CN115753300A - 用于组织学样品的试剂的喷墨沉积 - Google Patents

用于组织学样品的试剂的喷墨沉积 Download PDF

Info

Publication number
CN115753300A
CN115753300A CN202211632362.3A CN202211632362A CN115753300A CN 115753300 A CN115753300 A CN 115753300A CN 202211632362 A CN202211632362 A CN 202211632362A CN 115753300 A CN115753300 A CN 115753300A
Authority
CN
China
Prior art keywords
reagent
staining
composition
sample
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211632362.3A
Other languages
English (en)
Inventor
M.波拉斯克
R.科齐科夫斯基
E.克莱因
C.帕卢齐克
H.格罗尔
M.哈扎尔
R.塔库尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ventana Medical Systems Inc
Original Assignee
Ventana Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ventana Medical Systems Inc filed Critical Ventana Medical Systems Inc
Publication of CN115753300A publication Critical patent/CN115753300A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • G01N1/312Apparatus therefor for samples mounted on planar substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N2001/302Stain compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • G01N2001/317Apparatus therefor spraying liquids onto surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1041Ink-jet like dispensers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及用于组织学样品的试剂的喷墨沉积。公开了用于将试剂液滴沉积至细胞或组织样品上的装置和方法。任选地,样品具有保护性流体层,液滴具有约1pL至约50pL的体积,将pH调节剂分配至样品,液滴具有约5m/s至约15m/s的速度,液滴具有大于9.52x10‑10焦耳的动能,并且样品上沉积的试剂的空间密度范围为约50dpi至约1200dpi。还公开了适合于经由液滴按需系统分配的试剂组合物,其中所述试剂组合物选自初级染色试剂组合物、抗体试剂组合物和大分子染色组合物。还公开了用于将含有样品的载片成像的喷墨沉积系统和装置。

Description

用于组织学样品的试剂的喷墨沉积
相关申请的交叉引用
本申请是国际申请日为2016年4月20日的国际申请PCT/EP2016/058801进入中国、申请号为201680022722.4的题为“用于组织学样品的试剂的喷墨沉积”的发明专利申请的分案申请。本申请要求于2015年4月20日提交的美国临时专利申请号62/150,122的申请日的权益,所述申请的公开内容在此通过引用并入本文。
技术领域
本公开在诊断领域中具有工业适用性。
背景技术
分子病理学是在引起疾病或以其他方式与疾病相关的DNA、mRNA和蛋白的分子水平上的检查。从这种检查可以阐明关于患者诊断、预后和治疗选项的重要信息。疾病,诸如癌症,可以通过多种不同的方法来诊断。一种方法是鉴定组织或细胞中的生物标志物(诸如癌症生物标志物)的存在,所述生物标志物与特定癌症类型相关或被认为与特定癌症类型相关。
苏木精和伊红(H&E)是已经使用至少一个世纪的初级染剂,并且对于识别各种组织类型和形态学变化(其形成当代癌症诊断的基础)是必不可少的。该染剂与各种固定剂良好地起作用,并且显示广泛范围的细胞质、核和细胞外基质特征。苏木精具有深蓝紫色,并且通过复杂的反应染色核酸。伊红是粉红色,并且非特异性染色蛋白。在典型组织中,核被染成蓝色,而细胞质和细胞外基质具有不同程度的粉红色染色。充分固定的细胞显示相当大的核内细节。核显示异染色质的缩合的不同细胞型和癌型特异性模式(苏木精染色),其在诊断上非常重要。核仁用伊红染色。如果存在丰富的多核糖体,则细胞质将具有不同的蓝色投影(cast)。可以通过在核附近的区域中不存在染色来暂时鉴定高尔基区域。因此,该染剂公开了丰富的结构信息,其具有特定的功能意义。
组织化学和细胞化学是经常用于通过用分子标记样品来鉴定完整细胞的背景下的生物标志物的技术,所述分子以可在显微镜上显现的方式特异性结合生物标志物。免疫组织化学(IHC)和免疫细胞化学(ICC)是使用抗体来标记生物标志物的组织化学和细胞化学的类型。通过在组织环境或细胞环境的背景下鉴定生物标志物,可以阐明生物标志物和细胞或组织样品的其他形态或分子特征之间的空间关系,其可以揭示从其他分子或细胞技术不明显的信息。
这些技术通常需要在封固在显微镜载片(诸如玻璃、塑料或石英显微镜载片)上的组织切片(例如,肿瘤活检样品)或细胞样品(例如,血液或骨髓)上进行的一系列处理步骤。经常使用的步骤包括预处理以制备组织样品用于封固和染色(例如,脱蜡、再水化和/或抗原修复),用生物标志物特异性抗体或探针标记组织样品,酶标记的二级处理和孵育,底物与酶反应以产生突出显示针对生物标志物标记的样品的区域的荧光团或发色团,复染等。这些步骤中的大多数通过多个冲洗步骤分开以从先前步骤去除未反应的残留试剂。孵育通常在升高的温度(通常约37℃)下进行,并且必须连续地保护组织免于脱水。
鉴于IHC所需的大量重复处理步骤,已引入自动化系统以减少人力劳动以及与之相关的成本和错误率,且引入一致性。已经成功采用的自动化系统的实例包括可得自Ventana Medical Systems (Tucson, Ariz.)的ES®、NexES®、DISCOVERY™、BENCHMARK™和Gen II®染色系统。这些系统采用微处理器控制系统,其包括支撑径向定位的载片的旋转传送带。步进马达旋转传送带,其将每个载片放置在位于载片上方的一系列试剂分配器之一下面。载片和试剂分配器上的条形码允许分配器和载片的计算机控制的定位,使得可以通过计算机的适当编程来对各种组织样品中各自进行不同的试剂处理。
为了在处理期间引入试剂和其他流体,经常使用试剂递送系统和方法。通常,试剂递送系统通过将针或塑料管插入试剂储存器或小瓶中、用马达驱动的注射器将试剂吸入管中、将针移动至载片(或其他容器)并将注射器翻转以分配试剂,来自动移液试剂。在诸如前述的过程中,许多试剂必须以精确测量的少量(低至微升规模)沉积在载片上。
根本上设计仪器诸如Ventana Medical Systems ES®、NexES®、BENCHMARK®和DISCOVERY®系统以便在受控环境条件下将试剂依次施加至安装在1*3英寸玻璃显微镜载片上的组织切片。仪器必须执行几种基本功能,诸如试剂施加,洗涤(以去除先前施加的试剂),喷射排空(减少洗涤后载片上的残留缓冲液体积的技术),Liquid Coverslip™施加(用于含有试剂和防止蒸发的轻油应用)和其他仪器功能。
在载片上染色组织的过程由上述基本仪器功能的依次重复组成。基本上将试剂施加至组织,然后在特定温度下孵育指定时间。当孵育时间完成时,将试剂从载片上洗掉,并施加下一试剂,孵育并洗掉等,直到已经施加所有试剂且染色过程完成。
发明内容
在本公开的一个方面是包含染料(例如苏木精或伊红)、表面活性剂和粘度调节剂的初级染色组合物。在一些实施方案中,所述初级染色组合物适合于从本文进一步描述的液滴按需试剂分配系统分配。在一些实施方案中,所述液滴按需试剂分配系统是喷墨分配系统。在一些实施方案中,所述初级染色组合物进一步包含氯化铝。
在本公开的另一个方面是包含染料、表面活性剂和粘度调节剂的初级染色组合物,其中所述组合物具有范围为约1cp至约40cp的粘度和范围为约25达因/cm至约45达因/cm的表面张力。在一些实施方案中,所述组合物具有范围为约6cp至约10cp的粘度。在一些实施方案中,所述染料选自苏木精、伊红吖啶橙、俾斯麦棕、胭脂红、考马斯蓝、甲酚紫、结晶紫、DAPI(“2-(4-脒基苯基)-1H-吲哚-6-甲脒”)、溴化乙锭、酸性品红(acid fucsine)、Hoechst染剂、碘、孔雀石绿、甲基绿、亚甲基蓝、中性红、尼罗蓝、尼罗红、四氧化锇、罗丹明和番红精。在一些实施方案中,所述表面活性剂是非离子型表面活性剂。在一些实施方案中,所述粘度调节剂是二醇。在一些实施方案中,所述粘度调节剂是丙二醇。在一些实施方案中,所述表面活性剂以范围为所述初级染色组合物的总重量的约0.01%至约0.5%的量存在。在一些实施方案中,所述粘度调节剂以范围为所述初级染色组合物的总重量的约35%至约60%的量存在。在一些实施方案中,所述初级染色组合物进一步包含缓冲剂。在一些实施方案中,所述初级染色组合物进一步包含缓冲剂。在一些实施方案中,所述初级染色组合物具有范围为约2至约5的pH。在一些实施方案中,所述初级染色组合物具有约2.2的pH。在一些实施方案中,所述初级染色组合物进一步包含氯化铝。
在一些实施方案中,所述染料是苏木精,所述表面活性剂是非离子型表面活性剂,所述粘度调节剂是丙二醇;且丙二醇的量范围为初级染色组合物的总重量的约35%至约60%。在一些实施方案中,所述染料是伊红,所述表面活性剂是非离子型表面活性剂,所述粘度调节剂是丙二醇;且丙二醇的量范围为初级染色组合物的总重量的约35%至约60%。
在本公开的另一个方面是包含第一初级染色组合物和第二初级染色组合物的试剂盒,其中所述第一初级染色组合物包含苏木精、非离子型表面活性剂和丙二醇,其中所述丙二醇以范围为所述第一初级染色组合物的总重量的约35%至约60%的量存在;且其中所述第二初级染色组合物包含伊红、非离子型表面活性剂和丙二醇,其中所述丙二醇以范围为所述第二初级染色组合物的总重量的约35%至约60%的量存在。
在本公开的另一个方面是大分子试剂组合物,其包含选自抗体、抗体缀合物、酶和多聚体的生物分子;表面活性剂;和粘度调节剂;其中所述抗体组合物适合于从本文进一步描述的液滴按需试剂分配系统分配。在一些实施方案中,液滴按需试剂分配系统是喷墨分配系统。在一些实施方案中,所述大分子试剂组合物进一步包含氯化铝。
在本公开的另一个方面是包含抗体或抗体缀合物、表面活性剂和粘度调节剂的抗体染色组合物,其中所述抗体组合物具有范围为约4cp至约11cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。在一些实施方案中,所述抗体染色组合物进一步包含至少一种载体蛋白。在一些实施方案中,至少一种载体蛋白选自牛血清白蛋白和正常山羊血清。在一些实施方案中,所述表面活性剂是非离子型表面活性剂。在一些实施方案中,所述表面活性剂以范围为所述抗体染色组合物的总重量的约0.01%至约0.5%的量存在。在一些实施方案中,所述粘度调节剂是甘油。在一些实施方案中,所述粘度调节剂以范围为所述抗体染色组合物的总重量的约2%至约50%的量存在。在一些实施方案中,所述表面活性剂是非离子型表面活性剂,所述粘度调节剂是甘油或高分子量葡聚糖,且其中所述组合物进一步包含牛血清白蛋白;且其中甘油或高分子量葡聚糖的量范围为所述抗体染色组合物的总重量的约2%至约50%。在一些实施方案中,所述大分子试剂组合物进一步包含氯化铝。
在本公开的另一个方面是试剂盒,其含有包含抗体染色组合物的第一组合物和包含至少一种初级染色组合物的第二组分。在一些实施方案中,所述初级染色组合物包含苏木精或伊红、非离子型表面活性剂和丙二醇之一,其中所述丙二醇以范围为所述初级染色组合物的总重量的约35%至约60%的量存在。在一些实施方案中,所述抗体组合物包含一抗、表面活性剂和粘度调节剂,其中所述抗体组合物具有范围为约4cp至约11cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。
在本公开的另一个方面是染色组织样品的方法,其包括(a)将液滴按需印刷头(例如喷墨印刷头或其他液滴分配装置)定位邻近于(例如在x、y、z空间附近、之上或周围)组织样品的一部分以接收染色试剂,所述印刷头与染色试剂的来源流体连通;(b)以预定速度将预定量的染色试剂从喷墨印刷头分配至组织样品的一部分上。在一些实施方案中,所述方法包括重复步骤(b)一次或多次。在一些实施方案中,所述方法包括重复步骤(b)至少三次。在一些实施方案中,针对组织样品的不同部分重复所述方法。
在一些实施方案中,所述方法进一步包括测量分配的染色试剂的染色强度。在一些实施方案中,如果测量的染色强度不符合预定阈值,则重复步骤(b)。在一些实施方案中,所述预定阈值是约30AU(任意单位)和约160AU之间的吸光度值。在一些实施方案中,所述预定阈值是约25AU和约60AU之间的吸光度值。在一些实施方案中,所述预定阈值是约30AU和约70AU之间的吸光度值。在一些实施方案中,所述预定阈值是约44AU和约145AU之间的吸光度值。
在一些实施方案中,重复步骤(b),直到染色试剂的累积量范围为约10 µL/英寸2至约30μL/英寸2。在一些实施方案中,重复步骤(b),直到染色试剂的累积量范围为约12 µL/英寸2至约28μL/英寸2。在一些实施方案中,重复步骤(b),直到染色试剂的累积量范围为约14 µL/英寸2至约28μL/英寸2
在一些实施方案中,所述分配方法补充与所述组织样品的部分连通的染剂耗竭层。在一些实施方案中,所述预定速度是允许染色试剂渗透与所述组织样品连通的坑槽且补充染剂耗竭层的速度。在一些实施方案中,所述预定速度是允许在所述组织样品的界面层处混合的速度。在一些实施方案中,所述预定速度范围为约5 m/s至约15 m/s。
在一些实施方案中,将两种染色试剂依次施加至组织样品。在一些实施方案中,所述染色试剂是初级染剂。在一些实施方案中,所述染色试剂是包含染料、表面活性剂和粘度调节剂的组合物,其中所述组合物具有范围为约1cp至约40cp的粘度和范围为约25达因/cm至约45达因/cm的表面张力。在一些实施方案中,所述组合物以约1x105 s-1和约1x107 s-1之间的剪切速率分配。在一些实施方案中,首先将苏木精或伊红之一施加至组织样品的至少一部分,且随后将苏木精或伊红中的另一种施加至所述组织样品的至少相同部分。
在一些实施方案中,所述染色试剂是大分子染色组合物。在一些实施方案中,所述大分子染色组合物包含选自抗体、抗体缀合物、多聚体和酶的大分子;表面活性剂;和粘度调节剂,其中所述组合物具有范围为约4cp至约11cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。在一些实施方案中,所述大分子染色组合物以小于约5x105 s-1的剪切速率分配。
在一些实施方案中,所述方法进一步包括任选地在每个分配步骤之前或之后沉积一种或多种额外试剂的步骤,其中所述一种或多种额外试剂选自脱蜡剂、洗涤剂、冲洗剂、稀释剂、缓冲剂或检测试剂。在一些实施方案中,任选地沉积一种或多种试剂的步骤通过从喷墨印刷头分配一种或多种试剂来进行。在一些实施方案中,任选地沉积一种或多种试剂的步骤通过另一种沉积方式来进行。
在本公开的另一个方面是将试剂分配至生物样品上的方法,其包括:将保护性流体层覆盖至生物样品上,所述生物样品安放于支持介质上;分配约1pL至约50pL的试剂液滴,使得试剂液滴渗透保护性流体层且接触生物样品;其中所述试剂液滴包含选自初级染色试剂组合物和抗体试剂组合物的试剂组合物。在一些实施方案中,所述试剂液滴以约5m/s至约15 m/s的速度分配。在一些实施方案中,所述保护性流体层是含水坑槽(aqueouspuddle)。在一些实施方案中,所述保护性流体层是不混溶的油。在一些实施方案中,所述试剂液滴的密度大于不混溶的油的密度。在一些实施方案中,所述试剂液滴的动能大于不混溶的油的表面张力。在一些实施方案中,所述试剂液滴的动能大于所述保护性流体层的表面张力。在一些实施方案中,所述动能大于9.52x10-10焦耳。
在一些实施方案中,所述初级染色试剂组合物包含染料、表面活性剂和粘度调节剂,其中所述组合物具有范围为约1cp至约40cp的粘度和范围为约25达因/cm至约45达因/cm的表面张力。在一些实施方案中,所述初级染色试剂组合物以约1x105 s-1和约1x107 s-1之间的剪切速率分配。在一些实施方案中,所述抗体试剂组合物包含一抗、表面活性剂和粘度调节剂,其中所述组合物具有范围为约4cp至约7cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。在一些实施方案中,所述抗体组合物以小于约5x105 s-1的剪切速率分配。
在本公开的另一个方面是将试剂分配至生物样品上的方法,其包括:将保护性流体层覆盖至生物样品上,所述生物样品安放于支持介质上;将pH调节剂分配至生物样品;且以约5m/s至约15 m/s的速度分配试剂液滴;其中所述试剂液滴包含选自初级染色试剂组合物和抗体试剂组合物的试剂组合物。在一些实施方案中,分配的试剂液滴的量范围为约10µL/英寸2至约30 µL/英寸2。在一些实施方案中,所述pH调节剂具有范围为约3至约5的pH。在一些实施方案中,所述保护性流体层是不混溶的油且其中所述试剂液滴的动能大于不混溶的油的表面张力。在一些实施方案中,所述初级染色试剂组合物包含染料、表面活性剂和粘度调节剂,其中所述组合物具有范围为约1cp至约40cp的粘度和范围为约25达因/cm至约45达因/cm的表面张力。在一些实施方案中,初级染色试剂组合物以约1x105 s-1至约1x107 s-1的剪切速率分配。在一些实施方案中,抗体试剂组合物包含一抗、表面活性剂和粘度调节剂,其中所述组合物具有范围为约4cp至约7cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。在一些实施方案中,所述抗体组合物以小于约5x105 s-1的剪切速率分配。
在本公开的另一个方面是将试剂分配至生物样品上的方法,其包括:将保护性流体层覆盖至生物样品上,所述生物样品安放于支持介质上;以这样的动能分配试剂液滴,所述动能足以使试剂液滴渗透保护性流体层以到达生物样品,且使得沉积在生物样品上的试剂液滴的空间密度范围为约50dpi至约1200dpi,其中所述试剂液滴包含选自初级染色试剂组合物和大分子染色组合物的试剂组合物。在一些实施方案中,所述保护性流体层是不混溶的油且其中所述试剂液滴的密度大于不混溶的油的密度。在一些实施方案中,所述大分子染色组合物包含选自抗体、抗体缀合物、多聚体和酶的大分子;表面活性剂;和粘度调节剂,其中所述组合物具有范围为约4cp至约7cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。在一些实施方案中,所述大分子染色组合物以小于约5x105 s-1的剪切速率分配。在一些实施方案中,所述初级染色试剂组合物包含染料、表面活性剂和粘度调节剂,其中所述组合物具有范围为约1cp至约40cp的粘度和范围为约25达因/cm至约45达因/cm的表面张力。在一些实施方案中,所述初级染色试剂组合物以约1x105 s-1至约1x107 s-1的剪切速率分配。
在本公开的另一个方面是将一种或多种试剂分配至生物样品上的方法,所述方法包括将保护性流体层覆盖至生物样品上,所述生物样品安放于支持介质(例如显微镜载片)上;经由液滴按需系统分配试剂液滴,使得试剂液滴渗透保护性流体层且接触生物样品;其中所述试剂选自初级染色试剂组合物或大分子试剂组合物。在一些实施方案中,所述初级染色组合物包含染料、表面活性剂和粘度调节剂,其中所述组合物具有范围为约1cp至约40cp的粘度和范围为约25达因/cm至约45达因/cm的表面张力。在一些实施方案中,所述染料是苏木精,所述表面活性剂是非离子型表面活性剂,所述粘度调节剂是丙二醇;且其中丙二醇的量范围为初级染色组合物的总重量的约35%至约60%。在一些实施方案中,所述染料是伊红,所述表面活性剂是非离子型表面活性剂,所述粘度调节剂是丙二醇;且其中丙二醇的量范围为初级染色组合物的总重量的约35%至约60%。在一些实施方案中,所述大分子试剂染色组合物包含一抗、表面活性剂和粘度调节剂,其中所述组合物具有范围为约4cp至约7cp的粘度和范围为约20达因/cm至约40达因/cm的表面张力。在一些实施方案中,所述保护性流体层是含水坑槽。在一些实施方案中,以足以渗透且补充生物样品周围的耗竭层的速度提供试剂液滴。在一些实施方案中,所述试剂液滴以约5 m/s至约15 m/s的速度分配。在一些实施方案中,所述保护性流体层是不混溶的流体,例如,油。在一些实施方案中,所述试剂液滴的密度大于不混溶的油的密度。在一些实施方案中,所述试剂液滴的动能大于不混溶的油的表面张力。在一些实施方案中,试剂液滴的韦伯数小于约18。在一些实施方案中,所述初级染色试剂溶液以约1x105 s-1至约1x107 s-1的剪切速率分配且所述抗体试剂溶液以小于约5x105 s-1的剪切速率分配。
在本公开的另一个方面是用于将初级染色试剂组合物或大分子试剂染色组合物分配至组织样品的装置,其中分配的初级染色试剂组合物或大分子试剂染色组合物的体积范围为约10 µL/英寸2至约30 µL/英寸2。在一些实施方案中,所述分配装置是喷墨印刷头。在一些实施方案中,所述分配装置是液滴按需系统,其包含目标成像系统、相对运动系统、印刷头、流体储存器和压力控制装置。在一些实施方案中,所述分配装置进一步包含印刷头清洁系统。在一些实施方案中,所述分配装置如图1A中所示。在一些实施方案中,配制所述初级染色试剂组合物和大分子试剂染色组合物以具有适于用所述分配装置分配的粘度。
在本公开的另一个方面是自动化载片染色装置,其包含(a)用于分配具有范围为约1pL至约50pL的体积的试剂液滴的分配器;(b)适于支承显微镜载片的载片支持物;(c)至少一个试剂储存器,其包含初级染色试剂组合物或大分子染色组合物,所述储存器与所述喷墨印刷头流体连通;和(d)含有处理器和存储器的控制模块,其中将控制模块编程以引导喷墨印刷头将组合物分配至由载片支持物支承的显微镜载片上。
在本公开的另一个方面是计算机执行的方法,其包括以下步骤:(i)对载片的第一部分进行成像,所述载片含有组织样品;(ii)选择载片的第二部分用于施加染色试剂,其中第二部分是第一部分的子集;(iii)经由喷墨沉积系统经多次通过(passes)将染色试剂沉积至第二部分。在一些实施方案中,每次沉积系统的通过将约360 nL/英寸2至约14.4μL/英寸2的染色试剂沉积至第二部分。
在本公开的另一个方面是用于染色组织样品的计算机系统,其包含一个或多个处理器和至少一个存储器,所述至少一个存储器存储非暂时性计算机可读指令,其用于由所述一个或多个处理器执行以使染色装置(其具有液滴按需分配机构)与计算机系统通信,以将预定量的初级染色试剂组合物或大分子试剂组合物分配至生物样品的至少一部分上。
与常规染色方法相比,以更高精确度(例如给药精确度、时间精确度、原位混合)施加或分配试剂将是有利的。再次与常规染色方法相比,以较少试剂体积(因此较少浪费)分配试剂和/或以更高速率驱动染色动力学也是有利的。申请人已经发现经由液滴按需技术(例如喷墨技术或压电技术)分配试剂溶液实现一致的结果,并且适合于并入自动化染色过程中。申请人也已经发现,可以通过经由液滴按需系统将更多或更少的试剂质量分配至组织上来优化(例如“拨入(dialed-in)”)染色强度。实际上,申请人已发现,试剂质量可以通过几种方法之一来改变,包括(i)通过分配机构的多次通过来施加试剂;(ii)改变试剂分配的每英寸点数(dpi);(iii)改变液滴体积;和/或(iv)改变试剂浓度,如本文所公开。申请人已出人意料地发现,染色反应动力学似乎比用现有技术的坑槽技术更快,如本文进一步讨论。申请人也已发现,经由液滴按需沉积方法分配试剂溶液允许试剂用量的显著降低,同时与常规染色方法相比提供相同的染色强度。这些和其他相对优异的结果在本文中进一步描述。
附图说明
本专利或申请文件含有至少一个以颜色绘制的图。本专利或专利申请公开的具有彩图的拷贝在请求和支付必要费用后由专利和商标局提供。
图1A记载了根据本公开的实施方案的液滴按需系统;
图1B记载了可以包含或连接至根据本公开的实施方案的液滴按需系统的系统;
图2记载了根据本公开的一个实施方案的试剂分配方法;
图3记载了根据本公开的另一个实施方案的试剂分配方法;
图4A至4E示出了用苏木精染色组织样品,由此用根据本公开的一个实施方案的试剂分配方法染色组织,并进一步比较液滴按需染色与常规染色技术;
图5A至5C示出了用伊红染色组织样品,由此用根据本公开的一个实施方案的试剂分配方法染色组织,并进一步比较液滴按需染色与常规染色技术;
图6A和6B示出了使用根据本公开的一个实施方案的试剂分配方法用苏木精和伊红染色组织样品;
图7记载了示出在IHC方法中用初级染剂或抗体染色组织样品的一种方法的流程图;
图8A记载了根据本公开的一个实施方案的试剂分配方法;
图8B示出了根据本公开的一个实施方案的试剂分配方法的组织样品染色;
图9A、9B和9C示出了使用根据本公开的一个实施方案的试剂分配方法通过一抗的沉积而实现的染色;
图10A至10C示出了使用根据本公开的一个实施方案的试剂分配方法的一抗的沉积的额外实例;
图11示出了用不同试剂染色不同组织区域;
图12A比较细胞核中的染色强度与组织的细胞质和细胞外区域的染色强度的比率;和
图12B示出了在不同pH下染色的效果。
具体实施方式
通常,本公开涉及利用液滴按需技术将一种或多种试剂递送或分配至生物样品。一旦分配,所述试剂被分配至生物样品内含有的细胞、细胞膜、核和/或组织或结构。本公开的方法的独特特征在于(i)以样品内和载片上两者的空间选择性沉积用于染色反应的试剂;(ii)将膜印刷至具有低至组织切片的尺寸标度(约4μm高)的试剂膜厚度的样品上的能力,所述试剂膜厚度小于染色坑槽中存在的任何扩散耗竭层的厚度;和(iii)将目标区域染色至低至单个液滴的尺寸标度的样品上的能力,如通过利用的特定液滴生成技术所定义。例如,在一些实施方案中,最小染色区域是直径为约25-60μm的组织区域。如将在本文中进一步详细描述,分配的试剂包括可用于组织化学中的初级染剂或抗体,使得可以染色、检测和分析生物样品内的目标。
如本文所用,单数术语“一(a)”、“一(an)”和“该(the)”包括复数对象,除非上下文另有清楚指出。类似地,词语“或(or)”意在包括“和(and)”,除非上下文另有清楚指出。
术语“包含”、“包括”、“具有”等可互换使用且具有相同含义。类似地,“包含”、“包括”、“具有”等可互换使用且具有相同含义。具体地,每个术语都与通常美国专利法“包含”的定义一致地定义,并且因此被解释为开放术语,意指“至少以下”,并且还被解释为不排除额外的特征、限制、方面等。因此,例如,“具有组件a、b和c的装置”意味着该装置至少包括组件a、b和c。类似地,短语:“涉及步骤a、b和c的方法”意味着该方法至少包括步骤a、b和c。此外,尽管本文可以以特定顺序概述所述步骤和方法,但技术人员将认识到,排序步骤和方法可以变化。
如本文所用,术语“抗体”是指免疫球蛋白或免疫球蛋白样分子,包括例如但不限于,IgA、IgD、IgE、IgG和IgM、其组合以及在任何脊椎动物中(例如在哺乳动物诸如人、山羊、兔和小鼠中)的免疫应答过程中产生的类似分子和抗体片段(诸如如本领域中已知的F(ab')2片段、Fab'片段、Fab'-SH片段和Fab片段,重组抗体片段(诸如sFv片段、dsFv片段、双特异性sFv片段、双特异性dsFv片段、F(ab)'2片段、单链Fv蛋白(“scFv”)、二硫化物稳定的Fv蛋白(“dsFv” )、双抗体和三抗体(如本领域中已知)和骆驼科抗体),其特异性结合目标分子(或一组高度相似的目标分子)且基本上排除结合其他分子。抗体进一步是指至少包含特异性识别并结合抗原的表位的轻链或重链免疫球蛋白可变区的多肽配体。抗体可以由重链和轻链构成,其各自具有可变区,称为可变重(VH)区和可变轻(VL)区。共同地,VH区和VL区负责结合被抗体识别的抗原。术语抗体还包括完整的免疫球蛋白及其本领域众所周知的变体和部分。
如本文所用,术语“抗原”是指可以由特异性体液或细胞免疫的产物诸如抗体分子或T细胞受体特异性结合的化合物、组合物或物质。抗原可以是任何类型的分子,包括例如半抗原、简单中间代谢物、糖(例如寡糖)、脂质和激素以及大分子诸如复合碳水化合物(例如多糖)、磷脂、核酸和蛋白。
“生物样品”或“组织样品”可以是获自任何活的生物体、由任何活的生物体排出或分泌的任何固体或流体样品,所述生物体包括但不限于单细胞生物体,尤其是诸如细菌、酵母、原生动物和变形虫以及多细胞生物体(诸如植物或动物,包括来自健康或明显健康的人类主体或受待诊断或调查的病况或疾病诸如癌症影响的人类患者的样品),其适合于组织化学或细胞化学分析,诸如保留待分析的细胞和/或组织的形态学特征的样品。例如,生物样品可以是获得自例如血液、血浆、血清、尿液、胆汁、腹水、唾液、脑脊液、房水或玻璃体液或任何身体分泌物、渗出物、流出物(例如,获得自脓肿或任何其他感染或炎症部位的流体)的生物流体,或获得自关节(例如,正常关节或受疾病影响的关节)的流体。生物样品也可以是获得自任何器官或组织的样品(包括活检样品或尸检样本,诸如肿瘤活检样品),或者可以包括细胞(无论是原代细胞还是培养细胞)或由任何细胞、组织或器官调节的培养基。在一些实例中,生物样品是核提取物。在某些实例中,样品是质量控制样品。在其他实例中,样品是测试样品。例如,测试样品是从获得自主体的生物样品制备的细胞、组织或细胞团块切片。在一个实例中,所述主体是有风险或已获得的主体。可以使用本领域普通技术人员已知的任何方法来制备样品。可以从用于常规筛选的主体或从被怀疑具有病症、诸如遗传异常、感染或瘤变的主体获得样品。公开的方法的所描述的实施方案也可以应用于被称为“正常”样品的不具有遗传异常、疾病、病症等的样品。样品可以包括可以被一种或多种检测探针特异性结合的多个目标。
如本文所用,短语“浸渍和浸泡”是指染色技术,其中样品和显微镜载片被浸没在每个测定步骤的染色试剂的路径中。
如本文所用,术语“滴按需”、“液滴按需(droplet-on-demand)”或“基于液滴的”(以及其他类似术语或短语)是指将离散的试剂液滴沉积至靶样品上的染色技术,而不是用试剂“淹没”载片或其上的样品。在一些实施方案中,液滴按需技术利用喷墨技术或压电技术。在本文公开的一些实施方案中,使用喷墨印刷头或类似技术有助于液滴分配技术。
如本文所用,术语“湿润剂”是指用于保持物质(例如,组织样品)潮湿的吸湿物质;它与干燥剂相反。其通常是具有几个亲水基团(最常见的是羟基)的分子;然而,同样可以遇到胺和羧基(有时被酯化)(其与水分子形成氢键的亲和力是关键特征)。据信湿润剂经由吸收、将水蒸汽吸入生物体/物体表面中和/或其下方而吸附并保留附近空气中的水分。相反,干燥剂也吸附环境水分,但通过将水蒸汽作为一层膜冷凝到表面上,吸附—而不是吸收—它。在喷墨沉积或类似技术的背景下,保湿剂对于维持可用的喷嘴可能是重要的。在一些实施方案中,在薄膜处理期间保持组织样品或生物样品被水合是重要的。
本公开中的术语“喷墨”是指液滴按需技术的系列,其中使用压电(或热)元件来从分配歧管驱动液滴。这可以包括商业印刷业常见的直接和非接触方法或商业印刷业以外使用的那些。
如本文所用,术语“免疫组织化学”是指通过检测抗原与特异性结合剂(诸如抗体)的相互作用来确定样品中抗原的存在或分布的方法。在允许抗体-抗原结合的条件下,将样品与抗体接触。抗体-抗原结合可以通过与抗体缀合的可检测标记物的方式(直接检测)或通过与特异性结合一抗的二抗缀合的可检测标记物的方式(间接检测)来检测。
如本文所用,术语“微流体”是指需要与玻璃显微镜载片相对的表面和用于将染色试剂基于流体引入和抽出至间隙中的装置的染色技术。此外,应当生成期望的间隙高度,使得穿过载片表面的试剂流是层流的,并且使间隙内的总体积最小化。
如本文所用,术语“一抗”是指特异性结合组织样品中的靶蛋白抗原的抗体。一抗通常是免疫组织化学程序中使用的第一抗体。一抗还包括与另一分子(例如标记物、半抗原等)缀合的那些抗体。一抗可以充当用于检测组织样品内目标的“检测探针”。
如本文所用,术语“初始染剂”是增强组织样品中的对比度的染料或类似分子。在一些实施方案中,初级染剂是直接“标记”细胞内或细胞上的生物结构、而不采用特异性结合剂、诸如抗体的染剂。初级染剂的一些实例包括苏木精和伊红。初级染剂的其他实例包括吖啶橙、俾斯麦棕、胭脂红、考马斯蓝、甲酚紫、结晶紫、DAPI(“2-(4-脒基苯基)-1H-吲哚-6-甲脒”)、溴化乙锭、酸性品红、Hoechst染剂(Hoechst 33342和Hoechst 33258,其为双苯并咪唑衍生物)、碘、孔雀石绿、甲基绿、亚甲基蓝、中性红、尼罗蓝、尼罗红、四氧化锇、罗丹明和番红精。初级染剂的其他实例包括用于染色细菌的染剂(革兰氏阳性或革兰氏阴性染剂)、用于鉴定内生孢子的染剂(内生孢子染色)、用于帮助鉴定结核分枝杆菌(Mycobacterium tuberculosis)物种的染剂(Ziehl-Neelsen染剂)、Papanicolaou染色试剂盒(其使用苏木精、橙G、伊红Y、淡绿SF淡黄色,有时为俾斯麦棕Y的组合)、过碘酸-席夫染剂(“PAS染剂”)、银染等。还有其他非限制性初级染剂包括(i)选择性显示分枝杆菌和其他抗酸生物(acid fast organisms)或组分的组织学染剂(例如,可得自Ventana MedicalSystems, Tucson, A的AFB III染色试剂盒);(ii)将酸性粘蛋白与中性多糖区分的组织学染剂(例如,也可得自Ventana的用于PAS的阿尔新蓝);(iii)表明弱酸性粘多糖的组织学染剂(例如,也可得自Ventana的阿尔新蓝染色试剂盒);(iv)幽门螺杆菌(Helicobacterpylori)的组织学染剂(例如,也可得自Ventana的阿尔新黄染色试剂盒);(v)选择性表明淀粉样蛋白的组织学染剂(例如,也可得自Ventana的刚果红染色试剂盒);(vi)将酸性粘蛋白与中性多糖区分的组织学染剂(例如,也可得自Ventana的Diastase试剂盒);(vii)表明组织切片中的弹性纤维的组织学染剂(例如,也可得自Ventana的弹性染色试剂盒);(viii)区分骨髓和其他造血组织(淋巴结)中的白细胞的组织学染剂(例如,也可得自Ventana的Giemsa染色试剂盒);(ix)表明在真菌和其他机会性生物体的细胞壁中的多糖的组织学染剂,包括但不限于,能够区分病原真菌诸如曲霉属和芽生菌属1和其他机会性生物体诸如卡氏肺囊虫(Pneumocystis carinii)的染剂(例如,也可得自Ventana的GMS II染色试剂盒);(x)表明革兰氏阴性和革兰氏阳性细菌的组织学染剂(例如,也可得自Ventana的革兰氏染色试剂盒);(xi)用于研究结缔组织、肌肉和胶原纤维的组织学染剂(例如,也可得自Ventana的Green for Trichrome);(xii)检测骨髓、具有血色沉着病和和含铁血黄素沉积的组织中的铁色素的组织学染剂(例如,也可得自Ventana的铁染色试剂盒);(xiii)表明毛细血管基底膜的组织学染剂(例如,均也可得自Ventana的Jones H&E染色试剂盒或JonesLight Green染色试剂盒);(xiv)用于检测真菌的组织学染剂(例如,也可得自Ventana的用于PAS的Light Green);(xv)检测酸性粘多糖(粘蛋白)的组织学染剂(例如,也可得自Ventana的Muciarmine染色试剂盒);(xvi)用于表明糖原的存在的组织学染剂,包括可能有助于鉴定阳性网状纤维、基底膜、真菌和中性粘多糖的染剂,或可能有助于区分PAS阳性分泌性腺癌与未分化的PAS阴性鳞状细胞癌的那些染剂(例如,也可得自Ventana的PAS染色试剂盒);(xvii)表明网状纤维的组织学染剂(例如,也可得自Ventana的Reticulum II染色试剂盒);(xviii)用于研究特定嗜银性微生物的组织学染剂(例如,也可得自Ventana的Steiner II染色试剂盒);(xix)有助于鉴定疾病诸如一些胃溃疡(幽门螺杆菌)、莱姆病、Legionnaire氏病、猫抓热(cat scratch fever)等的致病生物体的组织学银染剂(例如,也可得自Ventana的Steiner染色试剂盒);(xx)研究结缔组织、肌肉和胶原纤维的组织学染剂(例如,也可得自Ventana的Trichrome II Blue染色试剂盒);(xxi)研究结缔组织、肌肉和胶原纤维的组织学染剂(例如,各自也可得自Ventana的Trichrome染色试剂盒、TrichromeIII Blue染色试剂盒或Trichrome III Green染色试剂盒)。技术人员还将认识到,存在其他初级染料,或者就此而言,可以与本公开的试剂盒、方法和组合物(例如,初级染色组合物、试剂组合物)结合使用的染剂。
如本文所用,术语“坑槽(puddle)”是指单载片染色技术,其中显微镜载片的整个样品区域表面在每个测定步骤被一定体积的试剂覆盖。
如本文所用,术语“试剂”可以是指沉积在组织切片或细胞学样品上的任何流体,其在形态学(例如苏木精和伊红)、免疫组织化学或特殊染剂的背景下使用。这包括但不限于用于去除蜡(即脱蜡)的油、有机物和桥接试剂;用于设定反应条件、将试剂稀释至适当的浓度、淬灭反应或洗掉过量反应物的洗涤剂、冲洗剂、稀释剂或缓冲剂;用于形态学染色的小分子染料和特殊染剂;用于IHC或ICC染色中的抗体、抗体缀合物、酶、多聚体、扩增剂、显色底物、荧光检测化学物、化学发光底物和酶-反应辅因子。
如本文所用,“表面活性剂”被分类为阴离子、阳离子或非离子型表面活性剂,这取决于其化学作用的模式。通常,表面活性剂降低两种液体之间的界面张力。表面活性剂分子通常具有极性或离子“头”和非极性烃“尾”。当溶解在水中后,表面活性剂分子聚集并形成胶束,其中非极性尾部向内取向,并且极性或离子头向外朝向水性环境。非极性尾部在胶束内产生非极性“口袋”。溶液中的非极性化合物被隔绝在由表面活性剂分子形成的口袋中,因此允许非极性化合物在水溶液内保持混合。在一些实施方案中,所述表面活性剂可用于产生试剂跨组织切片的均匀铺展并减少背景染色。
如本文所用,“目标”可以是生物样品中的特定组织或生物样品中的特定分子或标记物。目标的实例包括抗原(包括半抗原)、抗体和酶。目标的其他实例通常包括蛋白、肽、核酸、糖和脂质。用于本公开中的试剂可以是能够将存在于生物样品中的靶物质转化为可检测形式、使得可以检测目标的定位(诸如通过肉眼)的试剂。
液滴按需分配系统和分配试剂的方法
在本公开的一个方面是用于将一种或多种试剂沉积至生物样品上的装置或系统,其包含利用液滴按需技术的试剂沉积系统,例如,喷墨分配系统。根据本公开,将试剂或包含试剂的组合物以液滴的形式递送至生物样品或其区域或部分上,以实现用试剂溶液点样或染色样品。液滴按需技术,包括压电或喷墨分配技术,进一步描述于例如美国专利号4,877,745和PCT公开号WO98/47006,其公开内容在此以其整体通过引用并入本文。
根据本公开的一些实施方案的液滴按需染色系统900的元件记载于图1A中。图1A示出了印刷头905及其与目标样品908的关系(目标样品可以是固定在标准显微镜载片上的生物样品或组织样品)。为了创建“染色作业”,在一些实施方案中,目标样品908可由目标成像系统901分析,以确定目标样品的空间位置。该信息随后被送入中央处理单元902,其解释成像信息和测定,然后将包括例如时机和协调信息的指令随后发送至印刷头905、压力控制系统903和相对运动系统904。所述相对运动系统904被设计成将印刷头905和/或目标样品908定位对齐,以引发将染色液滴(例如,试剂染色液滴)分配至样品上。在一些实施方案中,流体或试剂从试剂墨盒906供给至印刷头905并至目标样品908上。相对运动系统904经由中央处理单元902与来自印刷头905的分配时机配合,以产生所需的染色图像,如由901中提供的图像限定并由902解释。定期地,每个印刷头清洁台907需要清洁印刷头。元件907与印刷头直接相互作用以主动地清洁并迫使流体通过印刷喷嘴,引发喷嘴用于染色。在一些实施方案中,可以将小正压,例如,约10psi或更小,施加至墨盒,以便主动地从喷嘴清除流体。
技术人员将理解,液滴按需染色系统900可以通信地耦合至额外组件,例如,分析仪、扫描仪、计算机系统等(参见图1B)。通常,液滴按需染色系统900可以包括但不限于具有一个或多个图像捕获装置的目标成像系统901。图像捕获装置可以包括但不限于相机(例如,模拟相机、数码相机等),光学器件(例如,一个或多个透镜、传感器聚焦透镜组、显微镜物镜等),成像传感器(例如,电荷耦合器件(CCD)、互补金属氧化物半导体(CMOS)图像传感器等),摄影胶片等。在数字实施方案中,图像捕获装置可以包括多个透镜,其协作以证明运行中聚焦(on-the-fly focusing)。CCD传感器可以捕获样本的数字图像。产生数字图像的一种方法包括确定扫描区域,包含显微镜载片的包括样本的至少一部分的区域。所述扫描区域可以被分成多个“快照”。可以通过组合单个“快照”来生成图像。在一些实施方案中,目标成像系统901产生整个样本的高分辨率图像,此装置的一个实例是来自Ventana MedicalSystems, Inc. (Tucson, AZ)的VENTANA iScan HT载片扫描仪,并且可以通信上耦合至系统900。
参考图1B,计算机装置14可以包括中央处理单元(其可以是CPU 902或可以是单独的CPU),并且计算机装置14可以包括台式计算机、膝上型计算机、平板电脑等,并且可以包括数字电子电路、固件、硬件、存储器、计算机存储介质、计算机程序、处理器(包括编程的处理器)等。图1B的所示计算系统14是具有屏幕16和塔架(tower)18的台式计算机。塔架18可以存储来自目标成像系统901的二进制形式的数字图像。在一些实施方案中,网络20或直接连接互连液滴按需染色系统900和计算机系统14。计算机系统包括用一系列计算机可执行指令编程的一个或多个处理器,所述指令被存储在存储器中。
技术人员将理解,液滴按需组分可以是较大系统的部分,所述较大系统包含可用于制备、处理和/或分析生物样品的额外组分。例如,本公开的液滴按需系统900可以连接至样品处理装置(系统900的上游或下游),其可以对组织样本进行一个或多个制备过程。制备方法可以包括但不限于将样本脱蜡,调理样本(例如,细胞调理),染色样品,进行抗原修复等。技术人员还将理解,即使本公开的液滴按需分配系统提供了用于染色样品(例如,初始染色或IHC染色)的手段,该系统可耦合至其他染色系统,诸如用于进行免疫组织化学染色(包括标记)和/或进行原位杂交(例如,SISH,FISH等)染色(包括标记)的那些,以及用于制备用于显微镜分析、微量分析、质谱法或其他分析方法的样本的其他方法。
图2记载了利用液滴按需技术作为自动化染色系统的部分的方法。尽管图2示出在喷墨分配技术的背景中的过程图,技术人员将认识到,该系统可以利用本领域普通技术人员已知的其他液滴按需技术。参考图2,首先引入生物样品802。在一些实施方案中,所述生物样品可以包括脱蜡组织切片、冷冻组织切片或细胞样品。在一些实施方案中,所述液滴按需分配系统可以包括用于组织切片脱蜡的分配试剂(或脱蜡可以可替代地在上游处理中进行)。将用于输入样品的必要的测定信息801转化成处理步骤和/或参数,然后被分为“喷墨染色模块”803,其可以由硬件配置独特地定义或由用于定义不同处理模块的硬件的软件指令定义。处理模块803可以在系统内空间分离,或者可以作为能够为这些模块中的每一个重新配置的单片架构存在。完整的测定被定义为803处理模块的依次执行,其中转化样品的结果准备用于进一步的下游处理804。
图2还提供了喷墨染色处理模块803的一个实施方案的扩展视图。在一些实施方案中,输入样品如802中定义,但其中在引入喷墨染色处理模块前对样品进行任选的额外喷墨或基于液滴的处理操作。模块806定义前端处理步骤,其中将喷墨测定信息801和样品805的输入合成并分为定义待在该处理模块中进行的喷墨染色操作的参数设置。在一些实施方案中,待在该方法的该步骤中设置的参数807包括(i)待分配的特定染色试剂;(ii)待在样品上进行的印刷通过数;(iii)在印刷图像文件的背景中的染色区域,其可以印刷(a)整个显微镜载片,(b)仅具有组织样品的载片上的区域,或(c)样品区域和玻璃区域的一些组合,多个组织样品,或单一样品内的多个区域;(iv)印刷DPI,其定义待分配至目标上的液滴的密度;(v)处理模块的温度条件;和(vi)处理模块所需的孵育时间和程序。一旦定义处理模块,将样品引入模块中,用于进行喷墨染色过程,如808、809和810所定义。这三个步骤通常代表试剂与样品的分配和/或反应的活性部分(还参见图7和8A)。最后,在811,洗去任何剩余的未反应的印刷试剂,并去除载片上的过量流体,导致转化的样品准备用于在804的进一步下游处理。
图3记载了喷墨染色系统的另一个实施方案,其记载了利用如在利用DMC-11610印刷头的定制喷墨过滤器上开发的液滴按需技术的染色方法。如本文进一步示出,图4A提供了根据本文概述且如图3中所例举的方法制备的染色组织样品。再次参考图3,在步骤1401,将样品引入液滴按需染色系统(900),并且可以包括脱蜡组织切片、冷冻组织切片或细胞样品。在1401,捕获样品的图像(例如,使用目标成像系统901),包括关于样品相对于印刷头的位置的信息。在一些实施方案中,该图像被转换成像素图的堆栈,其中每个像素代表待从印刷头喷射至样品上的相应位置的一个或多个液滴。像素图的堆栈代表待用于测定中的每个印刷头的指令,其中一个或多个堆栈层分至每个印刷头。在步骤1411,创建和/或提供指令,使得印刷头可以通过调节其印刷的军刀(sabre)角来调整每英寸印刷点数(dpi)(关于军刀角的进一步信息,参见美国专利公开号2009/0314170,其公开内容在此通过引用并入本文)。在一些实施方案中,军刀角设置DMC-11610印刷头上的喷嘴之间的间距。同时,像素图也被转换为发送至样品运输系统的一系列运动。在印刷操作1404期间,液滴沉积的时机和样品相对于印刷头的相对运动由计算机系统协调,如图1A和1B中所示。
在一些实施方案中,从进入的样品去除(1402)过量流体。据信这是导致用液滴沉积技术沉积染剂的整体步骤,因为过量流体可以稀释在1404沉积的低体积染剂或导致不均匀的染剂沉积。为了制备用于染色1403的样品,使用非染色流体的沉积来调节组织样品内的pH和缓冲条件。在该具体实施方案中,这可以使用以下来进行:大量分配;负载有染色制备流体的印刷头;或装载有不同缓冲液的两个印刷头的组合,所述不同缓冲液按比率分配至组织上以便“拨入”与随后的染色步骤匹配的pH条件。作为按比率缓冲系统的实例,表2描述了可以在适于制备组织用于用苏木精进行最佳染色的范围内滴定的甲酸和乙酸缓冲体系。步骤1404、1405、1406和1407记载了用于执行印刷染色的过程,包括印刷,孵育,反馈回路,其用于沉积相同染剂的多个印刷层,诸如以“拨入”染剂的强度和特异性,如图1和2中所示。在完成印刷染色步骤之后,将样品冲洗1407以去除任何未反应的印刷试剂,并通过处理1408回循环以印刷下一个染色步骤(例如,在印刷的苏木精步骤之后的印刷的伊红步骤)或通过气刀(例如)步骤1402释放用于下游处理以去除过量流体,其后产生转化的样品1409。
技术人员将理解,可以“调整”液滴按需分配系统,以便根据分配的试剂的类型、生物样品的类型或如何制备生物样品来提供不同的处理参数。如前文所示,可以调整的一些参数包括但不限于液滴体积和液滴速度。在一些实施方案中,所述液滴按需分配系统能够分配约1pL至约10nL的试剂/沉积系统的液滴。在其他实施方案中,所述液滴按需分配系统能够分配约1pL至约1nL的试剂/沉积系统的液滴。在还有其他实施方案中,所述液滴按需分配系统能够分配约1pL至约500 pL的试剂/沉积系统的液滴。在进一步实施方案中,所述液滴按需分配系统能够分配约1pL至约250pL的试剂/沉积系统的液滴。在又进一步实施方案中,所述液滴按需分配系统能够分配约1pL至约100 pL的试剂/沉积系统的液滴。在甚至进一步实施方案中,所述液滴按需分配系统能够分配约1pL至约50 pL的试剂/液滴按需分配系统的液滴。
在一些实施方案中,所述试剂以约0.5 m/s至约20 m/s的速度从液滴按需分配系统分配和/或沉积。在其他实施方案中,所述试剂以约4 m/s至约10 m/s的速度从装置分配和/或沉积。
如本文进一步描述,不同试剂或包含试剂的组合物可以从液滴按需分配系统分配。技术人员将理解,不同的试剂组合物或制剂可以包含不同的性质,并且在一些实施方案中可以以不同的剪切速率分配。通过实例的方式,可以以约1 x 105 s-1至约1 x 107 s-1的剪切速率分配初级染色试剂组合物(或者,关于这一点,任何小分子染料)。作为另一个实例,可以以小于约2 x 106 s-1的剪切速率分配大分子试剂组合物。作为一个进一步实例,可以以小于约5 x 105 s-1的剪切速率分配抗体试剂溶液。可以由本领域普通技术人员为每种组合物测定适当的剪切速率,并且相应地调整分配装置。
申请人认为,本公开的液滴按需分配系统允许将试剂精确分配至生物样品上。实际上,且与现有技术相比,使用公开的分配装置沉积至生物样品上的试剂的量或质量可以通过“拨入”试剂的量而改变。技术人员将认识到,因此可以基于特定的样品和/或测定法改变染剂的强度。实际上,申请人已令人惊讶地发现,试剂质量可以通过几种方法之一来改变,包括(i)通过分配机构的多次通过来施加试剂,以便提供试剂材料的累积沉积(例如,1至约25次通过或更多);(ii)改变试剂分配的每英寸点数(dpi)(例如约50dpi至约1200dpi);(iii)改变液滴体积(例如约1pl至约1nL);和/或(iv)改变任何试剂组合物或制剂中的试剂浓度。
据信与现有技术相比,本试剂分配装置允许利用和/或浪费较少的试剂。表1记载了各种染色方法,并且比较地说明每个测定步骤的载片覆盖体积和不同仪器之间的空间染色能力。表1记载了在自动化染色组织染色平台的背景中使用喷墨或另一种液滴生成技术的试剂体积节省和染色显微镜载片的特定区域的能力。对于测定步骤,诸如本文描述的液滴按需系统,覆盖整个样品所需的总体积为约10微升至约小于1微升。同时,在约10皮升的单滴体积的情况下,据信染色约10个细胞或更少细胞的特定区域是可能的。通过实例的方式,且如表1中所列,与现有技术“浸渍和浸泡”技术(其需要约10mL至100mL试剂/载片/测定步骤)相比,在一些实施方案中,本装置仅需要约0.001mL待使用的试剂/载片/测定步骤,导致利用的试剂体积的显著降低(即几个数量级的差异)。此外,申请人已经发现,根据本公开的装置允许当与现有技术方法相比时反应动力学增加,如本文进一步描述。
表1:不同染色方法的比较。
染色方法 实例仪器 每个测定步骤的载片覆盖体积 空间染色能力
浸渍和浸泡 Dako Autostainer LINK 48 估计(est.)> 10 mL/容器
坑槽(puddle) VENTANA HE 600系统 估计~1 mL
微流体 Leica BOND-III 估计~100 µL
基于液滴 Inkjet Stainer (本文公开) <1-10 uL 是,估计10个细胞区域
在初级染剂苏木精和伊红的背景中,随着分配的试剂质量增加(随着通过次数增加),染色强度增加(参见例如图4A至4E和5A至5C)。图4A至4E示出分配至固定在样本载片上的扁桃体组织上的苏木精试剂(对于染色程序,参见本文实施例6)。图4A定性显示,随着通过次数增加和分配的试剂体积增加(4 µL/英寸2、8 µL/英寸2、14 µL/英寸2),喷墨过程的染色强度增加。图4B示出基于总染剂沉积的苏木精初级染剂的吸光度(600dpi,3pL液滴尺寸,每次印刷头通过,约1uL/英寸2)。为了与常规染色装置比较,来自对照载片的吸光度值显示于图4B的指定条带中。来自试剂分配装置的约14 µL/英寸2的染色沉积导致大致等同于具有两(2)分钟孵育时间的常规染色装置提供的染色的染色。作为根据公开的方法进行染色的实例,图4C显示围绕生发中心的淋巴滤泡的清晰染色,这是质量组织染色的关键宏观特征,如通过本公开中描述的喷墨染色方法所产生。在图4C中,箭头表示在淋巴滤泡边缘中具有强染色的生发中心。图4D提供喷墨染色的扁桃体组织的微观视图,并且显示不同的核染色,包括在一些细胞核中看到缩合的染色质和核膜的能力。在图4D中,箭头表示示例核,其中缩合的核材料比周围核被明显更暗染色。图4E提供了染色的扁桃体切片的视图,证明公开的技术提供了特异性染色;在视场中存在染色的核和未染色的红细胞两者(由箭头表示)。
图4A至4E中所示的实验结果使用定制翻新的具有非OEM可再填充墨盒的EPSONC88+印刷机获得,所述非OEM可再填充墨盒填充有修饰的市售苏木精。印刷特征如上所述。简而言之,实验由以下组成:1)从FFPE块制备4μm扁桃体切片,2)制备切片用于染色,3)创建印刷图像文件,以关于待印刷的试剂、用于染色的x-y坐标和待印刷的图案指示印刷机,4)将组织切片和玻璃载片装载至印刷加料机构上,5)重复印刷过程以获得期望的染色强度,和6)手动洗掉过量染剂并将载片加上盖玻片。使用VENTANA iScan HT Slide扫描仪对载片成像,并使用ImageJ和MATLAB提取强度值。
不希望受任何特定理论束缚,据信上述结果的意义是两重的。首先,表明通过液滴按需印刷方法(例如喷墨沉积或另一种小液滴沉积技术)能够实现“拨入”染色强度(质量限制染色)。以前,这还不是任何其他组织染色技术的能力,因为所有其他技术都需要孵育时间、温度或可变浓度试剂的组合以“拨入”染色的强度。第二,结果表明,在该低体积染色形式中,组织干燥没有导致非特异性染色,如图4C、4D和4E中可见的宏观和微观特征所表明。
通过另一个实例的方式,图5A至5C示出分散至固定在样本载片上的结肠组织上的伊红试剂。图5A示出利用当前公开的分配装置和方法,随着染剂沉积增加(5 µL/英寸2、15µL/英寸2、25 µL/英寸2)的伊红染色强度增加。图5B示出基于总染剂沉积的伊红初级染剂的吸光度。为了与常规染色装置比较,来自对照载片的吸光度值显示于阴影条带中。来自试剂分配装置的约25 µL/英寸2的染剂沉积导致等同于使用常规染色装置的两(2)分钟孵育时间的染色。图5C比较使用喷墨方法的结肠组织的染色,其中可以清楚地观察到三个不同的伊红阴影,并且这允许技术人员区分组织区域(平滑肌、结缔组织和红细胞)。在图5C中,反向阴影箭头表示结缔组织的轻度染色区域,正向阴影箭头表示红细胞的强烈染色区域,且白色箭头表示围绕血管的中度染色的平滑肌。使用本文所述的程序获得该实验结果,除了用苏木精代替修饰的伊红制剂。如图4A至4E中,图5A至5C表明通过液滴按需试剂分配方法实现“拨入”染色强度,并且进一步,低体积染色环境并不抑制所需的染色特异性,如图5C中所证明。
当然,技术人员将理解,染剂可以在多步骤方法中沉积,例如,其中两种主要染剂(或任何两种试剂)沉积在生物样品上。图6A和6B提供了使用根据本公开的液滴按需分配装置的苏木精和伊红初级染剂染色的示例说明,其中沉积的总染色体积为约8 µL/英寸2和约12 µL/英寸2。申请人已经发现,多次分配染色操作并不干扰,并且为喷墨技术配制的定制试剂提供可接受的染色结果。图6A显示基于该特征的微观结构的宏观染色结果,其中组织的多个形态区域用相应不同比率的苏木精和伊红染色。图6B显示放大图,其显示在生发中心的淋巴滤泡上的高度的核染色,以及在该扁桃体样本的活性区域之间的结缔组织中的高度的伊红染色。在图6B中,左箭头表示围绕生发中心(较轻的苏木精染色)的淋巴滤泡的区域(较深的苏木精染色),且直立箭头表示用伊红强烈染色的鳞状上皮的区域。
图6A和6B的实验结果使用具有Dimatix DMC-11610印刷墨盒的Dimatix DMP-2831材料印刷机获得。对于苏木精和伊红的印刷,已知这16个喷嘴印刷头的液滴尺寸固定在约10pL,且印刷作业的液滴间距设定在约1270dpi。对于该染剂,开发了用于苏木精和伊红的定制喷墨制剂,如本文所述。如本文进一步指出,这些制剂被设计成实现几个目的,包括:1)通过设计流体的物理特性的改进的分配可靠性和一致性(即,为射流形成和液滴断裂设定适当的粘度和表面张力),2)墨盒中试剂的改进稳定性(例如将氯化铝引入苏木精制剂中),和3)增加制剂的染色强度以使所需的印刷通过次数最小化(例如,用“喷墨伊红”的五次通过产生较深的伊红染色,相比之下,图5A至5C中最暗染色需要25次通过)。该实验中的印刷过程由以下步骤组成:1)对于安装在玻璃载片上的组织切片的位置、形状和尺寸创建印刷图像文件,2)对于待印刷至组织上的特定试剂装载墨盒和印刷头,3)设置印刷头的军刀角以拨入染色过程的正确DPI,4)将显微镜载片和样品装载至移动台上,和5)执行印刷作业所需数目的相互作用以演化适当的染色强度。手动离线进行苏木精的发蓝溶液或区分伊红的溶液的施加。
在一些实施方案中,试剂沉积装置被配置为使得分配的任何试剂能够渗透流体的薄边界层并补充与样品连通的染色试剂。不希望受任何特定理论束缚,据信目前的染色技术依赖于将浓度梯度向下被动地扩散至组织样品中的染色试剂的坑槽(puddles)。在据信在坑槽-组织界面处缺乏试剂的主动混合的这些染色系统中,染剂扩散至组织中由界面处的染剂浓度耗竭层的建立来介导,这限制了染色动力学。据信本公开通过如下来相对于现有技术染色技术进行改进:(i)生成厚度接近耗竭层的厚度的染色膜;和(ii)补充耗竭层中的染剂分子,从而克服被动染剂扩散的限制。
在一些实施方案中,试剂或包含试剂的组合物通过具有足够速度的不混溶流体分配,以驱动试剂的液滴通过组织保存流体介质的薄膜。薄膜流体的实例包括但不限于draksol、linpar、矿物油或硅油。通常,有利的属性包括在室温(例如,20-30℃)下低表面张力和低蒸气压的液体状态。不混溶屏障层的液体状态允许通过屏障再供应水流体。低表面张力允许将屏障作为相对薄的膜(高度为100μm或更小)涂覆在样品上。低蒸汽压确保屏障层将较慢从样品蒸发。据信,这将试剂驱动至不混溶流体下方连通的层中。对于该实施方案,液滴的动能(液滴的质量和当液滴撞击膜时的冲击速度的乘积)应当大于保护层的表面张力/能量(加上提供足够的额外能量以导致替代的流体),例如大于约9.52x10-10 J。在一些实施方案中,所述动能为约6.23x10-10J。此外,液滴的韦伯数必须小于约18,以确保在冲击后不发生液滴破裂。在一些实施方案中,所述液滴必须具有比保护膜更高的密度,以确保一旦表面破裂,液滴将继续通过保护层以直接接触组织。
在其他实施方案中,将试剂以足够的速度分配至预先存在的含水流体“坑槽”中,使得试剂的液滴被驱动至薄膜中,所述薄膜将局部通过坑槽将染剂携带至流体-组织染剂耗竭层。据信这将有助于在与样品连通的界面接触点处补充试剂。进而,据信这将消除染剂耗竭边界层并改善染色反应动力学,其在一些情况下由染色剂穿过耗竭层的扩散来介导。实际上,对于大的生物分子,诸如抗体,分子与目标的结合由时间和浓度驱动。通过经由用本公开的装置(和固有的混合)分配来用额外的试剂材料连续地破坏薄膜,组织表面的有效浓度得到增强,并且据信提供更快的摄取。对于该实施方案,速度通常范围为约5 m/s至约15 m/s。
参考图7,含有组织样品的进入载片首先由装置110接收。在一些实施方案中,组织样品包含与样品连通的保护性流体层,以防止样品干燥。然后将试剂分配至组织切片120上。必要时可以重复步骤120多次以建立染色强度。在一些实施方案中,将试剂任选地孵育130。例如,对于大的生物分子,结合可以由时间和浓度驱动。必要时可以在孵育或不孵育的情况下重复分配135。不希望受任何特定理论束缚,据信通过用额外分配的试剂连续地破坏薄膜,组织表面处的有效浓度得到增强,导致更快的摄取。在分配后,在步骤140处去除剩余的试剂和/或保护膜。在一些实施方案中,去除试剂和/或保护膜由分配洗涤溶液以稀释、增加表面张力和/或降低粘度来促进。然后在步骤150处提供组织切片用于进一步的下游处理或分析。
图8A记载了进一步过程图,其示出使用喷墨或其他液滴按需技术以自动化方式的免疫组织化学染色的方法。在步骤701,进入样品可以包括脱蜡组织切片、冷冻组织切片或细胞样品。步骤702提供了从任何先前的方法步骤桥接的一般样品制备步骤。通常,设计该步骤以确保在样品内存在一致低体积的残留流体,并且适当地设定反应条件(例如,缓冲剂强度、pH)用于随后的喷墨或基于液滴的染色步骤。在步骤702处的分配操作可以是基于液滴的方法或大量流体分配至样品上,体积为一微升高达一毫升。设计任选的流体去除部分以便将样品上剩余的流体的残留体积精确地减少到约100nL至约100μL范围内的最终体积。步骤703记载了经由喷墨或液滴分配技术向组织引入靶向的蛋白结合剂,其涵盖约1pL至约100nL的单个液滴尺寸,小到单个液滴、大到标准显微镜载片的尺寸的印刷图案以及从约100dpi至约1300dpi的印刷浓度。
步骤704记载了与用于特定测定步骤的目标试剂同时共分配另一种试剂的任选的实践。对于小液滴,据信这有助于试剂的近即时、载片上混合,并赋予原位混合试剂以引发反应的独特能力;按比率稀释生物分子、染料或底物的浓度;或使样品上的染色场均匀化。步骤705记载了在分配的试剂和目标样品之间发生特异性结合相互作用的时段。步骤706记载了对于沉积至组织上的印刷液滴发生的影响,由此经由与组织的反应消耗少量的活性结合剂,同时从样品主动或被动地去除过量流体。由于据信这些小体积比在坑槽染色技术中观察到的预期的扩散耗竭层更薄,所以据信这些反应快速进行,并且作为结果可以用额外的活性结合剂补充以继续朝向所需的终点或平衡快速地驱动反应。
步骤707记载了将额外的活性结合剂(生物分子或染料)重新供应至样品以继续驱动有效的反应的装置。在该情况下,重新供应所必需的印刷密度可能远小于原始印刷应用。在一些实施方案中,约50至约100dpi的液滴密度可足以驱动反应,而在其他实施方案中,可能需要原始印刷密度的完全重新印刷。最后,在步骤708中,样品已经完成了该测定框,并准备继续移动到下一个测定模块,其可以是该过程的重复,但是具有不同的试剂和反应条件,或者可以是不同的过程,诸如作为综合数字病理工作流程的一部分的自动化盖载玻片或成像。
图8B提供了来自根据图8A的方法的染色的示例结果。该实例示出了抗CD20一抗沉积至以4μm切片的扁桃体的FFPE切片上的结果。本文进一步描述在该具体实例中使用的喷墨试剂。通常,该方法适用于一抗、二抗、用于酶介导检测的接头、用于驱动检测反应的酶或特异性连接的酶的底物。此处描述的过程是如Li,等人 (Small, 2016, 12, No. 8, 1035-1043)所描述的“循环排出-补充”技术背后的理论的非显而易见的延伸。事实上,据信,在经由喷墨印刷头(在该实例中,约8 m/s)以非零速度引导试剂的重新供给至组织中的意义上,本文所述的方法克服了由Li描述的方法的一些限制。此外,在Li的工作中,聚焦于圆形混合方法,而在本公开中,使用主动(例如气流)或被动(例如蒸发)方法来排空过量流体,而经由与喷墨头的额外印刷通过来重新供给染料或生物剂(参见图8A的步骤707)。进而据信这将反应速度从扩散介导的过程(缓慢的,基于坑槽的染色技术的特征)驱动至结合动力学介导的过程(快速的,对于液滴沉积和基于膜的染色技术独特的,其中可以用生物分子或染料主动重新补充耗竭层)。
图9A、9B和9C进一步示出通过使用本文公开的液滴按需系统和方法沉积一抗来实现的染色。通常,图9A、9B和9C示出在扁桃体组织上使用抗CD-20抗体使用液滴按需方法沉积的一抗的实例。图9A比较了静态薄膜坑槽相对于混合薄膜坑槽的染色强度。在该情况下,尽管总抗体暴露较低(µL x 时间),但经由将流体喷射至膜中混合的薄膜导致较高的染色强度。图8A中示出驱动这些差异结果的机制的细节。图9B和9C显示根据本文染色的方法染色的扁桃体组织的区域,其中对于图9B,参数如下:14.4 µL/英寸2 (1200 dpi,10 pL滴,单次印刷头通过),静电膜,16分钟孵育时间。对于图9C,参数如下:3.6 uL/英寸2 (600 dpi,10pL液滴尺寸,单次印刷头通过),四(4)分钟孵育时间,经由添加400 nL/英寸2 (200 dpi,10 pL滴定尺寸,单次印刷头通过)的抗体至薄膜来混合,然后再进行四(4)分钟孵育,随后进行两(2)次额外的混合步骤。
图10A至10C提供了使用根据本公开的液滴按需试剂沉积方法沉积的一抗的沉积的额外实例(抗CD20,扁桃体组织)。图10A至10C还确认喷墨或液滴沉积技术提供足够小的流体体积,使得结合动力学由沉积在目标上的试剂的质量驱动。图10A比较两种不同体积的薄膜坑槽的染色强度,以表明喷墨薄膜过程的抗体结合由沉积的抗体的量所介导(即CD20信号强度作为沉积在组织上的一抗的量的函数增加)。图10B和10C是用来自图10A的各个过程染色的扁桃体区域。简言之,对于图10B,将14.4 µL/英寸2 (1200 dpi,10 pL滴,单次印刷头通过)的试剂作为静电膜图案化至组织切片上,并使其在室温下孵育16分钟。对于图10C,将28.8 µL/英寸2 (1200 dpi,10 pL滴,两(2)次印刷头通过)的试剂作为静电膜图案化至组织切片上,并使其在室温下孵育16分钟。本文进一步描述了用于制备图10A至10C的抗体制剂。
在本公开的另一个方面,申请人已经发现,本公开的分配装置允许对试剂沉积的x-y空间控制,使得可以鉴定目标组织区域并且将染剂选择性地施加至生物样品的那些区域。在一些实施方案中,将本文所述的分配装置与成像系统组合,使得样品内的特定区域或细胞可以用试剂处理。在本公开的另一个方面是向组织样本的特定区域施加至少一种试剂的方法,其包括以下步骤:(a)对组织样品进行成像;(b)选择组织的特定区域用于施加试剂;和(c)用压电沉积系统将试剂沉积至组织的特定区域。在一些实施方案中,每次沉积组织的通过将约360 nL/英寸2 (600 dpi,1 pL/滴)至约14.4 µL/英寸2 (1200 dpi,10 pL/滴)的试剂施加至组织的特定区域。
例如,图11示出通过使用公开的喷墨染色过程使得可能的空间沉积/多路化特别实现的“载片上的组织组”实施方案。参考图11,在相邻组织切片上同时孵育用于IHC染色(标记为IHC1和IHC4)的抗体。同时,在载片的另一个区域上准备初级染色(标记为H&E)。在与一抗孵育之后,可以在IHC组织切片上使用相同或不同的检测化学物质,因为一抗在空间上分离至载片上的不同组织切片上。据信这将有助于更快的测定周转时间以及单个载片上完整诊断组的便利性。在一些实施方案中,再次参考图11,可以在单个载片上运行三(3)个IHC标记物乳腺组,有助于病理学家工作流程从用初级染剂的形态学染色到用于对乳腺癌表型分析的三种诊断性IHC标志物中的每一种(例如,HER2/neu,雌激素受体,孕酮受体)。
试剂组合物
概览
技术人员将理解,可以使用本文所述的试剂沉积装置和方法分配任何类型的试剂或试剂组合物。例如,在一些实施方案中,从分配装置分配的试剂是主要染剂,诸如苏木精或伊红。在其他实施方案中,从装置分配的试剂是可用于组织化学中的抗体(例如一抗和二抗),包含抗体或抗体缀合物的组合物(例如酶缀合的抗体或与荧光团、半抗原或其他标记缀合的抗体),和/或用于检测抗体或抗体-目标复合物的检测试剂(例如包含显色底物的组合物,对于与一抗缀合的标记特异性的二抗等)。
在一些实施方案中,试剂或包含试剂的组合物与现成试剂或包含那些试剂的组合物相比被改性,以便更好地有助于通过喷墨沉积装置或压电沉积装置的递送和分配。例如,可以改变试剂或包含试剂的组合物以具有特定的密度、pH、粘度或流变性。在一些实施方案中,任何试剂组合物可以包含缓冲剂、流变改性剂、表面活性剂、载体蛋白、稳定剂、粘度调节剂、保湿剂、防腐剂和其他添加剂中的一种或多种。技术人员将能够以适当的量选择适当的组分以提供具有所需性质的试剂组合物,以便实现用喷墨技术分配。
在一些实施方案中,本公开的试剂组合物具有流变性,即溶液的“流动”,以促进在一个单位的压电膜的激发下的试剂的单液滴。事实上,已经开发了本公开的试剂溶液,使得它们(i)允许适当的染色,(ii)能够形成稳定的薄膜;和(iii)能够经由压电沉积分散。在一些实施方案中,所述试剂组合物具有大于约1 g/mL的密度。在其他实施方案中,所述试剂组合物具有约0.75 g/mL至约1.5 g/mL的密度。
在一些实施方案中,所述试剂组合物的粘度范围为约1cp至约40cp。在其他实施方案中,所述试剂组合物的粘度范围为约4cp至约15cp。在还有其他实施方案中,所述试剂组合物的粘度范围为约6cp至约10cp。在一些实施方案中,所述试剂组合物的表面张力范围为约20达因/cm至约70达因/cm。在其他实施方案中,所述试剂组合物的表面张力范围为约20达因/cm至约45达因/cm。在还有其他实施方案中,所述试剂组合物的表面张力范围为约20达因/cm至约35达因/cm。
通常,用于任何试剂组合物中的粘度调节剂选自二醇类,诸如乙二醇类、二甘醇类、聚乙二醇类、丙二醇类、二丙二醇类、乙二醇醚类、乙二醇醚乙酸酯类;糖类和多糖类,诸如瓜尔胶、黄原胶;纤维素类和改性纤维素类,诸如羟甲基纤维素、甲基纤维素、乙基纤维素、丙基甲基纤维素、甲氧基纤维素、甲氧基甲基纤维素、甲氧基丙基甲基纤维素、羟丙基甲基纤维素、羧甲基纤维素、羟乙基纤维素、乙基羟乙基纤维素、纤维素醚、纤维素乙醚和壳聚糖。
在一些实施方案中,本公开的组合物还可以包含一种或多种低挥发性水溶性保湿剂。保湿剂的代表性实例包括:(1)三醇类,诸如甘油、1,2,6-己三醇、2-乙基-2-羟甲基-丙二醇、三羟甲基丙烷、烷氧基化三醇类、烷氧基化季戊四醇类、糖类和糖醇类;和(2)二醇类,诸如乙二醇、二甘醇、三甘醇、丙二醇、具有四个或更多个环氧烷基的聚亚烷基二醇类、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2-戊二醇、1,5-戊二醇、1,2-己二醇、1,6-己二醇、2-甲基-2,4-戊二醇、1,2-庚二醇、1,7-己二醇、2-乙基-1,3-己二醇、1,2-辛二醇、2,2,4-三甲基-1,3-戊二醇、1,8-辛二醇;和硫代乙二醇或其混合物。理想的保湿剂是多元醇类。
在一些实施方案中,所述试剂组合物包含一种或多种稳定剂。通常,所述稳定剂可以选自碘酸钠、氯化铝六水合物、硫酸铝十六水合物和蛋白稳定剂(例如海藻糖、甘油、球蛋白类、BSA等)。据信包括一种或多种稳定剂可以防止试剂分子的沉淀。例如,本领域中已知的沉淀出溶液的苏木精可以用一种或多种稳定剂配制以减轻或防止沉淀出溶液,因此避免试剂线或印刷/喷墨分配头的堵塞。
在一些实施方案中,所述表面张力调节剂是表面活性剂。所述表面活性剂可以是阴离子型表面活性剂、阳离子型表面活性剂、非离子型表面活性剂之一或其混合物。在一些实施方案中,选择适当的表面活性剂,使得(i)当与其他试剂组分组合时,其允许实现所需的表面张力;(ii)不使蛋白或其他试剂组分变性;和/或(iii)其提供低泡沫高度。
阴离子型表面活性剂通常基于硫酸盐类、磺酸盐类、磷酸盐类或羧酸盐类且含有水溶性阳离子。磺酸盐的代表性式是R—SO3M,其中R是约5至22个碳原子的烃基,其可以通过烷氧基或氧基烷氧基连接至磺酸盐官能团,且M是水溶性阳离子诸如碱金属。阴离子型表面活性剂包括烷基醚硫酸盐类、烷基硫酸盐类和磺酸盐类、烷基羧酸盐类、烷基苯基醚硫酸盐类、烷基聚(氧乙烯)磺酸盐类的钠盐、烷基苄基磺酸盐类的钠盐,诸如十二烷基苄基磺酸盐类的钠盐和十二烷基醚硫酸钠。阴离子型表面活性剂还包括阴离子磷酸酯类。
在一些实施方案中,所述表面活性剂包括但不限于聚氧乙烯烷基醚,其中烷基是(CH2)M且氧乙烯是(C2H4O)N,其中M是5至16、8至14或10至12的整数,且N是10至40、15至30或20至28的整数。在一个实施方案中,所述表面活性剂是具有式(C2H4O)23C12H25OH的聚氧乙烯十二烷基醚。在另一个实施方案中,所述表面活性剂是聚氧乙烯(20)脱水山梨糖醇单烷基化物,包含8至14个碳的单烷基化物。在另一个实施方案中,所述表面活性剂是具有式C12-14H25-29O(CH2CH2O]x的直链仲醇聚氧乙烯,其中x等于2和12之间的整数。在又另一个实施方案中,所述表面活性剂是聚氧乙烯辛基苯基醚。示例性表面活性剂以以下名称销售:Brij®35、TWEEN®、Tergitol™、Triton™、Ecosurf™、Dowfax™、聚山梨醇酯80™、BigCHAP、Deoxy BigCHAP、IGEPAL®、皂苷、Thesit®、Nonidet®、Pluronic F-68、洋地黄皂苷、脱氧胆酸盐等。特别公开的工作实施方案涉及使用选自Brij® 35、TWEEN®、Tergitol™、Triton™的表面活性剂。
可用于本公开的组合物中的阳离子型表面活性剂含有氨基或季铵部分。可用于本文中的那些中的阳离子型表面活性剂公开于以下文献中:M.C. Publishing Co.,McCutcheon's, Detergents & Emulsifiers, (North American版1979); Schwartz,等人; Surface Active Agents, Their Chemistry and Technology, New York:Interscience Publishers, 1949; 美国专利号3,155,591, Hilfer, 1964年11月3日授权; 美国专利号3,929,678, Laughlin等人, 1975年12月30日授权; 美国专利号3,959,461, Bailey等人, 1976年5月25日授权; 和美国专利号4,387,090, Bolich, Jr., 1983年6月7日授权。
在本文中有用的含季铵阳离子型表面活性剂中是以下通式的那些:
Figure 608120DEST_PATH_IMAGE001
其中R1-R4独立地是约1至约22个碳原子的脂族基团或具有约1至约22个碳原子的芳族、烷氧基、聚氧化烯、烷基酰胺基、羟基烷基、芳基或烷基芳基;且X是成盐阴离子,诸如选自卤素(例如氯化物、溴化物)、乙酸盐、柠檬酸盐、乳酸盐、乙醇酸盐、磷酸盐、硝酸盐、硫酸盐和烷基硫酸盐基团的那些。除了碳和氢原子之外,脂族基团可以含有醚键和其他基团诸如氨基。更长链脂族基团,例如约12个碳或更高级的脂族基团,可以是饱和或不饱和的。特别优选的是单长链(例如,单C12至C22,优选C12至C18,更优选C16,脂族,优选烷基),双短链(例如,C1至C3烷基,优选C1至C2烷基)季铵盐。
伯、仲和叔脂肪胺的盐也是合适的阳离子型表面活性剂材料。此类胺的烷基优选具有约12至约22个碳原子,并且可以是取代或未取代的。本文中可用的此类胺包括硬脂酰胺基丙基二甲基胺、二乙基氨基乙基硬脂酰胺、二甲基硬脂胺、二甲基大豆胺、大豆胺、肉豆蔻基胺、十三烷基胺、乙基硬脂胺、N-牛脂丙二胺(N-tallowpropane diamine)、乙氧基化(具有5摩尔的环氧乙烷)硬脂胺、二羟基乙基硬脂胺和花生四烯基山嵛胺。合适的胺盐包括卤素、乙酸盐、磷酸盐、硝酸盐、柠檬酸盐、乳酸盐和烷基硫酸盐。此类盐包括硬脂胺盐酸盐、大豆胺氯化物、硬脂胺甲酸盐、N-牛脂丙二胺二氯化物、硬脂酰胺基丙基二甲胺柠檬酸盐、十六烷基三甲基氯化铵和二鲸蜡基二氯化铵。优选的用于本文组合物中的是十六烷基三甲基氯化铵、硬脂基三甲基氯化铵、十四烷基三甲基氯化铵、二鲸蜡基二甲基氯化铵、二椰油基二甲基氯化铵及其混合物。更优选的是十六烷基三甲基氯化铵。
本公开的组合物还可以包括各种非离子型表面活性剂。合适的非离子型表面活性剂是C8–C30醇与糖或淀粉聚合物的缩合产物。这些化合物可以由式(S)n —O—R表示,其中S是糖部分诸如葡萄糖、果糖、甘露糖和半乳糖;n是约1至约1000的整数,且R是C8–C30烷基。可以由其衍生R基团的合适的C8–C30醇的实例包括癸醇、鲸蜡醇、硬脂醇、月桂醇、肉豆蔻醇、油醇等。这些表面活性剂的具体实例包括癸基聚葡萄糖苷和月桂基聚葡萄糖苷。
其他合适的非离子型表面活性剂包括环氧烷与脂肪酸的缩合产物(即脂肪酸的环氧烷酯)。这些材料具有通式RCO(X)n OH,其中R是C10–C30烷基,X是—OCH2CH2—(衍生自环氧乙烷)或—OCH2CHCH3—(衍生自环氧丙烷),且n是约1至约200的整数。
还有其他合适的非离子型表面活性剂是具有式RCO(X)nOOCR的环氧烷与脂肪酸的缩合产物(即,脂肪酸的环氧烷二酯)的缩合产物,其中R是C10–C30烷基,X是—OCH2CH2—(衍生自环氧乙烷)或—OCH2CHCH3—(衍生自环氧丙烷),且n是约1至约200的整数。还有其他非离子型表面活性剂是具有通式R(X)nOR'的环氧烷与脂肪醇的缩合产物(即,脂肪醇的环氧烷醚),其中R是C10–C30烷基,n是约1至约200的整数,且R′是H或C10–C30烷基。
还有其他非离子型表面活性剂是具有式RCO(X)nOR'的化合物,其中R和R'是C10–C30烷基,X是—OCH2CH2—(衍生自环氧乙烷)或—OCH2CHCH3—(衍生自环氧丙烷),且n是约1至约200的整数。环氧烷衍生的非离子型表面活性剂的实例包括鲸蜡醇聚醚-1、鲸蜡醇聚醚-2、鲸蜡醇聚醚-6、鲸蜡醇聚醚-10、鲸蜡醇聚醚-12、鲸蜡硬脂醇聚醚-2、鲸蜡硬脂醇聚醚6、鲸蜡硬脂醇聚醚-10、鲸蜡硬脂醇聚醚-12、硬脂醇聚醚-1、硬脂醇聚醚-2、硬脂醇聚醚-6、硬脂醇聚醚-10、硬脂醇聚醚-12、PEG-2硬脂酸酯、PEG4硬脂酸酯、PEG6硬脂酸酯、PEG-10硬脂酸酯、PEG-12硬脂酸酯、PEG-20硬脂酸甘油酯、PEG-80牛脂酸甘油酯、PPG-10硬脂酸甘油酯、PEG-30椰油酸甘油酯、PEG-80椰油酸甘油酯、PEG-200牛脂酸甘油酯、PEG-8二月桂酸酯、PEG-10二硬脂酸酯及其混合物。还有其他有用的非离子型表面活性剂包括例如美国专利号2,965,576、2,703,798和1,985,424(其通过引用并入本文)中公开的多羟基脂肪酸酰胺。
示例性表面活性剂包括Tomadol 1200 (Air Products)、Tomadol 900 (AirProducts)、Tomadol 91-8 (Air Products)、Tomadol 1-9 (Air Products)、Tergitol 15-S-9 (Sigma)、Tergitol 15-S-12 (Sigma)、Masurf NRW-N (Pilot Chemical)、Bio-SoftN91-6 (Stepan)和Brij-35 (聚乙二醇十二烷基醚) (Sigma)。
为了证明在印染染色流体前组织固有的反应条件影响公开的染色方法的染色质量,在印刷苏木精之前,在固定在显微镜载片上的4μm肝切片中进行不同组织pH的系统研究。在第一“应用洗涤(pH洗涤任选的)”步骤期间,通过向组织施加300μL缓冲溶液、然后使用表8中所述的测定法将苏木精和伊红印刷至样品上来设定组织切片的pH。图12A比较核中的染色强度与组织的细胞质和细胞外区域的染色强度的比率。假设这些值的最佳比率应当代表最佳染色条件,和对于渐增的pH,总体染色强度(对核特异性和非特异性的苏木精染色均应当增加)。对于pH为5的预染色缓冲液,尽管染色强度随着pH增加至一定点而总体增加是正确的,但在标度的上端,总体染色强度降低(图12B)至不可接受的水平。因此,选择下一个最佳条件,pH为3.5的预染色缓冲液。可以扩展该方法以便针对独特组织类型或不同的染色化学过程和生物化学过程独特地调整预染色组织缓冲条件。
表2详细描述了两个印刷头系统将缓冲pH溶液递送至组织的能力。在一个实施方案中,待分配的溶液是弱酸溶液和稀氢氧化钠。在该情况下,可以通过调整每种流体的印刷图案的DPI来调节分配的膜的pH。这涉及图12B,其中可以看到印刷苏木精前的组织的pH对染色强度和染色特异性两者都具有影响。喷墨染色的这种应用适合于在印刷沉积期间用原位混合两种溶液来满足该需求。
表2:设定组织的pH的缓冲系统的按比率制剂。
二元印刷缓冲液组分1 二元印刷缓冲液组分2 示例体积比(体积1:体积2) 示例印刷比(dpi1:dpi2) 目标pH 实际pH
甲酸,189 mM NaOH, 31 mM 1:1 500dpi : 500dpi 3 3.002
甲酸,189 mM NaOH, 31 mM 1:2 460dpi : 650dpi 3.5 3.496
甲酸,189 mM NaOH, 31 mM 1:3 370dpi : 640dpi 4 4.086
乙酸,34.8 mM NaOH, 38.8 mM 1:1 500dpi : 500dpi 4 4.094
乙酸,34.8 mM NaOH, 38.8 mM 10:17 460dpi : 600dpi 4.5 4.500
乙酸,34.8 mM NaOH, 38.8 mM 10:23 400dpi : 607dpi 5 5.083
初级染色试剂组合物
在初级染色试剂组合物的背景中,所述组合物包含染料、染剂或“初级染剂”(如本文定义术语)、粘度调节剂和表面张力调节剂。尽管本文的某些实施方案或实例可以指包含苏木精或伊红的初级染剂组合物,但技术人员将理解,初级染色试剂组合物不限于这些特定染料,并且其他染料、染剂、“初级染剂”或否则增强组织样品中生物结构的可见对比度的试剂可以以相似的方式配制而不受限制。
在一些实施方案中,粘度调节剂的量范围为初级染色试剂组合物的总重量的约35%至约60%。在其他实施方案中,粘度调节剂的量范围为初级染色试剂组合物的总重量的约25%至约75%。在包括溶解的固体(例如PEG)的一些实施方案中,粘度调节剂的量可以范围为初级染色试剂组合物的总重量的约2%至约60%。在包括溶解的固体的其他实施方案中,粘度调节剂的量可以范围为初级染色试剂组合物的总重量的约0.1%至约2%。
在一些实施方案中,表面张力调节剂的量范围为初级染色试剂组合物的总重量的约0.01%至约0.5%。在其他实施方案中,表面张力调节剂的量范围为初级染色试剂组合物的总重量的约0.001%至约1%。
在一些实施方案中,初级染色试剂组合物具有1cp至约40cp的粘度。在其他实施方案中, 初级染色试剂组合物具有6cp至约10cp的粘度。在一些实施方案中,初级染色试剂组合物具有高达约70达因/cm的表面张力。在其他实施方案中,初级染色试剂组合物具有约25达因/cm至约45达因/cm的表面张力。
在一些实施方案中,初级染色试剂溶液还包含一种或多种稳定剂和/或缓冲剂。在一些实施方案中,所述稳定剂包括氯化铝、硫酸铝。在一些实施方案中,所述缓冲剂包括乙酸盐、碳酸盐、磷酸盐、Tris-HCl、乙酸、tris缓冲剂和磷酸盐缓冲剂。通常,任何初级染色试剂组合物中包括的稳定剂的量范围为初级试剂染色组合物的总重量的约1%至约20%。同样地,任何初级染色试剂组合物内包括的缓冲剂的量范围为初级试剂染色组合物的总重量的约0.5%至约5%。
大分子试剂组合物
在一些实施方案中,大分子试剂组合物包含生物分子(例如抗体、抗体缀合物、酶、多聚体等)、粘度调节剂和表面张力调节剂。在一些实施方案中,所述大分子试剂组合物进一步包含一种或多种载体蛋白(例如牛血清白蛋白、正常山羊血清)。在一些实施方案中,所述大分子试剂组合物进一步包含缓冲剂和/或防腐剂组合物。在一些实施方案中,所述大分子试剂组合物具有范围高达约15cp的粘度。在其他实施方案中,所述大分子试剂组合物具有范围为约4cp至约11cp的粘度。在其他实施方案中,所述大分子试剂组合物具有范围为约4cp至约7cp的粘度。在一些实施方案中,所述大分子试剂组合物具有范围为约20达因/cm至约40达因/cm的表面张力。在其他实施方案中,所述大分子试剂组合物具有范围为约25达因/cm至约35达因/cm的表面张力。
在一些实施方案中,粘度调节剂的量范围为大分子试剂组合物的总重量的约1%至约50%。在其他实施方案中,粘度调节剂的量范围为大分子试剂组合物的总重量的约25%至约75%。在一些实施方案中,表面张力调节剂的量范围为大分子试剂组合物的总重量的约0.01%至约0.5%。在其他实施方案中,表面张力调节剂的量范围为大分子试剂组合物的总重量的高达约1%。技术人员将认识到,任何包括的载体蛋白和/或一抗本身可能对表面张力具有影响,并且在一些实施方案中可能有助于表面张力的降低。当确定用于包括在抗体试剂组合物内的任何表面张力调节剂的量时,技术人员将能够考虑该因素。
可以是任何大分子试剂组合物的一部分的抗体的非限制性实例包括对分化标志物簇(例如CD20、CD3、CD4、CD8、CD45、CD25、CD163等),Ki-67、EGFR、HER2、HPV、ALK、BRAF、OX-40、PD-1、IDL-1、FoxP3和CTLA-4特异性的抗体。
可以是任何大分子试剂组合物的一部分的酶的非限制性实例包括辣根过氧化物酶、碱性磷酸酶、酸性磷酸酶、葡萄糖氧化酶、β-半乳糖苷酶、β-葡萄糖醛酸酶或β-内酰胺酶。
实施例
以下的非限制性实施例旨在进一步说明本公开的某些实施方案。
实施例1-苏木精制剂
表3:苏木精制剂的一个实施方案
成分 量(g) 量(wt%) 组分描述
DI水 152.3 57.07
丙二醇(~40% w/w) 101.6 38.07 粘度调节剂
苏木精染料 2.27 0.85 初始染剂
碘酸钠 0.24 0.09 氧化剂
氯化铝六水合物 2.56 0.96 稳定剂
硫酸铝十六水合物 6.67 2.50 稳定剂
Tomadol 900 (5uL/mL, 0.98g/mL) 1.225 0.46 非离子型表面活性剂
266.865 100.00
发现实施例1的组合物足以通过公开的压电沉积方法分散。所述组合物的最终pH为约2.22;表面张力为约30达因/cm;粘度为约5cp。
在用于喷墨分配的苏木精的情况下,发现几种缓解以改善用于分配该特定染剂的液滴形成过程的可靠性和稳健性。首先,在制剂中包括氯化铝改善制剂针对由于长链金属离子络合物的不溶性而导致的自发聚集和沉淀的整体稳定性。
第二,与具有较高含水率的制剂相比,当通过降低混合物的蒸气压而暴露于空气时,减少的大部分丙二醇从苏木精制剂中干燥出。这些改进两者都代表目标在于生成独特适合于喷墨形状因子的苏木精制剂的非标准(或非传统)制剂特征。
对于用喷墨技术的功能印刷的领域共同的是需要通过印刷头冲洗大体积的油墨,以便在与另一种流体一起使用后引发系统。这源自于通过多个墨水容器供给的印刷头系统的设计以及所得的大的死体积。在一些设计中,这可导致油墨损失大于20%。同样,VENTANAHE 600系统具有共享的试剂歧管,并且在清洗/引发循环期间,总测定体积的超过30%被消耗。在公开的喷墨分配装置的概念中,申请人利用基于墨盒的喷墨系统来克服这些限制。通过制备针对印刷系统独特且定制的试剂的互补制剂,可以减轻许多喷嘴结垢(即不能分配液滴)的来源。然而,也证明,每天5μL或更少的引发循环足以在整个喷墨试剂墨盒的日常使用期间以及在试剂喷墨墨盒的整个寿命期间维持可靠的分配完整性。
实施例2-抗体制剂
表4:抗体制剂的一个实施方案
成分(g) 量(g) 量(%wt) 组分描述
117.77 46.99%
甘油 125 49.87% 粘度调节剂
Tris HCl 1.97 0.79% 缓冲剂
ProClin 300 (1.03g/ml) 0.26 0.10% 防腐剂
牛血清白蛋白, 组分V 2.5 1.00% 载体蛋白
正常山羊血清 2.5 1.00% 载体蛋白
Bio-Soft N91-8 (1.020 g/ml) 0.64 0.26% 非离子型表面活性剂
氢氧化钠 根据需要 可变 pH调节剂
一抗 可变 可变 活性染色组分
总计 250.64 100.00%
发现实施例2的组合物足以通过公开的压电沉积方法分散。表面张力为约28达因/cm;且粘度为约7cp。
实施例3-伊红制剂
表5:伊红制剂的一个实施方案
成分(g) 量(g) 量(%wt) 组分描述
DI水 204.8 39.17%
丙二醇(~60% w/w) 307.5 58.81% 粘度调节剂
伊红Y 3.8143 0.73% 染料
冰醋酸 5.5 1.05% pH调节剂
Tomadol 900 (2.5uL/mL, 0.98g/mL) 1.274 0.24% 非离子型表面活性剂
522.8883 100.00%
发现实施例3的组合物足以通过公开的压电沉积方法分散。所述组合物的最终pH为约4.299;表面张力为约41达因/cm;密度为1.042 g/mL;且粘度为约8.1cp。
实施例4 - 酶/多聚体检测制剂
表5记载酶/或多聚体检测制剂的实施方案。在该特定非限制性实施方案中,活性染色组分是小鼠抗氢醌辣根过氧化物酶(抗HQ HRP)。
表6:酶/多聚体检测制剂的一个实施方案
成分 量(g) 量(%wt) 组分描述
去离子水 50 49.25%
丙二醇(1.04 g/ml) 50 49.25% 粘度调节剂
磷酸氢二钾 0.8785 0.87% 缓冲剂
磷酸二氢钠 0.138 0.14% 缓冲剂
氯化钠 0.16 0.16% 缓冲剂
液体Brij, 30% 0.086 0.08% 表面活性剂
山羊球蛋白 0.15 0.15% 载体蛋白
B5封闭剂 0.068206 0.07% 封闭剂,非特异性结合
ProClin 300 (1.03 g/ml) 0.02575 0.03% 防腐剂
6N HCl / 6N NaOH 根据需要 根据需要 pH调节剂
小鼠抗HQ HRP 0.025 0.025% 活性染色组分(酶介导的检测)
总计 101.531456 100.00%
实施例5-具有大分子量粘度调节剂的替代抗体制剂
根据本公开的替代抗体制剂记载于表7中。
表7:替代抗体制剂。
成分 量(g) 量(%wt) 组分描述
去离子水 54.274 54.27%
甘油 40 40.00% 粘度调节剂
葡聚糖(平均MW 450 kD) 2 2.00% 粘度调节剂
Tris HCl 0.95 0.95% 缓冲剂
牛血清白蛋白, 组分V 1.2 1.20% 载体蛋白
正常山羊血清 1.2 1.20% 载体蛋白
Bio-Soft N91-8 (1.020 g/ml) 0.256 0.26% 表面活性剂
ProClin 300 (1.03 g/ml) 0.12 0.12% 防腐剂
6N NaOH 根据需要 根据需要 pH调节剂
一抗 可变 可变 活性染色组分
总计 100 100.00%
实施例6 - 传统染色程序与喷墨沉积染色程序的比较
本文记载的是来自常规单载片染色(表9)系统和本公开中描述的液滴按需分配装置(表8)的实例测定的比较。两个测定表都假设离线脱蜡过程以及在测定完成后进行盖载玻片的手工处理。尽管用于H&E染色的VENTANA HE 600测定(代表常规单载片染色装置)可以“拨入”以仅使用孵育时间来调节染色,但喷墨染色过程提供了对于液滴沉积(即喷墨)染色过程独特的几个调节点。首先,如图4A和5B中所示,染色根本上是质量有限的,而在常规染色系统上的染色强度的主要驱动因素是孵育时间。事实上,这是在常规染色装置的实例中“拨打(dial)”测定强度和特异性的唯一面向客户的特征。
表8:喷墨染色测定脚本
测定步骤 体积(µl) 流体过程 过程时间(min) 有效时间(min) 注释
设置载片温度,40℃ - - - 可以使用测定温度调节染色强度
HW开始 - 0.6 0 从载片“停放(park)”到pH洗涤(第一位置,包括针对印刷头的高度Z调整)
应用pH洗涤 300 大量,在组织上 0 0 在印刷苏木精前通过“设定”组织pH来减轻背景/非特异性染色
去除流体 - 0.180 0.100 移取低至~5uL的流体
印刷苏木精 2.5 1000 x 1000印刷,10pL/滴 1.580 1.580
孵育 - 1.000 1.000 孵育步骤对于驱动染色强度是任选的
印刷苏木精 2.5 1000 x 1000印刷,10pL/滴 1.580 1.580
孵育 - 1.000 1.000
印刷苏木精 2.5 1000 x 1000印刷,10pL/滴 1.580 1.580 可以通过多次印刷至组织上来调整染色强度
孵育 - 1.000 1.000
应用洗涤(pH洗涤任选的) 300 大量,在组织上 0.033 0.033 在发蓝前去除未结合的苏木精。可以“清理”背景染色
孵育 - 1.000 1.000 任选的“浸泡”步骤以使组织上的染剂均匀
去除流体 0.180 0.100
应用洗涤 300 大量,在组织上 0.033 0.033
孵育 - 1.000 1.000
去除流体 0.180 0.100
应用发蓝 300 大量,在组织上 0.050 0.050 pH调节至碱性条件,将苏木精的特异性染色锁定在组织上
孵育 - 0.500 0.500
应用洗涤 300 大量,在组织上 0.130 0.033 去除过量发蓝。调整pH值以拨入伊红强度的选项
去除流体 0.180 0.100
应用洗涤(pH洗涤任选的) 300 大量,在组织上 0.033 0.033
去除流体 0.180 0.100
印刷伊红 2.5 1000 x 1000印刷,10pL/滴 1.580 1.580 可以通过在应用前管理pH使得超亮。不需要孵育
应用洗涤 300 大量,在组织上 0.033 0.033 将伊红分为三种阴影(RBC,
去除流体 0.180 0.100
应用洗涤 300 大量,在组织上 0.033 0.033 去除过量伊红
去除流体 0.180 0.100
应用洗涤 300 大量,在组织上 0.033 0.033
去除流体 0.180 0.100
然而,在喷墨染色系统上,用于拨打染色强度的主要驱动因素是印刷通过次数和印刷区域的DPI(每英寸点数)或密度,这两者都调整沉积的染色材料的总质量。在图4A中,通过增加组织上的印刷通过次数来升高苏木精强度,并且同样在图5A中,类似地通过在组织上沉积额外印刷层来升高伊红强度。如表8中所示,对于公开的染色方法的一个实施方案,测定时间是固定的(由于用质量沉积的染色强度的“可拨打性”),与常规方法的变量相反(由于染色强度的“可拨打性”由孵育时间驱动)。此外,对于喷墨染色过程的一个实施方案,产生的液体废物的量显著减少,从常规方法的约14.24mL下降至约2.71mL。该结果突出了对于喷墨沉积系统可能的测定体积小型化效果,如表10中所表明。
表9:常规染色装置测定脚本
测定步骤 体积(uL) 流体过程 过程时间(min) 注释
设定染色器空气温度,45℃ - - 常规系统中的固定温度控制
洗涤,孵育,去除流体 1000.00 大量 0.333
洗涤,孵育,去除流体 1000.00 大量 0.333
苏木精,孵育,去除液体 1350.00 大量 可变的,1-10 使用孵育时间驱动染色强度,所述孵育时间可以在1和10分钟之间
洗涤,孵育,去除流体 1000.00 大量 0.667
酸洗涤,孵育,去除流体 1200.00 大量 可变的,0-3 特异性染色使用可变的酸洗涤孵育时间驱动,并且还降低染色强度
洗涤,孵育,去除流体 900.00 大量 0.333
发蓝,孵育,去除液体 1050.00 大量 0.500
洗涤,孵育,去除流体 900.00 大量 0.333
伊红,孵育,去除液体 1350.00 大量 可变的,0.5-7
洗涤,孵育,去除流体 1000.00 大量 0.333
洗涤 1000.00 大量 0.333
洗涤 1000.00 大量 1.333
总流体之间的清洗/引发步骤(苏木精) 1870.61 - - 必需在常规系统上改变至不同流体
总流体之间的清洗/引发步骤(洗涤) 2100.99 - - 必需在常规系统上改变至不同流体
总流体之间的清洗/引发步骤(酸洗涤) 650.14 - - 必需在常规系统上改变至不同流体
总流体之间的清洗/引发步骤(发蓝) 579.99 - - 必需在常规系统上改变至不同流体
总流体之间的清洗/引发步骤(伊红) 610.78 - - 必需在常规系统上改变至不同流体
下面的表10说明根据本公开的实施方案的喷墨沉积方法。与VENTANA HE 600方法相比,对于喷墨染色系统,用于拨打染色强度的主要驱动因素是印刷通过次数和印刷区域的DPI(每英寸点数)或密度,这两者都调整沉积的染色材料的总质量。在该特定测定中,利用的总测定体积为约2.71mL,且总测定时间为约14.24分钟。
表10:喷墨和常规测定的总结比较
常规H&E 喷墨H&E
总染色测定时间(min) 6.00至24.50 14.24
总测定体积(mL) 19.11 2.71
尽管短孵育时段仍然是用于经由公开的喷墨沉积方法进行染色的一些处理步骤的组分,但强烈的伊红染色(用于染色细胞质)的施加在印刷之后不需要任何额外的孵育。不希望受任何特定理论的束缚,据信这说明当使用超低体积或试剂时染色是质量有限的,以及与传统染色技术相比反应动力学可能得到改善(染色时间从七分钟减少至1分钟),甚至试剂减少100倍。
实施例7:清洗和清洁
喷墨印刷领域的两种常见做法是清洗和印迹印刷头以诱导流体流入毛细管空间并引发喷嘴用于分配。清洗是指在墨水容器内施加正压力,以便迫使流体流出喷嘴,而不驱动压电或热液滴产生元件。清洗也可以用于去除堵塞物(例如固体晶体、蛋白聚集体)并允许从喷嘴驱动液滴。印迹是指将吸液垫(wicking pad)施加至印刷头的喷嘴区域的外侧。这诱导流过喷嘴以引发印刷或清洁印刷头上的任何残留流体。这两种方法都用于目前的喷墨染色系统,用于管理“表现良好”的流体(即没有结晶和堵塞喷嘴的倾向的那些流体)。
在研究喷墨染色中,使用物理或化学处理发现了几种清洁和维护印刷头的方法。通常,物理处理是优选的方法,因为其破坏性较小,并且可以相对容易地自动化。为了维护印刷头,潮湿的局部高湿度环境是防止喷嘴处的结晶或沉淀形成的关键因素。通过在喷墨染色系统上在长期储存期间将填充有水和二醇的混合物的印迹垫放置在喷嘴板上,减轻干燥。
用于从印刷头清洁结晶材料的两种有效的溶剂体系是3%高碘酸和过氧化氢/碳酸钠的混合物。两者在去除印刷喷嘴的堵塞方面是有效的。
在本说明书中提及和/或在申请数据表中列出的所有美国专利、美国专利申请公开、美国专利申请、外国专利、外国专利申请和非专利出版物以其整体通过引用并入本文。如果必要,可以修改实施方案的方面,以采用各种专利、申请和出版物的概念以提供另外的实施方案。
尽管已经参考具体实施方案描述了本文的公开内容,但应当理解,这些实施方案仅仅说明本公开的原理和应用。因此,应当理解,可以对说明性实施方案进行许多修改,并且可以在不脱离由所附权利要求限定的本公开的精神和范围的情况下设计其他布置。

Claims (7)

1.将试剂分配至生物样品(908)上的方法,其包括:
将保护性流体层覆盖至生物样品(908)上,所述生物样品(908)被安放于支持介质上;
分配约1pL至约50pL的试剂液滴,使得所述试剂液滴渗透所述保护性流体层且接触所述生物样品(908);
其中所述试剂液滴包含选自初级染色试剂组合物和抗体试剂组合物的试剂组合物;
其中沉积在所述生物样品上的试剂的质量基于特定生物样品和/或通过下述的测定可变:(i)通过分配机构的多次通过来施加试剂,(ii)改变试剂分配的每英寸点数(dpi),(iii)改变液滴体积,和/或(iv)改变试剂浓度,其中所述试剂液滴以约5m/s至约15 m/s的速度分配,其中所述试剂液滴的动能大于所述保护性流体层的表面张力,其中所述初级染色试剂组合物包含染料、表面活性剂和粘度调节剂,其中所述组合物具有范围为约0.001Pa∙s(1cp)至约0.04 Pa∙s(40cp)的粘度和范围为约25∙g/s2(25达因/cm)至约45∙g/s2(45达因/cm)的表面张力,其中所述抗体试剂组合物包含一抗、表面活性剂和粘度调节剂,其中所述组合物具有范围为约0.004 Pa∙s(4cp)至约0.007 Pa∙s(7cp)的粘度和范围为约20∙g/s2(20达因/cm)至约40∙g/s2(40达因/cm)的表面张力。
2.权利要求1的方法,其中所述保护性流体层选自含水坑槽;不混溶的油,具体地其中所述试剂液滴的密度大于所述不混溶的油的密度。
3.权利要求1或2的方法,其中所述动能大于9.52x10-10焦耳。
4.权利要求1至3中任一项的方法,其中所述染料选自苏木精、伊红吖啶橙、俾斯麦棕、胭脂红、考马斯蓝、甲酚紫、结晶紫、DAPI(“2-(4-脒基苯基)-1H-吲哚-6-甲脒”)、溴化乙锭、酸性品红、Hoechst染剂、碘、孔雀石绿、甲基绿、亚甲基蓝、中性红、尼罗蓝、尼罗红、四氧化锇、罗丹明和番红精。
5.权利要求1至4中任一项的方法,其中所述初始染色试剂组合物的粘度范围为约0.006 Pa∙s(6cp)至约0.01 Pa∙s(10cp)。
6.权利要求1至5中任一项的方法,其中所述初级染色试剂溶液以约1x105 s-1至约1x107s-1的剪切速率分配。
7.权利要求1至6中任一项的方法,其中所述抗体组合物以小于约5x105 s-1的剪切速率分配。
CN202211632362.3A 2015-04-20 2016-04-20 用于组织学样品的试剂的喷墨沉积 Pending CN115753300A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562150122P 2015-04-20 2015-04-20
US62/150122 2015-04-20
PCT/EP2016/058801 WO2016170008A1 (en) 2015-04-20 2016-04-20 Inkjet deposition of reagents for histological samples
CN201680022722.4A CN107533080A (zh) 2015-04-20 2016-04-20 用于组织学样品的试剂的喷墨沉积

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680022722.4A Division CN107533080A (zh) 2015-04-20 2016-04-20 用于组织学样品的试剂的喷墨沉积

Publications (1)

Publication Number Publication Date
CN115753300A true CN115753300A (zh) 2023-03-07

Family

ID=55802372

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211632362.3A Pending CN115753300A (zh) 2015-04-20 2016-04-20 用于组织学样品的试剂的喷墨沉积
CN201680022722.4A Pending CN107533080A (zh) 2015-04-20 2016-04-20 用于组织学样品的试剂的喷墨沉积

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201680022722.4A Pending CN107533080A (zh) 2015-04-20 2016-04-20 用于组织学样品的试剂的喷墨沉积

Country Status (7)

Country Link
US (2) US11561156B2 (zh)
EP (2) EP4215898A1 (zh)
JP (3) JP7095995B2 (zh)
CN (2) CN115753300A (zh)
AU (2) AU2016251232A1 (zh)
CA (1) CA2980876C (zh)
WO (1) WO2016170008A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215898A1 (en) 2015-04-20 2023-07-26 Ventana Medical Systems, Inc. Inkjet deposition of reagents for histological samples
JP6876062B2 (ja) 2016-01-26 2021-05-26 ヴェンタナ メディカル システムズ, インク. 自動ダイセクション、次世代シークエンシング、及び自動スライド染色装置を用いる、腫瘍のための予測診断ワークフロー
WO2017155996A1 (en) 2016-03-08 2017-09-14 Ventana Medical Systems, Inc. Multiplexed immunohistochemistry using recombinant antibodies with epitope tags
GB201613173D0 (en) * 2016-07-29 2016-09-14 Medical Res Council Electron microscopy
JP2019533149A (ja) 2016-09-23 2019-11-14 ヴェンタナ メディカル システムズ, インク. 腫瘍試料中の細胞外マトリックスバイオマーカーをスコアリングするための方法及びシステム
WO2018073283A1 (en) 2016-10-19 2018-04-26 F. Hoffmann-La Roche Ag Systems and methods for staining of biological samples
WO2018118985A1 (en) 2016-12-19 2018-06-28 Ventana Medical Systems, Inc. Passive, gravity-driven system for treatment of an effluent in a diagnostic system
EP4220164B1 (en) 2016-12-19 2024-08-21 Ventana Medical Systems, Inc. Methods and systems for quantitative immunohistochemistry
CN110073222A (zh) * 2016-12-21 2019-07-30 文塔纳医疗系统公司 用于试剂递送的方法、系统和固体组合物
WO2018119295A1 (en) 2016-12-22 2018-06-28 Ventana Medical Systems, Inc. Fully automated nucleic acid extraction method for tissue samples
AU2018267059B2 (en) * 2017-05-10 2021-08-12 Ventana Medical Systems, Inc. Stabilized two-part hematoxylin solution utilizing pH adjustment
WO2018215844A2 (en) 2017-05-26 2018-11-29 Ventana Medical Systems, Inc. Non-contact, on-slide fluid mixing
WO2019020556A1 (en) 2017-07-24 2019-01-31 Ventana Medical Systems, Inc. METHODS AND SYSTEMS FOR ASSESSING INFILTRAT OF IMMUNE CELLS IN TUMOR SAMPLES
EP4372358A3 (en) 2017-11-21 2024-07-31 Ventana Medical Systems, Inc. Contactless mixing using modulated air jets
CN111492225A (zh) * 2017-12-24 2020-08-04 文塔纳医疗系统公司 无酚抗酸染色组合物及其用途
EP3746790B1 (en) 2018-01-31 2023-10-04 Ventana Medical Systems, Inc. Methods and systems for evaluation of immune cell infiltrate in stage iii colorectal cancer
US11925932B2 (en) 2018-04-24 2024-03-12 Hewlett-Packard Development Company, L.P. Microfluidic devices
US11931738B2 (en) 2018-04-24 2024-03-19 Hewlett-Packard Development Company, L.P. Sequenced droplet ejection to deliver fluids
WO2019224153A1 (en) 2018-05-21 2019-11-28 Genentech, Inc. Her2 heterogeneity as a biomarker in cancer
US11325380B2 (en) 2018-07-17 2022-05-10 Hewlett-Packard Development Company, L.P. Droplet ejectors to provide fluids to droplet ejectors
WO2020016266A1 (en) 2018-07-17 2020-01-23 Ventana Medical Systems, Inc. Materials and methods for detecting fusion proteins
US11547993B2 (en) 2018-07-17 2023-01-10 Hewlett-Packard Development Company, L.P. Droplet ejectors with target media
US11255715B2 (en) * 2018-07-20 2022-02-22 Brighton technologies, LLC Method and apparatus for determining a mass of a droplet from sample data collected from a liquid droplet dispensation system
EP3833435A4 (en) 2018-08-09 2022-05-11 F. Hoffmann-La Roche AG DETERMINATION OF PARKINSON'S DISEASE
EP3850367A1 (en) 2018-09-13 2021-07-21 Ventana Medical Systems, Inc. Histochemical and cytochemical methods for detecting ntrk fusion proteins
JP7510943B2 (ja) 2018-10-01 2024-07-04 ヴェンタナ メディカル システムズ, インク. Pd-1軸指向型治療薬に対する応答を予測するための方法およびシステム
WO2020104538A1 (en) 2018-11-20 2020-05-28 Ventana Medical Systems, Inc. Methods and systems for preparing and analyzing cellular samples for morphological characteristics and biomarker expression
US20200217764A1 (en) * 2019-01-04 2020-07-09 Funai Electric Co., Ltd. Digital dispense system
US11474007B2 (en) * 2019-01-04 2022-10-18 Funai Electric Co., Ltd. Digital dispense system
CN113454458A (zh) 2019-02-05 2021-09-28 文塔纳医疗系统公司 用于评估iv期结直肠癌中免疫细胞浸润的方法和系统
JP7541536B2 (ja) 2019-05-14 2024-08-28 ヴェンタナ メディカル システムズ, インク. 生物学的試料処理チャンバを含むシステム
WO2021037869A1 (en) 2019-08-28 2021-03-04 Ventana Medical Systems, Inc. Assessing antigen retrieval and target retrieval progression quantitation with vibrational spectroscopy
EP4022287A1 (en) 2019-08-28 2022-07-06 Ventana Medical Systems, Inc. Systems and methods for assessing specimen fixation duration and quality using vibrational spectroscopy
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
CN115279496B (zh) * 2019-12-31 2024-09-10 美国樱花检验仪器株式会社 自动化染色系统和反应室
US20210214785A1 (en) * 2020-01-13 2021-07-15 Spatial Transcriptomics Ab Methods of decreasing background on a spatial array
WO2021224293A1 (en) 2020-05-07 2021-11-11 Ventana Medical Systems, Inc. Histochemical systems and methods for evaluating egfr and egfr ligand expression in tumor samples
EP4153994A4 (en) * 2020-05-20 2024-05-08 Roche Diagnostics Hematology, Inc. USE OF AUTOMATED PLATFORMS FOR THE PREPARATION OF A BIOMARKER AND A ROMANOWSKY-TYPE STAINING SAMPLE PRINTED ON A SLIDE
US12031177B1 (en) 2020-06-04 2024-07-09 10X Genomics, Inc. Methods of enhancing spatial resolution of transcripts
MX2020007710A (es) * 2020-07-20 2022-01-21 Jesus Raul Beltran Ramirez Dispositivo automatizado de tincion de multiples muestras histologicas.
JPWO2022102748A1 (zh) * 2020-11-12 2022-05-19
EP4421491A2 (en) 2021-02-19 2024-08-28 10X Genomics, Inc. Method of using a modular assay support device
CN117651521A (zh) 2021-05-13 2024-03-05 文塔纳医疗系统公司 对组织固定时间的实时预测
CN113607962B (zh) * 2021-08-06 2023-05-09 三诺生物传感股份有限公司 一种cTnI抗体包被磁珠的保存液及其制备方法
EP4152074A1 (en) * 2021-09-20 2023-03-22 Leica Microsystems CMS GmbH Microscope system and method for imaging a sample involving injecting multiple temporally spaced microjets
CN118632628A (zh) 2022-01-25 2024-09-10 文塔纳医疗系统公司 用于漂白黑色素着色的组织的材料和方法
WO2023192946A1 (en) 2022-03-31 2023-10-05 Ventana Medical Systems, Inc. Methods and systems for predicting response to pd-1 axis directed therapeutics in colorectal tumors with deficient mismatch repair
US20240003786A1 (en) 2022-07-01 2024-01-04 Canon Kabushiki Kaisha Staining method, liquid composition for staining, and kit for staining
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
CN115505463B (zh) * 2022-10-27 2024-06-04 浙江峻山生物科技有限公司 一种水性脱蜡剂及其制备方法与应用
WO2024137817A1 (en) 2022-12-23 2024-06-27 Ventana Medical Systems, Inc. Materials and methods for evaluation of antigen presentation machinery components and uses thereof

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1985424A (en) 1933-03-23 1934-12-25 Ici Ltd Alkylene-oxide derivatives of polyhydroxyalkyl-alkylamides
US2703798A (en) 1950-05-25 1955-03-08 Commercial Solvents Corp Detergents from nu-monoalkyl-glucamines
BE557103A (zh) 1956-05-14
US3155591A (en) 1961-12-06 1964-11-03 Witco Chemical Corp Hair rinse compostions of polyoxypropylene quaternary ammonium compounds
US3959461A (en) 1974-05-28 1976-05-25 The United States Of America As Represented By The Secretary Of Agriculture Hair cream rinse formulations containing quaternary ammonium salts
US3929678A (en) 1974-08-01 1975-12-30 Procter & Gamble Detergent composition having enhanced particulate soil removal performance
US4387090A (en) 1980-12-22 1983-06-07 The Procter & Gamble Company Hair conditioning compositions
US4877745A (en) 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
US4914022A (en) * 1987-10-21 1990-04-03 Amc Cancer Research Center Method for preparing multiple tissue samples for microscopic investigation and testing
US5658802A (en) * 1995-09-07 1997-08-19 Microfab Technologies, Inc. Method and apparatus for making miniaturized diagnostic arrays
AUPO625497A0 (en) 1997-04-16 1997-05-15 Macquarie Research Limited Analysis of molecules
US6664044B1 (en) * 1997-06-19 2003-12-16 Toyota Jidosha Kabushiki Kaisha Method for conducting PCR protected from evaporation
US20020159919A1 (en) * 1998-01-09 2002-10-31 Carl Churchill Method and apparatus for high-speed microfluidic dispensing using text file control
US20060211132A1 (en) * 1998-01-09 2006-09-21 Rico Miledi Method for high throughput drop dispensing of specific patterns
US6699710B1 (en) * 1998-02-25 2004-03-02 The United States Of America As Represented By The Department Of Health And Human Services Tumor tissue microarrays for rapid molecular profiling
US6183693B1 (en) * 1998-02-27 2001-02-06 Cytologix Corporation Random access slide stainer with independent slide heating regulation
WO2001037192A1 (en) * 1999-11-18 2001-05-25 Ikonisys, Inc. Method and apparatus for computer controlled cell based diagnosis
AU2001234739A1 (en) * 2000-02-02 2001-08-14 Cartesian Technologies, Inc. Method and apparatus for developing dna microarrays
US7205400B2 (en) * 2000-07-31 2007-04-17 Agilent Technologies, Inc. Array fabrication
AU2002216618A1 (en) 2000-10-06 2002-04-15 Protasis Corporation Fluid separation conduit cartridge with encryption capability
EP1330306A2 (en) * 2000-10-10 2003-07-30 BioTrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
JP2002267675A (ja) 2001-03-14 2002-09-18 Hitachi Ltd 自動分析装置
US20020180475A1 (en) 2001-03-28 2002-12-05 Hidenori Watanabe Manufacturing method and apparatus for probe carriers
JP2003004609A (ja) * 2001-03-28 2003-01-08 Canon Inc プローブ担体の製造方法および製造装置
JP3902939B2 (ja) * 2001-10-26 2007-04-11 株式会社日立ハイテクノロジーズ 標本中の微小領域測定装置及び方法
US7141368B2 (en) * 2002-01-30 2006-11-28 Agilent Technologies, Inc. Multi-directional deposition in array fabrication
EP1485204B1 (en) 2002-02-22 2006-02-08 Biodot, Inc. Method and apparatus for dispersing reagent droplets below a fluid surface using non-contact dispensing
US6939673B2 (en) * 2002-06-14 2005-09-06 Agilent Technologies, Inc. Manufacture of arrays with reduced error impact
FR2843048B1 (fr) * 2002-08-01 2004-09-24 Commissariat Energie Atomique Dispositif d'injection et de melange de micro-gouttes liquides.
WO2004111610A2 (en) * 2003-06-12 2004-12-23 Accupath Diagnostic Laboratories, Inc. Method and system for the analysis of high density cells samples
EP2492681A1 (en) * 2003-09-09 2012-08-29 BioGenex Laboratories Sample processing system
EP1733240A4 (en) 2004-03-02 2007-08-22 Dako Denmark As REAGENT DISPENSING SYSTEM, DISPENSING DEVICE AND CONTAINER FOR BIOLOGICAL COLORING APPARATUS
US20060105453A1 (en) * 2004-09-09 2006-05-18 Brenan Colin J Coating process for microfluidic sample arrays
CN100528578C (zh) * 2004-10-28 2009-08-19 株式会社理光 喷墨记录装置和喷墨记录方法
JP4861788B2 (ja) * 2006-10-11 2012-01-25 キヤノン株式会社 生体標本の処理方法及び解析方法
US7867450B2 (en) 2006-11-08 2011-01-11 Seiko Epson Corporation Liquid droplet ejecting head, inspection device, and method of using inspection device
JP4910727B2 (ja) 2007-01-31 2012-04-04 セイコーエプソン株式会社 検査装置
WO2008063135A1 (en) * 2006-11-24 2008-05-29 Agency For Science, Technology And Research Apparatus for processing a sample in a liquid droplet and method of using the same
JP5014780B2 (ja) 2006-12-28 2012-08-29 株式会社先端生命科学研究所 メチル化ヘテロジニアス・ヌクレア・リボヌクレオプロテインの免疫学的分析方法及びその利用
AU2008224935B2 (en) 2007-03-15 2013-07-25 Ventana Medical Systems, Inc. Stabilized hematoxylin
CA2818709C (en) 2008-06-24 2016-07-19 Plastipak Packaging, Inc. Method for printing on articles having a non-planar surface
US8340389B2 (en) * 2008-11-26 2012-12-25 Agilent Technologies, Inc. Cellular- or sub-cellular-based visualization information using virtual stains
EP2516410B1 (en) 2009-12-22 2014-04-23 Bridgestone Corporation Improved vinyl modifier composition and processes for utilizing such composition
US20120122197A1 (en) * 2010-11-12 2012-05-17 Abner David Jospeh Inkjet reagent deposition for biosensor manufacturing
CN103221800B (zh) 2010-11-19 2015-07-15 奥林巴斯株式会社 生物体试样制备方法
JP5707253B2 (ja) 2011-06-27 2015-04-22 株式会社日立ハイテクノロジーズ 冷却試薬保管庫及び核酸分析装置
AU2012339620B2 (en) 2011-11-16 2016-01-28 Leica Biosystems Melbourne Pty Ltd An automated system and method of treating tissue samples on slides
KR20140025152A (ko) 2012-08-21 2014-03-04 주식회사 피치텍 피부치료용 광 조사기
ES2523397B1 (es) 2013-05-24 2015-09-10 Fundació Cetemmsa Composición de tinta para impresión por inyección
JP6191270B2 (ja) 2013-06-20 2017-09-06 コニカミノルタ株式会社 自動染色処理装置
CN105980827B (zh) * 2013-12-13 2021-01-05 文塔纳医疗系统公司 生物标本的自动化组织处理及关联技术的背景中的热管理
AU2014363678B2 (en) 2013-12-13 2016-12-08 Ventana Medical Systems, Inc. Staining reagents and other liquids for histological processing of biological specimens and associated technology
JP6678588B2 (ja) 2014-09-22 2020-04-08 株式会社ニチレイバイオサイエンス 自動組織染色装置及び自動組織染色方法
EP4215898A1 (en) 2015-04-20 2023-07-26 Ventana Medical Systems, Inc. Inkjet deposition of reagents for histological samples
WO2018073283A1 (en) 2016-10-19 2018-04-26 F. Hoffmann-La Roche Ag Systems and methods for staining of biological samples

Also Published As

Publication number Publication date
EP4215898A1 (en) 2023-07-26
US20230105136A1 (en) 2023-04-06
AU2021204462B2 (en) 2023-07-13
JP2021105612A (ja) 2021-07-26
JP7095995B2 (ja) 2022-07-05
EP3286543B1 (en) 2023-03-29
CN107533080A (zh) 2018-01-02
AU2021204462A1 (en) 2021-07-29
JP2023113760A (ja) 2023-08-16
US20180052082A1 (en) 2018-02-22
CA2980876A1 (en) 2016-10-27
JP2018517895A (ja) 2018-07-05
AU2016251232A1 (en) 2017-10-12
WO2016170008A1 (en) 2016-10-27
US11561156B2 (en) 2023-01-24
CA2980876C (en) 2020-04-28
EP3286543A1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
AU2021204462B2 (en) Inkjet deposition of reagents for histological samples
JP7213802B2 (ja) 生体試料の染色システムおよび方法
AU2005316449B2 (en) High temperature tissue conditioning with low volatility solutions and applications
US12042796B2 (en) Non-contact, on-slide fluid mixing
US20090170152A1 (en) Tissue Conditioning Protocols
JP7548903B2 (ja) 形態学的特徴およびバイオマーカー発現のために細胞サンプルを調製および分析するための方法およびシステム
US20240272043A1 (en) Eosin staining techniques
US20220307951A1 (en) Contactless mixing using modulated air jets
EP3283881B1 (en) Thermochemical-based antibody inactivation methods and systems
US11662564B2 (en) Paraffin shield coating for microscope slide
US11162961B2 (en) Methods, systems and solid compositions for reagent delivery
US20240003786A1 (en) Staining method, liquid composition for staining, and kit for staining
JP2024007408A (ja) 染色方法、染色のための液体組成物、及び染色のためのキット

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination