、离心干燥、甲醇-氯仿消解、有机萃取等处理后,再经过气相色谱法来进行检测,这种检测方法虽然能获得细胞内PHA的含量,但耗时长,样品前处理也非常麻烦,且不同发酵条件导致的PHA发酵过程具有组分复杂、发酵周期长、无法实时检测的特殊性,传统的PHA的检测方法无法实时反映发酵液中产物的变化。
发明内容
本发明提供一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备,用以解决现有PHA检测技术存在的滞后性、成本高、通量低的技术缺陷,本发明能够通过对发酵液中的PHA拉曼光谱进行建模,通过建立的分析模型有效检测检测结果,实现对发酵液中PHA的无损、高效、准确检测。
第一方面,本发明提供了一种聚羟基脂肪酸酯含量的检测方法,包括:
采集待检测发酵液的拉曼光谱信息;
输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;
基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;
所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;
所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
根据本发明提供的聚羟基脂肪酸酯含量的检测方法,所述拉曼光谱信息包括所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间以及在所述频移区间中所述拉曼波峰的波数强度;
所述发酵液的拉曼光谱信息与PHA含量值的定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息中的所述波数强度以及PHA含量值通过训练得到的定量关系。
根据本发明提供的聚羟基脂肪酸酯含量的检测方法,所述基于所述PHA含量的检测模型处理所述拉曼光谱信息,包括:
将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间;
基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度;
通过所述波数强度与发酵液中PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值。
根据本发明提供的聚羟基脂肪酸酯含量的检测方法,在采集待检测发酵液的拉曼光谱信息之后,还包括:
预处理所述拉曼光谱信息,得到去噪后的拉曼光谱信息;
所述预处理的方式包括卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理中的至少一种。
根据本发明提供的聚羟基脂肪酸酯含量的检测方法,所述不同发酵条件包括:
不同的发酵容器;
或,不同单体的PHA对应的不同菌株;
或,不同发酵基质;
或,不同活性的菌株。
第二方面,还提供了一种聚羟基脂肪酸酯含量的检测装置,包括:
采集单元:用于采集待检测发酵液的拉曼光谱信息;
输入单元:用于输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;
处理单元:用于基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;
所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;
所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
根据本发明提供的聚羟基脂肪酸酯含量的检测装置,所述处理单元还包括:
映射子单元:用于将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间;
确定子单元:用于基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度;
输出子单元:用于通过所述波数强度与PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值。
根据本发明提供的聚羟基脂肪酸酯含量的检测装置,所述检测装置还包括:
预处理单元:用于预处理所述拉曼光谱信息,得到去噪后的拉曼光谱信息;
所述预处理的方式包括卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理中的至少一种。
第三方面,还提供了一种聚羟基脂肪酸酯含量的检测系统,包括:
检测容器,用于为发酵液提供检测环境;
探头,用于浸入至检测池中采集拉曼光谱信息;
光纤,用于探头与激发光源的信号传输,以及探头与信号检测器的信号传输;
激发光源,用于为发酵液提供检测光源;
信号检测器,用于将光信号转换为数据信号;
还包括所述聚羟基脂肪酸酯含量的检测装置,所述检测装置用于对所收集的拉曼光谱信息分析处理后,输出待测发酵液中的聚羟基脂肪酸酯含量。
第四方面,还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现所述的聚羟基脂肪酸酯含量的检测方法。
本发明提供了一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备,通过将从待检测发酵液中采集到的拉曼光谱信息输入至聚羟基脂肪酸酯PHA含量的检测模型,获取所述待检测发酵液中的PHA含量值;由于所述PHA含量的检测模型是根据不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的,以使得最终获取的PHA含量值检测准确,本发明能够克服因PHA发酵时的组分复杂、发酵周期长而导致无法实时检测的技术问题,通过所构建的聚羟基脂肪酸酯PHA检测模型有效检测检测结果,可将检测误差值控制在8%以内,尤其是可以控制在5%以内,实现对发酵液中PHA的无损、高效、准确检测。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的聚羟基脂肪酸酯含量的检测方法的流程示意图之一;
图2是本发明提供的处理所述拉曼光谱信息的流程示意图;
图3是本发明提供的聚羟基脂肪酸酯含量的检测方法的流程示意图之二;
图4是本发明提供的聚羟基脂肪酸酯含量的检测系统的结构示意图;
图5是本发明提供的聚羟基脂肪酸酯含量的检测装置的结构示意图;
图6是本发明提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
聚羟基脂肪酸酯(PHA)是自然界中由多种微生物产生高分子聚酯化合物,作为一种能源储备物质广泛存在于微生物细胞中,由于其优异的生物可降解性和可塑性,在农业、食品、医疗和制药工业中具有广泛的应用前景,本发明旨在提供一种能够实时在线检测发酵液中PHA的方法,以克服现有PHA检测技术所存在的滞后性、成本高、通量低等技术问题。
图1是本发明提供的聚羟基脂肪酸酯含量的检测方法的流程示意图之一,本发明提供了一种聚羟基脂肪酸酯含量的检测方法,包括:
采集待检测发酵液的拉曼光谱信息;
输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;
基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;
所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;
所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
在步骤101中,所述拉曼光谱信息包括所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间以及在所述频移区间中所述拉曼波峰的波数强度,本发明采集待检测发酵液的拉曼光谱信息,从所述拉曼光谱信息中提取出拉曼波峰所在频移区间以及在所述频移区间中所述拉曼波峰的波数强度,所述待检测发酵液可以是从检测池中提取出的发酵液,也可以通过探头直接渗入待检测发酵液中采集所述待检测发酵液的拉曼光谱信息,拉曼光谱信息是一种散射光谱,是利用分子被激光照射后所出的散射光的波长差别来对物质进行表征分析的技术,由于拉曼光谱检测具有快速、无损、灵敏度高等优点,被广泛应用于各个领域,尤其是在发酵领域,拉曼光谱可以及时地获取到当前反应的状态信息,而不需要经过取样、处理、再检测等环节,可极大增强检测的通量,同时还避免了由于体积变化对反应造成的干扰。
本领域技术人员理解,在采集待检测发酵液的拉曼光谱信息之前,为减少背景噪音的干扰,尤其是荧光信号的干扰,可选地对采集到的拉曼光谱进行预处理,映射预处理后的所述拉曼光谱信息至预设波段区间,确定出拉曼波峰,将所述拉曼波峰所在的频移区间确定为目标频移区间,确定所述拉曼波峰在所述频移区间中的目标波数强度。
在步骤102中,输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型,在一个可选地实施例中,向量化所述频移区间以及所述波数强度,并根据所述频移区间以及所述波数强度的向量化表示构建特征输入矩阵,将所述特征输入矩阵输入至聚羟基脂肪酸酯PHA检测模型,以获取所述PHA检测模型输出的PHA含量检测值。
在步骤103中,基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值,所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系。在输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型之前,还包括:基于不同发酵条件下,不同发酵时间的样本数据,按照预设比例确定样本训练集以及样本测试集,以根据所述样本训练集以及样本测试集构建PHA含量的检测模型。
所述PHA含量的检测模型是根据不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的,具体地:所述发酵液的拉曼光谱信息与PHA含量值的定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息中的所述波数强度以及PHA含量值通过训练得到的定量关系,如下:
Figure BDA0003862090520000081
式(1)中,Y代表PHA的含量值,X代表波数强度,采用偏最小二乘法回归(PLSR)对训练集的拉曼光谱数据进行建模,建立波数强度与PHA特性的定量关系。
在一个可选地实施例中,所述发酵液的拉曼光谱信息与PHA含量值的定量关系是所述波数强度以及PHA含量值的定量关系,即波数强度对应于发酵液中PHA含量。
作为本发明的一个可选地实施例,所述PHA检测模型是根据不同发酵条件、不同时刻下样本发酵液的每一样本频移区间、在每一样本频移区间内拉曼波峰的样本波数强度以及不同时刻下样本发酵液的样本PHA含量值训练得到的,所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的,在这样的实施例中,将样本频移区间、样本波数强度以及样本发酵液的样本PHA含量值所构建的样本集进行PHA检测模型的训练,以使得在输入目标频移区间以及目标波数强度的情况下,所述PHA检测模型能够输出目标PHA含量值,即PHA含量检测值。
而作为本发明的另一个可选地实施例,所述PHA检测模型还可以根据不同发酵条件、不同时刻下样本发酵液拉曼波峰的样本波数强度以及不同时刻下样本发酵液的样本PHA含量值训练得到的,在这样的实施例中,所述样本PHA含量值同样可以是基于气相色谱检测对所述样本发酵液检测而确定的,相应地,将样本波数强度以及样本发酵液的样本PHA含量值所构建的样本集进行PHA检测模型的训练,以使得仅在输入目标波数强度的情况下,所述PHA检测模型能够输出目标PHA含量值,即PHA含量检测值。
所述不同发酵条件包括不同的发酵容器,或不同单体的PHA对应的不同菌株,或不同发酵基质,或不同活性的菌株,所述不同的发酵容器包括不锈钢发酵罐、玻璃发酵罐、塑料发酵罐等,所述不同菌株包括不同单体的PHA对应的菌株,不同的单体的PHA包括聚-β-羟丁酸PHB,3-羟基丁酸酯和3-羟基戊酸酯的共聚物PHBV、3-羟基丁酸与3-羟基己酸的共聚酯PHBHHx、聚-3-羟基丁酸酯-4-羟基丁酸酯P34HB。
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的,在一个可选地实施例中,所述的气相色谱检测PHA含量方法可以通过如下方式确定:首先,取10mL发酵液置于称重后的15ml离心管中,加入10mL乙醇后采取离心处理,所述离心处理的条件为以每分钟10000转的速度运行5分钟,离心结束后加入20mL乙醇,洗涤菌体,以同样条件进行离心处理,离心后倒掉上清,在65℃的烘箱内烘干;然后,称取50mg烘干样品于试管中,加入2mL氯仿和2mL酯化液在100℃反应4小时,其中,酯化液的配置方法为:称取0.5g苯甲酸加入装有485ml的甲醇试剂瓶中,取15ml浓硫酸缓慢加入至甲醇试剂瓶中,混匀后完成酯化液的配制;最后,加入1mL超纯水涡旋振荡,进行萃取,静置30分钟至60分钟,使其产生分层,取下层有机相进行气相色谱分析,所述气相色谱分析的条件需满足:进样量1μL,色谱柱流量35mL/min,柱温240℃,流速23.4cm/s,吹扫流量3mL/min以及分流比39。
本发明采用基于拉曼光谱实时检测PHA的方法,利用PHA发酵不同时刻特征峰的变化,可以有效检测到PHA的变化,相比传统气相色谱检测技术,本发明所提供的检测方法可以实时检测PHA,显著缩短了检测时间,极大提高检测通量,整个过程发酵液样品不需要化学试剂处理,可显著降低PHA的检测成本,同时检测过程无须取样,并可排除由取样导致发酵体积变化,从而对发酵带来的干扰。
本发明提供了一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备,通过将从待检测发酵液中采集到的拉曼光谱信息输入至聚羟基脂肪酸酯PHA含量的检测模型,获取所述待检测发酵液中的PHA含量值;由于所述PHA含量的检测模型是根据不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的,以使得最终获取的PHA含量值检测准确,本发明能够克服因PHA发酵时的组分复杂、发酵周期长而导致无法实时检测的技术问题,通过所构建的聚羟基脂肪酸酯PHA检测模型有效检测检测结果,实现对发酵液中PHA的无损、高效、准确检测。
图2是本发明提供的处理所述拉曼光谱信息的流程示意图,所述基于所述PHA含量的检测模型处理所述拉曼光谱信息,包括:
将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间;
基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度;
通过所述波数强度与PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值。
在步骤1031中,本发明首先划分预设波段区间,以获取所有指纹样本频移区间,将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间,例如,在一个以频移区间为X轴,以波数强度为Y轴的坐标系中,划分预设波段区间,可沿着X轴方向,划分为1800至1600的区间,1600至1400的区间,1400至1200的区间,1200至1000的区间以及1000至800的区间,而相对应Y轴而言,则可沿着Y轴方向依次设定波数强度的区间为0至120000。
在步骤1032中,基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度,将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间,以确定所述待检测发酵液中的PHA相关联的指纹样本频移区间,进而确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度,具体地,根据所述拉曼波峰的波峰点所在的坐标位置确定在所述指纹样本频移区间的波数强度,所述波数强度将通过所述波峰点的Y轴相应位置确定,例如,确定所述拉曼波峰在1600至1400的目标频移区间,紧接着,根据所述拉曼波峰的波峰点所在的坐标位置,确定波数强度值为100000。
在步骤1033中,通过所述波数强度与PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值。
在一个可选地实施例中,定量关系可以由如上式(1)中所示,其中,Y代表PHA的含量值,X代表波数强度。本发明输入波数强度至上述定量关系中,进而通过计算输出所述待检测发酵液中的PHA含量值。
在一个可选地实施例中,所述采集所述待检测发酵液的目标拉曼光谱信息,包括:
根据拉曼光谱信号检测器的探头获取目标拉曼光谱信息;
所述拉曼光谱信号检测器的探头在目标拉曼光谱信息的获取阶段,被浸入至所述待检测发酵液中。
可选地,拉曼光谱信号检测器的探头是一种能够通过浸入至所述待检测发酵液中,获取待检测发酵液中目标拉曼光谱信息的设备,其可以通过光纤连接信号检测器,以获取目标拉曼光谱信息,在这样的实施例中,本发明采用了一种在线实时监测待检测发酵液中目标拉曼光谱信息的技术方案,以高效快速的分析出目标拉曼光谱信息中拉曼波峰的波数强度。
可选地,所述采集所述待检测发酵液的目标拉曼光谱信息,包括:
从所述待检测发酵液中提取预设份数的目标待检测发酵液;
输入每一目标待检测发酵液至拉曼光谱信号检测器,以获取所述拉曼光谱信号检测器输出的待检测拉曼光谱信息;
均值化处理所有待检测拉曼光谱信息,获取目标拉曼光谱信息;
每份目标发酵液的体积相同。
所述预设份数可以为3份、5份甚至更多,本发明可以在发酵液发酵的任意时刻从相应地发酵液承载装置中提取出5mL的PHA发酵液样品,所述发酵液承载装置可以为发酵罐,振荡2分钟混匀后加入至检测池中,将探头浸入至发酵液样品中采集发酵液拉曼信号,在采集的过程中,将通过激发光源照射所述发酵液,可选地,设置激发波长为785nm,积分时间为5s,随机扫描样品5次。
在一个可选地实施例中,并不需要将探头浸入至发酵液样品中采集发酵液拉曼信号,而是将提取的目标待检测发酵液输入至拉曼光谱信号检测器中直接进行检测,以获取目标拉曼光谱信息,若在同一时刻获取了5份目标待检测发酵液,则确定5份与目标待检测发酵液相对应的目标拉曼光谱信息,其中,为保证检测结果的准确性,每份目标发酵液的体积相同。
可选地,均值化处理所有待检测拉曼光谱信息,获取目标拉曼光谱信息,本发明将通过均值化处理的形式处理所有的待检测拉曼光谱信息,以将均值化处理结果作为目标拉曼光谱信息。
在另一个可选地实施例中,本发明均值化处理所有待检测拉曼光谱信息,获取初始拉曼光谱信息,采用一阶求导处理所述初始拉曼光谱信息,获取去噪后拉曼光谱信息,将从所述去噪后拉曼光谱信息中截取出的预设波段区间内的拉曼光谱信息确定为目标拉曼光谱信息。
可选地,均值化处理所有待检测拉曼光谱信息后所获取的并不是目标拉曼光谱信息,而是初始拉曼光谱信息,所述初始拉曼光谱信息是并未经过去噪、截取处理的拉曼光谱信息。
可选地,选取不同发酵时间的PHA发酵液,同时以初始发酵培养基作为空白对照,采用拉曼光谱检测设备进行检测,通过特定波长的入射激光光源采集不同发酵时间的PHA发酵液和空白对照的拉曼光谱信息,确定PHA的特征拉曼峰,为减少背景噪音,例如荧光信号的干扰,对采集到的拉曼光谱进行预处理,将采集到的PHA发酵液拉曼光谱进行全波段分析,先后经过标准正态变换、求导、基线校正去除荧光信号,在这样的实施例中,本发明能够通过一阶求导对所测得的PHA发酵液的拉曼光谱数据进行荧光信号去除,同时校准基线,并对所有数据进行归一化处理。
本领域技术人员理解,所述的预处理方法包括但不限于卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理。
可选地,将从所述去噪后拉曼光谱信息中截取出的预设波段区间内的拉曼光谱信息确定为目标拉曼光谱信息,在一个可选地实施例中,本发明对拉曼光谱数据进行分析时选取波数为800cm-1至1800cm-1的指纹区图谱。
在一个可选地实施例中,在获取所述PHA检测模型输出的PHA含量检测值之前,还包括从样本发酵液接种发酵时刻开启计时,每间隔预设时长,采集所述样本发酵液的样本拉曼光谱信息;根据每一时刻的样本拉曼光谱信息,获取每一时刻样本发酵液的样本频移区间以及在每一样本频移区间内拉曼波峰的样本波数强度;基于气相色谱检测对每一时刻的样本发酵液检测,确定每一时刻的样本发酵液相对应的样本PHA含量值;根据每一时刻样本发酵液的样本频移区间、在每一样本频移区间内拉曼波峰的样本波数强度以及每一时刻的样本发酵液相对应的样本PHA含量值构建样本数据集;根据预设比例划分所述样本数据集后确定样本训练集以及样本测试集,以根据所述样本训练集以及样本测试集构建PHA检测模型。
在一个可选地实施例中,在不同的发酵时间,从发酵罐中取5mL的PHA发酵液样品,振荡2min混匀后,加入至检测池中,将拉曼探头浸入至发酵液样品中采集发酵液拉曼信号,拉曼光谱采集参数为:激发波长785nm,积分时间5s,随机扫描样品5次,取5次平均光谱代表样品光谱信息。
而在另一个可选地实施例中,还可以从2L玻璃发酵罐接种发酵开始后,每隔2小时取3个平行样,每份样品10mL,将每个时间点取得的样品加入到检测池中,拉曼探头浸入至发酵液样品中采集信号。
根据每一时刻的样本拉曼光谱信息,获取每一时刻样本发酵液的样本频移区间以及在每一样本频移区间内拉曼波峰的样本波数强度,上述样本频移区间以及样本波数强度的确定,可以参考步骤101中采集待检测发酵液的拉曼光谱信息,从所述拉曼光谱信息中提取出拉曼波峰所在频移区间以及在所述频移区间中所述拉曼波峰的波数强度的技术方案,即将采集到的PHA发酵液样本拉曼光谱信息中的背景噪音(如荧光信号)去除,并对基线进行校正处理,并对所有数据做归一化处理,对样本拉曼光谱数据进行分析时均选取800~1800cm-1的指纹区图谱,映射所述样本拉曼光谱信息至所述预设波段区间,将样本拉曼波峰所在的频移区间确定为样本频移区间,确定所述拉曼波峰在所述样本频移区间中的样本波数强度,遍历所有样本拉曼光谱信息,以获取每一时刻样本发酵液的样本频移区间以及在每一样本频移区间内拉曼波峰的样本波数强度。
基于气相色谱检测对每一时刻的样本发酵液检测,确定每一时刻的样本发酵液相对应的样本PHA含量值,本发明将根据气相色谱检测PHA含量方法确定每一时刻的样本发酵液相对应的样本PHA含量值。
可选地,首先,取10mL样本发酵液置于称重后的15ml离心管中,加入10mL乙醇后采取离心处理,所述离心处理的条件为以每分钟10000转的速度运行5分钟,离心结束后加入20mL乙醇,洗涤菌体,以同样条件进行离心处理,离心后倒掉上清,在65℃的烘箱内烘干;然后,称取50mg烘干样品于试管中,加入2mL氯仿和2mL酯化液在100℃反应4小时,其中,酯化液的配置方法为:称取0.5g苯甲酸加入装有485ml的甲醇试剂瓶中,取15ml浓硫酸缓慢加入至甲醇试剂瓶中,混匀后完成酯化液的配制;最后,加入1mL超纯水涡旋振荡,进行萃取,静置30分钟至60分钟,使其产生分层,取下层有机相进行气相色谱分析,所述气相色谱分析的条件需满足:进样量1μL,色谱柱流量35mL/min,柱温240℃,流速23.4cm/s,吹扫流量3mL/min以及分流比39。
可选地,根据每一时刻样本发酵液的样本频移区间、在每一样本频移区间内拉曼波峰的样本波数强度以及每一时刻的样本发酵液相对应的样本PHA含量值构建样本数据集,将每一时刻的样本频移区间、样本波数强度以及样本PHA含量值作为标签组成一个样本数据集,进而根据所有时刻的样本发酵液,确定所有时刻的所有样本数据集。
可选地,根据预设比例划分所述样本数据集后确定样本训练集以及样本测试集,以根据所述样本训练集以及样本测试集构建PHA检测模型,所述预设比例可以为7:3、8:2或者其他比例,可选地,本发明将处理后到拉曼光谱和气相色谱测定的结果,例如共确定34个样本数据集,作为标签来建立偏最小二乘回归(Partial Least Squares Regression,PLSR)模型,其中,所述样本数据集分为样本训练集以及样本测试集,确定所述样本训练集和所述样本测试集的比例分别为70%和30%,以根据样本训练集以及样本测试集建立PHA检测模型。
本发明将处理后的拉曼光谱数据集按不同比例划分为训练集、测试集,建立基于拉曼光谱的PHA检测模型,以气相色谱法检测得到的不同发酵时间的PHA结果作为真实值,采用偏最小二乘法回归对训练集的拉曼光谱数据进行建模,建立波数强度与PHA特性的定量关系,本发明将测试集的拉曼光谱数据带入至检测模型中,根据检测结果,对检测模型进行修正以提高模型的泛化能力,所述PHA特性即为PHA含量或PHA浓度。
可选地,预处理所述拉曼光谱信息,得到去噪后的拉曼光谱信息,所述预处理的方式包括卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理中的至少一种。
图3是本发明提供的聚羟基脂肪酸酯含量的检测方法的流程示意图之二,本发明根据拉曼光谱采集标准样品,然后通过波长范围截取光谱,对光谱进行预处理,所述预处理包括去基线、求导、归一化,然后训练检测模型,判断模型的准确度,在模型准确度不足的情况下,重新返回选定波长范围截图光谱的步骤,在模型准确度达到预设准确度的情况下,确定检测模型,在确定检测模型后,光谱实时采集数据,并对拉曼数据进行相应地预处理,将其导入到所述检测模型中,以获取相应的检测结果。
在一个可选地实施例中,构建基于拉曼光谱用于检测PHA的模型通过如下方式实现:
PHA发酵液的拉曼光谱采集:在不同的发酵时间,从发酵罐中取5mL的PHA发酵液样品,振荡2min混匀后,加入至检测池中,将拉曼探头浸入至发酵液样品中采集发酵液拉曼信号,拉曼光谱采集参数为:激发波长785nm,积分时间5s,随机扫描样品5次,取5次平均光谱代表样品光谱信息。
拉曼光谱数据的预处理:通过一阶求导对所测得的PHA发酵液的拉曼光谱数据进行荧光信号去除,同时校准基线,并对所有数据进行归一化处理。在对拉曼光谱数据进行分析时均选取800~1800cm-1的指纹区图谱。
基于拉曼光谱的检测PHA模型构建:将处理后到拉曼光谱和气相色谱测定的结果作为标签来建立PLSR模型,拉曼光谱数据集中分为训练集和测试集,训练集和测试集的比例70%和30%,如表1所示建立模型参数:
表1基于拉曼光谱PHA检测模型参数
Figure BDA0003862090520000171
其中,R2为确定系数(R-square),越接近1表明对回归方程的解释能力越强,其模型对数据拟合的越好。
之后利用建立的检测模型来对未作为标签的发酵时间点的拉曼光谱数据进行验证分析,其中,未作为标签的发酵时间点的拉曼光谱数据处理方式与作为标签的拉曼光谱数据处理方式一致,模型检测结果如表2所示,气相色谱检测PHA结果与拉曼光谱建模检测结果具有较好的相关关系,误差值在4%以内。
表2模型检测结果
Figure BDA0003862090520000181
本发明中可选地采用发酵罐作为样品采样中发酵液的发酵载体,所述的发酵罐包括但不限于不锈钢发酵罐、玻璃发酵罐、塑料发酵罐,拉曼光谱采集条件为:使用785nm波长激光、采集范围300-3200cm-1、分辨率为5cm-1、激光功率为500mW、采集频次为10-30s/次、累计采集1-10次,可选地,采集5次。
在一个可选地实施例中,本发明利用玻璃发酵罐离线取样检测PHA含量,包括如下过程:
首先,PHA发酵液的拉曼光谱采集:从2L玻璃发酵罐接种发酵开始后,每隔2h取3个平行样,每份样品10mL,将每个时间点取得的样品加入到检测池中,拉曼探头浸入至发酵液样品中采集信号,其中PHA发酵液产品为PHBHHx,拉曼光谱采集参数为:激发波长785nm,积分时间5s,随机扫描样品5次,取5次平均光谱代表样品光谱信息。
然后,拉曼光谱数据的处理:将采集到的PHA发酵液拉曼光谱数据中的背景噪音去除,例如荧光信号的去除,并对基线进行校正处理,并对所有数据做归一化处理,对拉曼光谱数据进行分析时均选取800~1800cm-1的指纹区图谱。
最后,拉曼光谱建模检测分析:将处理后到拉曼光谱和气相色谱测定的结果作为标签来建立PLSR模型,样本数据集中分为训练集和测试集,训练集和测试集的比例70%和30%。之后利用建立的PLSR模型来对未作为标签的其他发酵时间点的拉曼光谱数据进行验证分析,未作为标签的其他发酵时间点的拉曼光谱数据处理方式与作为标签拉曼光谱数据的方式一致,模型检测结果如表3所示,可以看出,气相色谱检测PHA结果与拉曼光谱建模检测结果具有较好的相关关系,误差值在7%以内。
表3玻璃罐发酵检测结果
Figure BDA0003862090520000191
本领域技术人员理解,本发明可以取1次光谱数据代表样品光谱信息,也可以5次光谱数据代表样品光谱信息,在取1次光谱数据代表样品光谱信息的实施例中,本发明利用不锈钢发酵罐在线检测,确定取1次光谱数据代表样品光谱信息的情况下,气相色谱检测PHA含量结果与拉曼光谱建模检测结果的相关性分析,具体包括:
首先,PHA发酵液的拉曼光谱实时采集:将拉曼光谱探头浸入式安装在75L不锈钢发酵罐中,经过灭菌和接种后,从发酵开始,实时采集发酵液拉曼信号,其中PHA发酵液为聚3-羟基丁酸酯-共-3-羟基己酸酯(PHBHHx),拉曼光谱采集参数为:激发波长785nm,积分时间10s,随机扫描样品1次,取1次光谱数据代表样品光谱信息。
然后,处理拉曼光谱:将采集到的PHA发酵液拉曼光谱进行全波段分析,先后经过标准正态变换、基线校正去除荧光信号。
最后,拉曼光谱建模检测分析:将处理后到拉曼光谱和气相色谱测定的结果作为标签来建立PLSR模型,样本数据集中分为训练集和测试集,训练集和测试集的比例70%和30%,之后利用建立的PLSR模型来对未作为标签的其他发酵时间点的拉曼光谱数据进行验证分析,未作为标签的其他发酵时间点的拉曼光谱数据处理方式与作为标签拉曼光谱数据的方式一致,模型的检测结果如表4所示,气相色谱检测PHA含量结果与拉曼光谱建模检测结果具有很好的相关关系,误差值在8%以内。
表4不锈钢罐发酵1次连续光谱检测结果
时间(h) PHA真实值(%) PHA检测值(%) 相对误差(%)
16 28 29.35 4.84
22 42 40.67 -3.17
28 56 57.99 3.57
36 71 72.22 1.72
40 75 75.41 0.54
48 76 81.45 7.18
56 73 72.62 0.51
本领域技术人员理解,本发明也可以5次光谱数据代表样品光谱信息,在取5次光谱数据代表样品光谱信息的实施例中,本发明利用不锈钢发酵罐在线检测,确定取5次光谱数据代表样品光谱信息的情况下,气相色谱检测PHA含量结果与拉曼光谱建模检测结果的相关性分析,具体包括:
首先,PHA发酵液的拉曼光谱实时采集:将拉曼光谱探头浸入式安装在75L不锈钢发酵罐中,经过灭菌和接种后,从发酵开始,实时采集发酵液拉曼信号,其中PHA发酵液产品为PHBHHx,拉曼光谱采集参数为:激发波长785nm,积分时间10s,随机扫描样品5次,取5次平均光谱代表样品光谱信息。
然后,处理拉曼光谱:将采集到的PHA发酵液拉曼光谱进行全波段分析,先后经过标准正态变换、基线校正去除荧光信号。
最后,拉曼光谱建模检测分析:将处理后到拉曼光谱和气相色谱测定的结果作为标签来建立PLSR模型,样本数据集中分为训练集和测试集,训练集和测试集的比例70%和30%。之后利用建立的PLSR模型来对未作为标签的其他发酵时间点的拉曼光谱数据进行验证分析,未作为标签的其他发酵时间点的拉曼光谱数据处理方式与作为标签拉曼光谱数据的方式一致,模型检测结果如表5所示,气相色谱检测PHA含量结果与拉曼光谱建模检测结果具有很好的相关关系,误差值在5%以内。
表5不锈钢罐发酵检测5次连续光谱结果
Figure BDA0003862090520000211
Figure BDA0003862090520000221
在表5中,提供了一种未经过一阶求导处理所述初始拉曼光谱信息,以根据未经过一阶求导处理的拉曼光谱构建检测模型的技术方案,而在表5实施例的基础上,若采用一阶求导处理所述初始拉曼光谱信息,获取去噪后拉曼光谱信息,以根据一阶求导处理的拉曼光谱构建检测模型,则具体包括:
首先,PHA发酵液的拉曼光谱实时采集:将拉曼光谱探头浸入式安装在75L不锈钢发酵罐中,经过灭菌和接种后,从发酵开始,实时采集发酵液拉曼信号,其中PHA发酵液产品为PHBHHx,拉曼光谱采集参数为:激发波长785nm,积分时间10s,随机扫描样品5次,取5次平均光谱代表样品光谱信息。
然后,处理拉曼光谱:将采集到的PHA发酵液拉曼光谱进行全波段分析,先后经过标准正态变换、基线校正去除荧光信号。
最后,拉曼光谱建模检测分析:将处理后到拉曼光谱和气相色谱测定的结果作为标签来建立PLSR模型,样本数据集中分为训练集和测试集,训练集和测试集的比例70%和30%,之后利用建立的PLSR模型来对未作为标签的其他发酵时间点的拉曼光谱数据进行验证分析,未作为标签的其他发酵时间点的拉曼光谱数据处理方式与作为标签拉曼光谱数据的方式一致,模型检测结果如表6所示,气相色谱检测PHA含量结果与拉曼光谱建模检测结果具有很好的相关关系,误差值在3%以内。
表6不锈钢罐发酵的一阶求导检测结果
Figure BDA0003862090520000222
Figure BDA0003862090520000231
在另一个可选地实施例中,本发明还将结合不同PHA浓度对气相色谱检测PHA含量结果与拉曼光谱建模检测结果的相关关系进行验证,具体地,包括:
首先,PHA发酵液的拉曼光谱实时采集:将拉曼光谱探头浸入式安装在75L不锈钢发酵罐中,经过灭菌和接种后,从发酵开始,实时采集发酵液拉曼信号,其中PHA发酵液产品为聚3-羟基丁酸酯PHB,拉曼光谱采集参数为:激发波长785nm,积分时间10s,随机扫描样品5次,取5次平均光谱代表样品光谱信息。
然后,处理拉曼光谱:将采集到的PHA发酵液拉曼光谱进行全波段分析,先后经过标准正态变换、求导、基线校正去除荧光信号。
最后,拉曼光谱建模检测分析:将处理后到拉曼光谱和气相色谱测定的结果作为标签来建立PLSR模型,样本数据集中分为训练集和测试集,训练集和测试集的比例70%和30%,之后利用建立的PLSR模型来对其他未作为标签的样本进行检测分析,模型检测结果如表7所示。可以看出,不同PHA浓度的气相色谱检测PHA含量结果与拉曼光谱建模检测结果具有很好的相关关系,误差值在5%以内。
表7不同PHA浓度发酵检测结果
Figure BDA0003862090520000232
Figure BDA0003862090520000241
图4是本发明提供的聚羟基脂肪酸酯含量的检测系统的结构示意图,包括;
检测容器1,用于为发酵液提供检测环境;
探头2,用于浸入至检测池中采集拉曼光谱信息;
光纤3,用于探头与激发光源的信号传输,以及探头与信号检测器的信号传输;
激发光源4,用于为发酵液提供检测光源;
信号检测器5,用于将光信号转换为数据信号;
还包括所述的聚羟基脂肪酸酯含量的检测装置,所述检测装置用于对所收集的拉曼光谱信息分析处理后,输出待测发酵液中的聚羟基脂肪酸酯含量。
所述聚羟基脂肪酸酯含量的检测装置可以作为一个整体,对所收集的拉曼光谱信息分析处理后,输出待测发酵液中的聚羟基脂肪酸酯含量,而在另一个可选地实施例中,所述聚羟基脂肪酸酯含量的检测装置可以进一步地细分为:
数据收集单元6,用于收集拉曼光谱信息;
分析处理单元7,用于对所收集的拉曼光谱信息分析处理后,输出待测发酵液中的聚羟基脂肪酸酯含量。
如图4所示,为了实时检测发酵液中PHA的含量,基于拉曼光谱检测发酵液中PHA的装置包括检测容器1,所述检测容器为检测池,所述激发光源4通过光纤3与探头2相连,探头2通过光纤3与信号检测器5相连,信号检测器5将收集的信号经过数据线或无线网络传输至数据收集单元6和分析处理单元7。
本领域技术人员理解,所述聚羟基脂肪酸酯含量的检测系统可用于在线检测和离线检测两种场景,在在线检测场景下,所述探头2浸入至发酵罐中,在发酵过程中实时采集发酵液内部的成分信号,之后信号检测器5将检测到的拉曼光谱信号传输至数据收集单元6,采用分析处理单元7对数据收集单元6收集的拉曼信号进一步进行处理分析后获得PHA的成分信息;
在离线场景下,首先从发酵罐中取发酵液样品,之后将样品放置在检测容器1中,所述检测容器1内部完全处于避光环境,然后将探头2浸入发酵液样品中,采集发酵液样品的成分信号,之后信号检测器5将检测到的拉曼光谱信号传输至数据收集单元6,采用分析处理单元7对数据收集单元6收集的拉曼信号进一步进行处理分析获得PHA的成分信息。
更为具体地,本发明还包括存储器及存储在所述存储器上并可在所述分析处理单元7上运行的程序或指令,所述程序或指令被所述分析处理单元7执行时执行所述聚羟基脂肪酸酯含量的检测方法,该方法包括:采集待检测发酵液的拉曼光谱信息;输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
本发明提供了一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备,通过将从待检测发酵液中采集到的拉曼光谱信息输入至聚羟基脂肪酸酯PHA含量的检测模型,获取所述待检测发酵液中的PHA含量值;由于所述PHA含量的检测模型是根据不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的,以使得最终获取的PHA含量值检测准确,本发明能够克服因PHA发酵时的组分复杂、发酵周期长而导致无法实时检测的技术问题,通过所构建的聚羟基脂肪酸酯PHA检测模型有效检测检测结果,实现对发酵液中PHA的无损、高效、准确检测。
图5是本发明提供的聚羟基脂肪酸酯含量的检测装置的结构示意图,本发明还提供了一种聚羟基脂肪酸酯含量的检测装置,包括采集单元51:用于采集待检测发酵液的拉曼光谱信息,所述采集单元51的工作原理可以参考前述步骤101,在此不予赘述。
所述聚羟基脂肪酸酯含量的检测装置还包括输入单元52:用于输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型,所述输入单元52的工作原理可以参考前述步骤102,在此不予赘述。
所述聚羟基脂肪酸酯含量的检测装置还包括处理单元53:用于基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值,所述处理单元53的工作原理可以参考前述步骤103,在此不予赘述。
所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;
所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
可选地,所述处理单元还包括映射子单元531:用于将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间,所述映射子单元531的工作原理可以参考前述步骤1031,在此不予赘述。
所述处理单元还包括确定子单元532:用于基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度,所述确定子单元532的工作原理可以参考前述步骤1032,在此不予赘述。
所述处理单元还包括输出子单元533:用于通过所述波数强度与PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值,所述输出子单元533的工作原理可以参考前述步骤1033,在此不予赘述。
可选地,所述检测装置还包括:
预处理单元54:用于预处理所述拉曼光谱信息,得到去噪后的拉曼光谱信息,所述预处理的方式包括卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理中的至少一种。
本发明提供了一种聚羟基脂肪酸酯含量的检测方法、装置、系统、设备,通过将从待检测发酵液中采集到的拉曼光谱信息输入至聚羟基脂肪酸酯PHA含量的检测模型,获取所述待检测发酵液中的PHA含量值;由于所述PHA含量的检测模型是根据不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的,以使得最终获取的PHA含量值检测准确,本发明能够克服因PHA发酵时的组分复杂、发酵周期长而导致无法实时检测的技术问题,通过所构建的聚羟基脂肪酸酯PHA检测模型有效检测检测结果,实现对发酵液中PHA的无损、高效、准确检测。
图6是本发明提供的电子设备的结构示意图。如图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行聚羟基脂肪酸酯含量的检测方法,该方法包括:采集待检测发酵液的拉曼光谱信息;输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及样本PHA含量值训练得到的定量关系;所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
此外,上述的存储器630中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的一种聚羟基脂肪酸酯含量的检测方法,该方法包括:采集待检测发酵液的拉曼光谱信息;输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及样本PHA含量值训练得到的定量关系;所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供聚羟基脂肪酸酯含量的检测方法,该方法包括:采集待检测发酵液的拉曼光谱信息;输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及样本PHA含量值训练得到的定量关系;所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种聚羟基脂肪酸酯含量的检测方法,其特征在于,包括:
采集待检测发酵液的拉曼光谱信息;
输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;
基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;
所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;
所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
2.根据权利要求1所述的聚羟基脂肪酸酯含量的检测方法,其特征在于,所述拉曼光谱信息包括所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间以及在所述频移区间中所述拉曼波峰的波数强度;
所述发酵液的拉曼光谱信息与PHA含量值的定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息中的所述波数强度以及PHA含量值通过训练得到的定量关系。
3.根据权利要求2所述的聚羟基脂肪酸酯含量的检测方法,其特征在于,所述基于所述PHA含量的检测模型处理所述拉曼光谱信息,包括以下步骤:
将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间;
基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度;
通过所述波数强度与PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值。
4.根据权利要求1所述的聚羟基脂肪酸酯含量的检测方法,其特征在于,在采集待检测发酵液的拉曼光谱信息之后,还包括:
预处理所述拉曼光谱信息,得到去噪后的拉曼光谱信息;
所述预处理的方式包括卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理中的至少一种。
5.根据权利要求1-4中任一项所述的聚羟基脂肪酸酯含量的检测方法,其特征在于,所述不同发酵条件包括:
不同的发酵容器;
或,不同单体的PHA对应的不同菌株;
或,不同发酵基质;
或,不同活性的菌株。
6.一种聚羟基脂肪酸酯含量的检测装置,其特征在于,包括:
采集单元:用于采集待检测发酵液的拉曼光谱信息;
输入单元:用于输入所述拉曼光谱信息至聚羟基脂肪酸酯PHA含量的检测模型;
处理单元:用于基于所述PHA含量的检测模型处理所述拉曼光谱信息,并输出所述待检测发酵液中的PHA含量值;
所述PHA含量的检测模型包括发酵液的拉曼光谱信息与PHA含量值的定量关系;
所述定量关系是基于不同发酵条件下样本发酵液的拉曼光谱信息以及不同发酵条件下的样本PHA含量值训练得到的定量关系;
所述样本PHA含量值是基于气相色谱检测对所述样本发酵液检测而确定的。
7.根据权利要求6所述的聚羟基脂肪酸酯含量的检测装置,其特征在于,所述处理单元还包括:
映射子单元:用于将所述待检测发酵液中的PHA对应的拉曼波峰所在频移区间映射至所述检测模型中对应的指纹样本频移区间;
确定子单元:用于基于对应的指纹样本频移区间,确定所述待检测发酵液中的PHA对应的拉曼波峰在所述频移区间中的波数强度;
输出子单元:用于通过所述波数强度与PHA含量之间的定量关系,输出所述待检测发酵液中的PHA含量值。
8.根据权利要求6或7所述的聚羟基脂肪酸酯含量的检测装置,其特征在于,所述检测装置还包括:
预处理单元:用于预处理所述拉曼光谱信息,得到去噪后的拉曼光谱信息;
所述预处理的方式包括卷积平滑处理、基线校正处理、多元散射校正处理、正交信号校正处理、标准正态变换处理、归一化处理、高斯滤波处理、中值滤波处理中的至少一种。
9.一种聚羟基脂肪酸酯含量的检测系统,其特征在于,包括:
检测容器,用于为发酵液提供检测环境;
探头,用于浸入至检测池中采集拉曼光谱信息;
光纤,用于探头与激发光源的信号传输,以及探头与信号检测器的信号传输;
激发光源,用于为发酵液提供检测光源;
信号检测器,用于将光信号转换为数据信号;
还包括权利要求6-8中任一项所述的聚羟基脂肪酸酯含量的检测装置,所述检测装置用于对所收集的拉曼光谱信息分析处理后,输出待测发酵液中的聚羟基脂肪酸酯含量。
10.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述的聚羟基脂肪酸酯含量的检测方法。
CN202211167876.6A 2022-09-23 2022-09-23 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备 Active CN115950871B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211167876.6A CN115950871B (zh) 2022-09-23 2022-09-23 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备
PCT/CN2023/119116 WO2024061126A1 (zh) 2022-09-23 2023-09-15 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211167876.6A CN115950871B (zh) 2022-09-23 2022-09-23 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备

Publications (2)

Publication Number Publication Date
CN115950871A true CN115950871A (zh) 2023-04-11
CN115950871B CN115950871B (zh) 2023-12-15

Family

ID=87284767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211167876.6A Active CN115950871B (zh) 2022-09-23 2022-09-23 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备

Country Status (2)

Country Link
CN (1) CN115950871B (zh)
WO (1) WO2024061126A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061126A1 (zh) * 2022-09-23 2024-03-28 北京蓝晶微生物科技有限公司 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252634A (zh) * 2020-02-13 2021-08-13 凯塞光学系统股份有限公司 使用拉曼光谱法实时监测葡萄酒发酵特性
CN114264643A (zh) * 2021-12-20 2022-04-01 江南大学 基于单细胞拉曼光谱快速预测食醋发酵进程的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009320332B2 (en) * 2008-10-31 2014-07-31 Biomerieux, Inc. Methods for separation, characterization, and/or identification of microorganisms using raman spectroscopy
KR101832917B1 (ko) * 2015-11-06 2018-03-05 주식회사 제노포커스 근적외선 분광분석기를 이용한 아미노산 발효공정의 실시간관리방법
CN110987895B (zh) * 2019-11-07 2023-04-11 江苏大学 一种快速在线检测木薯固态发酵的生长过程的方法
US11598726B2 (en) * 2020-02-13 2023-03-07 Endress+Hauser Optical Analysis, Inc. Real-time Raman spectroscopic monitoring of wine properties and constituents during wine production
CN112730376A (zh) * 2020-12-17 2021-04-30 山东省科学院生物研究所 一种基于拉曼光谱检测发酵液中多糖的装置及其方法和应用
CN114216893A (zh) * 2021-12-15 2022-03-22 河南科技大学 一种食用油反式脂肪酸的检测方法
CN115950871B (zh) * 2022-09-23 2023-12-15 北京蓝晶微生物科技有限公司 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252634A (zh) * 2020-02-13 2021-08-13 凯塞光学系统股份有限公司 使用拉曼光谱法实时监测葡萄酒发酵特性
US20210255040A1 (en) * 2020-02-13 2021-08-19 Kaiser Optical Systems Inc. Real-time monitoring of wine fermentation properties using raman spectroscopy
CN114264643A (zh) * 2021-12-20 2022-04-01 江南大学 基于单细胞拉曼光谱快速预测食醋发酵进程的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTIN KOLLER ET AL.: "Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA", ENG. LIFE SCI., pages 558 - 581 *
V. CIOBOTĂ ET AL.: "The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy", ANAL BIOANAL CHEM, pages 2929 - 2937 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061126A1 (zh) * 2022-09-23 2024-03-28 北京蓝晶微生物科技有限公司 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备

Also Published As

Publication number Publication date
WO2024061126A1 (zh) 2024-03-28
CN115950871B (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN101210875A (zh) 基于近红外光谱技术的无损测量土壤养分含量的方法
CN103134767B (zh) 一种红外光谱校正鉴定白酒品质的方法
CN102636450A (zh) 基于近红外光谱技术无损检测枸杞中枸杞多糖含量的方法
CN109668858A (zh) 基于近红外光谱检测发酵过程生物量和组分浓度的方法
CN102590129B (zh) 近红外检测花生中氨基酸含量的方法
WO2024061126A1 (zh) 聚羟基脂肪酸酯含量的检测方法、装置、系统、设备
CN102876816A (zh) 基于多传感器信息融合的发酵过程状态监测与控制方法
CN102692388A (zh) 数字成像系统及其快速检测果蔬中有机磷农药残留的方法
US11598726B2 (en) Real-time Raman spectroscopic monitoring of wine properties and constituents during wine production
CN105628644A (zh) 基于原位实时光谱在线监测蛋白质酶解过程的装置和方法
CN101477051A (zh) 用于液态奶中三聚氰胺现场快速检测的拉曼光谱法及试剂盒
CN103353446A (zh) 近红外快速检测白酒中理化指标的方法
CN102297846B (zh) 一种快速测定发酵液中透明质酸含量的方法
CN103439269A (zh) 近红外快速检测酒醅中理化指标的方法
CN101566564A (zh) 反射干涉光谱检测乙醇浓度的检测系统及方法
CN102323313B (zh) 一种干葡萄酒陈酿时间的检测方法
CN116052778A (zh) 实时监测生物反应器中细胞培养液组分浓度的方法
Legner et al. Using compact 1H NMR, NIR, and Raman spectroscopy combined with multivariate data analysis to monitor a biocatalyzed reaction in a microreaction system
CN103954604A (zh) 基于藻类拉曼信号的水体残留农药检测方法
CN108072627A (zh) 一种用中红外光谱快速检测酱油中氨基酸态氮和总酸含量的方法
CN104483287A (zh) 基于近红外光谱的在线发酵过程生物学参数的检测装置及方法
CN104237200A (zh) 基于蛋白核小球藻拉曼信号的草甘膦浓度检测方法
CN103234923A (zh) 一种黄酒发酵过程中总糖含量的在线监控方法
Bockisch et al. Process analytical technologies to monitor the liquid phase of anaerobic cultures
CN103487398A (zh) 一种赖氨酸发酵液的分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant