CN115737104A - 用于改进的基于组织感测的电穿孔的系统和方法 - Google Patents

用于改进的基于组织感测的电穿孔的系统和方法 Download PDF

Info

Publication number
CN115737104A
CN115737104A CN202211232730.5A CN202211232730A CN115737104A CN 115737104 A CN115737104 A CN 115737104A CN 202211232730 A CN202211232730 A CN 202211232730A CN 115737104 A CN115737104 A CN 115737104A
Authority
CN
China
Prior art keywords
tissue
electroporation
electrodes
pulse
central probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211232730.5A
Other languages
English (en)
Inventor
A·巴哈拉米
A·E·丹尼森
C·S·海登
R·J·康诺利
R·H·皮尔斯
D·W·布朗
E·T·约翰逊
R·R·拉格兰
J·坎贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongnian Development Co ltd
Original Assignee
OncoSec Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OncoSec Medical Inc filed Critical OncoSec Medical Inc
Publication of CN115737104A publication Critical patent/CN115737104A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/327Applying electric currents by contact electrodes alternating or intermittent currents for enhancing the absorption properties of tissue, e.g. by electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0412Specially adapted for transcutaneous electroporation, e.g. including drug reservoirs
    • A61N1/0416Anode and cathode
    • A61N1/0424Shape of the electrode

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Electrotherapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本申请涉及用于改进的基于组织感测的电穿孔的系统和方法。本公开涉及一种用于使用电穿孔(EP)系统在细胞或组织的EP期间控制EP脉冲参数的自适应控制方法,其包含:提供用于自适应控制以优化包含EP脉冲参数的EP脉冲参数的系统,将电压和电流激励信号施加到细胞,从电流和电压测量获得数据,以及处理所述数据以分离合意的数据与不合意的数据,从所述合意的数据提取相关特征,将所述相关特征的至少一部分应用于经训练的诊断模型,基于所述应用的相关特征的结果估计EP脉冲参数,其中经初始化EP脉冲参数是基于所述经训练的模型和所述相关特征,从而优化所述EP脉冲参数,以及由产生器基于所述第一脉冲参数而施加第一EP脉冲。

Description

用于改进的基于组织感测的电穿孔的系统和方法
本申请是申请号为201680026625.2、申请日为2016年3月31日、发明名称为“用于改进的基于组织感测的电穿孔的系统和方法”的发明专利申请的分案申请。
相关申请的参考
本申请要求2015年9月4日提交的标题为“用于优化电穿孔的系统和方法(SYSTEMAND METHOD FOR OPTIMIZED ELECTROPORATION)”的第62/214,807号美国临时专利申请以及2015年9月4日提交的标题为“用于优化的基于导管的电穿孔的系统和方法(SYSTEM ANDMETHOD FOR OPTIMIZED CATHETER-BASED ELECTROPORATION)”的第62/214,872号美国临时专利申请的优先权,以上申请中的每一个相关于2015年3月31日提交的标题为“聚焦脉冲加法电穿孔(FOCUSED PULSE ADDITION ELECTROPORATION)”的第62/141,142号美国临时专利申请、2015年3月31日提交的标题为“电化学组织感测(ELECTROCHEMICAL TISSUESENSING)”的第62/141,182号美国临时专利申请、2015年3月31日提交的标题为“用于改进的治疗剂递送的一体化装置(ALL-IN-ONE DEVICE FOR IMPROVED THERAPEUTIC AGENTDELIVERY)”的第62/141,256号美国临时专利申请以及2015年3月31日提交的标题为“用于改进的治疗剂递送的装置(DEVICE FOR IMPROVED THERAPEUTIC AGENT DELIVERY)”的第62/141,164号美国临时专利申请,以上申请的公开明确地以全文引用的方式并入本文中。
技术领域
本发明大体上涉及使用控制系统以改善电穿孔过程且增加细胞的渗透性,且更具体来说涉及用于通过电穿孔疗法(EPT)将治疗部分递送到细胞中的受控电场的优化施加的方法和设备,所述电穿孔疗法也被称作细胞穿孔疗法(CPT)和电化学疗法(ECT)。
背景技术
在1970年代,发现可以使用电场在细胞中产生孔隙而不会造成永久性损伤。此发现使得将大分子插入到细胞的细胞质中成为可能。众所周知,可以通过被称为电穿孔的过程将例如药理学化合物等治疗部分并入到活细胞中。将基因或其它分子注入到活细胞中且施加高电场的短脉冲。细胞膜短暂地变为多孔且基因或分子进入细胞,在细胞中所述基因或分子能够修改细胞的基因体。
在以化疗对某些类型的癌症的治疗中,有必要使用足够高剂量的药品来杀灭癌细胞而不会杀灭不可接受高数目的正常细胞。如果化疗药品可以直接插入于癌细胞内部,那么可以实现此目标。一些抗癌药物,例如博莱霉素(bleomycin),通常无法有效地穿透某些癌细胞的薄膜。然而,电穿孔使得有可能将博莱霉素插入到细胞中。
通常通过将抗癌药品直接注入到肿瘤中且在一对电极之间将电场施加到肿瘤来实行治疗。必须准确合理地调整场强度以使得肿瘤的细胞的电穿孔发生而没有对任何正常或健康细胞的损伤或至少只有最小损伤。这通常可通过将电极施加到肿瘤的相对侧以使得电场在电极之间而对外部肿瘤容易实行。当所述场均匀时,随后可测量电极之间的距离,且随后可将根据公式E=V/d的合适电压施加于电极(E=以V/cm计的场强度;V=以伏特计的电压;且d=以cm计的距离)。当大的或内部肿瘤待治疗时,恰当地定位电极且测量电极之间的距离是不容易的。
使用细胞穿孔疗法对主体的治疗提供了避免通常与抗癌或细胞毒性剂的施予相关联的有害影响的手段。此治疗将允许引入这些试剂以选择性损伤或杀灭不合意的细胞,同时避开周围的健康细胞或组织。然而,使用电穿孔技术的一个问题是病变组织、尤其是癌变组织可能相当异构,从而要求电穿孔条件的调整。因此,本发明提供与用于EP的自适应控制方法结合使用电化学阻抗谱分析方法以最大化所需组织的电穿孔,同时最小化组织损伤。
发明内容
因此,需要实施一种控制系统,其使用基于组织感测的反馈以用在每一EP脉冲之前和之间所获取的肿瘤特定测量值来优化EP过程。
根据一些实施例,一种用于使用电穿孔(EP)装置在细胞和组织的EP期间提供自适应控制以优化EP脉冲参数的系统包括测量装置、初始化模块、产生器、控制器和存储器模块。测量装置被配置成测量细胞和组织的介电和导电性质,且包含:电压传感器,用以测量由激励信号和施加于组织的EP脉冲中的每一个产生的跨越组织的电压;以及电流传感器,用以测量由激励信号和至少一个所施加EP脉冲产生的跨越组织的电流。初始化模块被配置成初始化用于在细胞或组织中执行电穿孔的EP脉冲参数,其中经初始化EP脉冲参数是至少部分地基于至少一个经训练的模型。产生器被配置成将激励信号和EP脉冲中的至少一个施加到组织。测量装置的电压传感器和电流传感器响应于激励信号的施加而测量跨越组织的细胞的电压和电流。控制器被配置成从测量装置接收与测得的传感器数据相关的对应于激励信号和EP脉冲中的至少一个的信号,以将所述数据拟合于至少一个经训练的模型且将所述数据处理为诊断学和经更新控制参数。控制器包括:预处理模块,用以接收与来自电流和电压测量的数据相关的信号,且处理所述数据以分离合意的数据与不合意的数据;特征提取模块,用以从合意的数据提取相关特征;诊断模块,用以将合意的数据的相关特征的至少一部分应用于至少一个经训练的诊断模型;以及脉冲参数估计模块,用以基于测得的数据、诊断模块和特征提取模块中的至少一个的结果而估计经初始化脉冲参数和后续脉冲参数中的至少一个。存储器模块存储合意的和不合意的数据、传感器数据和经训练的模型用于控制器进行特征提取。
在一些实施例中,EP装置包括中心探头、施加器以及至少两个相反地带电的电穿孔电极(EPE)。中心探头界定至少中心管腔且从近端延伸到远端,所述中心探头的至少一部分具有螺旋几何形状以产生用于治疗部分向组织的递送的通道。中心探头的所述部分具有沿着螺旋几何形状定位的至少一个喷射端口。中心探头的近端被配置成接收递送到中心探头的治疗部分,且中心探头的远端是开放的以界定用于治疗部分向组织的递送的开口且具有被配置成刺穿组织的形状。施加器至少部分地容纳中心探头,且具有远端,中心探头的所述部分被配置成通过所述远端延伸到施加器的外部以接触组织及缩回到施加器中。所述至少两个相反地带电的EPE被配置成包围组织而定位且适于从近端延伸到远端。远端具有被配置成刺穿组织的针形状。测量装置耦合到EPE,且EPE适于耦合到产生器以接收激励信号和用于EP脉冲的电波形中的至少一个。
在一些实施例中,EP装置包括中心探头、至少一个取道线、斜坡、电连接器、小孔隙连接器、手柄以及至少两个相反地带电的电极。中心探头界定至少中心管腔且具有近端和闭合的远端。远端的顶端具有被配置成刺穿组织的针形状且具有定位于距远端预定位置处的至少一个退出端口。退出端口将中心管腔流体地连接到中心探头的外部。所述至少一个取道线定位于中心管腔中且能够在中心探头内滑动,且具有定位于中心探头中的近端以及被配置成延伸到中心探头的外部及通过退出端口缩回到中心管腔中的远端。取道线的远端的顶端具有被配置成刺穿通过组织且界定开口的形状,取道线的至少一部分通过所述开口进入组织以产生流体通道,治疗部分通过所述流体通道递送到组织。治疗部分通过退出端口从中心管腔递送到通道中。斜坡与中心探头的内表面一体地形成或耦合,所述内表面界定中心管腔,且斜坡被配置成接触且导引取道线以使中心探头退出到中心探头的外部。电连接器将中心探头和取道线电连接到产生器。小孔隙连接器连接到中心探头以用于治疗部分的递送。手柄至少部分地容纳电连接器,且耦合到中心探头和取道线的近端以促进中心探头和取道线的远端的穿透深度。所述至少两个相反地带电的电极被配置成包围组织而定位且从近端延伸到远端。远端的顶端具有被配置成刺穿组织的针形状。电极适于耦合到产生器,从产生器接收至少一个电波形,且将至少一个激励信号和至少一个EP脉冲供应到组织。测量装置耦合到电极。
在一些实施例中,EP装置包括包含插管和闭孔器的套管针、至少两个相反地带电的电极,以及中心探头。插管从近端延伸到开放远端且界定被配置成接收闭孔器的第一管腔。闭孔器从近端延伸到远端。远端具有被配置成刺穿通过皮肤、穿透进入身体腔且形成路径的尖锐形状,插管可以通过所述路径至少部分地插入到所述腔中。闭孔器被配置成能够在第一管腔内滑动,且闭孔器的远端被配置成通过插管的开放远端延伸到第一管腔的外部。所述至少两个相反地带电的电极以可缩回方式安置于锚定件的远端且被配置成包围组织而定位。测量装置耦合到电极且电极适于耦合到产生器,从产生器接收至少一个电波形,且将至少一个激励信号和EP脉冲供应到所述区。中心探头以可缩回方式安置于锚定件的远端且具有内表面,所述内表面界定中心管腔且从锚定件的远端延伸。中心探头的至少一部分具有被配置成产生用于治疗部分向组织的递送的通道的螺旋几何形状。中心探头的远端具有被配置成刺穿组织的形状且是开放的以界定用于治疗部分向组织的递送的开口。
在一些实施例中,EP装置包括电穿孔棒外壳,其包括电穿孔电极(EPE)的阵列,电测量电极(EME)的阵列,其中EPE和EME是偏移的;以及棒递送系统,其包括界定第一管腔的至少一个注入探头。注入探头从其近端延伸到远端且具有长形的圆柱形形状。注入探头的远端具有针形状且是开放的以用于将治疗部分递送到细胞。产生器被配置成将处于多个波形的EP脉冲供应到EPE的阵列,且被配置成将处于多个波形的激励信号供应到EME的阵列。EP装置进一步包括将EPE和EME的阵列电连接到产生器的电连接器,以及在所述电连接器与产生器之间的切换机构。
在一些实施例中,EPE和EME两者被配置为EPE,即,电极全部是能够在EP与电化学阻抗谱(EIS)模式之间切换的EPE。产生器被配置成在EP模式中为EPE供应处于所述多个波形的EP脉冲,且在EIS模式中为EPE供应处于所述多个波形的激励信号,测量装置耦合到EPE,且切换机构适于在EIS与EP模式之间切换产生器。
根据一些实施例,一种用于使用电穿孔(EP)系统在细胞或组织的EP期间控制EP脉冲参数的自适应控制方法,包括:a)提供本文所描述的EP装置中的任一个,b)通过初始化模块初始化用于在细胞或组织中执行EP的EP脉冲参数,经初始化EP脉冲参数至少部分地基于至少一个经训练的模型,c)通过产生器将电压和电流激励信号施加于细胞和组织,且通过测量装置测量对应于所施加激励信号的跨越细胞和组织的电压和电流,d)通过控制器从电流和电压测量获得数据,且处理所述数据以分离合意的数据与不合意的数据,e)通过控制器从合意的数据提取相关特征,f)通过控制器将合意的数据的相关特征的至少一部分应用于至少一个经训练的诊断模型,g)通过控制器基于对经训练的模型的所应用相关特征的结果而估计EP脉冲参数,其中经初始化EP脉冲参数是基于至少一个经训练的模型和相关特征,从而优化EP脉冲参数,以及h)通过产生器基于第一脉冲参数而施加第一EP脉冲。
在一些实施例中,自适应控制方法进一步包括通过控制器使用基于先前EP脉冲的经训练的模型以及所施加EP脉冲之间的相关特征中的至少一个的改变而在第一EP脉冲已施加之后预测后续EP脉冲参数。
在一些实施例中,自适应控制方法进一步包括通过控制器至少部分地基于所述施加而产生诊断响应。诊断响应包括a)组织检测,b)肿瘤类型检测,c)针放置检测,d)共定位检测,以及e)细胞渗透检测。
在一些实施例中,自适应控制方法进一步包括:f)通过产生器基于后续EP脉冲参数施加后续EP脉冲,以及g)重复所述施加电压和电流激励信号,重复所述测量细胞或组织,重复所述获得数据且分离合意的数据与不合意的数据;重复所述提取相关特征;以及重复所述施加,直到i)达到EP脉冲序列或EP脉冲的循环的数目的预定限制,或ii)诊断响应提示终止自适应控制方法的诊断决策。
在一些实施例中,自适应控制方法进一步包括将合意的数据存储在存储器模块中。
在一些实施例中,至少一个经训练的模型是使用在EP系统使用固定EP脉冲参数的初始操作期间观察到的经验数据来训练。
在一些实施例中,自适应控制方法进一步包括确定由所施加激励信号产生的细胞和组织的介电和导电性质。
在一些实施例中,介电和导电性质是通过施加在固定频率范围上重复的频带有限信号而确定。
在一些实施例中,自适应控制方法进一步包括证实测量装置的电流和电压传感器,由此获得测得的数据以评估数据的质量,且所述证实包括以统计方式分析测得的数据的质量。
在一些实施例中,分离合意的数据与不合意的数据包括以下各项中的至少一个:a)将传感器信号去噪,b)从传感器信号移除直流(DC)偏置,c)基于标准化值按比例缩放数据,其中所述标准化值包含标准偏差,d)平均值滤波,以及e)从数据移除离群值。
在一些实施例中,所述特征是从所述电压和电流信号的量值和相位测量的参数模型拟合导出的,选自包括胞内电阻、胞外电阻、溶液电阻、薄膜电容、导纳、常数相位元件指数和充电时间常数的群组。
在一些实施例中,施加于细胞和组织的激励电压和电流信号的电压和电流信号的量值和相位测量的参数模型拟合是通过使激励电压和电流信号与存储于存储器模块中的已知参考信号交叉相关而确定。
在一些实施例中,细胞或组织的介电和导电性质是通过施加于细胞或组织的激励电压和电流的量值比率和相位差而确定。
在一些实施例中,特征是从激励电压和电流信号的量值比率或相位差导出的。所述特征包括:a)在固定频率下的激励电压和电流信号的量值比率和相位差的值,b)以下各项的平均值、中值、最大值和最小值中的至少一个:i)在窄频带上的激励电压和电流信号量值的量值比率或相位差,以及ii)在宽频带上的激励电压和电流信号量值相位的量值比率或相位差,以及c)激励电压和电流信号的量值比率或相位差相对于频率的曲率、斜率和噪声。
根据一些实施例,一种用于主体的组织中的细胞的电穿孔(EP)的系统包括:a)电穿孔棒外壳,其包括i)电穿孔电极(EPE)的阵列;以及ii)电化学阻抗谱(EIS)电极(EISE)的阵列,其中EPE和EISE是偏移的,b)EP电力供应器,其被配置成将处于多个波形的电信号供应到EPE的阵列,c)EIS电力供应器,其被配置成将处于多个波形的电信号供应到EISE的阵列,d)将EPE的阵列电连接到所述EP电力供应器的电连接器,以及e)将EISE的阵列电连接到所述EIS电力供应器的电连接器,以及f)EIS传感器。
根据一些实施例,所述系统进一步包括被配置成将治疗部分递送到细胞的棒递送系统,所述递送系统包括界定第一管腔的至少一个注入探头,所述注入探头从其近端延伸到远端且具有长形的圆柱形形状,其中注入探头的远端具有针形状且是开放的以用于将治疗部分递送到细胞。
根据一些实施例,一种用于主体的组织中的细胞的电穿孔(EP)的系统包括:a)电穿孔棒外壳,其包括电极的阵列,b)EP电力供应器,其被配置成将处于多个波形的电信号供应到电极的阵列,c)EIS电力供应器,其被配置成将处于多个波形的电信号供应到电极的阵列,d)将电极的阵列电连接到EP电力供应器的电连接器,e)将电极的阵列电连接到EIS电力供应器的电连接器,f)电连接器与电力供应器之间的切换机构,以及g)EIS传感器。
在一些实施例中,所述系统因此进一步包括被配置成将治疗部分递送到细胞的棒递送系统,所述递送系统包括界定第一管腔的至少一个注入探头,所述注入探头从其近端延伸到远端且具有长形的圆柱形形状,其中注入探头的远端具有针形状且是开放的以用于将治疗部分递送到细胞。
在一些实施例中,电极是被配置成穿透皮肤且接触电场区中的细胞的针。
在一些实施例中,电极是非穿透接触件。
根据一些实施例,一种用于对患者中的组织的细胞进行电穿孔的方法包括:a)提供本文所描述的EP系统中的任一个,b)将电极插入到组织中,c)从EIS电力供应器将至少一个电压脉冲施加到EIS电极以确定组织参数,d)使用电子信号处理装置计算将用于电穿孔的电压脉冲,以及e)在插入组织中的EP电极阵列中的多对电极之间施加至少一个电压脉冲,以便在组织的细胞中建立足以造成组织中的细胞的电穿孔的电场。
在一些实施例中,所述方法进一步包括:a)提供被配置成将治疗部分(TM)递送到细胞的棒递送系统,所述递送系统包括界定第一管腔的至少一个注入,注入探头从其近端延伸到远端且具有长形的圆柱形形状,其中注入探头的远端具有针形状且是开放的以用于将治疗部分递送到细胞;以及b)将TM递送到细胞。
在一些实施例中,TM是在电穿孔之前、与电穿孔同时或在电穿孔之后递送。
在一些实施例中,TM局部地注入到组织中。
在一些实施例中,所述方法在活体内。
在一些实施例中,TM是核酸。
在一些实施例中,细胞是肿瘤细胞。
在一些实施例中,细胞是黑素瘤或基底细胞癌细胞。
在一些实施例中,电场范围从近似10V/cm到约2000V/cm。
在一些实施例中,所施加电脉冲的数目范围是从1到100。
在一些实施例中,每一电脉冲的持续时间范围是从约10μs到约100ms的持续时间。
在一些实施例中,至少一个电脉冲是选自由以下各者组成的群组:方波脉冲、指数波脉冲、单极振动波形式,以及双极振动波形式。
在一些实施例中,每一电脉冲包括方波脉冲。
根据一些实施例,一种将试剂电穿孔到组织的细胞中的方法包括:a)将治疗剂引入到需要治疗的患者的组织中,b)执行组织阻抗感测以确定合适的EP协议,c)使用放置成与组织接触的电极设备以递送建立电场的电压脉冲,所述电场足以借助于电穿孔将治疗剂引入到组织的细胞中,其中所述电极设备包括i)支撑部件,其上安置有两个或更多个对置对的针电极,所述针电极相对于彼此布置以形成电极阵列,以及ii)电力供应器,其与安置于支撑部件中的针电极对电连通,其中所述电力供应器将电压脉冲提供到所述对置对的针电极中的至少两个以实现电穿孔。
在一些实施例中,一种用于将治疗部分递送到组织的治疗区中的细胞的装置包括:a)中心探头,其界定至少中心管腔且从近端延伸到远端,中心探头的至少一部分具有螺旋几何形状以产生用于治疗部分向组织的递送的通道,中心探头的所述部分具有沿着螺旋几何形状定位的至少一个喷射端口。中心探头的近端是开放的且流体地连接第一中心管腔与注入器的管腔,治疗剂通过所述注入器递送到中心探头。中心探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。用于递送的装置进一步包括:b)施加器,其至少部分地容纳中心探头,所述施加器具有远端,中心探头的所述部分被配置成通过所述远端延伸到施加器的外部以接触组织及缩回到施加器中。
在一些实施例中,所述装置进一步包括定位于中心探头的所述部分上的至少一个电极对。
在一些实施例中,中心探头的远端是闭合的。
在一些实施例中,中心探头的第一管腔的直径、中心探头的外径、螺旋直径和间距中的至少一个是可调整的以改变所递送治疗部分的分布和体积。
在一些实施例中,致动中心探头以前进朝向且通过中心探头的远端且通过组织。
在一些实施例中,所述装置进一步包括:a)电连接器,其将中心探头电连接到电力源,以及b)手柄,其容纳电连接器且耦合到施加器。
在一些实施例中,中心探头的近端由不导电材料形成或涂覆有不导电材料以防止或减少所述部分处的电场的产生。
在一些实施例中,所述装置进一步包括电穿孔系统,所述电穿孔系统包括被配置成包围所述区而定位的至少两个相反地带电的电穿孔电极,所述电极适于从近端延伸到远端,远端的顶端具有被配置成刺穿组织的针形状。所述电极适于耦合到电极电力供应器,从电力供应器接收至少一个电波形,且将足以用于电穿孔的脉冲电场供应到所述区。
在一些实施例中,电极至少部分地容纳于施加器中,定位在中心探头周围且被配置成从施加器展开以包围所述区。
在一些实施例中,手柄包含电力供应器接口,用于从电力源供应电力以致动中心探头的延伸和缩回,且致动电穿孔电极的延伸和缩回。
在一些实施例中,所述装置进一步包括被配置成感测细胞膜的电容的传感器系统。所述传感器系统包括:a)由低电压电力供应器供电的一对电容或EIS感测电极,b)电压传感器,其被配置成感测跨越细胞膜的电压或电压降,c)电流传感器,其被配置成感测跨越细胞膜的电流,以及d)电子信号处理装置,其被配置成处理跨越细胞膜的电压降和电流且确定细胞膜的电容。
在一些实施例中,中心探头是连接到电极电力供应器的电极探头,所述电极电力供应器被配置成在中心探头与电穿孔电极之间产生电场以促进电穿孔。
在一些实施例中,所述装置进一步包括至少第二探头,其具有界定至少第二管腔且从所述另一探头的近端延伸到远端,所述另一探头的至少一部分具有被配置成产生用于治疗部分向组织的递送的至少第二通道的螺旋几何形状。所述另一探头的近端是开放的且流体地连接第二管腔与注入器的管腔,治疗剂通过所述注入器递送到所述另一探头。所述另一探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。所述另一探头容纳于施加器中,且所述另一探头的所述部分被配置成延伸到施加器的外部以接触组织及缩回到施加器中。
根据一些实施例,一种用于将治疗部分递送到组织的治疗区中的细胞的装置包括:a)中心探头,其界定至少第一管腔且从近端延伸到远端,中心探头的至少一部分具有被配置成增强中心探头在组织中的锚定且产生用于治疗部分向组织的递送的通道的螺旋几何形状。中心探头的所述部分由导电材料形成或涂覆有导电材料。中心探头的近端是开放的且流体地连接第一管腔与注入器的管腔,治疗剂通过所述注入器递送到中心探头。中心探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。所述装置进一步包含:b)施加器,其容纳中心探头,所述施加器具有远端,中心探头的所述部分被配置成通过所述远端延伸到施加器的外部以接触组织及缩回到施加器中,以及c)至少一个远侧电极,其定位于施加器的远端且被配置成以中心探头的所述部分产生电场。
在一些实施例中,所述至少一个远侧电极是基于环配置、笔直线配置、螺旋线配置或可收缩环圈配置而配置。
在一些实施例中,所述装置进一步包括定位于中心探头的所述部分上的至少一个喷射端口。
在一些实施例中,所述远侧电极被配置成定位在组织外部。
在一些实施例中,所述远侧电极被配置成定位于组织的表面下方。
在一些实施例中,所述远侧电极由螺旋线配置形成,定位于组织的表面下方,且中心探头和远侧电极的螺旋在相反方向上卷绕。
在一些实施例中,所述装置进一步包括电穿孔系统,所述电穿孔系统包括被配置成包围所述区而定位的至少两个相反地带电的电穿孔电极,所述电极适于从近端延伸到远端,远端的顶端具有被配置成刺穿组织的针形状。所述电极适于耦合到电极电力供应器,从电力供应器接收至少一个电波形,且将足以用于电穿孔的脉冲电场供应到所述区。
在一些实施例中,电极容纳于施加器中,定位于中心探头周围且被配置成从施加器展开以包围所述区。
在一些实施例中,所述装置进一步包括被配置成感测细胞膜的电容的传感器系统。所述传感器系统包括:a)由低电压电力供应器供电的一对电容感测或EIS电极,b)电压传感器,其被配置成感测跨越细胞膜的电压或电压降,c)电流传感器,其被配置成感测跨越细胞膜的电流,以及d)电子信号处理装置,其被配置成处理跨越细胞膜的电压降和电流且确定细胞膜的电容。
在一些实施例中,手柄包含电力供应器接口,用于从电力源供应电力以致动中心探头的延伸和缩回,且致动电穿孔电极的延伸和缩回。
在一些实施例中,所述装置进一步包括被配置成感测细胞膜的电容的传感器系统。所述传感器系统包括:a)由低电压电力供应器供电的一对电容或EIS感测电极,b)电压传感器,其被配置成感测跨越细胞膜的电压或电压降,c)电流传感器,其被配置成感测跨越细胞膜的电流,以及d)电子信号处理装置,其被配置成处理跨越细胞膜的电压降和电流且确定细胞膜的电容。
根据一些实施例,一种用于将治疗部分递送到组织的治疗区中的细胞的装置包括:a)中心探头,其具有内表面,所述内表面界定至少第一中心管腔且从中心探头的近端延伸到远端,中心探头的至少一部分具有被配置成增强中心探头在组织中的锚定且产生用于治疗部分向组织的递送的通道的螺旋几何形状,其中中心探头的所述部分由导电材料形成或涂覆有导电材料。中心探头的近端是开放的且流体地连接中心管腔与注入器的管腔,治疗剂通过所述注入器递送到中心探头。中心探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。所述装置进一步包括:b)施加器,其容纳中心探头,所述施加器具有远端,中心探头的所述部分被配置成通过所述远端延伸到施加器的外部以接触组织及缩回到施加器中,c)至少一个笔直探头,其具有开放近端和远端以用于治疗部分向组织的递送,以及与中心探头的直径的中心轴线同轴对准的垂直轴线,且被配置成以中心探头的所述部分产生电场。
在一些实施例中,所述装置进一步包括定位于中心探头的所述部分上的至少一个喷射端口。
在一些实施例中,螺旋探头被配置成传送从安装到施加器的远端的声学喇叭接收的声能。
在一些实施例中,所述装置进一步包括被配置成感测细胞膜的电容的传感器系统,所述传感器系统包括:
根据一些实施例,一种用于将治疗部分递送到组织的治疗区的方法包括a)提供用于将治疗部分递送到组织的治疗区的装置。所述装置包括i)中心探头和ii)和施加器。中心探头具有至少第一中心管腔且从近端延伸到远端,中心探头的至少一部分具有被配置成增强中心探头在组织中的锚定且产生用于治疗部分向组织的递送的通道的螺旋几何形状。中心探头的部分具有沿着螺旋几何形状定位的多个喷射端口。中心探头的近端是开放的且流体地连接中心管腔与注入器的管腔,治疗剂通过所述注入器递送到中心探头。中心探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。施加器容纳中心探头且具有远端,中心探头的所述部分被配置成通过所述远端延伸到施加器的外部以接触组织及缩回到施加器中。所述方法进一步包括:b)将中心探头接触到组织的治疗区中的患病细胞,c)在轴向方向上从施加器致动且延伸中心探头,d)以中心探头的至少一部分刺穿组织且产生开口,中心探头的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道,以及e)将治疗部分注入到第一中心管腔中且通过所述至少一个喷射端口和中心探头的开放远端将治疗部分递送到组织。
在一些实施例中,所述方法进一步包括f)提供电穿孔系统,其包括被配置成包围所述区而定位的至少两个相反地带电的电穿孔电极。电穿孔电极适于从近端延伸到远端,远端的顶端具有被配置成刺穿组织的针形状,且电穿孔电极适于耦合到电力源。所述方法进一步包括g)使组织的区与电穿孔电极接触,h)从电力源将电脉冲递送到电极,以及i)从电穿孔电极将足以用于电穿孔的脉冲电场施加到所述区。
在一些实施例中,所述方法进一步包括提供感测细胞膜的电容的传感器系统。电容感测包括:a)使组织与由低电压电力供应器供电的至少一对电容感测电极接触,b)通过低电压电力供应器将低功率询问信号传送到至少一对电容感测电极以在所述区中产生低强度电场激发,c)由电压传感器感测跨越细胞膜的电压或电压降,d)由电流传感器感测跨越细胞膜的电流;以及e)由电子信号处理装置基于跨越细胞膜的电压降和电流而确定细胞膜的电容。
根据一些实施例,一种用于将治疗部分递送到组织的治疗区的方法包括a)提供用于将治疗部分递送到组织的治疗区的装置。所述装置包括i)中心探头,其连接到电力源且具有内表面,所述内表面界定至少第一中心管腔且从中心探头的近端延伸到远端。中心探头的至少一部分具有被配置成增强中心探头在组织中的锚定且产生用于治疗部分向组织的递送的通道的螺旋几何形状。中心探头的所述部分由导电材料形成或涂覆有导电材料。中心探头的近端是开放的且流体地连接中心管腔与注入器的管腔,治疗剂通过所述注入器递送到中心探头。中心探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。所述装置进一步包括:ii)施加器,其容纳中心探头,所述施加器具有远端,中心探头的所述部分被配置成通过所述远端延伸到施加器的外部以接触组织及缩回到施加器中,以及ⅲ)至少一个远侧电极,其定位于施加器的远端,连接到电力源且被配置成以中心探头的所述部分产生电场。所述方法进一步包括b)将中心探头和远侧电极接触到组织的治疗区中的患病细胞,c)在轴向方向上从施加器致动且延伸中心探头和远侧电极,d)以远侧电极且以中心探头的至少一部分刺穿组织且产生开口,中心探头的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道,e)将治疗部分注入到第一中心管腔中且通过中心探头的至少一个喷射端口和开放远端将治疗部分递送到组织,f)从电力源将电脉冲递送到远侧电极和中心探头,g)从远侧电极和中心探头将足以用于电穿孔的脉冲电场施加于所述区,以及h)从组织缩回远侧电极和中心探头。
根据一些实施例,一种用于将治疗部分递送到组织的靶细胞的区的装置包括:a)中心探头,其界定至少第一管腔且具有近端和闭合的远端,远端的顶端具有被配置成刺穿组织的针形状且具有定位于距远端预定位置处的至少一个退出端口,退出端口将第一管腔流体地连接到中心探头的外部,以及b)至少一个取道线,其定位于第一管腔中且能够在中心探头内滑动,取道线具有定位于中心探头中的近端以及被配置成延伸到中心探头的外部及通过退出端口缩回到第一管腔中的远端,取道线的远端的顶端具有被配置成刺穿通过组织且界定开口的形状,取道线的至少一部分通过所述开口进入组织以产生流体通道,治疗部分通过所述流体通道递送到组织。治疗部分通过退出端口从第一管腔递送到通道中。所述装置进一步包括:c)斜坡,其与第一管腔一体地形成或耦合,所述斜坡被配置成接触且导引取道线以使中心探头退出到中心探头的外部,d)电连接器,其将中心探头和取道线电连接到电力源,e)小孔隙连接器,其将中心探头连接到注射器以用于治疗部分的递送,以及f)手柄,其至少部分地容纳电连接器且耦合到中心探头和取道线的近端以促进中心探头和取道线的远端的穿透深度。
在一些实施例中,所述装置进一步包括电穿孔系统,所述电穿孔系统包括被配置成包围靶细胞的所述区而定位的至少两个相反地带电的电极,所述电极适于从近端延伸到远端,所述远端的顶端具有被配置成刺穿所述组织的针形状,其中所述电极适于耦合到所述电力源,从电力供应器接收电波形,且将足以用于电穿孔的脉冲电场供应到靶细胞的所述区。
在一些实施例中,电极包围中心探头。
在一些实施例中,所述装置包括多个退出端口且多个取道线被配置成同时延伸到中心探头的外部且被配置成通过退出端口缩回到中心探头的中心管腔中。
在一些实施例中,手柄包含电力供应器接口,用于从电力源供应电力以致动取道线的延伸和缩回,且致动电极的延伸和缩回。
在一些实施例中,所述装置进一步包括导管轴杆,其包围中心探头的外表面以在插入到具有组织的身体中期间支撑且保护中心探头。
在一些实施例中,取道线包含位于取道线的远端的顶端处的切割刀片。
在一些实施例中,在所述远端处的切割刀片被配置成进入组织且被配置成围绕切割刀片的中心轴线旋转以形成流体通道。
在一些实施例中,斜坡接触取道线的角度是可调整的以改变取道线退出中心管腔的轨迹角度。
根据一些实施例,一种用于将治疗部分递送到组织的靶细胞的区的装置包括:a)中心探头,其界定至少第一管腔且具有近端和开放远端,远端的顶端具有被配置成刺穿组织的针形状,且所述开放远端将第一管腔流体地连接到中心探头的外部,b)至少一个取道线,其定位于第一管腔中,且能够在中心探头内滑动,且具有定位于中心探头中的近端以及被配置成延伸到中心探头的外部及通过中心探头的远端缩回到中心管腔中的远端,所述取道线包括被配置成以曲线热定形的超弹性材料,其中所述取道线适于当定位于中心管腔中时弹性地拉直,且适于当延伸到中心探头的外部时以曲线弯曲以形成延伸到细胞的通道,取道线具有长形的圆柱形形状且其远端进一步被配置成刺穿通过组织且界定开口,取道线的至少一部分通过所述开口进入组织以产生流体通道,治疗部分通过所述流体通道递送到组织。治疗部分通过退出端口从第一管腔递送到通道中。所述装置进一步包括:b)斜坡,其与中心探头的内表面一体地形成或耦合,所述斜坡被配置成接触且导引取道线以使中心探头退出到中心探头的外部,c)电连接器,其将中心探头和取道线电连接到电力源,d)小孔隙连接器,其将中心探头连接到注射器以用于治疗部分的递送,以及e)手柄,其至少部分地容纳电连接器且耦合到中心探头和取道线的近端以促进中心探头和取道线的远端的穿透深度。
在一些实施例中,所述超弹性材料是选自包括NiTi、Cu-Al-Ni、Fe-Mn-Si、NiTi-Zr、Cu-Zr、Ni-Al和基于Cu的合金的群组的材料中的任一种或组合。
在一些实施例中,所述装置包括多个退出端口且多个取道线被配置成同时延伸到中心探头的外部且被配置成通过退出端口缩回到中心探头的中心管腔中。
在一些实施例中,所述装置进一步包括被配置成包围用于细胞治疗的靶细胞的区而定位的至少两个相反地带电的电极,所述电极适于从近端延伸到远端,所述远端的顶端具有被配置成刺穿所述组织的针形状,其中所述电极适于耦合到电力源,从电力供应器接收电波形,且将足以用于电穿孔的脉冲电场供应到目标组织区。
在一些实施例中,手柄包含电力供应器接口,用于从电力源供应电力以致动取道线的延伸和缩回,且致动电极的延伸和缩回。
在一些实施例中,所述装置进一步包括导管轴杆,其包围中心探头的外表面以在插入到具有组织的身体中期间支撑且保护中心探头。
根据一些实施例,一种用于将治疗部分递送到组织的靶细胞的区的装置包括:a)注入探头,其界定至少第一管腔,注入探头从其近端延伸到远端且具有长形的圆柱形形状,远端具有针形状且是开放的以用于将治疗部分递送到所述区,b)中心探头,其耦合到注入探头且具有界定至少第二管腔的内表面,中心探头具有近端和闭合的远端,远端的顶端具有被配置成刺穿组织的针形状且具有定位于中心探头的远端与近端之间预定距离处的至少一个退出端口,退出端口将第二管腔流体地连接到中心探头的外部,c)至少一个取道线,其定位于第二管腔中且能够在中心探头内滑动,取道线具有定位于中心探头中的近端以及被配置成延伸到中心探头的外部及通过退出端口缩回到第二管腔中的远端,取道线的远端的顶端具有被配置成刺穿通过组织且界定开口的形状,取道线的至少一部分通过所述开口进入组织以产生流体通道,治疗部分通过所述流体通道由注入探头注入到所述区中,d)斜坡,其与中心探头的内表面一体地形成或耦合,界定第二管腔的内表面,且所述斜坡被配置成接触且导引取道线以使中心探头退出到中心探头的外部,e)电连接器,其将中心探头和取道线电连接到电力源,以及f)手柄,其至少部分地容纳电连接器且耦合到中心探头的近端和注入探头的近端和取道线以促进注入探头和中心探头的远端的穿透深度。
在一些实施例中,所述装置包括多个退出端口且多个取道线被配置成同时延伸到中心探头的外部且被配置成通过退出端口缩回到中心探头的中心管腔中。
在一些实施例中,所述装置进一步包括被配置成包围用于细胞治疗的目标组织区而定位的至少两个相反地带电的电极,所述电极适于从近端延伸到远端,所述远端的顶端具有被配置成刺穿所述组织的针形状,其中所述电极适于耦合到电力源,从电力供应器接收电波形,且将足以用于电穿孔的脉冲电场供应到目标组织区。
在一些实施例中,斜坡接触取道线的角度是可调整的以改变取道线退出第二管腔的对应轨迹角度。
根据一些实施例,一种用于将治疗部分递送到组织中的靶细胞的区的方法包括a)提供用于将治疗部分递送到组织的靶细胞的区的装置。所述装置包括:i)中心探头,其具有内表面,所述内表面界定至少第一中心管腔且具有近端和闭合的远端,远端的顶端具有被配置成刺穿组织的针形状且具有定位于距远端预定位置处的至少一个退出端口,退出端口将中心管腔流体地连接到中心探头的外部,ii)至少一个取道线,其定位于中心管腔中且能够在中心探头内滑动,取道线具有定位于中心探头中的近端以及被配置成延伸到中心探头的外部及通过退出端口缩回到中心管腔中的远端。取道线的远端的顶端具有被配置成刺穿通过组织且界定开口的形状,取道线的至少一部分通过所述开口进入组织以产生流体通道,治疗部分通过所述流体通道递送到组织。治疗部分通过退出端口从第一中心管腔递送到通道中。所述装置进一步包括:ⅲ)斜坡,其与中心探头的内表面一体地形成或耦合,所述内表面界定中心管腔,且所述斜坡被配置成接触且导引取道线以使中心探头退出到中心探头的外部,iv)电连接器,其将中心探头和取道线电连接到电力源,v)小孔隙连接器,其将中心探头连接到注射器以用于治疗部分的递送,vi)手柄,其容纳电连接器且耦合到中心探头和取道线的近端以促进中心探头和取道线的远端的穿透深度。所述方法进一步包括:b)将中心探头插入到靶细胞的区中的患病细胞中,c)在中心探头的轴向方向上从中心管腔致动且延伸取道线,取道线的远端的顶端具有刺穿通过组织且形成开口的针形状,取道线的至少一部分通过所述开口进入组织且产生流体通道,治疗部分通过所述流体通道递送,d)致动与中心探头的内表面一体地形成或耦合的斜坡,所述斜坡接触取道线且导引取道线的轨迹通过退出端口朝向中心探头的远端,退出端口流体地连接中心管腔与中心探头的外部,e)以取道线刺穿组织且产生开口,取道线的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道,f)将取道线缩回到中心管腔中,以及g)将治疗部分注入到中心管腔中且通过流体通道将治疗部分递送到组织。
在一些实施例中,所述方法进一步包括:a)旋转装置以用于递送至少一次且以取道线刺穿组织以产生用于治疗部分向组织的递送的额外流体通道,然后通过流体通道注入治疗部分且将治疗部分递送到组织。
在一些实施例中,所述方法进一步包括:a)提供电穿孔系统,其包括被配置成包围靶细胞的区而定位的至少两个相反地带电的电穿孔电极,其中电穿孔电极适于从近端延伸到远端,远端的顶端具有被配置成刺穿组织的针形状,且电穿孔电极适于耦合到电力源,b)使靶细胞的区与电穿孔电极接触,c)从电力源将电脉冲递送到电极,以及d)从电穿孔电极将足以用于电穿孔的脉冲电场施加到靶细胞的区。
根据一些实施例,一种用于将治疗部分递送到组织中的靶细胞的区的方法包括a)提供用于将治疗部分递送到组织的靶细胞的区的装置。所述装置包括:a)注入探头,其界定至少第一管腔,注入探头从其近端延伸到远端且具有长形的圆柱形形状,远端具有针形状且是开放的以用于将治疗部分递送到所述区,b)中心探头,其耦合到注入探头且具有界定至少第二管腔的内表面,中心探头具有近端和闭合的远端,远端的顶端具有被配置成刺穿组织的针形状且具有定位于中心探头的远端与近端之间的预定距离处的至少一个退出端口,退出端口将第二管腔流体地连接到中心探头的外部,c)至少一个取道线,其定位于第二管腔中且能够在中心探头内滑动,取道线具有定位于中心探头中的近端以及被配置成延伸到中心探头的外部及通过退出端口缩回到第二管腔中的远端,取道线的远端的顶端具有被配置成刺穿通过组织且界定开口的形状,取道线的至少一部分通过所述开口进入组织以产生流体通道,治疗部分通过所述流体通道由注入探头注入到区中,d)斜坡,其与中心探头的内表面一体地形成或耦合,界定第二管腔的内表面,且所述斜坡被配置成接触且导引取道线以使中心探头退出到中心探头的外部,e)电连接器,其将中心探头和取道线电连接到电力源,以及f)手柄,其至少部分地容纳电连接器且耦合到中心探头的近端和注入探头的近端和取道线以促进注入探头和中心探头的远端的穿透深度。所述方法进一步包括:b)将中心探头插入到靶细胞的区中的患病细胞中,c)在中心探头的轴向方向上从中心管腔致动且延伸取道线,取道线的远端的顶端具有刺穿通过组织且形成开口的针形状,取道线的至少一部分通过所述开口进入组织且产生流体通道,治疗部分通过所述流体通道递送,d)致动与中心探头的内表面一体地形成或耦合的斜坡,所述斜坡接触取道线且导引取道线的轨迹通过退出端口朝向中心探头的远端,退出端口流体地连接中心管腔与中心探头的外部,e)以取道线刺穿组织且产生开口,取道线的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道,f)将取道线缩回到中心管腔中,g)将治疗部分注入到中心管腔中且通过流体通道将治疗部分递送到组织。
所述方法进一步包括:a)旋转装置以用于递送至少一次且以取道线刺穿组织以产生用于治疗部分向组织的递送的额外流体通道,然后通过流体通道注入治疗部分且将治疗部分递送到组织。
所述方法进一步包括:a)提供电穿孔系统,其包括被配置成包围靶细胞的区而定位的至少两个相反地带电的电穿孔电极,其中电穿孔电极适于从近端延伸到远端。远端的顶端具有被配置成刺穿组织的针形状。电穿孔电极适于耦合到电力源。所述方法进一步包括b)使靶细胞的区与电穿孔电极接触,c)从电力源将电脉冲递送到电极,以及d)从电穿孔电极将足以用于电穿孔的脉冲电场施加到靶细胞的区。
根据一些实施例,一种用于在主体中的组织中的电场区的电穿孔位置中进行细胞的电穿孔的系统包括a)电穿孔棒外壳。所述外壳包括i)第一对电穿孔电极,以及ii)容纳于棒外壳中的至少第二对电穿孔电极,所述第一和第二对电穿孔电极被配置成相反地带电,以预定角度彼此偏移,且被配置成界定电场区的外周边。所述系统进一步包括:b)电力供应器,其被配置成将处于多个波形的电信号供应到第一和第二对电穿孔电极,以及c)电连接器,其将第一和第二对电穿孔电极中的每一个电连接到电力供应器。
在一些实施例中,所述系统进一步包括被配置成将治疗部分递送到电穿孔位置的棒递送系统,所述递送系统包括界定第一管腔的至少一个注入探头,所述注入探头从其近端延伸到远端且具有长形的圆柱形形状,其中注入探头的远端具有针形状且是开放的以用于将治疗部分递送到电穿孔位置。
在一些实施例中,所述系统包括两对电穿孔电极且所述角度是约90度。
在一些实施例中,第一对电穿孔电极被配置成从电力供应器接收由第一波形表示的第一电信号,且第二对电穿孔电极被配置成从电力供应器接收由第二波形表示的第二电信号。
在一些实施例中,第一和第二对电穿孔电极是被配置成穿透皮肤且接触电场区中的细胞的针。
在一些实施例中,第一和第二对电穿孔电极是非穿透接触件。
根据一些实施例,一种用于在主体中的组织中的电场区的电穿孔位置中对细胞进行电穿孔的方法包括:a)提供电穿孔系统,其包括i)电穿孔棒外壳,所述外壳包括1)第一对电穿孔电极,和2)容纳于棒外壳中的至少第二对电穿孔电极,所述第一和第二对电穿孔电极相反地带电,以预定角度彼此偏移,且被配置成界定电场区的外周边,ii)电力供应器,其被配置成将处于多个波形的电信号供应到所述第一和至少第二对电穿孔电极,以及ⅲ)电连接器,其将所述对电穿孔电极电连接到电力供应器。所述方法进一步包括:b)将电穿孔棒外壳接触到组织,以使得电场区在所述对电穿孔电极之间,c)从电力供应器将处于第一波形的第一信号施加到第一对电穿孔电极且从电力供应器将处于第二波形的第二信号施加到第二对电穿孔电极,其中第一波形具有与第二波形的预定相位差,d)从第一对电穿孔电极将脉冲电场施加到电场区,所述脉冲电场是基于第一信号,其中所述脉冲电场和第一对电穿孔电极的每一后续脉冲电场具有低于用于电穿孔的最小阈值的电压和持续时间,e)从第二对电穿孔电极将另一脉冲电场施加到电场区,所述另一脉冲电场是基于第二信号,其中所述另一脉冲电场和第二对电穿孔电极的每一后续脉冲电场具有低于用于电穿孔的最小阈值的电压和持续时间。第一和第二对电穿孔电极的脉冲电场的路径在电穿孔位置处交叉,且第一对电穿孔电极的每一脉冲电场对电穿孔位置的施加与第二对电穿孔电极的每一脉冲电场对电穿孔位置的施加交替,以合计为将施加于电穿孔位置中的细胞的具有足以用于电穿孔的电压和持续时间的连续脉冲电场。第一对电穿孔电极的每一脉冲电场对邻近于第一对电穿孔电极且在电穿孔位置之外的组织的施加与静置周期交替,以使得邻近于第一对电穿孔电极且在电穿孔位置之外的组织接收第一对电穿孔电极的交替的接通和断开的脉冲电场,其具有低于用于电穿孔的最小阈值的电压和持续时间。第二对电穿孔电极的每一脉冲电场对邻近于第二对电穿孔电极且在电穿孔位置之外的组织的施加与静置周期交替,以使得邻近于第二对电穿孔电极且在电穿孔位置之外的组织接收第二对电穿孔电极的交替的接通和断开的脉冲电场,其具有低于用于电穿孔的最小阈值的电压和持续时间。
在一些实施例中,所述方法进一步包括由棒递送系统将治疗部分递送到电穿孔位置,所述递送系统包括界定第一管腔的至少一个注入探头,注入探头从其近端延伸到远端且具有长形的圆柱形形状。注入探头的远端具有针形状且是开放的以用于将治疗部分递送到电穿孔位置。
在一些实施例中,所述方法进一步包括提供感测细胞膜的电容的传感器系统。电容感测包括:a)使组织与由低电压电力供应器供电的至少一对电容感测电极接触,b)通过低电压电力供应器将低功率询问信号传送到至少一对电容感测电极以在所述电穿孔位置中产生低强度电场激发,c)由电压传感器感测跨越细胞膜的电压或电压降,d)由电流传感器感测跨越细胞膜的电流;以及e)由电子信号处理装置基于跨越细胞膜的电压降和电流而确定细胞膜的电容。
在一些实施例中,细胞膜的电容是在施加脉冲电场之前以及在脉冲电场之间确定。
在一些实施例中,所述方法进一步包括在脉冲电场之间的细胞膜的电容的确定后,基于与薄膜电容相关联的时间常数而调整脉冲电场的脉冲宽度。
在一些实施例中,第一和第二波形具有相同波长。
在一些实施例中,电力供应器的电压从约50V到1000V可变。
在一些实施例中,第一和第二电极对的每一脉冲电场具有从1μs到1ms可变的脉冲宽度。
在一些实施例中,每对电穿孔电极在每一对应波形的波长的周期的1/(电极对的数目)的时间周期中发出每一脉冲电场。
在一些实施例中,所述细胞是从由以下各项组成的群组中选出:胰腺、喉、咽、唇、咽喉、肺、肾、肌肉、乳房、结肠、子宫、前列腺、胸腺、睾丸、皮肤和卵巢细胞。
在一些实施例中,细胞是前列腺肿瘤细胞。
在一些实施例中,细胞是哺乳动物细胞。
在一些实施例中,细胞是人类细胞。
在一些实施例中,第一和第二对电穿孔电极的脉冲电场范围是从约200到500mV。
在一些实施例中,第一和第二对电穿孔电极的脉冲电场是作为从约1到约5个电脉冲而施加。
在一些实施例中,第一和第二脉冲电场是从由以下各项组成的群组中选择:方波脉冲、指数波脉冲、有限持续时间的单极振动波形式,以及有限持续时间的双极振动波形式。
在一些实施例中,第一和第二脉冲电场包括方波脉冲。
在一些实施例中,治疗部分是选自由以下各项组成的群组:核酸、多肽和化疗剂。
在一些实施例中,所述化疗剂选自由以下各项组成的群组:博莱霉素、顺铂和丝裂霉素C。
在一些实施例中,电穿孔棒外壳由不导电器具组成。
在一些实施例中,所述不导电器具由塑料制成。
在一些实施例中,每对电穿孔电极决定对应电场的场向量和电流路径。
在一些实施例中,第一和第二波形具有预定相位差。
根据一些实施例,一种用于主体的组织中的细胞的电穿孔(EP)的系统包括:a)套管针和b)EP装置。套管针包括:i)插管,其从近端延伸到开放远端且界定被配置成接收闭孔器的第一管腔,以及ii)闭孔器,其从近端延伸到远端,所述近端包含安装于其上的手柄,所述远端包含被配置成刺穿通过皮肤、穿透进入身体腔且形成路径的刀片,插管可以通过所述路径至少部分地插入到所述腔中。闭孔器被配置成能够在第一管腔内滑动,闭孔器的远端被配置成通过插管的开放远端延伸到第一管腔的外部。EP装置能够在插管内可滑动地安装及缩回以接达癌细胞,且包括:i)锚定件,其从近端延伸到远端,ii)至少两个相反地带电的电极,其以可缩回方式安置于锚定件的远端且被配置成包围靶细胞的区而定位。所述电极适于耦合到产生器,从所述产生器接收至少一个电波形,且供应激励信号和EP脉冲中的至少一个。Ep装置进一步包括:ⅲ)中心探头,其以可缩回方式安置于锚定件的远端且具有内表面,所述内表面界定至少中心管腔且从锚定件的远端延伸,中心探头的至少一部分具有被配置成增强中心探头在组织中的锚定且产生用于治疗部分向组织的递送的通道的螺旋几何形状。中心探头的远端是开放的以界定用于治疗部分向组织中的递送的开口且具有被配置成刺穿组织的形状。
在一些实施例中,闭孔器的刀片被配置成通过插管的远端处的开口延伸到插管的外部。
在一些实施例中,EP装置电极适于从近端延伸到远端,远端的顶端具有被配置成刺穿组织的针形状。所述电极适于耦合到电力供应器,从所述电力供应器接收电波形,且将激励信号和EP脉冲中的至少一个供应到靶细胞的区。
在一些实施例中,一种用于使用电穿孔(EP)系统在细胞或组织的EP期间控制EP脉冲参数的自适应控制方法包括:a)提供用于使用本文所描述的电穿孔(EP)装置中的任一种在细胞和组织的EP期间提供自适应控制以优化EP脉冲参数的系统中的任一种,b)通过初始化模块初始化用于在细胞或组织中执行EP的EP脉冲参数,经初始化EP脉冲参数至少部分地基于至少一个经训练的模型,c)通过产生器将电压和电流激励信号施加到细胞和组织,且通过测量装置测量对应于所施加激励信号的跨越细胞和组织的电压和电流,d)通过控制器从电流和电压测量获得数据,且处理所述数据以分离合意的数据与不合意的数据,e)通过控制器从合意的数据提取相关特征,f)通过控制器将合意的数据的相关特征的至少一部分应用于至少一个经训练的诊断模型,g)通过控制器基于对经训练的模型的所施加相关特征的结果而估计EP脉冲参数,其中经初始化EP脉冲参数是基于所述至少一个经训练的模型和相关特征,从而优化EP脉冲参数,h)通过产生器基于第一脉冲参数而施加第一EP脉冲。
在一些实施例中,所述方法进一步包括通过控制器使用基于先前EP脉冲的经训练的模型以及所施加EP脉冲之间的相关特征中的至少一个的改变而在第一EP脉冲已施加之后预测后续EP脉冲参数。
在一些实施例中,所述方法进一步包括通过控制器至少部分地基于所述施加而产生诊断响应,其中所述诊断响应包含a)组织检测,b)肿瘤类型检测,c)针放置检测,d)共定位检测,以及d)细胞渗透检测。
在一些实施例中,所述方法进一步包括:a)通过产生器基于后续EP脉冲参数施加后续EP脉冲,以及b)重复所述施加电压和电流激励信号,重复所述测量细胞或组织,重复所述获得数据且分离合意的数据与不合意的数据,重复所述提取相关特征;以及重复所述施加,直到i)达到EP脉冲序列或EP脉冲的循环的数目的预定限制,或ii)诊断响应提示终止自适应控制方法的诊断决策。
附图说明
图1是描绘根据本发明的用以施加用于EIS的电脉冲的EP装置的一些组件的简单示意图。
图2描绘4个电极(两对或组)的EP电极阵列以及4个电极(两对或组)的EM电极阵列,各自经由连接器和电路附接到适当电力源。再次,每一阵列是4电极阵列,但也可使用更多电极。另外,在使用两个不同电极阵列的这些实施例中,电极的数目无需在每一情况下相等;可使用4个电极的EP阵列和6个电极的EM阵列等。
图3描绘用于使用4个EP和4个EME电极的EIS确定的示意图。图3描绘插入到包含血管和不规则形状肿瘤的假设组织中的装置的电极的俯视图(应注意EM也能够适用于非穿透电极装置中)。为了非限制性示例性目的,示出了两组电穿孔电极(EPE)和两组电化学阻抗谱电极(EME),但其它数目和几何形状是预期的。这些电极组在图3中示出为基本上等距的,但如本领域的技术人员将了解,能够使用符合本发明的任何数目的组。
图4A和4B示出了利用具有绝缘材料的插入EP电极用于产生不同电场区的两个实施例(为简单起见,仅示出单对电极)。图4A示出了单对电极,具有绝缘材料和裸电极的交替区域;换句话说,电极具有沿着电极的长度交替均匀隔开的导体,其中每一导体通过绝缘材料分隔开。图4B示出了相似的组,但在此情况下每一导体不均匀地隔开,使得能够产生不对称电场。
图5是用于对EPE对A和B产生脉冲电场的EP产生器的硬件架构的图示。所述EP装置可基于数字信号处理器(DSP)、微处理器、现场可编程门阵列(FPGA)、专用集成电路、中央处理单元(CPU),或者接受模拟/数字数据作为输入、根据存储于存储器中的指令处理所述输入且提供输出作为结果的任何多用途可编程装置。电极对A和B的切换序列例程被编程且存储于存储器中。数据总线可用以显示和修改脉冲参数。高电压隔离将允许硬件在插入PC中时与高电压电力供应器一起使用。低电压电力供应器可用以对所有辅助电路供电,例如,用于电容和阻抗测量的EME、模/数转换器、数/模转换器、中继器、DSP、光学开关等。
图6A、6B和6C描绘EPE和EME的三个不同配置。在图6C中,使用单组电极,其经由切换机构连接到相应EPE和EME电力源。切换机构当跨越其控制端子施加小激励电压时接通和断开。这些开关使用包含电磁、机电、压电和光电机构的耦合机构。在图6A中,使用两组电极EPE和EME,且各自被配置且连接到适当电力源。图6B是相似,不同的是EPE和EME以预定角度彼此偏移,这取决于将使用的每一电极类型的数目。在此实施例中,能够以不同方式询问区中的组织。举例来说,恰抵靠着EPE的组织会经历损伤(例如,组织在“杀灭区”中)。在图6B中,测量EME#1与EME#2之间的阻抗(包含电容)能够帮助确定例如EPE#1处的组织损伤,或替代地可以用于某种“电子肿瘤断层摄影术”,如下文相对于EM更完整地描述。
图7A、7B、7C和7D描绘不同的EPE配置,但为简单起见仅描绘单对电极。图7A描绘一组非穿透固体EPE,在表面施加于皮肤的表面。额外组的EPE未图示,但是包含的。图7B描绘穿透到组织中的一组固体EPE;在此实施例中,EPE的顶端是大体上尖的以促进插入到组织中,例如固体针尖。在此实施例中,电场区在组织中“较深”,例如在表面下方。这导致沿着电极之间的长度和径向尺寸的三维电场。一般来说,这些穿透EPE可以从约1到约20mm,取决于待治疗的组织的几何形状和生理情况。在图7C中,穿透固体EPE涂覆有绝缘(不导电)材料,以使得仅电极的远侧部分暴露。在图7A、7B和7C的实施例中,TM递送系统将一般为较浅地插入到EPE之间的EP位置中的针(未图示)。在图7D中,穿透EPE是中空的,具有用于TM递送的管腔以及连接到管腔的尖的开放顶端。在左侧,穿透电极具有沿着轴线的涂覆有绝缘材料的部分。如本领域的技术人员将了解,当电容测量完成时,EPE可以用作电测量电极(EME)或可存在单独集合的EME,如图6中一般描绘。
图8A、8B、8C和8D描绘本发明的EP装置的组件(其全部依赖于圆柱形针,但也可以使用其它几何形状;并且,描绘仅单对EP电极)。图8A和8B描绘具有TM递送(TMD)系统的一组EPE(第二组未图示)。图8A示出了插入到组织中的EPE和TM递送系统,其中TMD中空需要具有开放末端,管腔用于递送TM,且TM正以异形方式递送。图8B示出了装置的下侧,所述装置可以在棒的远端中。替代地,如图8C中所示,TMD系统可以包括标准注射器,其在程序期间由施用的医生手动地插入。在此实施例中,注射器可以具有任选的针止挡件以物理上防止在与电场区的深度相关的深度处的较深穿透。图8D描绘具有多个开口以递送TM的TM递送针。这可以当递送例如质粒和抗体等较大生物分子时有用,因为一般来说较大分子(另外通常带电)在组织中比其它分子扩散更慢。因此在EP位置内具有多个递送基因位点能够用来使区中的较高百分比的细胞吸收TM。图8D描绘三个开口或端口,但可使用任何数目。另外,图8D描绘在针的一“侧”上的开口,但开口可以位于针的外表面的任何部分上,从而形成螺旋或其它形状。
图9是根据本发明的包含具有第一对和第二对电极的棒外壳的EP装置的示意图。
图10是根据本发明的界定电场区和电穿孔位置的第一对和第二对EPE的示意性说明。
图11是根据本发明的一对非穿透EPE的图示。
图12是根据本发明的由多个EPE对生产的偏移角的示意性图示。
图13是根据本发明的对应于第一对EPE的第一波形以及对应于第二对EPE的第二波形的图示。
图14A和图14B是根据本发明的在电穿孔位置中的连续脉冲电场以及在电场区中但在电穿孔位置外部的交替接通和断开脉冲电场的图示。
图15是说明根据本发明的用于在主体的组织中的细胞的电穿孔(EP)期间优化电穿孔(EP)脉冲参数的自适应控制系统的简单示意图。
图16说明根据本发明在主体的组织中的细胞的电穿孔(EIS)期间用于在自适应控制系统中使用的EP系统。
图17A是用于在用于优化电穿孔(EP)脉冲参数的自适应控制系统中使用的具有集成于中心注入元件和中心部分递送探头周围的电极的示例性EP装置的示意性图示,且图17B是EP装置的仰视图。
图18A和图18B是用于在用于优化电穿孔(EP)脉冲参数的自适应控制系统中使用的具有集成于注入元件和部分递送探头周围的电极的示例性EP装置的透视图和仰视图的示意性图示。
图19是根据本发明的定位于EP装置的螺旋部分递送探头上的多个电极的示意图。
图20A是根据本发明的EP装置的多个中心注入探头的图示,其各自包含用于产生通道的螺旋刀片,图20B是具有由多个电极包围的图20A的中心注入探头的EP装置的示意图,且图20C是图20B的仰视图图示。
图21说明根据本发明的具有螺旋中心探头和螺旋电极的EP装置。
图22A、图22B和图22C是根据本发明的具有远侧电极和中心探头的EP装置的示意图。
图23A、图23B和图23C、图23D、图23E和图23F说明根据本发明的多种EP装置。
图24A、图24B和图24C说明根据本发明的基于套管针的直接棒施加器EP系统。
图25和图26说明根据本发明的基于导管/内窥镜EP装置。
图27是根据本发明的用于将治疗部分递送到组织的靶细胞的区的EP装置的示意性图示。
图28是根据本发明的具有图27的EP装置的刀片顶端的退出端口和取道线的示意图。
图29是根据本发明的由图27的EP装置的斜坡导引的斜坡和取道线的示意图。
图30是根据本发明的彼此耦合的注入探头和中心探头的示意图。
图31是根据本发明的图27的EP装置的弯曲取道线的图示。
图32是根据本发明的电容感测(CS)/EIS感测系统的示意性图示。
图33是根据本发明的用于使用EP装置将治疗部分递送到组织的靶细胞的区的方法的图示。
图34A、34B和34C说明根据本发明的(图27的)EP装置的多种配置。在图34A中,使用多个通道线,全部一次展开,从而产生“星型”图案。在图34B中,使用单个通道线,其展开、缩回、旋转和重新展开,从而产生同一“星型”图案但是循序地产生。在图34C中,使用单个通道线,但在展开和缩回通道线之后,棒外壳稍微取出且通道线再次展开,从而形成“梳”结构。
图35示出了含有弯曲通道线的外壳,其当在适当的位置时保持刚性,但在展开所述线后,其返回到其弯曲形状且形成流体储集器的弯曲通道。
图36是说明根据本发明在使用EP系统期间用于控制EP脉冲参数的自适应控制方法的控制例程的流程图。
图37是说明根据本发明用于采用图36的控制例程优化EP脉冲参数的领先一步前馈控制例程的流程图。
图38是根据本发明的用以估计脉冲参数的模型的初始训练阶段的图示。
图39是根据本发明的用以估计第一脉冲参数(初始化)的经训练的模型的图示。
图40是根据本发明的说明用于EP脉冲参数的自适应控制的方法中的EP诊断学例程的流程图。
图41A和图41B是说明根据本发明的用于EP脉冲参数的自适应控制的方法的流程图。
图42A说明跨越脂质双层的百分比施加电场对时间常数的分布,图42B说明在EP之前测得的时间常数的分布,图42C说明基于脉冲前EIS数据调制脉冲宽度的效应,其中脉冲持续时间设定于用于每一肿瘤的时间常数的倍数,图42D说明根据本发明的示出在EP之后所计算时间常数相对于所得发光的相对改变的数据。
图43说明正常C57BL/6J小鼠和转基因PDGF-C小鼠的模型拟合参数,其中表示的参数是(A)溶液电阻、(B)导纳、(C)常数相位元件(CPE)和(D)所计算时间常数。
图44说明在质体DNA的注入后的溶液电阻的百分比减少的直方图。
图45说明在以50μg的表达荧光素酶的质体DNA的瘤内EP之后48小时观察到的发光数据。EP条件设定于500V/cm,施加8个脉冲,且持续时间设定于所计算平均时间常数的倍数。
图46:在以50μg的表达荧光素酶的质体DNA的瘤内EP之后48小时观察到的发光数据。EP条件设定于350V/cm,施加8个脉冲,且持续时间设定于用于每一个别肿瘤的所计算时间常数的倍数。
图47:随在电穿孔之后所计算时间常数的改变而变标绘的发光数据。较长脉冲导致所计算时间常数的下降,其中大于20%的群组显著不同于对照组。短脉冲导致所计算时间常数的增加。
图48:基于CPE的组织模型的等效电路模型。
具体实施方式
I.概述
本发明大体上是针对有用于控制电穿孔(EP)脉冲参数以用于患者的细胞和组织的EP的改进和理想优化的装置、系统和方法。如本文进一步描述,本发明存在多种用途,包含但不限于例如将治疗部分(包含小分子药物、质粒编码治疗蛋白质等)插入到细胞中的能力。本发明尤其适用于肿瘤学应用。本发明允许使用电测量值(EM)实时确定合适的EP条件和/或EP协议,所述电测量值包含但不限于电化学阻抗谱(EIS)。本发明旨在通过集成反馈控制机构而改善EP过程。因此,本发明的系统和方法可以与任何EP装置/施加器和任何方法一起使用,例如第62/214,807、62/214,872、62/141,142、62/141,182、62/141,256以及62/141,164号美国临时专利申请中概括的那些,以上申请全部明确地以全文引用的方式并入本文,具体来说包含其中的附图、图例以及附图和组件的描述。
临床试验中当前使用的EP参数是使用均质同基因肿瘤模型在临床前小鼠研究中在经验上建立。通常,选择使单独经由注入的电穿孔核酸的平均表达带来最高上升的电参数。所属领域中的先前研究已经分析pDNA浓度、电场(e场)强度、脉冲、组织类型、电条件、注入体积、所关注的分子、浓度以及施加器几何形状对表达的影响。已确定前述参数中的每一个都显著影响所得表达。
为了最大化EP的功效,可实时测量的薄膜完整性的可定量度量是合意的。电化学阻抗谱(EIS)是用于生理和化学系统的表征的方法,且能够以标准EP电极来执行。此技术测量系统在一频率范围上的电响应以揭示能量储存和耗散性质。在生物系统中,胞外和胞内基质抵抗电流并且因此可以电学表示为电阻器。完整细胞膜和细胞器的脂质储存能量且表示为电容器。电阻抗是这些电阻性和电容性元件在一频率范围上的总和。为了量化这些参数中的每一个,组织阻抗数据能够拟合于等效电路模型。对组织的电性质的实时监视将实现对EP参数的反馈控制且导致异构肿瘤中的最佳转染。使用EIS反馈将允许(1)实时调整递送参数,(2)仅产生治疗响应所必要的脉冲的递送,以及(3)因此减少总体EP介导的组织损伤。
本发明的各种实施例是针对提供闭环EP控制系统,其使用基于组织感测的反馈借助在每一EP脉冲之前和之间所获取的肿瘤特定测量值来优化EP过程。使用组织感测测量特定肿瘤的薄膜电荷时间以调整每一EP脉冲以用于最佳治疗。
如本领域的普通技术人员将了解,当细胞薄膜断裂时发生成功EP,从而导致电容改变。因此,通过监视和测量电性质,例如在EP脉冲之前、期间和/或之后的阻抗(包含电容),在初始训练阶段期间能够收集相关经验数据且用以产生模型。
本发明的各种实施例是针对在细胞和组织的EP期间使用前述闭环EP控制系统和装置改善或优化受控EP脉冲参数的自适应控制方法和系统。
在一些实施例中,所述控制系统可以包含测量装置、初始化模块、信号产生器、控制器以及存储器模块。本文所描述的控制方法在所述控制系统中实施。
在一个方面中,所述测量装置测量组织/细胞条件,例如细胞和组织的介电和导电性质。所述测量装置可以包含一个或多个不同测量装置以促进测量组织/细胞条件。举例来说,所述测量装置可以包含电压传感器/装置和/或电流传感器/装置。电压传感器可以被配置成当激励信号和/或EP脉冲施加于细胞或组织时测量跨越细胞或组织的电压。电流传感器当激励信号和/或EP脉冲施加于细胞或组织时测量跨越细胞或组织的电流。测量的结果(例如,测得的数据)可以发送到控制器用于进一步处理。
初始化模块可以被配置成初始化EP脉冲参数以用于对细胞和组织执行EP。EP脉冲参数可以是基于先前实验/临床试验在经验上建立的预定EP脉冲参数。替代地,EP脉冲参数的预先确定可以至少部分地基于一个或多个经训练的模型。信号产生器可以产生施加于细胞和组织的激励信号和/或电穿孔脉冲。测量装置响应于激励信号和/或电穿孔脉冲的施加而测量组织/细胞条件,例如细胞和组织的介电和导电性质。
如所提到,控制器接收测得的数据,其对应于组织/细胞条件的测量的结果。控制器随后处理测得的数据以促进组织和细胞的特性的诊断/识别,和/或确定用于系统的经更新控制参数。举例来说,能够评估组织的异质或均质性。控制器可以包含(以任何组合)预处理模块、特征提取模块、诊断模块以及脉冲参数估计模块。
预处理模块从测量装置获得测得的数据且预处理测得的数据以分离合意的数据与不合意的数据。举例来说,不合意的数据可以包含噪声、直流电偏置。预处理可以包含基于例如标准偏差等标准化值而按比例缩放测得的数据,执行测得的数据的数字滤波,以及证实测得的数据。
特征提取模块从合意的数据提取例如相关特征等信息。相关特征可以是定量信息。举例来说,可以使用本文所描述的计算例程提取定量信息。合意的数据的相关特征发送到诊断模块用于进一步处理。举例来说,诊断模块将合意的相关特征的至少一部分应用于一个或多个经训练的诊断模型以确定下一步骤是选择下一施加EP脉冲参数还是在检测到例如电极未放入组织中等诊断问题的情况下停止控制过程。脉冲参数估计模块被配置成基于诊断模块和特征提取模块的结果而选择或产生下一施加EP脉冲参数。
在一些实施例中,本发明涉及“领先一步前馈控制”。“领先一步前馈控制”的意思是在施加第一EP脉冲之前,参数估计例程使用来自先前进行的实验的经验数据基于在初始训练阶段中训练的模型而初始化用于第一脉冲的初始控制参数。这些先前进行的实验可以基于例如带有与将经受本发明的控制方法的当前组织的那些肿瘤具有相似特性的肿瘤的组织样本。举例来说,黑素瘤肿瘤的类型、大小或位置可用以建置数据集以充当初始模型的基础。包含电压和电流信号的初始激励信号是通过信号产生器(例如,本文所描述的专有信号产生器)施加。测量装置测量组织对激励信号的响应。控制器基于测量值而导出“特征”且使用经训练的模型将所提取的特征与从先前进行的实验中获得的经验数据导出的旧特征进行比较。旧的和导出的“特征”是从例如EIS的组织感测测量获得。可以基于在诊断阶段中由诊断模块识别的组织或肿瘤类型而训练模型,并且然后用以选择用于第一EP脉冲的最佳参数/条件。这些第一脉冲参数因此“被前馈”以作为用于控制例程的第一脉冲而施加,这与其中第一脉冲的参数/条件是基于固定或静态条件的常规EP系统和方法形成对比。在此意义上,本发明的方法利用前馈控制以基于所感测的组织类型而提供最佳EP参数,与反馈控制结合而感测细胞条件,例如渗透程度,且相应地调整脉冲参数。
例如肿瘤位置、大小以及通常影响治疗结果的血管形成、纤维化和坏死的程度等肿瘤特性的变化导致基因传递的有效EP条件的不良可预测性,且因此导致可变的治疗结果。常规EP系统应用使用静态参数的开环控制系统,所述静态参数依赖于通过均质同基因肿瘤模型中的临床前研究所确定的先验知识。然而,初步数据已经示出即使在均质肿瘤中,跨越细胞膜施加静电场所需的时间遵循对数正态分布。即使在均质模型中,将静态参数应用于不同肿瘤也导致跨越细胞膜的广泛范围的施加静电场且导致治疗可变性。本发明通过实施采用闭环控制系统的控制方法克服了现有技术的前述不足,所述系统使用基于组织感测的反馈借助在每一EP脉冲之前和之间所获取的肿瘤特定测量值来优化EP过程。因此,通过使用EIS反馈控制与“领先一步前馈控制”组合,本发明能够考虑通常影响治疗的肿瘤特性的变化而更有效地预测用于EP的有效参数。
II.电化学阻抗谱(EIS)
本发明的系统和方法可以包含电化学阻抗谱EIS(或组织感测)测量,其可以使用EP装置进行。在一些实施例中,EP装置可以包含用于施加EP脉冲的电穿孔电极(EPE)以及用于将低电压询问信号施加到细胞的电测量电极(EME)。在一些实施例中,EP装置的电极充当EME和EPE两者,且可以使用固态中继器在高电压EP脉冲电路与低电压EIS询问电路之间切换,如图1中所说明。图1是描绘根据本发明用以施加用于EIS的电脉冲的EP装置的一些组件的简单示意图。虽然示出了4个电极的电极阵列,但这不具限制性,其中电极对的阵列包含2、4、6、8、10和12个或更多个电极,全部适用于本发明中。此外,虽然电极示出为具有笔直形状,但这不具限制性,因为电极可以具有弯曲或螺旋形状,如下文将相对于本发明的系统和方法中可以使用的各种EP装置所描述。图1描绘阵列的电极当连接到EP电路时充当EP电极或当连接到组织感测/EIS电路时充当电测量(EM)电极的情形。如本文所论述,当EP装置的电极充当EME和EPE两者时,电极通过中继开关在EPE与EME模式之间切换。即,固态中继器用以在高电压EP脉冲电路与低电压EIS询问电路之间切换,如图1中所说明。即,本发明的专有产生器能够在必要时将高电压脉冲和低电压询问信号两者供应到EP装置。在EP装置具备单独EPE和EME的其它实施例中,EP装置可以经由切换机构连接到两个电源,所述切换机构当跨越其控制端子被施加小激励电压时接通和断开。这些开关使用包含电磁、机电、压电和光电机构的耦合机构。
由于关于电穿孔条件的一般知识,在施加EP脉冲之前所获取的电容和电阻测量值实现将造成例如细胞膜等电容性元件的不稳定的条件的先验知识。在脉冲之间测量电容允许基于与薄膜电容和电阻相关联的时间常数而调整电条件,包含脉冲宽度(其可从相关联时间常数计算)。另外,此信息允许当达到时间常数的理想下降时,例如当薄膜完整性已受损时停止过程,因此允许治疗部分的引入。
在一些实施例中,EP装置使用不同集合的EPE和EME,如图3中大体上描绘。在一些情况下,如下文更完整概括,当使用不同集合的EPE和EME集合时,EME和EPE会偏移,从而允许电场区的不同区域中的阻抗测量,如下文以及图3的图例中大体上论述。在这些实施例中,除较高电压EPE电力供应之外,还使用额外低电压EME电力供应,以及适当的电路和连接器。
在其它优选实施例中,如上文所描述,且如将用以说明本发明的系统和方法,EP装置使用单个集合的电极用于EP和EIS测量两者。能够使用EPE执行EIS测量而不会不利地影响组织特性。使用同一电极来执行低功率EIS测量和高功率EP脉冲是理想的,因为这减少了所需电极的数目且直接测量组织响应。EIS是能够进行组织的实时监视的低功率技术。此技术是通过跨越一对电极施加一系列低电压激励信号且测量一频率范围上的响应电流而执行。随后计算每一施加激励的量值和相位且拟合于如下说明的组织的等效电路模型(如图48所示),下文称为“基于CPE的组织模型”。
可以使用以下等式获得阻抗测量值:
Figure BDA0003881654740000301
在以上等式中,Z(f)是z(f)是以欧姆计的组织阻抗,f是以赫兹计的频率;j是表示
Figure BDA0003881654740000302
的常数;Q0是以西门子计的导纳(在f=1Hz处);Rs是以欧姆计的电阻;且α是无单位的常数相位元件(CPE)。
如所述模型中所说明,电阻性元件(RI和RE)分别是由于胞内和胞外基质,且脂质结构由组织和细胞的常数相位元件(CPEM)表示。CPEM是表示脂质双层的电荷或电容(由QM表示)以及表示电容器的非理想性质的范围从0到1的标量(由α表示)的函数。如下文将进一步论述,用于对脂质双层进行充电的时间常数接着可以计算为τ=(RIQm)1/α。以此方式计算时间常数与本发明的方法是一体的,因为时间常数随后用以在每一治疗之前、期间和/或之后识别最佳EP脉冲持续时间。
通过使用EPE和/或额外电测量电极EME的阵列,能够询问由电极阵列包围的区中的组织。此信息能够用以引导例如EP条件。即,使用不同的EIS询问输入信号,例如线性调频脉冲(或如下文概括的许多其它信号),输出信号允许装置拟合于组织模型以确定组织的性质以及将使用的EP信号。举例来说,参考图3,在电极的插入之后,能够运行不同的询问。举例来说,比较电极1与2之间的阻抗和1与8之间的阻抗能够帮助确定电极1与8之间的组织是“正常”组织,而不是1与2之间的“异常”或“患病”组织。类似地,电极7与8或6与7之间的询问能够帮助确定电极7在血管靠近或血管中,且因此不应当用于电穿孔。因此,举例来说,这些测量能够用以解决以下四个问题,以及取决于基于实验范围所必要的数据的任何其它相关查询。
1)每一电极与组织良好接触?如本领域的普通技术人员将了解,在难以接达的区域中或特定顺应性皮肤上使用电极会在两个电极充分插入到待治疗的组织中的情况下导致不确定性。这导致非均质电场和不良递送。2)电极插入到可行的组织中?将电极插入到异常组织中,特定肿瘤组织可能在纹理和/或细胞完整性等上为异构的,其中许多肿瘤具有坏死和/或凋亡的细胞区域。因此电极会插入到可能不导致良好和/或甚至不导致电场的位置中,且因此所述电极不可以用于本发明的程序中。3)治疗部分(TM)或药品在正确位置?在此实施例中,能够在TM溶液的注入前和注入后进行此测量,且差异可告知是否应当注入更多TM溶液。4)存在由于其位置和/或接触而不应当使用的电极?再次,参考图3,这些EIS测量可以允许电极7不规则地(例如,在血管中或靠近血管等)放置的确定,或电极插入的位置由于组织异质性和/或完整性而导致不良电接触。5)组织(例如,肿瘤)充分地获得电穿孔?这与组织感测相同,因为这测量细胞膜的完整性。因此,这些测量能够在EP之前(为了建立基线)、在EP期间以及在EP之后进行,以确保EP确实发生。
另外,这些EIS测量能够用以相对于本发明的自适应控制方法确定如下文将描述的理想EP条件以用于提供改善的或经优化的EP脉冲参数。在一些实施例中,本发明的方法可以包含以一对EPE/EME 120接触电场区100中或电穿孔位置110(图10中所示)中的组织。电连接到EPE/EME的低电压电力供应用以将低电压询问信号施加到EPE/EME。用于感测阻抗和/或电容的方法可以包含(但不限于)例如锁相环、方波脉冲、高频脉冲和线性调频脉冲等波形。电压传感器和电流传感器用以感测流动通过电路的电压降和电流,且这些参数接着能够由如图1中所说明的控制器处理,以确定测量区域中的所有细胞的平均阻抗。
如上文所描述,电容和电阻测量值是细胞的健康程度的指示符,且可以用来确定施加多长的电脉冲以便破坏细胞膜且提供对于电穿孔足够的条件。一旦已经确定细胞的平均阻抗,便有可能确定测得细胞的若干特性,包含但不限于细胞或组织的初始条件,例如细胞是否患病(由低于平均电容表明)、细胞是否健康、电极的定位--电极是否包围所关注的组织/细胞周围的区域恰当地定位/及电极是否在用于有效电穿孔的正确位置,以及时间常数,如上文对于细胞所简要论述(下文将进一步描述)。
在一些实施例中,阻抗测量可以跨越若干EI感测电极对而进行以确定电场区100中的所有细胞的平均是否一致且用于特定位置的更准确读数。如果EI测量值跨越若干电极对是不一致的,那么这可以指示细胞的均质性的不一致,因此要求将不同时间常数施加于不同集合的电极。时间常数给出为了电穿孔发生而将施加于细胞的脉冲宽度的指示。将电容器充电到其最大值(即,电容器/细胞由于电穿孔而无法储存能量的情况,其中良好转染发生)花费约5倍时间常数。因此能够确定用于将电容器充电到恰在电穿孔发生之前的点的脉冲宽度,因此确定将电容器充电达至少5倍时间常数(τC)所必要的脉冲宽度。在确定时间常数之后,基于针对EPE包围的区域中的细胞所确定的时间常数,为每一集合的EPE相应地设定脉冲宽度。
时间常数可以基于上文说明和描述且从下方一系列等式导出的电路模型。用于本发明目的的时间常数被描述为跨越端子施加的电位(Va)将CPE驱动到所施加电位的一半(VCPE=Va/2)所需的时间量(τ)。
(1)
Figure BDA0003881654740000321
(2)
Figure BDA0003881654740000322
(3)
Figure BDA0003881654740000323
(4)τ=(RsQ0)1/α
此处,|VC'E|是跨越CPE的电压,且|Va|是跨越端子或薄膜施加的电压。在(2)处,|VCPE|被|Va|/2替换,因此导致计算f的步骤(3),且f被
Figure BDA0003881654740000324
替换以导出在用于EP脉冲的理想脉冲宽度的计算中使用的最终时间常数等式。
因此,本发明的方法和系统利用基于电的测量和反馈以大幅度改善EP过程,如下文将进一步描述。由于EPE用作EPE和EME两者,因此反馈由EPE提供,因此不需要额外硬件。将电数据拟合于经修改Randles模型电路允许对于薄膜的条件的参数监视。肿瘤组织因此能够实时拟合于经修改Randles等式。修改涉及用电容性/电阻性元件替换常数相位元件(CPE)。CPE提供薄膜的现实表示,其中Q=导纳;且0≤α≤1。
图10是根据本发明的界定电场区和电穿孔位置的第一对和第二对EPE的示意性说明。图14A和图14B是根据本发明的在电穿孔位置中的连续脉冲电场以及在电场区中但在电穿孔位置外部的交替接通和断开脉冲电场的图示。如本领域的技术人员将了解,当细胞薄膜断裂时成功电穿孔发生,从而导致电容和电阻的改变。当经受电场时,细胞大体上充当电容器。当电场施加足够长的周期(取决于细胞性质、健康、大小等)时,电荷在细胞膜处积聚直到其到达某一阈值且造成薄膜完整性的破坏为止。在EPE和EME是不同电极的实施例中,EME可以由低电压询问电路供电。本发明还包含电压传感器和电流传感器,如图15中所说明,以测量跨越细胞膜和组织的电流和电压,且控制器处理所述电压和电流以确定电场区100中的细胞的平均电容。
可以响应于低电压询问电路的低频电场激励,基于细胞中的电荷再分布而测量阻抗。可以在施加电穿孔电场之前、之间和之后测量阻抗以确定细胞条件,包含但不限于细胞健康、用于最佳电穿孔的电极相对于细胞的放置,以及最重要的是时间常数,其可用以确定将施加于电场区中的细胞的电场的脉冲宽度。如先前所描述的,一般来说,将电容器充电到其最大值,即恰在电穿孔发生之前,花费五个时间常数的周期,因此初始电穿孔电场脉冲的脉冲宽度可以设定成5倍时间常数。此脉冲宽度不足以造成在电穿孔位置110之外的细胞中的电穿孔,如上文所描述,但足以造成经受来自正作为一个连续电场施加的所有集合EPE的电场的相加效应的电穿孔位置110中的组织的细胞中的电穿孔。可以在第一EP电场已经施加之后再次施加阻抗测量,且可以计算阻抗或时间常数的百分比下降且与预定值进行比较以确定电穿孔位置中的细胞是否已经充分电穿孔。如果不是,那么本发明的系统和方法基于计算出的电容的百分比下降而调整下一集合电穿孔经脉冲电场的脉冲宽度,直到确定EP位置中已发生足够EP为止。因此,脉冲之间的阻抗测量允许基于与细胞膜电容和电阻相关联的时间常数调整电条件,即脉冲宽度,且当达到电容、时间常数或薄膜完整性的理想支持时可以停止电穿孔过程。
本发明的各种实施例是针对用于使用本文所描述的本发明的各种电穿孔装置对组织的EP位置中的细胞进行电穿孔的控制系统和方法。
III.本发明的自适应控制系统
本发明的各种实施例是针对在电穿孔(EP)装置中实施的用于提供自适应控制以在细胞和组织的EP期间优化受控参数的系统。在一些实施例中,如图15和图16中所说明,自适应控制系统包含被配置成测量细胞和组织的介电和导电性质的测量装置。
介电和导电性质的实例可以包含电容、电阻和阻抗。在一些实施例中,测量装置包含被配置成测量由激励信号和施加于细胞或组织的每一EP脉冲中的每一者产生的跨越细胞或组织的电压的电压传感器,以及被配置成测量由激励信号和所述至少一个施加EP脉冲中的每一者产生的所述细胞或组织的电流的电流传感器。电压和电流测量指示且用以计算细胞和组织的各种介电和导电性质。
图15是说明根据本发明的在主体的组织中的细胞的电穿孔(EP)期间用于优化电穿孔(EP)脉冲参数的自适应控制系统的简单示意图,且图16说明根据本发明的在主体的组织中的细胞的电穿孔(EIS)期间在自适应控制系统中使用的EP系统。在一些实施例中,如图16中所说明,本发明的EP系统包含(A)具有数据记录的配备EIS的EP产生器(例如,图15的产生器1530),(B)用于编程脉冲条件、设定反馈准则以及下载EIS和脉冲性能特性的图形用户接口,(C)由包围中心注入管腔的双电极组成的专有施加器(EP装置),以及(D)用以远程激活EP过程的脚踏板开关。虽然图16的EP系统说明一种类型的EP装置,但应理解本发明的控制系统可以并入本文所描述的任何EP装置以执行本文所描述的自适应控制方法。
在一些实施例中,自适应控制系统包含初始化模块1520,其被配置成初始化用于执行细胞或组织中的电穿孔的EP脉冲参数。EP脉冲参数可以包含(但不限于)电压量值、重复率和脉冲宽度。初始化的EP脉冲参数至少部分地基于至少一个经训练的模型。经训练的模型可为但不限于基于物理的模型、经验模型或数据驱动的模型。EP脉冲参数可以包含(但不限于)脉冲宽度、脉冲的数目、振幅/场强度以及频率。
在一些实施例中,自适应控制系统进一步包含信号产生器1530,其被配置成产生激励信号且通过(EPE/EME)将EP脉冲递送到细胞和组织。信号产生器1530可以是配备EIS的脉冲发生器,其基于离线观察的实验数据以预定脉冲宽度提供初始激励信号,所述实验数据即在关于与将经受本发明的控制方法的那些组织/细胞具有相似性质的组织/细胞进行的先前电穿孔实验中的数据。在一些实施例中,信号产生器1530能够供应低电压激励(讯问)信号以及用于EP脉冲的高电压信号两者。此产生器的实例是在图16中说明的专有产生器(A)。所述产生器能够在每一EP脉冲之前和之间基于EIS数据执行实时反馈控制。所述产生器可以范围从100μs到10ms的脉冲持续时间输出最小10V和最大300V。在脉冲之前和之间捕获的EIS数据是由产生器在100Hz到10kHz的范围上以每十倍程获取的10个数据点获得。此谱上的EIS数据的获取在250ms中实现,这快到足以:(1)执行例程以确定用于下一脉冲的时间常数;(2)存储EIS数据用于后分析;以及(3)不中断临床上使用的EP条件。所述产生器可能够具有20欧的最小输出负载阻抗以及开路的最大负载阻抗。定制产生器与多种标准EP装置施加器介接,且能够支持多达6个电极。固态中继器可用以在高电压EP脉冲电路与低电压EIS询问电路之间切换。为了允许产生器的免提操作,可以添加脚踏板以触发、暂停或中止EP过程。
包含电压传感器和电流传感器的测量装置1510响应于激励信号和/或EP脉冲的施加而测量跨越细胞和组织的电压和电流。在一些实施例中,测量装置并入到本发明的EP装置1540的电极中,但不限于此。在其它实施例中,测量装置可以与电极分离且在控制系统中在别处实施。
在一些实施例中,本发明的控制系统包含控制器1505,其被配置成从测量装置接收对应于测得的细胞或组织性质(即介电和导电,例如电容、电阻和阻抗)的结果的传感器数据且将所述数据处理为诊断学和经更新控制参数。在一些实施例中,控制器由四个模块组成,包含预处理模块1550、特征提取模块1570、诊断模块1580以及脉冲参数估计模块1560。预处理模块从电流和电压测量获得数据,且预处理所述数据以分离合意的数据与不合意的数据。不合意的数据可以包含但不限于离群值、范围外的值以及遗失的值。使用控制器实时地将从EIS测量搜集的数据拟合于组织阻抗模型,即上述基于CPE的组织模型,所述控制器例如具有精简指令集计算架构的微处理器。
在一些实施例中,特征提取模块使用计算例程从合意的数据提取定量信息。计算例程可以包含(但不限于)线性曲线拟合参数、非线性曲线拟合参数、交叉相关、曲率、平均值、平均、中值、范围、标准偏差、方差以及峰度。当在反馈模式中操作时,测得的EIS数据的特征可用以控制与EP过程相关联的参数。
在一些实施例中,诊断模块将合意的数据的相关特征的至少一部分应用于至少一个经训练的诊断模型。连同相关特征的诊断模型用以做出所施加脉冲的决策。诊断模块可以组合若干特征以识别是否存在EP装置的正确针放置、药品或基因是否定位于EPE对之间、EP脉冲是否有效地应用于转染以及是否另一脉冲可施加到同一电极对。
在一些实施例中,脉冲参数估计模块用以基于诊断模块和特征提取模块的结果产生下一施加EP脉冲参数。在一些实施例中,本发明的控制系统进一步包含存储器模块以存储经处理装置/传感器数据和所述经训练的模型以用于所述控制器的特征提取。
IV.电穿孔装置和方法
A.EP电极配置
本发明的EP装置应用于两个主要治疗区域:治疗部分的递送以及组织电穿孔/剥蚀。一般来说,且对于本文概括的许多实施例,患者患有在特定组织中局部化的例如癌症等疾病,其将得益于治疗部分(TM)的胞内递送。替代地,在一些实施例中,期望杀灭组织内的细胞的小基因位点(在电穿孔的上下文中有时称为“不可逆电穿孔”或“电穿孔剥蚀”)。如此项技术中已知,不可逆电穿孔的一个优点是其导致细胞凋亡而不是其它常见剥蚀技术那样的坏死。虽然本文的大多数论述与前者相关,但无TM递送存在下的FPA系统和方法始终是预期的。
本发明的EP装置和方法用以对患者或主体的组织中的细胞进行电穿孔以及将TM递送到电穿孔位置以用于其治疗。一般来说,本发明的EP装置用以治疗患病的或异常组织,例如癌组织。术语“癌症”包含大体上通过不适当细胞增殖、异常或过量细胞增殖表征的大量疾病。癌症的实例包含但不限于乳癌、结肠癌、前列腺癌、胰脏癌、皮肤癌(包含黑素瘤、基底细胞癌和鳞状细胞癌)、肺癌、卵巢癌、肾癌、脑癌或肉瘤。因此,包含皮肤组织、结缔组织、脂肪组织等的癌组织能够使用本发明的系统进行治疗。这些癌症可能通过染色体异常、变性生长和发育病症、促进细胞分裂试剂、紫外辐射(UV)、病毒感染、基因的不适当组织表达、基因表达的更改或致癌试剂造成。术语“治疗”包含(但不限于)癌细胞增殖的抑制或减少、癌细胞的破坏、癌细胞增殖的防止或者恶性细胞起始的防止,或者经变换癌变前细胞向恶性疾病的进展的遏止或反转,或者疾病的改善。术语“主体”或“患者”指代任何动物,优选地为例如人等哺乳动物。家畜使用也希望由本发明包含。
本发明的系统和方法适用于组织中的细胞的电穿孔。如所使用的术语“电穿孔”、“电渗透”或“电动增强”(“EP”)在本文可互换地指代使用跨膜电场脉冲来引发生物薄膜中的微观路径(孔隙);其存在允许治疗部分(包含但不限于生物分子,例如质粒、寡核苷酸、siRNA、药物、离子和水)从细胞薄膜的一侧传递到另一侧。通过在一时间周期内的电场的施加,根据公式Vm=1.5×半径×Eext,细胞膜积聚电荷且产生跨薄膜电压,其中半径是细胞的半径,且Eext是细胞的外部电场。一般来说,细胞膜在大致一伏特下破裂(例如,形成孔隙),但除了细胞在电场中的放置之外,还有细胞的大小和形状能够带来差异。举例来说,长肌肉细胞跨越细胞宽度与沿着其长度相比具有更高电容。类似地,较大细胞大体上在较低电压下电穿孔。如本文所论述,本发明的EM或电容感测技术的使用能够通过确定电场中的细胞的块体性质而帮助优化EP脉冲和持续时间。
“电穿孔细胞”包含在细胞薄膜中具有瞬时开放的孔隙的那些细胞,其在细胞膜上的电荷耗散时关闭(“开放孔隙细胞”),以及已经历电穿孔以使得细胞现在含有外生添加的治疗部分且具有关闭孔隙(例如,再次完整)的那些细胞。
参考图9,说明根据本发明的多个实施例的电穿孔装置且大体上由数字10指定。电穿孔装置10可以大体上包含任选地呈圆柱管形式(但也可以使用其它几何形状)的电穿孔棒外壳12、容纳于棒外壳中的第一对电穿孔电极A以及至少第二对电穿孔电极B。所述棒外壳可以任选地包含其它组件,包含用于TM递送的系统、切换电路等。
在一些实施例中,所述棒外壳经成形以便于医生使用,例如具有模制手柄部分或握把、在远端的任选的照明元件、用于观测和记录治疗位点的相机、活组织检查镊、组织剪刀、接合装置、缝合系统等。
本文的“电穿孔电极对”、“EPE”的意思是由两个电极组成的对,其当连接到电力供应器时被配置成相反地带电。第一和第二对电穿孔电极可以在电穿孔棒外壳12内静止或可缩回。电穿孔棒外壳12可进一步包含具有多个滑动插座的电路板16,电穿孔电极A和B通过所述插座而可滑动地缩回和延伸。电极对A和B安装在与指示器或量规11可滑动地接合的电穿孔外壳12中。在电穿孔棒外壳12沿着量规11移动时,其交替地延伸和缩回电极对A和B。装置指示器或量规11可以提供电极对A和B的延伸长度的指示。电穿孔装置可进一步包含电连接器14以将第一A和第二B电极对中的每一个电连接到电力供应器18,例如脉冲产生器。所述电连接器取决于电穿孔电极的数目而包含四个或更多个导线,用于将电信号从电力供应器传送到电穿孔电极中的每一个。这些信号可以包含针电压设定点、脉冲宽度、脉冲形状、脉冲的数目以及切换顺序。如上文所描述,且如本领域的技术人员将了解且下文更完整描述,EPE还可以充当EME,在此情况下所述产生器可能够供应高电压EP脉冲和低电压EIS询问信号两者,或第二低电压电力供应器与适当切换机构一起使用以允许递送较高电压EP信号,并且然后递送较低电压EIS信号。
在本发明的一些实施例中,EPE中的一个或多个可以是非穿透电极,其可以具有开放的远端以用于将治疗部分施予组织,如图7A和图11中所说明。非穿透电极可以是任何合适的形状导体,例如用以接触表面组织的按钮或板。注入器可以彼此间隔关系安置且与主体的组织的表面区紧密接触。非穿透电极的与组织表面接触的部分是导电的且通过例如电连接器14的电连接器电连接到电力供应器,例如电力供应器18,以使得通过完成非穿透EPE的导电远端之间的电路通过组织区递送电流而实现EP。
EPE可以由导电的材料形成,但如本文中论述的可以使用任选的绝缘涂层。EPE可以由能够传递与所施加高电压脉冲相关联的大瞬时电流密度的任何导电材料制成,包含但不限于:某些金属及其氧化物,包含金、铂、钯、硅、铝;金属氧化物电极,包含氧化铂、氧化钛、氧化锡、氧化铟锡、氧化钯、氧化硅、氧化铝、氧化钼(Mo2O6)、氧化钨(WO3)和氧化钌;以及碳(包含玻璃碳电极、石墨和碳膏)。优选电极包含AgCl、钴-铬、钛、不锈钢、铂、金或者以金或铂电镀的具有高导电性的金属。
在一些实施例中,例如当使用非穿透电极对时,电极的远端暴露以用于电场的产生,但其近端可以涂覆有不导电物质以便限制电场对邻近于组织的电极的仅远端的施加。
在一些实施例中,被配置成用于插入的EP电极可以类似地涂覆有绝缘材料以使得电场是使用电极的远端产生且不沿着电极的长度,例如以允许EP在组织中“较深”而不是在“浅”区。
在一些实施例中,插入EP电极可具有交替的绝缘材料和裸电极的区域,如图4A和4B中一般描绘。在此实施例中,电极可以用同一图案涂覆,从而导致较均匀的电场,或者以不同图案涂覆,从而导致不对称的电场。类似地,对于本文的所有电极配置,电极可具有相同长度或不同长度。
由这些部分地绝缘的电穿孔电极产生的脉冲电场在治疗期间主要集中在电极的远端处的暴露顶端部分之间和附近的区中,且在绝缘部分之间和附近的区中是小的。可以使用部分地绝缘的针阵列来限制具有肿瘤的目标区域中的电穿孔,且显著屏蔽超出目标区域的皮肤和组织免于电穿孔过程。这对健康皮肤和组织提供保护,所述健康皮肤和组织由于当一些治疗部分注入到目标区域上方的健康表面组织中时造成的不合需要或甚至不利的影响而可能存在风险。
图7A、7B、7C和7D描绘不同的EPE配置,但为简单起见仅描绘单对电极。图7A描绘一组非穿透固体EPE,在表面施加于皮肤的表面。额外组的EPE未图示,但是包含的。图7B描绘穿透到组织中的一组固体EPE;在此实施例中,每一EPE的顶端是大体上尖的以促进插入到组织中,例如固体针尖。在此实施例中,电场区在组织中“较深”,例如在表面下方。这导致沿着电极之间的长度和径向尺寸的三维电场。一般来说,这些穿透EPE可以从约1到约20mm,取决于待治疗的组织的几何形状和生理情况。应注意此测量是插入的深度且不是电极的总长度;一般来说将存在电极的一部分从与组织的接触点向上延伸且延伸到棒外壳中以用于附接到适当电路,在正确空间配置中固持电极等等。在图7C中,穿透固体EPE涂覆有绝缘(不导电)材料,以使得仅电极的远侧部分暴露。在图7A、7B和7C的实施例中,TM递送系统将一般为较浅地插入到EPE之间的EP位置中的针(未图示)。在图7D中,穿透EPE是中空的,具有用于TM递送的管腔以及连接到管腔的尖的开放顶端。在左侧,穿透电极具有沿着轴线的涂覆有绝缘材料的部分。如本领域的技术人员将了解,当电容测量完成时,EPE可以另外用作电测量电极(EME)或可存在单独集合的EME,如图6中一般描绘。
图8A、8B、8C和8D描绘本发明的EP装置的组件(其全部依赖于圆柱形针,但也可以使用其它几何形状;并且,描绘仅单对EP电极)。图8A和8B描绘具有TM递送(TMD)系统的一组EPE(第二组未图示)。图8A示出了插入到组织中的EPE和TM递送系统,其中TMD中空需要具有开放末端,管腔用于递送TM,且TM正以异形方式递送。图8B示出了装置的下侧,所述装置可以在棒的远端中。替代地,如图8C中所示,TMD系统可以包括标准注射器,其在程序期间由施用的医生手动地插入。在此实施例中,注射器可以具有任选的针止挡件以物理上防止在与电场区的深度相关的深度处的较深穿透。图8D描绘具有多个开口以递送TM的TM递送针。这可以当递送例如质粒和抗体等较大生物分子时有用,因为一般来说较大分子(另外通常带电)在组织中比其它分子扩散更慢。因此在EP位置内具有多个递送基因位点能够用来使区中的较高百分比的细胞吸收TM。图8D描绘三个开口或端口,但可使用任何数目。另外,图8D描绘在针的一“侧”上的开口,但开口可以位于针的外表面的任何部分上,从而形成螺旋或其它形状。
在一些实施例中,电穿孔电极大体上具有一长度以便完全包围待治疗的组织。在优选实施例中,所有集合的电极(电极的“阵列”)在阵列内具有相同长度,但在一些例子中不同长度电极的使用会导致更改且不对称的电场。
在许多实施例中,用于插入的电极的宽度和横截面形状被配置成使疼痛最小。因此,电极的宽度可以从0.05到1至2mm,且可以取决于何时电极也用以递送TM。一般来说,当电极是中空的且用于TM递送时它们大体上较大以容纳用于TM递送的管腔。
另外,电极和棒外壳优选地由能够被除菌的材料以及在电极阵列和棒外壳将再使用的情况下类似地使微生物截留最少的配置制成。在一些实施例中,至少电极阵列是一次性的,且在一些实施例中,整个棒外壳也是一次性的。
在本发明的一些实施例中,使用多个集合的电极对。即,如图中描绘,可使用两个集合(两对、四个电极),例如利用第一和第二对电穿孔电极。第一和第二对电穿孔电极彼此偏移预定角度。对于一组两对电极,所述两个电极对彼此偏移约90度的角度,如图1中所说明,其中在一些实施例中90度是优选的。电极也可以定位在1到10mm的距离且界定电场区的外周边。
在一些实施例中,电极中的一个或多个可以是如下文所论述用于引入治疗部分的中空针。
包围EP电极的组织有时称为“烧除区”。“烧除”区的意思是区域由紧邻于和/或接触个别电极中的每一个的组织占据。其称为“烧除”区是因为细胞与电极直接接触,所述电极由于来自电力供应器的高电压信号而受热,且因此细胞因过热而经受损伤。然而,通过使用本发明的交替脉冲装置,对烧除区中的细胞的损伤能够通过使热和场减少50%(在两个集合的电极的情况下;如果使用更多集合则更多)而最小化。另外,由于电场强度在电极处聚焦/增加,因此较高电压会以独立于热的方式造成EP介导细胞死亡。
图5是用于对电穿孔电极对A和B产生脉冲电场的使用的硬件架构的图示。电穿孔装置可以基于数字信号处理器(DSP)、微处理器、现场可编程门阵列(FPGA)、专用集成电路、中央处理单元(CPU),或者接受模拟/数字数据作为输入、根据存储于存储器中的指令处理所述输入且提供输出作为结果的任何多用途可编程装置。电极对A和B的切换序列例程被编程且存储于存储器中。数据总线可用以显示和修改脉冲参数。高电压隔离将允许硬件在插入PC中时与高电压电力供应器一起使用。低电压电力供应器可用以对所有辅助电路供电,例如电容或阻抗感测电极、模/数转换器、数/模转换器、中继器、DSP、光学开关等。
在一些实施例中,如图5中所说明,第一和第二对电极可以进一步连接到能够为每一相应EPE对供应各种波形的电信号的产生器。第一对EPE A可以由电力供应器供应与供应到第二对电穿孔电极B的波形具有预定相位差的波形。举例来说,第一和第二对EPE可以接收具有180度相位差的波形,如图13中所示的矩形电极对A波形和电极对B波形所说明。如本领域的技术人员将了解且下文更完整描述,当EIS时,产生器或电力供应器能够递送高电压EP脉冲和低电压询问信号两者,且如果不能,那么提供额外低电压EIS电力供应器。
在一些实施例中,高度专用医疗级别快速切换高电压/高电流固态中继器用以使用光学耦合的中继驱动器将产生器从供应用于EIS的询问信号的低电压EIS模式切换到供应用于EP的EP脉冲的高电压EP模式。每一中继驱动器可以连接于高电压电力供应器与对应一对电穿孔电极之间。每一中继通道可以按推挽式配置实施以确保在断开事件期间从电极对中的每一个去除杂散电荷。
具有第一和第二波形产生器的电力供应器可以电连接到固态高电压中继通道A和中继通道B以控制且输出第一和第二电信号,其中第一和第二波形到达相应的电穿孔电极A和B。
B.治疗递送系统
在一些实施例中,本发明的EP装置可以包含治疗部分(TM)递送系统。TM递送系统可以呈用于TM递送的中心探头或通道的形式集成到EP装置中。在一些实施例中,如上文所描述,EPE可以形成为中空电极,具有开放的远端以用于通过其递送TM。本文的“治疗部分”(“TM”)的意思是适合于EP的能够治疗患病的组织的部分,其包含细胞毒性剂、化疗剂、毒素、放射性同位素、细胞介素或其它治疗活性剂。TM可以是小分子药物、核酸(包含对治疗目标蛋白进行编码的那些),或具有生物活性的蛋白质(包含多肽和肽)。
在一些实施例中,TM是药物;预期用于本发明的方法的药物通常是具有抗肿瘤或细胞毒素效应的化疗剂。这些药物或试剂包含博莱霉素、新制癌菌素、苏拉明、阿霉素、卡铂、紫杉醇、丝裂霉素C和顺铂。其它化疗剂将是所属领域的技术人员已知的(例如参见Merck索引)。EP通过在细胞膜中产生孔隙而促进博莱霉素或其它相似药物进入肿瘤细胞。
在一些实施例中,TM是核酸。一般来说,是核酸的TM具有两个不同功能类型。在一个实施例中,核酸对用以治疗疾病的蛋白质进行编码;在其它实施例中,核酸是TM,例如当核酸是siRNA或snRNA时。本文的“核酸”或“寡核苷酸”或语法等效物意味着共价链接在一起的至少两个核苷。本发明的核酸将大体上含有磷酸二酯键,但是在一些情况下,如下方概括,包含可以具有交替骨干的核酸类似物,包括例如磷酰胺(Beaucage等人,Tetrahedron49(10):1925(1993)及其中的参考;Letsinger,《有机化学杂志(J.Org.Chem.)》35:3800(1970);Sprinzl等人,《欧洲生物化学杂志(Eur.J.Biochem.)》81:579(1977);Letsinger等,《核酸研究(Nucl.Acids Res.)》14:3487(1986);Sawai等人,《化学快报(Chem.Lett.)》805(1984),Letsinger等人,《美国化学学会杂志(J.Am.Chem.Soc.)》110:4470(1988);以及Pauwels等人,《化学技术(Chemica Scripta)》26:141 91986),硫代磷酸酯(Mag等人,《核酸研究》19:1437(1991);以及第5,644,048号美国专利),二硫代磷酸酯(Briu等人,《美国化学学会杂志》111:2321(1989),O-甲基氨基磷酸酯键链(参见Eckstein,《寡核苷酸和类似物:实际方法(Oligonucleotides and Analogues:A Practical Approach)》,牛津大学出版社),以及肽核酸骨干和键链(参见Egholm,《美国化学学会杂志》114:1895(1992);Meier等人,《化学国际英文版(Chem.Int.Ed.Engl.)》31:1008(1992);Nielsen,《自然(Nature)》365:566(1993);Carlsson等人,《自然》380:207(1996),以上全部以引用的方式并入)。其它类似核酸包含具有正骨干的那些(Denpcy等人,《美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)》92:6097(1995);非离子骨干(第5,386,023、5,637,684、5,602,240、5,216,141和4,469,863号美国专利;Kiedrowshi等人,《应用化学国际英文版(Angew.Chem.Intl.Ed.English)》30:423(1991);Letsinger等人,《美国化学学会杂志》110:4470(1988);Letsinger等人,《核苷与核苷酸(Nucleoside&Nucleotide)》13:1597(1994);ASC会议系列580,《反义研究中的碳水化合物修改(Carbohydrate Modificationsin Antisense Research)》,第2和3章,Y.S.Sanghui和P.Dan Cook编;Mesmaeker等人,《生物有机和药物化学快报(Bioorganic&Medicinal Chem.Lett.)》4:395(1994);Jeffs等人,《生物分子NMR期刊(J.Biomolecular NMR)》34:17(1994);《四面体通讯(TetrahedronLett.)》37:743(1996)),以及非核糖骨干,包含第5,235,033和5,034,506号美国专利以及ASC会议系列580《反义研究中的碳水化合物修改》第6和7章(Y.S.Sanghui和P.Dan Cook编)中描述的那些。含有一个或多个碳环糖的核酸也包含在核酸的定义内(参见Jenkins等人,《化学科学评论(Chem.Soc.Rev.)》(1995)169-176页)。Rawls《化学与工程新闻(C&E News)》1997年6月2日第35页中描述了若干核酸类似物。所有这些参考特此明确地以引用的方式并入本文。核糖磷酸盐骨干的这些修改可以完成以增加这些分子在生理环境中的稳定性和半衰期,例如当核酸是siRNA等时。
在一些实施例中,核酸是编码治疗生物分子的DNA或RNA,包含蛋白质,包含抗体。
在一些实施例中,核酸编码白介素,其可用来刺激患者的免疫系统和/或造成以核酸变换的细胞凋亡或坏死。合适的白介素包含(但不限于)IL-12。
在一些实施例中,核酸编码化学治疗抗体。大体上在此实施例中,存在电穿孔到组织中的两种核酸,一种编码重链且一种编码轻链。在一些情况下,这些可以在单个表达载体中或者可以使用两个表达载体。
大体上使用术语“抗体”。适用于本发明中的抗体可以采用如本文所述的多种形式,包括下文所述的传统抗体以及抗体衍生物、片段和模拟物。传统抗体结构单元典型地包括四聚体。每种四聚体典型地由相同的两对多肽链组成,每对具有一条“轻链”(典型地具有约25kDa的分子量)和一条“重链”(典型地具有约50-70kDa的分子量)。人类轻链分类为κ和λ轻链。本发明涉及IgG类,其具有若干亚类,包含但不限于IgG1、IgG2、IgG3和IgG4,其中前者特定适用于许多应用中,尤其是肿瘤学。因此,如本文所用的“同型”意指由其恒定区的化学和抗原特征定义的免疫球蛋白亚类中的任一个。应了解治疗抗体还可以包含同型和/或亚类的杂合体。
每条链的氨基端部分包括主要负责抗原识别的约100到110个或更多个氨基酸的可变区,在本领域和本文中通常称为“Fv结构域”或“Fv区”。在可变区中,重链和轻链的每个V结构域均聚集了三个环以形成抗原结合位点。每个环称为互补决定区(下文称为“CDR”),其中氨基酸序列的变异最显著。“可变”是指可变区的某些区段的序列因抗体而广泛不同的事实。可变区内的可变性分布不均匀。相反,V区是由称为构架区(FR)的15-30个氨基酸的相对不变片段组成,所述相对不变片段被各具有9-15个氨基酸长度或更长的较短极度可变区域(称为“高变区”)分隔。
在一些实施例中,抗体是全长抗体。本文“全长抗体”的意思是构成抗体的天然生物形式的结构,包含可变和恒定区,任选地包含如此项技术中已知的一个或多个胺基酸修改。替代地,抗体可以是多种结构,包含但不限于抗体片段、单克隆抗体、双特异性抗体、微型抗体、结构域抗体、合成抗体(在本文中有时被称作“抗体模拟物”)、嵌合抗体、人类化抗体、抗体融合(有时称为“抗体轭合物”)以及分别每一种的片段。特异性抗体片段包含(但不限于)(i)由VL、VH、CL和CH1结构域组成的Fab片段,(ii)由VH和CH1结构域组成的Fd片段,(iii)由单个抗体的VL和VH结构域组成的Fv片段;(iv)由单个可变组成的dAb片段(Ward等人,1989《自然》341:544-546,以完全引用的方式并入),(v)隔离的CDR区,(vi)F(ab')2片段,包括两个链接Fab片段的二价片段,(vii)单链Fv分子(scFv),其中VH结构域和VL结构域由肽连接子链接,其允许所述两个结构域关联以形成抗原结合位点(Bird等人,1988《自然》242:423-426,Huston等人,1988《美国国家科学院院刊》85:5879-5883,以完全引用的方式并入),(viii)双特异性单链Fv(WO 03/11161,由此以引用的方式并入),以及(ix)“双功能抗体”或“三功能抗体”,通过基因融合构造的多价或多特异性片段(Tomlinson等人,2000《酶学方法(Methods Enzymol.)》326:461-479;WO94/13804;Holliger等人,1993《美国国家科学院院刊》90:6444-6448,全部以完全引用的方式并入)。可以修改抗体片段。举例来说,可以通过并入链接VH和VL结构域的二硫化物桥键来使分子稳定(Reiter等人,1996《自然生物技术(Nature Biotech.)》14:1239-1245,以完全引用的方式并入)。
如本领域的技术人员还将理解,核酸TM能够并入到质粒和/或表达载体中,包含额外组分,包含但不限于表达促进剂。
在一些实施例中,递送系统可以包含被配置成将TM递送到电穿孔位置的棒递送系统。递送系统可以包含界定第一管腔的至少一个注入探头,且注入探头可以是圆柱形形状且在注入探头的末端具有针尖。针尖可以是中空的且具有开放末端以用于将TM递送到电穿孔位置。在一些实施例中,TM注入到由EPE界定的外周边的中间,且使用本文所描述的任何EP装置电穿孔到电穿孔位置中的细胞中。
应理解,组织的EP能够在活体外、活体内或活体外执行。EP也可以利用单个细胞执行,例如单细胞悬浮液、活体外或在活体外在细胞培养物中。
EP棒外壳,例如棒外壳12被抓握且EPE插入到组织中达到所需深度。随后,如本文中所描述的合适的产生器或电力供应器连接到EPE且适当电压施加于EPE对中的每一个。合适量的例如用于组织治疗的合适化学品或药品的基因或分子等治疗部分随后使用上述棒递送系统注入到组织中,然后施加EP脉冲。
在一些实施例中,递送系统可以包含界定第一管腔的至少一个注入探头,且所述注入探头可以是圆柱形形状且在注入探头的末端具有针尖。针尖可以是中空的且具有开放末端以用于将治疗部分递送到电穿孔位置。在一些实施例中,治疗部分注入到由电穿孔电极对A和B界定的外周边的中间,且使用本发明的EP装置电穿孔到电穿孔位置110中的细胞中。
C.电穿孔方法
本发明的各种实施例是针对使用电穿孔系统,例如本发明的系统10(在图9中说明)在组织的电穿孔位置中电穿孔细胞的方法。本发明的各种实施例是针对聚焦脉冲加法电穿孔的使用。本文的“聚焦脉冲加法(FPA)电穿孔”的意思是通过至少第一和第二对电穿孔电极将短电场脉冲施加到电场区以在细胞膜中产生瞬时性孔隙而不会对细胞造成永久性损伤。“电穿孔细胞”包含在细胞薄膜中具有瞬时开放的孔隙的那些细胞,其在细胞膜上的电荷耗散时关闭(“开放孔隙细胞”),以及已经历电穿孔以使得细胞现在含有外生添加的治疗部分且具有关闭孔隙(例如,再次完整)的那些细胞。
本文的“电穿孔电极对”的意思是由两个电极组成的对,其当连接到电力供应器时被配置成相反地带电。所述方法可以包含将电穿孔棒外壳12接触到组织以使得电场区100由电穿孔电极对A和B所包含的区域界定,如图中所说明。第一和第二对电穿孔电极可以在电穿孔棒外壳12内静止或可缩回。电穿孔棒外壳12可进一步包含具有多个滑动插座的电路板16,电穿孔电极A和B通过所述插座而可滑动地缩回和延伸。电极对A和B安装在与指示器或量规11可滑动地接合的电穿孔外壳12中。在电穿孔棒外壳12沿着量规11移动时,其交替地延伸和缩回电极对A和B,如图2中所说明。装置指示器或量规11可以提供电极对A和B的延伸长度的指示。电穿孔系统可进一步包含电连接器14以将第一A和第二B电极对中的每一个电连接到电力供应器18,例如脉冲产生器。所述电连接器取决于电穿孔电极的数目而包含四个或更多个导线,用于将电信号从电力供应器传送到电穿孔电极中的每一个。这些信号可以包含针电压设定点、脉冲宽度、脉冲形状、脉冲的数目以及切换顺序。如本领域的技术人员将了解且下文更完整描述,EP电极还可以充当CS或EIS电极,在此情况下第二低电压电力供应器与适当切换机构一起使用以允许递送较高电压EP信号,并且然后递送较低电压CS或EIS信号。
在本发明的一些实施例中,电穿孔电极对A和B中的一个或多个可以是非穿透电极,其可以或可以不具有开放远端以用于将治疗部分施予组织,如图11中所说明。非穿透电极可以是任何合适形状导体,例如用以接触表面组织的按钮或板。注入器可以彼此间隔关系安置且与主体的组织的表面区紧密接触。非穿透电极的与组织表面接触的部分是导电的且通过电连接器14电连接到电力供应器18,以使得通过完成非穿透电穿孔电极的导电远端之间的电路而递送电流通过组织的区来实现电穿孔。
在一些实施例中,如图12中所说明,可以使用多于两对电极且可以相应地调整偏移角。电极的数目越大,所有电极对的电场穿过的电穿孔位置变成聚焦越多。此外,大数目的电极对允许来自每一电极对的较短脉冲,进而大体上减小或甚至消除在“烧除区”中在电极周围的细胞死亡和灼烧。
包围EP电极的组织有时称为“烧除区”。“烧除”区的意思是区域由紧邻于和/或接触个别电极中的每一个的组织占据。其称为“烧除”区是因为细胞与电极直接接触,所述电极由于来自电力供应器的高电压信号而受热,且因此细胞因过热而经受损伤。然而,通过使用本发明的交替脉冲系统,对烧除区中的细胞的损伤能够通过使热和场减少50%(在两个集合的电极的情况下;如果使用更多集合则更多)而最小化。另外,由于电场强度在电极处聚焦/增加,因此较高电压会以独立于热的方式造成EP介导细胞死亡。
在一些实施例中,如图13中所说明,第一和第二对电极可以进一步连接到EP电力(EPP)供应器,其能够为每一相应电穿孔电极对供应各种波形的电信号。即,所述电力供应器可以是适合于波形产生的高电压电力供应器。第一对电穿孔电极A可以由电力供应器供应与供应到第二对电穿孔电极B的波形具有预定相位差的波形。举例来说,第一和第二对电穿孔电极可以分别从电力供应器的第一波形产生器和第二波形产生器接收波形,所述波形具有180度的相位差,如图13和图14A和图14B中所示的矩形电极对A波形和电极对B波形所说明。如本领域的技术人员将了解且下文更完整描述,当电容感测完成时,任选地使用低电压电力供应器。
所述方法可以包含将电穿孔棒外壳12接触到组织以使得电场区100由电穿孔电极对A和B所包含的区域界定,如图10和图14A和14B中所说明。在一些实施例中,电穿孔方法可进一步包含以第一波形将产生的第一信号从电力供应器施加到第一对电穿孔电极A且以第二波形将第二信号从电力供应器施加到第二对电穿孔电极B,其中第一波形具有与第二波形的预定相位差。
电穿孔系统10在操作期间发送多个独立电信号到选定电极对A和B,所述电极对当接触组织时会造成细胞膜中的电穿孔。当第一和第二电极对A和B与组织电接触时,具有第一频率的第一电信号和第二电信号组合以产生恒定波形,其具有足以临时开放细胞的孔隙的频率和振幅以用于治疗部分任选地引入到组织的细胞中而不会永久地损伤细胞且最小化疼痛。
组织的性质、选定组织的大小及其位置可以决定将产生的电信号的性质。希望电场尽可能均质且具有正确振幅。过量的电场强度可以导致细胞死亡,而低场强度可以导致细胞的低效电穿孔,因此递送试剂进入细胞的效率减小。
所述方法可进一步包含从第一对电穿孔电极A将脉冲电场施加到电场区100,所述脉冲电场是基于第一信号,其中第一对电穿孔电极A的所述脉冲电场和每一后续脉冲电场具有低于用于电穿孔的最小阈值的电压和持续时间。接着,从第二对电穿孔电极B将另一脉冲电场施加于电场区100,所述另一脉冲电场是基于第二信号,其中第二对电穿孔电极B的所述另一脉冲电场和每一后续脉冲电场具有低于用于电穿孔的最小阈值的电压和持续时间。
在一些实施例中,第一和第二脉冲电场是从由以下各项组成的群组中选择:方波脉冲、指数波脉冲、有限持续时间的单极振动波形式,以及有限持续时间的双极振动波形式。
根据本发明的方法,第一和第二对电穿孔电极A和B的脉冲电场的路径在电穿孔位置110处交叉,且第一对电穿孔电极的每一脉冲电场对电穿孔位置的施加与第二对电穿孔电极的每一脉冲电场对电穿孔位置的施加交替,而合计为具有足以用于对电穿孔位置中的细胞施加电穿孔的电压和持续时间的连续脉冲电场,如图14A和14B中所说明。
另一方面,第一对电穿孔电极的每一脉冲电场对邻近于第一对电穿孔电极且在电穿孔位置之外的组织的施加与静置周期交替,以使得邻近于第一对电穿孔电极且在电穿孔位置之外的组织从第一对电穿孔电极接收交替的接通和断开的脉冲电场,其具有低于用于电穿孔的最小阈值的电压和持续时间。其中第二对电穿孔电极的每一脉冲电场对邻近于第二对电穿孔电极且在电穿孔位置之外的组织的施加与静置周期交替,以使得邻近于第二对电穿孔电极且在电穿孔位置之外的组织接收第二对电穿孔电极的交替的接通和断开的脉冲电场,其具有低于用于电穿孔的最小阈值的电压和持续时间,如图14A和14B中所说明。
因此,本发明的电穿孔方法产生的优点是在电穿孔位置之外但在电场区100内的健康细胞经受电脉冲的持续时间仅为在电穿孔位置中的那些细胞的一半且不足以用于电穿孔,这些细胞维持最小损伤到无永久性损伤。此外,由于在电穿孔位置110外部但在电场区100内的细胞仅经受短脉冲,因此这最小化对“烧除”区中紧邻电穿孔电极的细胞的损伤程度。
组织的性质、选定组织的大小及其位置可以决定将产生的电信号的性质。希望电场尽可能均质且具有正确振幅。过量的电场强度可以导致细胞死亡,而低场强度可以导致细胞的低效电穿孔,因此递送试剂进入细胞的效率减小。
在一些实施例中,脉冲电场是从由以下各项组成的群组中选择:方波脉冲、指数波脉冲、有限持续时间的单极振动波形式,以及有限持续时间的双极振动波形式。
根据本发明的各种方法,如图10中所说明,第一和第二对EPE A和B的脉冲电场的路径在电穿孔位置110处交叉,且第一对EPE的每一脉冲电场对电穿孔位置110的施加与第二对EPE的每一脉冲电场对电穿孔位置110的施加交替,而合计为具有足以用于对电穿孔位置110中的细胞施加电穿孔的电压和持续时间的连续脉冲电场,如图14A和14B中所说明。
V.优选装置实施例
(i)一体化EP装置
因此,本发明提供用于治疗部分向患者的组织中的细胞的改进递送的设备和方法。描述用于治疗部分向组织的治疗区中的细胞的改进递送的一体化装置。所述装置至少包含具有内表面的螺旋探头1702,在一些实施例中,所述螺旋探头可以是中心探头,如图17A中所说明,且在一些实施例中,可以包含至少一个额外探头1702,如图18A和18B中所说明。中心探头和额外探头中的每一个可以界定一个或多个中心管腔1704(例如,第一中心管腔)。
第一中心管腔1704从中心探头1702的近端1706延伸到远端1708。在一些实施例中,中心探头的近端可以由不导电材料形成或涂覆有不导电材料以防止或减少在近端处的电场的产生。中心探头1702的近端1706可以界定开口以将中心管腔与注入器的管腔流体连接,通过所述注入器可以将治疗剂递送到中心探头1702。在一些实施例中,中心探头的远端1708也界定开口以用于将治疗部分递送到组织中。替代地,远端1708可以关闭,如图22A到22C中所说明。中心探头1702的远端的一个或多个部分可以具有被配置成刺穿组织的形状。
中心管腔1704或中心管腔的部分包含螺旋几何形状,其被配置成增强中心探头在组织中的锚定且产生通道1734以用于经由定位在中心探头1702上的喷射端口将TM递送到组织。举例来说,中心探头1702的部分可以包含沿着所述几何形状定位的一个或多个喷射端口1710,例如如图17B中所说明。
在一些实施例中,中心探头1702可以至少部分地容纳于施加器1712中。所述施加器可以包含远端,中心探头的部分通过所述远端延伸到施加器1712之外以接触组织以及缩回到施加器1712中。举例来说,EP装置可以包含致动器以使中心探头1702前进朝向且通过施加器的远端且通过组织1714。
沿着中心探头的内部和/或外表面界定的一个或多个直径可以是可调整的,以改变所递送治疗部分的分布和体积。类似地,中心探头的螺旋直径和间距是可调整的,以改变所述递送治疗部分的分布和体积。
在一些实施例中,EP装置还可包含电连接器1716以用于将中心探头1702电耦合或连接到电力源。所述电连接器可以包含或容纳于手柄1718中。
在一些实施例中,EP装置还可包含电穿孔系统,其包含两个或更多个相反带电的电穿孔电极(EPE)1720。所述两个或更多个电极被配置成经过定位以使得它们在治疗期间大体上包围治疗区1722。电极1720适于从近端延伸到远端。电极的远端的尖端1724中的一个或多个包含针形状以用于刺穿组织。电极可以耦合到电极电力供应器(例如,在图16中说明的产生器A)以使得电极从所述电力供应器接收一个或多个电波形,用于供应电脉冲1730以产生足以用于对治疗区1722进行如图14A中所说明的电穿孔的脉冲电场。
类似于中心探头,电极可以容纳于施加器中。电极1720可以定位在中心探头1702周围且被配置成从施加器1712展开到治疗区1722。举例来说,电极可以从施加器朝向治疗处前进以及缩回到施加器中。
在一些实施例中,电极的前进和缩回可以由包含在手柄1718中的电力供应器接口供电。举例来说,电力供应器接口可以供应电力以致动中心探头1702和EPE 1720的延伸和缩回。
在其它实施例中,如图19中所说明,中心探头1702可以包含定位在中心探头1702的螺旋几何形状上的电极。在这些实施例中,电极可以与中心探头1702一体地形成或可以可装卸方式安置于其上。中心探头1702上的电极可与电极1720组合使用以产生所需的电场配置。
在其它实施例中,如图20A和20B中所说明,中心探头可以是电极探头1750,其连接到电极电力供应器,例如图16的产生器A,以使得电场产生于中心探头1750与EPE 1720之间以促进电穿孔。在一些实施例中,如图20A中所说明,中心探头1750可以包含螺旋刀片以用于产生通道且用于中心探头1750在组织中的更好锚定。图20B是由多个电极1720包围的中心1750的示意图,且图20C是图20B的仰视图图示。
所述一个或多个中心探头可以包含与本文的中心探头1720类似地界定的第二螺旋探头。在此情况下,第二探头供应第二通道以用于治疗部分向组织的递送。
在一些实施例中,如图22A中所说明,一个或多个远侧电极1752可以定位在施加器1712的远端。这些远侧电极1752可以被配置成以中心探头1702的一个或多个部分产生电场。所述一个或多个远侧电极可以基于环配置、笔直线配置、螺旋线配置或可收缩的环配置而配置。如所提到,所述装置可以包含位于中心探头的一个或多个部分上的喷射端口。远侧电极可以被配置成定位在组织外部以在外部产生组织所经受的电场。替代地,远侧电极1752可以被配置成定位在组织的表面下方。在一些实施例中,如图21中所说明,远侧电极1754可以基于螺旋线配置而形成以使得螺旋线电极定位在组织的表面下方。中心探头1702的螺旋和远侧电极1754的螺旋可以在相反方向上卷绕,如图21中所说明。
在一些实施例中,本文所描述的电极(包含远侧电极)容纳于施加器1712中在中心探头1702周围以使得它们能够相应地从施加器1712展开而大体上包围治疗区。
在其它实施方案中,探头中的一个不包含螺旋几何形状。举例来说,探头中的一个是笔直探头,其具有开放的近端和远端以用于治疗部分向组织的递送。所述笔直探头的垂直轴线与中心探头的直径的中心轴线同轴地对准。所述笔直探头可以被配置成以中心探头的部分产生电场。具有螺旋几何形状的中心探头可以被配置成传送从安装到施加器的远端的声学喇叭接收的声能。
a.传感器系统
在一些实施例中,本发明可以包含传感器系统。如本领域的技术人员将了解,当细胞薄膜断裂时发生成功电穿孔,从而导致电容改变。当经受电场时,细胞大体上充当电容器。当电场施加足够长的周期(取决于细胞性质、健康、大小等)时,电荷在细胞膜处积聚直到其到达某一阈值且造成薄膜完整性的破坏为止。电容传感器系统可以是低电压询问或激励电路,可以包含由低电压电力源供电的一对电容感测电极、电压传感器、电流传感器以及电子信号处理装置以处理电压和电流以确定区中的细胞的平均电容。
在这些实施例中,传感器系统用于执行组织的细胞膜的阻抗测量,且包含由低电压电力供应器(例如,在图16中说明的产生器A)供电的一对电容感测电极(例如,电极1720)。传感器系统可进一步包含被配置成感测跨越细胞膜的电压或电压降的电压传感器(集成到电极1720、1752和/或1754中)。另外,传感器系统可以包含被配置成感测跨越细胞膜的电流的电流传感器(集成到电极1720中)以及电子信号处理装置,例如在图15中说明的控制器1505。电子信号处理装置(例如,控制器1505)处理跨越细胞膜的电压降和电流以确定细胞膜的阻抗。
在一些实施例中,上述用于感测阻抗的方法(EIS)可以包含施加例如锁相环、方波脉冲、高频脉冲、线性调频脉冲等波形,如下文更完整描述。当暴露于电场时,细胞膜充当电容器。可以响应于低电压询问电路的低频电场激发基于细胞中的电荷再分布而测量电容,且从电容可以导出阻抗测量值。可以在施加电穿孔电场之前、之间和之后测量电容以确定细胞条件,包含但不限于细胞健康、用于最佳电穿孔的电极相对于细胞的放置,以及最重要的是时间常数,其可用以确定将施加于电场区中的细胞的电场的脉冲宽度。一般来说,将电容器充电到其最大值,即恰在电穿孔发生之前,花费五个时间常数的周期,因此初始电穿孔电场脉冲的脉冲宽度可以设定成5倍时间常数。此脉冲宽度不足以造成在电穿孔位置之外的细胞中的电穿孔,如上文所描述,但足以造成经受来自正作为一个连续电场施加的所有集合电穿孔电极的电场的相加效应的电穿孔位置中的组织的细胞中的电穿孔。可以在第一电穿孔电场已经施加之后重复电容测量,且可以计算电容的百分比下降且与预定值进行比较以确定电穿孔位置中的细胞是否已经充分电穿孔。如果不是,那么可以基于计算出的电容百分比下降针对下一集合电穿孔脉冲电场调整脉冲宽度直到确定电穿孔位置中已发生足够电穿孔为止。
电子信号处理装置(例如,控制器1505)可以将组织阻抗数据拟合于等效电路模型,即上述基于CPE的组织模型,以便预测接下来的最佳脉冲参数。如上文所描述,电阻抗是在一频率范围上的电阻性和电容性元件的总和,因此为了量化这些参数中的每一个,组织阻抗数据可拟合于基于CPE的组织模型。因此,通过具有集成传感器的电极1720、1752和1754在脉冲之间进行的电容测量允许基于与细胞膜电容相关联的时间常数调整电条件,例如脉冲宽度,且当达到电容或薄膜完整性的理想下降时可停止电穿孔过程。假设对组织的电性质的实时监视将实现对EP参数的反馈控制且导致异构肿瘤中的最佳转染。使用EIS反馈将允许(1)实时调整递送参数,(2)仅产生治疗响应所必要的脉冲的递送,以及(3)减少总体EP介导的组织损伤。
b.治疗部分递送方法
本发明的各种实施例是针对用于使用递送装置将治疗部分递送到组织的治疗区中的细胞的方法,所述递送装置集成到具有电极的EP装置中,例如具有喷射端口1710的中心探头1702,或具有喷射端口1751的中心探头1750。在一些实施例中,用于将治疗部分递送到组织的治疗区的方法可以包含提供具有中心探头的EP装置作为递送装置。在一些实施例中,递送装置包含具有内表面的中心探头1702、1750,所述内表面界定至少第一中心管腔且从中心探头1702、1750的近端延伸到远端。在一些实施例中,递送装置1702的至少一部分具有螺旋几何形状,其被配置成增强递送装置1702在组织中的锚定且产生通道以用于治疗部分向组织的递送。中心探头递送装置1702的部分可以具有沿着螺旋几何形状定位的多个喷射端口,其中中心探头递送装置1702的近端是开放的且将治疗剂所递送到的中心管腔流体地连接到细胞或组织。中心探头递送装置1702的远端是开放的以界定开口/喷射端口1710以用于将治疗部分递送到组织中,且具有被配置成刺穿组织的形状。
在其它实施例中,图20A到20C中说明的中心探头递送装置1750具有笔直管形状,其包含具有螺旋几何形状的刀片1753,其被配置成增强递送装置1750在组织中的锚定且产生通道以用于治疗部分向组织的递送。中心探头递送装置1750的至少一部分可以具有定位在其上的至少一个喷射端口1751以将治疗剂所递送到的中心管腔流体连接到细胞或组织。
所述方法进一步包含将中心探头接触到组织的治疗区中的患病细胞,在轴向方向上从施加器致动且延伸中心探头递送装置1702、1750,以中心探头递送装置1702、1750的至少一部分刺穿组织且产生开口,中心探头的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道,将治疗部分注入到中心管腔中且通过中心探头的所述至少一个喷射端口1751和开放远端将治疗部分递送到组织。
在一些实施例中,所述方法进一步包括提供包括至少两个相反带电的电穿孔电极的电穿孔系统或装置,例如被配置成包围组织的区而定位的电极1720,其中电穿孔电极适于从近端延伸到远端,所述远端的尖端具有被配置成刺穿组织的针形状,且电穿孔电极适于耦合到电力源。所述方法进一步包括使组织的区与电穿孔电极接触,从电力源将电脉冲递送到电极,以及从电穿孔电极将足以用于电穿孔的脉冲电场施加到所述区。
在一些实施例中,用于将治疗部分递送到组织的治疗区的方法包括提供用于将治疗部分递送到组织的治疗区的装置。所述方法进一步包括将中心探头(例如)1702和远侧电极1752接触到组织的治疗区中的患病细胞,在轴向方向上从施加器致动且延伸中心探头1702和远侧电极1752,以远侧电极1752且以中心探头1702的至少一部分刺穿组织且产生开口,中心探头的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道1734,将治疗部分注入到中心管腔1704中且通过中心探头的喷射端口和开放远端中的至少一个将治疗部分递送到组织,从电力源将电脉冲递送到远侧电极和中心探头,从远侧电极和中心探头将足以用于电穿孔的脉冲电场施加于所述区,以及从组织缩回远侧电极1752和中心探头1702。
在一些实施例中,如上文所描述,用于将治疗部分递送到区的方法可进一步包含将EPE耦合到电力源,使组织的区与EPE接触,从电力源将电脉冲递送到电极,以及从EPE将足以用于电穿孔的脉冲电场施加到组织的区。本发明的实施例对本发明的递送方法添加打开细胞的孔隙的优点,进而允许细胞吸收较大体积的治疗部分且产生较好的治疗结果。
在一些实施例中,脉冲电场是从由以下各项组成的群组中选择:方波脉冲、指数波脉冲、有限持续时间的单极振动波形式,以及有限持续时间的双极振动波形式。
在一些实施例中,如上文所描述,用于将治疗部分递送到区的方法可进一步包含与用于电穿孔参数的优化的电穿孔系统和方法结合而提供电容感测系统和方法,如下文更详细描述。当暴露于低频、低强度电场时,细胞大体上表现为由离子云包围的绝缘结构,所述离子云补偿存在于薄膜中的固定电荷。电场极化离子云且产生电偶极,这致使细胞充当电容器。健康细胞充当比具有受损薄膜结构的死亡或疾病细胞强的电容器,进而导致细胞与电容感测电极之间的较强电容性耦合。因此,这些性质可以用作细胞的薄膜完整性的指示,这又将产生细胞的电穿孔程度的确定。
用于将治疗部分递送到组织的区的方法可进一步包含感测组织的细胞膜电容以便优化电穿孔过程。
在一些实施例中,本发明的方法可以包含使组织的区中的组织与所述对电容感测电极(例如)1720接触。电连接到电容感测电极的低电压电力供应器(例如,产生器A)用以将低电压询问信号施加到电容感测电极。用于感测电容的方法可以包含(但不限于)例如锁相环、方波脉冲、高频脉冲和线性调频脉冲等波形。电压传感器和电流传感器用以感测电压降和流动通过电路的电流,且这些参数接着可由电子信号处理装置处理以确定测量区域中的所有细胞的平均电容。如上文所描述,测得的电容是细胞的健康程度的指示符,且用以确定施加多长的电脉冲以便破坏细胞膜且提供足以用于电穿孔的条件。
图23A、图23B和图23C、图23D、图23E和图23F说明根据本发明的带有具有如上文所描述的螺旋几何形状的中心探头的多种EP装置。
(ii)基于套管针装置EP装置
因此,本发明提供用于对身体内不容易接达的腔的改进的EP的系统。图24A、图24B和图24C说明根据本发明的基于套管针的直接棒施加器EP系统。基于套管针的直接棒施加器EP系统装置设计允许向皮肤电穿孔装置不可接达的肿瘤的免疫治疗剂基因递送。这些情况的实例是肺、肝、乳房或任何肿瘤在皮肤下方超过10cm的情况。EP系统提供DNA和电场的改进共同定位的优点以用于高效基因递送和用户引起的变化的减少。
在一些实施例中,用于主体的组织中的细胞的电穿孔(EP)的系统可以包含套管针,其包含插管2402和闭孔器2404,以及在插管2402内可滑动地安装和缩回以接达细胞或组织的EP装置2406。在一些实施例中,插管2402从近端延伸到开放远端2408且界定被配置成接收闭孔器2404的第一管腔,且所述闭孔器从近端2410延伸到远端2412。闭孔器的近端可以包含安装在其上的手柄,且闭孔器的远端可以包含刀片或尖锐末端2414,其被配置成刺穿通过皮肤,穿透到身体腔中,且形成插管2402可以至少部分地通过其插入到身体腔中的路径。在一些实施例中,闭孔器2404被配置成可在第一管腔内滑动,且闭孔器的远端2412被配置成通过2402插管的开放远端延伸到第一管腔之外。
在一些实施例中,EP装置2406包含从近端延伸到远端2420的锚定件2418,至少两个相反带电的电极2422,可回缩地安置在锚定件的远端2420处的中心探头2424(其可以与具有开放远端1708的螺旋探头1702相同的方式配置)。在一些实施例中,所述至少两个相反带电的电极2422可回缩地安置在锚定件2418的远端2420处且被配置成包围靶细胞的区而定位,例如图17A的区1722。在一些实施例中,测量装置耦合到电极。电极适于耦合到产生器,例如图16的产生器A,从产生器接收至少一个电波形,且将激励信号和EP脉冲中的至少一个供应到区中的组织。中心探头可以具有界定至少中心管腔的内表面且从锚定件的远端延伸。中心探头2424的至少一部分可以具有螺旋几何形状,其以与关于本发明的17A到22C描述的类似方式被配置成增强中心探头在组织中的锚定且产生用于治疗部分向组织的递送的通道。中心探头2424的远端2428可以开放以界定用于治疗部分向组织的递送的开口且可以具有被配置成刺穿组织的形状。当中心探头展开时,锚定件2418可以耦合到中心探头2424的近端。
在一些实施例中,中心探头2424的每一螺旋可以从1mm直径到6mm直径变动,通常从约1mm到3mm,更通常从1.2mm到2.3mm,且在某些情况下近似1.5mm。在一些实施例中,电极可以间隔开从2mm到10mm,更通常从2mm到5mm,且在一些情况下近似2mm。在一些实施例中,中心探头的长度和电极的长度可以从5mm到15mm变动,更通常7mm到10mm,且在某些情况下近似8mm。虽然在某些范围的方面陈述,但将理解从下限的最低到上限的最高的所有范围包含在这些完整范围或任何具体陈述的范围内,包含所有中间范围或特定测量值。
在一些实施例中,锚定件被配置成通过12ga活检针配合以便实现经由活检针到达10cm深度。以此方式,EP装置可以锚定到软肿瘤以用于DNA的增加分散。本发明的EP装置提供的优点是,为了实现350V/cm的场强度,仅需要跨越电极之间的2.5mm间距施加87V。此量值的电场强度已经与TM递送的显著增强相关联。
在一些实施例中,闭孔器2404的刀片或尖锐末端2414被配置成通过插管2402的远端2408处的开口延伸到插管2402之外。EP装置电极2422可以适于从近端延伸到远端,远端的尖端可以具有被配置成刺穿组织的针形状,且电极2422可以适于耦合到产生器,从产生器接收至少一个电波形,且将激励信号和EP脉冲中的至少一个供应到靶细胞的区。
本发明的各种实施例是针对提供用于将治疗部分递送到组织中的细胞的方法以及使用前述实施例的EP装置对细胞的EP。在一些实施例中,所述方法包括(i)将中心探头插入到锚定件装置,(ii)展开电极,(iii)部分地撤回中心探头,以及(iv)将治疗部分注入到中心探头的管腔中以用于通过其远端将治疗部分递送到组织。在一些实施例中,所述方法可进一步包含(v)撤回中心探头;以及(vi)从产生器1530将电脉冲施加到电极以用于电穿孔;以及(vii)移除装置。
(iii)用于改进的治疗剂递送的装置
因此,本发明提供用于治疗部分向患者的组织中的细胞的改进递送的设备和方法。图25到33说明根据本发明的用于改进的治疗剂递送的EP装置。
如图27中所描绘,EP装置包括中心探头2710,其具有界定第一中心管腔2715的内表面2712,至少一个取道线2720通过所述第一中心管腔可延伸到中心探头2710之外以及可缩回到第一中心管腔2715中。中心探头2710进一步包含退出端口2730,其将第一中心管腔2715流体地连接到中心探头2710的外部且注入的治疗部分通过所述退出端口从第一中心管腔2715流动到细胞中的通道中。EP装置还包含斜坡2760,其与中心探头的内表面一体地形成或耦合以将取道线2720导引到中心探头2710之外而到达疾病组织或细胞。
在一些实施例中,中心探头2710具有闭合的远端和近侧管腔。探头2710的远侧尖端以被设计成用于刺穿组织的任何形状塑造。在远侧尖端的近侧,退出端口2730将第一中心管腔2715暴露于中心探头/针2710的外部。也具有塑造于其远侧尖端中的刺穿特征的取道线2720被设定大小以使得其在第一中心管腔2715内可滑动且通过退出端口2730退出。取道线2720适于前进到肿瘤的组织中且产生通过组织的通道,所述通道充当用于在程序中的稍后时间注入的治疗部分的流体路径。取道线2720由中心探头2710内的斜坡2760向外引导,如图25到33中所说明。取道线2720适于缩回于中心探头2710中且EP装置可以旋转到新定向。取道线2720可以重复地前进到细胞中以产生额外通道用于治疗部分递送。由取道线2720产生的通道增强注入的治疗部分在组织中的保持,且允许比从相似大小的典型针/注射器所可能的情况更大的体积的注入。
在一些实施例中,EP装置可进一步包含手柄,其使得中心探头/针2710和取道线2720的延伸、缩回和旋转自动化以促进足够深度穿透。
在其它实施例中,例如图25和26的基于导管或内窥镜EP装置,EP装置将包含如主要实施例中所描述的相似中心探头/针2710。
在其它实施例中,例如图30的EP装置,EP装置将包含如主要实施例中所描述的相似中心探头/针2710。此实施例将具有多个退出端口2730,多个取道线通过所述端口可以同时退出装置。
在如图29中所说明的一些其它实施例中,取道线2720包括具有塑造于远端中的切割刀片2773的线。所述刀片可延伸到肿瘤中,随后旋转以便在肿瘤中产生圆盘状切口以形成通道,治疗部分通过所述通道递送到细胞。
在又一实施例中,如图31中所说明,中心探头具有类似于典型注射器/针的开放远端。取道线2720可以由形状记忆合金形成,例如超弹性材料(例如,镍钛诺),以使得曲线热定形到线中(有时称为“形状记忆体”)。当取道线在中心探头2710中时,线被弹性地拉直。在从中心探头/针退出后,即刻允许取道线2720返回到其弯曲形状,如图31中所说明,因此产生从装置向外延伸的通道。
在又一实施例中,如图30中所说明,EP装置包括注入探头2745,其在其远端具有注入针以用于注入治疗剂,以及中心探头2755,其具有用于导引取道线2720的单独管腔。中心探头2755的内表面2712可以含有斜坡2760,例如图25、29和30中所说明,用于从中心探头2755向外导引取道线2720到肿瘤内部。产生两个管腔的两个部件通过适合于其构造材料的方法并排结合。举例来说,如果两个管腔由金属制成,那么它们可以点焊接在一起,且如果两个管腔由例如硬塑料等材料制成,那么所述两个管腔可以超声波焊接在一起。替代地,可以利用一体形成的多管腔的单个部件来实现同一目的。这种配置在治疗部分需要较大注入管腔用于递送的治疗中产生优点。
参考图27,根据本发明的一些实施例的用于治疗部分向组织中的细胞的改进递送的设备进一步包含:电连接器2770,其将中心探头2710和取道线2720电连接到电力源2780;小孔隙连接器2795,其被配置成将中心探头2710连接到用于治疗部分的递送的注射器;以及手柄2790,其容纳电连接器2770且耦合到中心探头2710和取道线2720的近端以促进中心探头所述取道线2710的远端的穿透深度。
如图26、图27、图28和图29中所说明,中心探头2710在垂直方向上向外从其近端延伸到闭合的远端,且在远端被配置有针形状以提供进入肿瘤/组织的初始穿透。中心探头2710的内表面2712界定第一中心管腔2715且被配置有斜坡2760,所述斜坡从EP装置向外导引取道线2720。第一中心管腔2715提供用于注入的治疗部分在递送到疾病细胞或组织之前流动所沿着的路径。
在一些实施例中,退出端口2730定位在中心探头2710的侧表面上处于距其远端的预定距离处,治疗部分通过所述退出端口递送到疾病细胞或组织。退出端口2730将中心管腔流体地连接到所述中心探头之外。中心探头2710可以由低导电材料形成,其在远端处涂覆有绝缘(不导电)材料以便避免干扰可以使用EPE任选地施加的电场,以便促进治疗部分由细胞摄入。中心探头2710可以测量从约1mm到约10mm,这取决于待治疗组织的几何形状和生理情况以及取道线2720和EPE 2750需要插入到组织中多深。
在一些实施例中,取道线定位在中心管腔中且可在中心探头内滑动。取道线可以具有定位在中心探头中的近端以及具有针形刺穿的远端,其被配置成通过退出端口2730延伸到中心探头之外以到达且穿透疾病细胞且产生流体通道,治疗部分可以通过所述流体通道递送到组织。取道线可以在远端由涂覆有导电材料的低导电材料或绝缘(不导电)材料形成,以便避免干扰可以使用EPE任选地施加的电场。取道线2720可以测量从约1mm到约20mm,这取决于待治疗组织的几何形状和生理情况以及取道线2720和EPE2750需要插入到组织中多深。
如图29中所说明,斜坡可以与中心探头的内表面2712一体地形成或耦合,且可以适于接触且导引取道线退出中心探头到中心探头的外部。斜坡2760可以在预定角度形成或耦合到中心探头的内表面,所述预定角度可以或可以不基于取道线2720到达疾病细胞所必要的延伸角度而调整。
参考图27,为了将电力供应到EP递送装置,电连接器2770将中心探头2710和取道线2720电连接到电力源2780。在一些实施例中,所述电力源可以是例如本发明的图16中说明的产生器等产生器。所述电力源可以是高电压电力源以便促进高电压电脉冲施加到任选的EPE以用于对疾病细胞的开放孔隙产生电场。
手柄2790至少部分地容纳电连接器2770,且耦合到中心探头和取道线的近端以促进中心探头和取道线的远端的穿透深度。手柄190可以提供各种组件(例如,取道线、第一中心管腔)的近侧终止点、中心探头2710和小孔隙连接器配件2795的连接点。手柄还充当到装置的主要用户接口,且可以包含一个或多个用户输入按钮,所述按钮电连接到取道线和/或任选的电极以用于取道线和/或任选电极的致动或展开。手柄还容纳连接到电力源2780的电连接器2770。手柄允许对装置的定向和方向的控制,展开和缩回取道线,展开和缩回中心探头/针,展开和缩回任选的电极,远程触发电穿孔脉冲的递送(任选)。另外,如上文所描述,手柄被配置成促进针、取道线和电极的穿透深度。
在一些实施例中,手柄2790经成形以便于医生使用,例如具有模制手柄部分或握把、在远侧末端的任选的照明元件、用于观测和记录治疗位点的相机、活组织检查镊、组织剪刀、接合装置、缝合系统等。
另外,电极2750和手柄2790优选地由能够被除菌的材料以及在电极阵列和棒外壳将再使用的情况下类似地使微生物截留最少的配置制成。在一些实施例中,至少电极阵列是一次性的,且在一些实施例中,整个手柄也是一次性的。
在一些实施例中,如图25和26中所说明,EP递送装置可进一步包含导管轴杆,其包围中心探头的外表面以在插入到具有组织的身体中期间支撑且保护中心探头,如图8中所说明。
a.电穿孔电极
如上文所描述,EPE 2750电连接EP电力供应器2780。电连接器2770可以包含四个或更多个导电线(取决于EPE的数目)用于从电力供应器将电信号传送到EPE中的每一个。这些信号可以包含针电压设定点、脉冲宽度、脉冲形状、脉冲的数目以及切换顺序。如本领域的技术人员将了解且下文更完整描述,EP电极还可以充当电容感测(CS)或阻抗感测(EIS)电极,在此情况下第二低电压电力供应器与适当切换机构一起使用以允许递送较高电压EP信号,并且然后递送较低电压CS或EIS信号,如图1中所说明。
EPE电极2750由导电的材料形成,但如本文中论述可以使用任选的绝缘涂层。电极可以由能够传递与所施加高电压脉冲相关联的大瞬时电流密度的任何导电材料制成,包含但不限于:某些金属及其氧化物,包含金、铂、钯、硅、铝;金属氧化物电极,包含氧化铂、氧化钛、氧化锡、氧化铟锡、氧化钯、氧化硅、氧化铝、氧化钼(Mo2O6)、氧化钨(WO3)和氧化钌;以及碳(包含玻璃碳电极、石墨和碳膏)。优选电极包含AgCl、钴-铬、钛、不锈钢、铂、金或者以金或铂电镀的具有高导电性的金属。
另外,电极、TM递送装置和棒外壳优选地由能够被除菌的材料以及在电极阵列和棒外壳将再使用的情况下类似地使微生物截留最少的配置制成。在一些实施例中,至少和/或TM递送和电极阵列是一次性的,且在一些实施例中,整个棒外壳也是一次性的。
在一些实施例中,例如当EPE的远端暴露以用于产生电场时,但其近端可以涂覆有不导电物质以便限制电场施加于仅邻近于组织的EPE的远端且不沿着电极的长度,例如允许在组织中“较深”但不在“浅”区的EP。在一些实施例中,EPE可以具有交替的绝缘材料和裸电极的区域,如图4A和4B中一般描绘。在此实施例中,电极可以用同一图案涂覆,从而导致较均匀的电场,或者以不同图案涂覆,从而导致不对称的电场。类似地,对于本文的所有电极配置,电极可具有相同长度或不同长度。
由这些部分地绝缘的EPE产生的脉冲电场在治疗期间主要集中在电极的远端处的暴露顶端部分之间和附近的区中,且在绝缘部分之间和附近的区中是小的。
在一些实施例中,EPE大体上具有长度以便完全包围待治疗的组织。在优选实施例中,所有集合的电极(电极的“阵列”)在阵列内具有相同长度,但在一些例子中不同长度电极的使用会导致更改且不对称的电场。
在许多实施例中,电极的长度从1mm到20mm变动。应注意此测量是插入深度且不是电极2750的总长度;一般来说将存在电极的一部分从与组织的接触点向上延伸且延伸到手柄2790中以用于附接到适当电路,将电极保持在正确的空间配置中等等。
在许多实施例中,用于插入的电极的宽度和横截面形状被配置成使疼痛最小。因此,电极的宽度可以从约0.5mm到1mm到20mm,其中从1mm到15mm是优选的。
b.治疗部分递送方法
本发明的各种实施例是针对用于使用本发明的递送装置100将治疗部分递送到组织中的靶细胞的区中的细胞的方法。
在一些实施例中,用于将治疗部分递送到靶细胞的区的方法包括提供用于将本文所描述的本发明的任何实施例的治疗部分递送到组织的靶细胞的区的装置。图33是根据本发明的用于使用EP装置将治疗部分递送到组织的靶细胞的区的方法的图示。
在一些实施例中,用于将治疗部分递送到细胞的方法可以包含将中心探头/针(例如)2710插入到细胞中。在一些实施例中,例如图25和25中所说明,EP装置可以用于内窥镜使用以到达身体的不容易接达的腔。取道线2720经由中心探头2710的侧壁上的退出端口2730从中心探头2710内部展开到中心探头2710外部,进而产生细胞或组织中的流体通道。随后取出取道线120,旋转中心探头2710且再次延伸取道线。多次探头展开在肿瘤内产生流体通道。在取道线取出的情况下,注入治疗剂,从而流入流体通道。
根据本发明的实施例用于将治疗部分递送到靶细胞的区的方法进一步包括将中心探头2710插入到靶细胞的区中的疾病细胞中,在中心探头2710的轴向方向上从中心管腔致动且延伸取道线2720,以及以取道线的具有针形状的远端刺穿细胞或组织。所述方法可进一步包含由于所述刺穿而形成开口,取道线2720的至少一部分通过所述开口进入组织且产生治疗部分通过其递送的流体通道。所述方法可进一步包含致动与中心探头2710的内表面一体地形成或耦合的斜坡2760,且使取道线与斜坡接触以便导引取道线的轨迹通过退出端口朝向中心探头2710的远端。在退出中心探头后,取道线2710即刻延伸而刺穿组织且产生开口,取道线的至少一部分通过所述开口进入组织以产生用于治疗部分向组织的递送的流体通道。取道线可以缩回到中心管腔中,且随后通过注射器将治疗部分注入到中心探头中。一旦注入到中心探头中,治疗部分便通过退出端口行进退出且进入通过取道线的插入而产生的细胞中的通道。
在其它实施例中,取道线可以具有刀片形状,且产生通道的方法可进一步包含在处于细胞中的同时旋转取道线以产生中空圆柱形通道,其具有较大面积以用于接收较大量的治疗部分。
VI.本发明的自适应控制方法
本发明的各种实施例是针对用于在使用EP装置对组织中的细胞的EP期间控制EP脉冲参数的自适应控制方法。图36是说明根据本发明用于在使用EP系统期间控制EP脉冲参数的自适应控制方法的控制例程的流程图,且图37是说明根据本发明用于采用图36的控制例程优化EP脉冲参数的领先一步前馈控制例程的流程图。在一些实施例中,可以使用本文所描述的任何EP装置实施所述自适应控制方法。然而,本发明的方法不限于此,而是也可以在例如第62/214,807、62/214,872、62/141,142、62/141,182、62/141,256和62/141,164号美国临时专利申请中概括的那些EP系统和装置/施加器中的任一种以及任何方法上实践,以上全部美国临时专利申请明确地以全文引用的方式并入本文,具体来说包含附图、图例以及其中的附图和组件的描述。
本发明的装置、系统和方法将改进基于EP的基因疗法的过程。当前EP系统应用使用静态参数的开环控制系统,所述静态参数依赖于通过均质同基因肿瘤模型中的临床前研究所确定的先验知识。然而,初步数据已经示出即使在均质肿瘤中,跨越细胞膜施加静电场所需的时间遵循对数正态分布。即使在均质模型中,将静态参数应用于不同肿瘤也导致跨越细胞膜的广泛范围的施加静电场且导致治疗可变性。一种潜在补救是界定施加涵盖已知薄膜充电时间的95%的充分长EP脉冲的静态参数。然而,由于充电时间的变化,平均肿瘤将被过度处理4倍,从而增加例如坏死和细胞凋亡等不利影响的可能性。本发明通过实施闭环控制系统而提供对前述问题的解决方案,所述系统使用基于组织感测的反馈控制来以在每一EP脉冲之前和之间获取的肿瘤特定测量值优化EP过程。在一些实施例中,组织感测将用以测量特定肿瘤的薄膜充电时间以调整每一EP脉冲用于最佳治疗。将约束边界施加于EP脉冲参数以确保反馈收敛。实施用于增强EP的闭环控制系统所需的必要条件是(1)在组织上施加电气力以朝向所需状态驱动组织的能力,以及(2)测量组织的状态的能力。这可以通过测量由于所施加电激励信号带来的生物电改变而实现。
本发明的反馈自适应控制方法采用闭环反馈控制机构以通过在EP脉冲之前和之间监视肿瘤的生理性质而调节EP。将通过以非线性最小二乘曲线拟合例程实时地将EIS组织数据拟合于本文所描述的等效电路模型而确定生理性质。将数据拟合于组织模型允许针对待治疗的组织量化细胞膜的完整性,由CPE表示。基于CPE模型拟合参数调制EP脉冲的持续时间,从而允许当CPE参数的相对改变到达与治疗上有益的pDNA表达相关联的水平时停止EP。本发明的控制装置、系统和方法将允许用户注入治疗分子,表征组织的基线状态,递送用于所述组织的经优化EP脉冲,且当实现薄膜完整性的相对下降时停止脉冲。这移除了与EP相关联的任何不明确性,且无论肿瘤性质的变化如何都确保免疫治疗剂基因的成功递送。因此,EIS表示当前用于临床瘤内免疫疗法的硬件中的显著发展。
本发明的各种方面通过实施如上文所描述的动态反馈控制系统而解决了使EP的实践进步的需要。用于基因疗法的活体内EP已经临床上用于许多不同组织类型和肿瘤的接种和肿瘤学指示。如上文所描述,EIS是能够实时监视组织的低功率技术。此技术是通过跨越一对电极施加一系列低电压激励信号且测量一频率范围上的响应电流而执行。随后计算每一施加激励的量值和相位且拟合于组织的等效电路模型。上文说明了用于组织的常见等效电路。在此模型中,电阻性元件(RI和RE)分别是由于胞内和胞外基质,且脂质结构由常数相位元件(CPEM)表示。CPEM是表示脂质双层的电荷或电容(由QM表示)以及表示电容器的非理想性质的范围从0到1的标量(由α表示)的函数。用于对脂质双层充电的时间常数被计算为τ=(RIQm)1/α,可用以识别在每一治疗之前的最佳EP脉冲持续时间。
在一些实施例中,用于在电穿孔(EP)期间控制EP脉冲参数的自适应控制方法包括提供本文所描述的EP系统中的任一种。本发明的EP系统和装置的各种实施例利用相同电极来执行低功率EIS测量和高功率EP脉冲。前述配置是理想的,因为这减少了所需电极的数目且直接测量组织响应。所述自适应控制方法进一步包括初始化用于在组织中执行EP的EP脉冲参数,且经初始化EP脉冲参数是至少部分地基于如图38中所说明的至少一个经训练的模型。图38是根据本发明的用以估计脉冲参数的模型的初始训练阶段的图示。如先前所描述,所述模型可以是基于物理的模型、经验模型或数据驱动的模型。在一些实施例中,经训练的模型是使用在EP装置使用固定EP脉冲参数的初始操作期间观察到的经验数据来训练。所述模型可以利用使用机器学习方法的监督学习例程来训练。在一些实施例中,用于所述模型预测阶段的特定实施方案可以是决策支持树,其根据本发明的自适应控制方法产生用于参数估计和诊断的逻辑规则集合。
在一些实施例中,本发明涉及“单步前馈控制”。“领先一步前馈控制”的意思是在施加第一EP脉冲之前,参数估计例程使用来自先前进行的实验的经验数据基于在初始训练阶段中训练的模型而初始化用于第一脉冲的初始控制参数。这些先前进行的实验可以基于例如带有与将经受本发明的控制方法的当前组织的那些肿瘤具有相似特性的肿瘤的组织样本。所述初始化可以是离线进行的初始训练阶段。使用例如从若干实验/试验收集的经验数据首先在初始模型训练阶段期间产生参数估计例程(下文将更完整描述)。这可以通过操作系统而无任何前馈或反馈控制(固定脉冲参数)来离线完成。经验数据可以包含产生于这些实验/试验的多种固定脉冲设定、所得特征和对应生物结果。基于从初始训练阶段中的组织感测测量以及诊断阶段中识别的组织或肿瘤类型导出的先前经训练的模型和测得的特征,控制器使用参数估计例程来选择用于第一EP脉冲的最佳参数/条件。这些第一脉冲参数因此“被前馈”以作为用于控制例程的第一脉冲而施加,这与其中第一脉冲的参数/条件是基于固定条件的常规EP系统和方法形成对比。在此意义上,本发明的方法利用前馈控制以基于所感测的组织类型而提供最佳EP参数,与反馈控制结合而感测细胞条件,例如渗透程度,且相应地调整脉冲参数。
图41A和图41B是说明根据本发明的用于EP脉冲参数的自适应控制的方法的流程图。如图41A中所说明,自适应控制方法进一步包括使用EP装置1540的第i电极对将电压和电流激励信号从信号产生器1530施加到细胞,以及测量对应于所施加激励信号的跨越细胞和组织的电压和电流以获得细胞和组织的介电和导电性质,包含但不限于电容、电阻和阻抗。此处,i=1以用于跨越第一组电极进行的测量。在一些实施例中,电流和电压测量可以通过电压传感器和电流传感器进行,例如图15的控制系统的测量装置1510中所说明。电流和电压传感器(可以集成到EP装置的电极中或单独地包含在本发明的控制系统中的别处)充当变换器,其感测跨越细胞膜的电流和电压且检测任何量的改变且将输出信号提供到控制器1505,用于控制器实行对应于从传感器接收的信号的功能,即预测第一脉冲参数。初始地施加激励电压信号,并且然后在每一组EP脉冲之间施加,例如在第一与第二EP脉冲之间,且跨越组织进行测量。此信号可以是频带有限的信号。测量对应电流信号。此传感器数据是时间相关的且内部地保存以用于在如下所述的数据预处理期间使用。
所述自适应控制方法进一步包括从测量装置1510获得对应于测得的细胞或组织性质的结果的传感器数据,且将所述数据处理为诊断学和经更新控制参数。在这些实施例中,控制器1505的预处理模块1550预处理数据以分离合意的数据与不合意的数据。在一些实施例中,电压和电流传感器1510将信号传送到电压和电流测量的控制器1505,且控制器从这些测量值导出阻抗数据。
如图41A中所说明,控制器1505的预处理模块1550预处理且分离测得的数据为合意的数据和不合意的数据。控制器1505可以运行算法以处理从各种测量获得且内部地存储的数据,其可以允许完成绘制曲线和各种其它统计分析以便找到产生最佳EP结果的EP参数的集合。在一些实施例中,不合意的数据存储于存储器模块中以便将随后收集的具有相似性质的数据标记为“不合意的”数据作为额外保障措施。
在一些实施例中,数据预处理可以包括数据挖掘。常常松散地控制数据搜集方法,从而导致范围外的值、不可能的数据组合、遗失值等,因此尚未针对这些不合意数据谨慎地筛检的分析数据会产生误导性结果。因此,本发明的控制器实行的数据预处理提供数据的表示的质量的必要保障措施。为此,通过移除离群值、范围外的值、遗失值,移除偏置,按比例缩放,互相关,以及应用去噪例程而清洁传感器数据。在一些实施例中,在控制器提取特征之前使用传感器证实例程来确定或评估数据质量,以估计改进的且更理想地经优化EP脉冲参数。
在一些实施例中,控制器的预处理模块可以使用以下任一项来预处理数据:
去噪滤波器--从传感器信号移除噪声的数字滤波器。滤波器可以被实施为无限脉冲响应(IIR)或有限脉冲响应(FIR)滤波器。这也可被实施为模拟滤波器或EP电路的部分。去偏置--由传感器测得的AC信号可以通过从所述信号中的每一个移除DC偏置而进行预处理。按比例缩放--数据可以基于例如标准偏差等标准化值。中值滤波--数据可以使用非线性数字滤波技术进行滤波。离群值--可以处理数据以通过从数据集的其余部分识别超过指定数目标准差的范围外的一个或多个值而移除极端值。传感器证实--控制器可以通过运行算法而实行例程,所述算法使用例如标准偏差、离群值的数目、偏度和峰度等统计量度或者用于分析数据质量的任何其它已知的统计量度来分析测得的数据的质量。举例来说,如果数据的标准偏差超过阈值,那么将数据标记为“不合意的数据”或不可用的数据集。
本发明的自适应控制方法进一步包括由特征提取模块1570从合意的数据提取相关特征。“特征”的意思是从经预处理的数据导出的值,其基于经预处理的数据的各种特性而既定是提供信息的且非冗余的。可以估计且控制系统的特征,因此证明系统能够由控制器1505稳定。
在一些实施例中,特征提取模块被配置成执行某些软件指令以用于使用计算例程从经预处理的合意的数据导出相关特征。可以使用计算例程获得经预处理的合意的数据的特性,包含但不限于数据描述性统计数据、数据描述性模型、时间独立的变换、时间序列变换、域相依性特征提取。
在一些实施例中,用于传感器数据的数据描述性统计数据可以包含但不限于平均值、标准偏差、峰到峰、均方根(RMS)、方差、峰度、波峰因数、相关系数、自相关以及交叉相关。对于事件,数据描述性统计数据可以包含计数、发生率、持续时间和时间延迟。数据描述性模型可以包含分布模型,例如参数分布、直方图、回归模型(使用模型参数或模型化误差):曲线拟合、自回归(AR)模型、分类/群集模型(使用类标签作为特征)、序列匹配可能性、模式辨识分类器(费舍尔判别、贝叶斯定理)时间独立变换可以包含显式数学运算,例如差、求和、比率、对数、幂n、主成分分析和独立成分分析。时间序列变换可以包含频域、时-频域以及小波域。域相依性特征提取可以包含基于物理的特征,例如预期输入-输出或输出-输出关系、导出的隐藏状态以及用于例如操作机制分段等数据处理的特殊程序,以及包络分析。
在一些实施例中,特征是从激励电压和电流信号的量值比率或相位差的参数模型拟合导出的。这些数据包含(但不限于)胞内电阻、胞外电阻、溶液电阻、薄膜电容、导纳、常数相位元件指数以及充电时间常数。特征提取模块的特征提取可以包含确定由所施加激励信号产生的细胞的细胞膜的电容或阻抗。在这些实施例中,阻抗可以通过施加在固定频率范围上重复的频带有限信号而从由所施加激励信号产生的细胞和组织的介电和导电性质的测量确定。细胞或组织的介电和导电性质是通过施加于细胞或组织的激励电压和电流的量值比率和相位差而确定。控制器1505可以计算每一施加激励的量值和相位,且将这些拟合于上述组织的等效电路模型。在模型中,电阻性元件(RI和RE)分别是由于胞内和胞外基质,且脂质结构由常数相位元件(CPEM)表示。CPEM是表示脂质双层的电荷或电容(由QM表示)以及表示电容器的非理想性质的范围从0到1的标量(由α表示)的函数。用于对脂质双层充电的时间常数被计算为τ=(RIQm)1/α,可以由脉冲参数估计模块使用以在每一治疗之前估计最佳EP脉冲持续时间。
施加于细胞和组织的激励电压和电流信号之间的量值比率和相位差是通过使所述激励电压和电流信号与存储于所述存储器模块中的已知参考信号进行交叉相关而确定。特征的实例包含(但不限于)以下各项:a)所述激励电压和电流信号在固定频率处的量值比率和相位差的值;b)以下各项的平均值、中值、最大值和最小值中的至少一个:i)所述激励电压和电流信号量值在窄频带上的量值比率或相位差,ii)所述激励电压和电流信号量值相位在宽频带上的量值比率或相位差;c)所述激励电压和电流信号的所述量值比率或相位差相对于频率的曲率、斜率和噪声;d)常数相位基本参数;e)高频电阻(例如,在100Hz处),低频电阻(例如,在1kHz处);以及f)电容。
在一些实施例中,本发明的控制方法包含由诊断模块将合意的数据的相关特征的至少一部分应用于至少一个经训练的诊断模型,如图40中所说明。先验组织诊断学在成功EP的预测中是重要的。如图40中所说明,所述特征用作对一系列诊断模型的输入以用于(i)组织检测,(ii)肿瘤类型检测,(iii)注入检测,以及(iv)渗透检测。基于这些模型的结果,系统将(i)由于渗透而终止治疗,(ii)前进到估计下一脉冲参数,或(iii)停止且警告操作者诊断事件(例如,未检测到组织、未检测到肿瘤、未检测到注入)。将使用一个或多个统计推断例程(例如,贝叶斯推理器)来组合或融合用于每一诊断模块的多个特征。系统将包含用以做出控制输入(施加脉冲)的决策的若干诊断模块。在一些实施例中,控制方法包括由控制器将所导出特征拟合或应用于经训练的诊断模型,且观测数据的拟合,其中不良的拟合或相关是诊断学问题的指示符,例如不当的电极放置,例如在坏死或纤维化组织中,电极的腐蚀。在一些实施例中,用于对例如基于CPE的组织模型等模型的组织拟合的准则是R2>0.98。控制器1505的诊断学模块1580如上文所描述至少部分地基于所述拟合或应用的结果而产生诊断响应,其中所述诊断响应包含组织检测、肿瘤类型检测、针放置检测、细胞渗透检测、共定位诊断、脉冲检验以及重复脉冲诊断。
上文详细描述的诊断学例程在本发明的控制方法中起到重要作用。这尤其重要的一个领域是共定位检测。使电场与注入重叠对于EP过程的成功是至关重要的。电测量确保了异常情况不会干扰治疗。造成不良共定位的问题的实例包含但不限于比有效电场注入更深、注入元件的偏转以及组织或细胞中的生物异常。进行的实验和研究表明良好共定位的特征在于溶液电阻的至少10%的下降。本发明旨在至少部分地通过在单个EP装置或施加器中集成治疗部分递送装置与EP电极而实现良好或理想的共定位。由诊断学模块执行的本发明的诊断例程确保了仅在观察到良好共定位、检测到组织、检测到肿瘤以及检测到注入之后执行EP。当满足前述条件时,控制器随后将相关特征应用于基于CPE的组织模型以估计初始脉冲参数。
在一些实施例中,如上文所描述,自适应控制方法进一步包含由脉冲参数估计模块基于在上述诊断例程和特征提取的执行之后对基于CPE的组织模型应用相关特征的结果而估计第一脉冲参数。即,如果检测到组织,如果检测到肿瘤,且如果检测到注入,那么初始化EP脉冲参数是基于所述至少一个经训练的模型和所述测得的特征以估计改进的或理想地经优化的第一EP脉冲参数。在一些实施例中,如图36和37中所说明,与过去的特征组合的特征将用以确定未来的脉冲参数。估计器可以包含状态空间估计、人工神经网络、自回归(AR)以及自回归移动平均(ARMA)估计器。
在一些实施例中,控制方法进一步包括基于估计改进的/经优化第一脉冲参数而施加第一EP脉冲。脉冲序列的各种实施例在图41A和41B中说明,其中i=脉冲序列(对于激励信号,i=0,对于第一施加EP脉冲,i=1),且N=电极对的数目。自适应控制方法可进一步包括基于先前EP脉冲参数以及细胞对第一EP脉冲的响应的电压和电流测量以及所施加EP脉冲之间的所述特征中的至少一个的改变,使用经训练的基于CPE的模型在已施加第一EP脉冲之后预测后续EP脉冲参数。如图41B中所说明,上述组织感测例程在所施加EP脉冲之间重复直到实现经优化EP脉冲参数或直到达到脉冲限制为止。
在一些实施例中,控制方法可进一步包括a)基于预测后续EP脉冲参数施加后续EP脉冲,以及b)重复电压和电流激励信号对细胞和组织的施加,重复测量细胞或组织,重复获得数据且分离合意的数据与不合意的数据;重复提取相关特征,且重复所述施加直到i)达到EP脉冲序列的数目或EP脉冲的循环的预定限制,或ii)诊断响应促使诊断决策终止自适应控制方法,如图41A和41B中所说明。在一些实施例中,当时间常数下降50%时控制方法可以终止且不施加进一步EP脉冲。此时,在所有群组中的表达以统计方式确定为显著不同于对照物。如上文所描述,依据基于CPE的模型拟合参数调制EP脉冲的持续时间,因此当CPE参数的相对改变到达与治疗有益的pDNA表达相关联的水平时停止EP。此技术将允许临床医生注入治疗分子,表征组织的基线状态,递送用于所述组织的经优化EP脉冲,且当实现薄膜完整性的相对下降时停止脉冲。这移除了与EP相关联的任何不明确性,且无论肿瘤性质的变化如何都确保免疫治疗剂基因的成功递送。
VII.用于递送的治疗部分
本发明提供用于治疗部分向患者的组织中的细胞的改进递送的设备和方法。一般来说,本发明的系统用以治疗患病的或异常组织,例如癌组织。术语“癌症”包含大体上通过不适当细胞增殖、异常或过量细胞增殖表征的大量疾病。所述装置预期用于罹患癌症或其它非癌性(良性)生长物的患者。这些生长物本身可以显现作为以下各项中的任一种:病灶、息肉、赘瘤(例如,乳头状尿道上皮赘瘤)、乳头瘤、恶性病、肿瘤(例如,克拉斯金肿瘤、肝门区肿瘤、非侵入性乳头状尿道上皮肿瘤、生殖细胞肿瘤、尤文氏肿瘤、阿斯金氏肿瘤、原始神经外胚层瘤、莱迪希细胞肿瘤、维尔姆斯瘤、塞尔托利细胞肿瘤)、肉瘤、癌瘤(例如,鳞状细胞癌、泄殖腔癌瘤、腺癌、腺鳞癌、胆管癌、肝细胞癌、创伤性乳头状尿道上皮癌、扁平尿道上皮癌)、团块,或任何其它类型的癌或非癌性生长物。以本发明的实施例的装置和方法治疗的肿瘤可以是非侵入性、创伤性、表层、乳头状、扁平、转移性、局部化、单中心、多中心、低级别和高级别中的任一种。癌症的实例包含但不限于乳癌、结肠癌、前列腺癌、胰脏癌、皮肤癌(包含黑素瘤、基底细胞癌和鳞状细胞癌)、肺癌、卵巢癌、肾癌、脑癌、或肉瘤、肾上腺皮层癌、肛门癌、胆管癌(例如,腹膜癌、远侧胆管癌、肝内胆管癌)、膀胱癌、良性和癌性骨癌(例如,骨瘤、骨样骨瘤、骨母细胞瘤、骨软骨瘤、血管瘤、软骨粘液样纤维瘤、骨肉瘤、软骨肉瘤、纤维肉瘤、恶性纤维组织细胞瘤、骨巨细胞瘤、脊索瘤、淋巴瘤、多发性骨髓瘤)、大脑和中枢神经系统癌症(例如,脑膜瘤、星形细胞瘤、寡突神经胶质细胞瘤、室管膜瘤、神经胶质瘤、神经管胚细胞瘤、神经节胶质细胞瘤、神经鞘瘤、胚细胞瘤、颅咽管瘤)、乳癌(例如,乳腺管原位癌、浸润导管癌瘤、浸润小叶癌瘤、小叶原位癌、男性乳房发育症)、卡斯尔曼病(例如,巨淋巴结增生、血管滤泡性淋巴结增生)、宫颈癌、结肠直肠癌、子宫内膜癌(例如,子宫内膜腺癌、腺棘、乳头状浆液性的腺癌、透明细胞)、食道癌、胆囊癌(黏液性腺癌、小细胞癌)、肠胃类癌(例如,绒膜癌、绒毛膜瘤破坏)、霍奇金氏疾病、非霍奇金淋巴瘤、卡波西氏肉瘤、肾癌(例如,肾细胞癌)、喉部和下咽癌症、肝癌(例如,血管瘤、肝腺瘤、病灶性节状增生、肝细胞癌)、肺癌(例如,小细胞肺癌、非小细胞肺癌)、间皮瘤、浆细胞瘤、鼻腔和副鼻窦癌症(例如,鼻腔神经胶质瘤、中线肉芽肿)、鼻咽癌、神经母细胞瘤、口腔和口咽癌症、卵巢癌、胰脏癌、阴茎癌、垂体癌、前列腺癌、成视网膜细胞瘤、横纹肌肉瘤(例如,胚胎横纹肌肉瘤、腺泡状横纹肌肉瘤、多形性横纹肌肉瘤)、唾液腺癌、皮肤癌(黑素瘤和非黑素瘤皮肤癌)、胃癌、睾丸癌(例如,精原细胞瘤、非精原细胞瘤生殖细胞癌)、胸腺癌、甲状腺癌(例如,滤泡癌瘤、退行性癌瘤、不良区分癌瘤、髓质甲状腺癌、甲状腺淋巴瘤)、阴道癌、外阴癌以及子宫癌(例如,子宫平滑肌肉瘤)。因此,包含皮肤组织、结缔组织、脂肪组织等的癌组织能够使用本发明的系统进行治疗。这些癌症可能通过染色体异常、变性生长和发育病症、促进细胞分裂试剂、紫外辐射(UV)、病毒感染、基因的不适当组织表达、基因表达的更改或致癌试剂造成。
术语“治疗”包含(但不限于)癌细胞增殖的抑制或减少、癌细胞的破坏、癌细胞增殖的防止或者恶性细胞起始的防止,或者经变换癌变前细胞向恶性疾病的进展的遏止或反转,或者疾病的改善。术语“主体”或“患者”指代任何动物,优选地为例如人等哺乳动物。家畜使用也希望由本发明包含。
本发明的系统和方法将治疗部分递送到电穿孔区中的组织中的细胞。本文的“治疗部分”或TM的意思是适合于电穿孔的能够治疗患病的组织的部分,其包含细胞毒性剂、化疗剂、毒素、放射性同位素、细胞介素或其它治疗活性剂。治疗部分可以是小分子药物、核酸(包含编码治疗目标蛋白的那些)或具有生物活性的蛋白质(包含多肽和肽),如本文更完整概括。
在一些实施例中,TM是药物;预期用于本发明的方法的药物通常是具有抗肿瘤或细胞毒素效应的化疗剂。这些药物或试剂包含博莱霉素、新制癌菌素、苏拉明、阿霉素、卡铂、紫杉醇、丝裂霉素C和顺铂。其它化疗剂将是所属领域的技术人员已知的(例如参见Merck索引)。电穿孔通过在细胞膜中产生孔隙而促进博莱霉素或其它相似药物进入肿瘤细胞。此局部递送提供显著益处,因为与这些药物通常相关联的正常全身性毒性经由本文的EP方法的局部施予而减到最少。
在一些实施例中,TM是生物分子,包含核酸和蛋白质。
在一些实施例中,TM是核酸。一般来说,是核酸的TM具有两个不同功能类型。在一个实施例中,核酸对用以治疗疾病的蛋白质进行编码;在其它实施例中,核酸是TM,例如当核酸是siRNA或snRNA时。本文的“核酸”或“寡核苷酸”或语法等效物意味着共价链接在一起的至少两个核苷。本发明的核酸将大体上含有磷酸二酯键,但是在一些情况下,如下方概括,包含可以具有交替骨架的核酸类似物,包括例如磷酰胺(Beaucage等人,Tetrahedron49(10):1925(1993)及其中的参考;Letsinger,《有机化学杂志(J.Org.Chem.)》35:3800(1970);Sprinzl等人,《欧洲生物化学杂志(Eur.J.Biochem.)》81:579(1977);Letsinger等,《核酸研究(Nucl.Acids Res.)》14:3487(1986);Sawai等人,《化学快报(Chem.Lett.)》805(1984),Letsinger等人,《美国化学学会杂志(J.Am.Chem.Soc.)》110:4470(1988);以及Pauwels等人,《化学技术(Chemica Scripta)》26:141 91986),硫代磷酸酯(Mag等人,《核酸研究》19:1437(1991);以及第5,644,048号美国专利),二硫代磷酸酯(Briu等人,《美国化学学会杂志》111:2321(1989),O-甲基氨基磷酸酯键链(参见Eckstein,《寡核苷酸和类似物:实际方法(Oligonucleotides and Analogues:A Practical Approach)》,牛津大学出版社),以及肽核酸骨架和键链(参见Egholm,《美国化学学会杂志》114:1895(1992);Meier等人,《化学国际英文版(Chem.Int.Ed.Engl.)》31:1008(1992);Nielsen,《自然(Nature)》365:566(1993);Carlsson等人,《自然》380:207(1996),以上全部以引用的方式并入)。其它类似核酸包含具有正骨架的那些(Denpcy等人,《美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)》92:6097(1995);非离子骨架(第5,386,023、5,637,684、5,602,240、5,216,141和4,469,863号美国专利;Kiedrowshi等人,《应用化学国际英文版(Angew.Chem.Intl.Ed.English)》30:423(1991);Letsinger等人,《美国化学学会杂志》110:4470(1988);Letsinger等人,《核苷与核苷酸(Nucleoside&Nucleotide)》13:1597(1994);ASC会议系列580,《反义研究中的碳水化合物修改(Carbohydrate Modificationsin Antisense Research)》,第2和3章,Y.S.Sanghui和P.Dan Cook编;Mesmaeker等人,《生物有机和药物化学快报(Bioorganic&Medicinal Chem.Lett.)》4:395(1994);Jeffs等人,《生物分子NMR期刊(J.Biomolecular NMR)》34:17(1994);《四面体通讯(TetrahedronLett.)》37:743(1996)),以及非核糖骨架,包含第5,235,033和5,034,506号美国专利以及ASC会议系列580《反义研究中的碳水化合物修改》第6和7章(Y.S.Sanghui和P.Dan Cook编)中描述的那些。含有一个或多个碳环糖的核酸也包含在核酸的定义内(参见Jenkins等人,《化学科学评论(Chem.Soc.Rev.)》(1995)169-176页)。Rawls《化学与工程新闻(C&E News)》1997年6月2日第35页中描述了若干核酸类似物。所有这些参考特此明确地以引用的方式并入本文。核糖磷酸盐骨干的这些修改可以完成以增加这些分子在生理环境中的稳定性和半衰期,例如当核酸是siRNA等时。
在许多实施例中,本发明的核酸包含在一个或多个表达载体内,所述表达载体含有对表达载体带来功能性的额外核酸序列,包含但不限于促进剂、调节序列等。
在一些实施例中,核酸是编码治疗蛋白质部分的DNA或RNA,例如抗体和细胞介素。
在一些实施例中,核酸编码免疫刺激细胞因子,如本文概括。短语“免疫刺激细胞因子”包含介导或增强对包含病毒、细菌或肿瘤抗原的外来抗原的免疫反应的细胞介素。固有免疫刺激细胞介素可包含例如TNF-α、IL-1、IL-10、IL-12、IL-15、I型干扰素(IFN-α和IFN-β)、IFN-γ以及趋化因子。自适应免疫刺激细胞介素包含例如IL-2、IL-4、IL-5、TGF-β、IL-10和IFN-γ。免疫刺激细胞介素的实例在下方表1中提供。
表1:免疫刺激细胞介素登录号
Figure BDA0003881654740000691
特定适用于本发明中的免疫刺激细胞因子是IL-12。
在一些实施例中,核酸编码治疗抗体。大体上在此实施例中,存在电穿孔到组织中的两种核酸,一种编码重链且一种编码轻链。在一些情况下,这些可以在单个表达载体中或者可以使用两个表达载体,如下文更完整描述。
大体上使用术语“抗体”。适用于本发明中的抗体可以采用如本文所述的多种形式,包括下文所述的传统抗体以及抗体衍生物、片段和模拟物。传统抗体结构单元典型地包括四聚体。每种四聚体典型地由相同的两对多肽链组成,每对具有一条“轻链”(典型地具有约25kDa的分子量)和一条“重链”(典型地具有约50-70kDa的分子量)。人类轻链分类为κ和λ轻链。本发明涉及IgG类,其具有若干子类,包含但不限于IgG1、IgG2、IgG3和IgG4,其中前者特定适用于许多应用中,尤其是肿瘤学。因此,如本文所用的“同型”意指由其恒定区的化学和抗原特征定义的免疫球蛋白亚类中的任一个。应了解治疗抗体还可以包含同型和/或亚类的杂合体。
每条链的氨基端部分包括主要负责抗原识别的约100到110个或更多个氨基酸的可变区,在本领域和本文中通常称为“Fv结构域”或“Fv区”。在可变区中,重链和轻链的每个V结构域均聚集了三个环以形成抗原结合位点。每个环称为互补决定区(下文称为“CDR”),其中氨基酸序列的变异最显著。“可变”是指可变区的某些区段的序列因抗体而广泛不同的事实。可变区内的可变性分布不均匀。相反,V区是由称为构架区(FR)的15-30个氨基酸的相对不变片段组成,所述相对不变片段被各具有9-15个氨基酸长度或更长的较短极度可变区域(称为“高变区”)分隔。
在一些实施例中,抗体是全长抗体。本文“全长抗体”的意思是构成抗体的天然生物形式的结构,包含可变和恒定区,任选地包含如此项技术中已知的一个或多个胺基酸修改。替代地,抗体可以是多种结构,包含但不限于抗体片段、单克隆抗体、双特异性抗体、微型抗体、结构域抗体、合成抗体(在本文中有时被称作“抗体模拟物”)、嵌合抗体、人类化抗体、抗体融合(有时称为“抗体轭合物”)以及分别每一种的片段。特异性抗体片段包含(但不限于)(i)由VL、VH、CL和CH1结构域组成的Fab片段,(ii)由VH和CH1结构域组成的Fd片段,(iii)由单个抗体的VL和VH结构域组成的Fv片段;(iv)由单个可变组成的dAb片段(Ward等人,1989《自然》341:544-546,以完全引用的方式并入),(v)隔离的CDR区,(vi)F(ab')2片段,包括两个链接Fab片段的二价片段,(vii)单链Fv分子(scFv),其中VH结构域和VL结构域由肽连接子链接,其允许所述两个结构域关联以形成抗原结合位点(Bird等人,1988《自然》242:423-426,Huston等人,1988《美国国家科学院院刊》85:5879-5883,以完全引用的方式并入),(viii)双特异性单链Fv(WO 03/11161,由此以引用的方式并入),以及(ix)“双功能抗体”或“三功能抗体”,通过基因融合构造的多价或多特异性片段(Tomlinson等人,2000《酶学方法(Methods Enzymol.)》326:461-479;WO94/13804;Holliger等人,1993《美国国家科学院院刊》90:6444-6448,全部以完全引用的方式并入)。可以修改抗体片段。举例来说,可以通过并入链接VH和VL结构域的二硫化物桥键来使分子稳定(Reiter等人,1996《自然生物技术(Nature Biotech.)》14:1239-1245,以完全引用的方式并入)。
如本领域的技术人员将了解,取决于癌症的类型和位置,存在广泛多种合适的治疗抗体可用于本发明。合适的治疗抗体包含(但不限于)人类的治疗用途的人、人类化或嵌合抗体,包含相同或类似于莫罗莫那、阿昔单抗、利妥昔单抗、达利珠单抗、巴利昔单抗、帕利珠单抗、英夫利昔单抗、曲妥珠单抗、吉妥单抗、阿仑单抗、异贝莫单抗、阿达木单抗、奥马珠单抗、托西莫单抗、依法利珠单抗、西妥昔单抗、贝伐单抗、那他珠单抗、尼沃单抗、派立珠单抗和加利妥昔单抗MPDL328OA(ROCHE)的当前经过批准的抗体,以及在临床开发的抗体,具体来说肿瘤学应用中的那些抗体。
另外,本发明提供将治疗抗体递送到免疫检查点抑制剂的EP方法和装置。如本文所使用,“免疫检查点”分子指代引发T细胞功能不全或细胞凋亡的免疫细胞表面接受体/配体的群组。这些免疫抑制目标衰减过量的免疫反应且确保自我容限。肿瘤细胞利用这些检查点分子的抑制效应。免疫检查点目标分子包含(但不限于)表2中描述的检查点目标。
表2:检查点目标登录号
Figure BDA0003881654740000711
短语“免疫检查点抑制剂”包含通过阻挡免疫检查点分子的效应而防止免疫抑制的分子。检查点抑制剂可包含抗体和抗体片段、纳米抗体、双功能抗体、scFv、检查点分子的可溶结合伴侣、小分子疗法、肽拮抗剂等。抑制剂包含(但不限于)表2中描述的检查点抑制剂。
在一些实施例中,EP方法和装置在联合疗法中使用,例如用于较高功效的两种不同TM的递送。如本领域的技术人员将了解,所述组合可以是本文概括的TM中的任一种,包含但不限于a)编码治疗生物分子(包含如下文更完整描述的表达载体)和小分子药物的核酸,例如上文概括的编码IL-12和药物的质体;b)编码第一治疗生物分子的第一核酸以及编码第二治疗生物分子的第二核酸(例如,编码IL-12的表达载体以及编码如本文中所描述的抗免疫检查点抑制剂抗体的两个核酸),以及c)编码第一生物分子的第一核酸以及例如抗免疫检查点抑制剂抗体等第二蛋白质分子;以及d)两个小分子肿瘤学药物。
在一些实施例中,本发明的EP方法和装置在免疫-肿瘤学联合疗法中使用。在此实施例中,免疫刺激细胞因子疗法(如上)和检查点抑制剂的组合疗法施予患者。
在一个实施例中,免疫刺激细胞因子是以含有编码免疫刺激细胞因子的核酸的质体的形式施予,且检查点抑制剂是作为蛋白质(例如,对检查点抑制剂的抗体)施予到细胞和组织中。
在另一实施例中,免疫刺激细胞因子是以含有编码免疫刺激细胞因子的核酸的表达载体质体的形式施予,且检查点抑制剂是与一个或多个表达载体类似地施予,所述表达载体包括编码抗检查点抑制剂抗体的重链的第一核酸以及编码抗检查点抑制剂抗体的轻链的第二核酸。
在此实施例中,可以使用一个、两个或三个载体:如果使用一个,那么其含有编码序列(以及适当调节序列)以表达免疫刺激细胞因子以及抗检查点抑制剂抗体的重链和轻链。替代地,可以使用三个表达载体,每一表达载体编码以上各项中的一个。也可以使用两个表达载体,一个含有单组分(例如免疫刺激细胞因子)且另一个含有两个组分(例如抗免疫检查点抑制剂抗体的重链和轻链)。
另外,也可以按以上的任何组合来递送小分子药物。
此外,抗检查点抑制剂(和/或如上文概括的小分子药物)的施予可以全身性完成而不是作为EP治疗完成,以同样实现功效。
能够单独通过电穿孔或者电穿孔与全身递送的组合来实现联合疗法的施予。
其它预期的联合疗法是与以下各项组合的检查点抑制剂:TLR促进剂(例如,鞭毛蛋白、CpG);IL-10拮抗剂(例如,抗IL-10或抗IL-10R抗体);TGF-β拮抗剂、CD3促进剂;端粒酶拮抗剂等。
VIII.实例
实例1:
OncoSec构建了在图16中说明的EP产生器A,其能够基于在每一EP脉冲之前和之间的EIS数据而执行实时反馈控制。此系统能够输出具有范围从100μs到10ms的脉冲持续时间的最小10V和最大300V。在脉冲之前和之间捕获的EIS数据是在100Hz到10kHz的范围上以每十倍程获取的10个数据点来获得。此谱上的EIS数据的获取在250ms中实现,这快到足以:(1)执行例程以确定用于下一脉冲的时间常数;(2)存储EIS数据用于后分析;以及(3)不中断临床上使用的EP条件。使用嵌入式高级RISC机器(ARM)微处理器(STM32F407,ST微电子)实时地将从EIS系统搜集的数据拟合于上述组织阻抗模型。当在反馈模式中操作时,此数据的特征可用以控制与EP过程相关联的参数。定制产生器与多种标准EP施加器介接,且将支持多达6个电极。固态中继器用以在高电压EP脉冲电路与低电压EIS询问电路之间切换。为了允许产生器的免提操作,添加脚踏板以触发、暂停或中止EP过程。图16中示出了此产生器及其附件的图像。
未公开的在活体内执行的研究调查了基于从EIS谱获取的时间常数数据改变脉冲宽度的效应。这些研究是关于在8周大的白化B6小鼠的侧腹皮肤中植入的MC38肿瘤执行。在治疗时肿瘤体积平均为75mm3。在CMV促进剂的控制下以50μg的编码荧光素酶蛋白质的pDNA注入肿瘤。图16中所示的包含EP装置的技术原型施加器C用以执行注射和EP两者。此施加器含有在中心注入管腔周围的两个EP电极;在EP期间注入管腔缩回。在350V/cm的电场强度下执行电穿孔,且从在脉冲每一MC38肿瘤之前搜集的EIS数据计算的时间常数的0.1到20.0倍实时地调制脉冲宽度。总共8个脉冲施加于每一肿瘤,因为这先前已与高度的转染相关。通过注入在DPBS中制备的200μl的15mg/ml D-荧光素溶液且执行活体内光学成像而在48小时获取发光数据。图42A到42D中示出了来自此实验的概要数据。
图42A说明跨越脂质双层的%施加电场对时间常数的分布。图42B说明在EP之前测得的时间常数的分布。图42C说明基于脉冲前EIS数据调制脉冲宽度的效应,其中脉冲持续时间设定于用于每一肿瘤的时间常数的倍数。图42D说明示出了在EP之后的计算时间常数相对于所得发光的相对改变的数据。在α=0.05处发现统计显著的数据由星号表示。
这些数据示出了pDNA的表达取决于所施加脉冲宽度。原始假设在所施加脉冲宽度相对于测得时间常数增加时,跨越脂质双层施加的电场的百分比将根据图42A增加。这是尤其重要的,因为从在每一EP治疗之前的EIS数据计算的时间常数遵循图42B中所示的对数正态分布。图42C中的实验的结果示出了在所施加脉冲宽度相对于测得时间常数增加时,所得发光也增加。此现象支持所述假设,因为电容器在5倍时间常数接近电荷饱和,测得的表达到达上限。在高于两个时间常数所获取的数据集合当与单独注入相比时经受显著(p<0.05)更高的发光。在脉冲宽度变为较长且更多能量通过组织耗散时,表达将开始削弱,因为不可逆的组织损伤发生。
另外,此实验表明在到达先前确定的终端数目的脉冲之前停止EP过程的潜在准则。在细胞膜开始渗透时,其保持电荷的能力减小,这又造成与充电CPE相关联的时间常数的减小。在时间常数的改变与测得的发光之间观察到高度的相关,从而支持此理论。具有大于20%的时间常数下降的肿瘤与pDNA的显著(p<0.05)较高表达相关。此测量可用以当用于成功基因疗法的条件存在时停止脉冲过程。引起关注地,具有短脉冲持续时间的群组造成时间常数的增加,原因是造成电容增加的脂质双层的压缩。对此研究,我们提出利用技术原型产生器来探索用于控制EP的变量且在均质和异构肿瘤中证实此技术。我们假设通过测量组织性质且调整每一施加脉冲宽度可以针对每一肿瘤优化基于EP的基因递送。薄膜电容的实时改变的询问将导致(1)可再生的转染效率;(2)基因表达的增加持续时间;(3)增强的疗效;以及(4)减少的组织损伤。
实例2:
执行实验以确定电化学阻抗谱(EIS)是否可以在纤维化或坏死组织中所获取的数据与健康组织中所获取的数据之间进行区分。在这些实验中,表达人血小板衍生生长因子C(PDGF-C)的9个月大的转基因小鼠的肝用以表示纤维化组织。在此年龄PDGF-C转基因小鼠已知具有显著纤维化、脂肪浸润以及细胞发育不良的放大的肝。将从转基因动物的肝所获取的数据与健康或野生型3个月大C57BL/6J肝进行比较。为了获取此数据,麻醉小鼠以允许对肝的手术接入。将隔开3mm的平行电极插入到肝的左外侧叶中5mm。将由此实验收集的数据拟合于用以电学表示生物组织的常数相位元件模型。从模型拟合导出的参数揭露了肝纤维化导致导纳的增加、所计算时间常数的增加以及常数相位元件的减少。这些数据在图43中显示。
实例3:
执行第二实验以确定EIS是否可以检测肿瘤组织中的注射液的存在。在此实验中,在8周大的白化B6小鼠的侧腹皮肤上通过用50μl的磷酸盐缓冲盐水注入106MC38细胞而在皮下组织中植入肿瘤。在近似10天之后,肿瘤达到100mm3的平均体积。此时将具有中心注入管腔的两电极施加器插入肿瘤中7mm。随后进行肿瘤的初始条件的基线EIS测量。在此测量之后,将在生理盐水中制备的质体DNA的50μl体积的1mg/ml溶液注入肿瘤中。在注入后执行第二EIS测量。再次将这些数据拟合于用以表示生物组织的常数相位元件模型。在以质体DNA溶液注入肿瘤之后观察到至少10%的溶液电阻的下降。图44提供在质体DNA的注入之后从模型拟合参数观察到的溶液电阻的百分比减少的直方图概述。
实例4:
除检测组织的存活力和注入的存在之外,EIS还可告知用户执行电穿孔的最佳脉冲宽度。为了证明此情形,执行研究,其基于从EIS谱的模型拟合所获取的时间常数数据而改变脉冲宽度。以在8周大的白化B6小鼠的侧腹皮肤中植入的MC38肿瘤执行此研究。在治疗时肿瘤体积平均为75mm3。在CMV促进剂的控制下以50μg的编码荧光素酶蛋白质的pDNA注入肿瘤。具有中心注入管腔的两电极施加器用以执行注射和EP。在EP期间注入管腔从肿瘤缩回。以500V/cm的场强度执行电穿孔,且在从10个肿瘤先验获得的平均时间常数附近调制脉冲宽度。此平均计算的时间常数是0.50ms,且为此实验选择的脉冲宽度是平均时间常数的0.1、0.5、2.0和10.0倍。总共8个脉冲施加于每一肿瘤。在注入在D-PBS中制备的200μl的15mg/mlD-荧光素溶液后在48小时获取发光数据。以活体内光学成像搜集此数据。来自此实验的数据示出了以10倍平均时间常数或总共5ms的脉冲宽度治疗的肿瘤的发光的最大上升。另外,这些数据示出了以两倍或更多倍时间常数治疗的群组与单独注入相比具有发光的显著上升。图45中示出了来自此实验的概要数据。
实例5:
在实例4中进行的实验后,执行研究以确定是否可以实时使用EIS来增强用于每一个别肿瘤的最佳脉冲宽度。这将允许根据每一个别肿瘤的初始条件调整每一电穿孔序列。再次在8周大的白化B6小鼠的侧腹皮肤中植入MC38肿瘤。当肿瘤达到75mm3时,以50μg的编码荧光素酶蛋白质的pDNA注入所述肿瘤。具有中心注入管腔的同一两电极施加器用以执行注射和EP。对此实验,场强度减少到350V/cm,且使用对于正治疗的每一肿瘤计算的时间常数实时调制脉冲宽度。从所计算时间常数的0.1到20.0倍调制脉冲宽度。总共8个脉冲施加于每一肿瘤。通过注入200μl的15mg/mlD-荧光素溶液在48小时通过活体内光学成像获取发光数据。来自此实验的数据示出了以2.0倍及以上时间常数治疗的所有肿瘤的发光的显著上升。在所计算时间常数的5.0、10.0和20.0倍下在群组之间未观察到统计差异。图46中示出了来自此实验的数据。
在此实验的过程期间所获取的数据的后处理表明在到达先前确定的终端数目的脉冲之前停止EP过程的潜在准则。在细胞膜开始渗透时,其保持电荷的能力减小,这又造成与充电CPE相关联的时间常数的减小。在时间常数的改变与测得的发光之间观察到高度的相关,从而支持此理论。具有大于20%的时间常数下降的肿瘤与pDNA的显著较高表达相关。此测量可用以当用于成功基因疗法的条件存在时停止脉冲过程。引起关注地,具有短脉冲持续时间的群组造成时间常数的增加,原因是造成电容增加的脂质双层的压缩。图47中示出了这些数据。
实例6:(预期实验)
目标(目标1)是评估导致瘤内免疫疗法的所需结果的反馈参数。基于初步研究,集成有EIS反馈控制的EP具有减少治疗间变化率的可能。为了评估pDNA表达以及基于所计算时间常数的改变控制EP的组织学效应,将在均质对侧鼠黑素瘤模型中执行活体内肿瘤研究。简要地,将在B6小白鼠(n=10/群组)的侧腹中皮下植入B16/OVA细胞(1x106/位点)。当肿瘤到达75mm3的体积时,它们将以双报导质体(1mg/ml,每肿瘤50μl)注入,所述质体表达荧光素酶和mCherry两者。这将允许非侵入性、纵向生物发光成像以及空间细胞特定的基因表达。将使用图16中的双电极施加器C以FCEP对肿瘤进行脉冲。电极将在350V/cm下操作,其中脉冲宽度针对每一个别脉冲设定于五个计算的时间常数。细胞将继续接收EP脉冲直到达到时间常数的20%、40%、60%或80%的相对下降。产生器的操作限制将被设定以确保安全,其中允许的最大脉冲宽度将固定在10ms且最大脉冲将设定于10。对此实验的对照动物将包含无治疗、仅pDNA注入,以及pDNA注入随后使用同一电极以350V/cm的电场强度在10ms持续时间中以10个脉冲进行不受控EP。
将通过注入D-荧光素(腹腔,200μl的15mg/ml)在24小时开始量化生物发光。将在24、48和72小时以活体内成像系统(Lago,光谱仪器)捕获这些肿瘤的发光。将收集肿瘤组织,纵向平分,其中二分之一冻结于最佳切割温度化合物(OTC)中且二分之一固定于用于例程组织学分析的福尔马林中。将执行三个独立实验,其中每一实验群组由十二个生物复制品组成。将使用单因素方差分析(即,Kruskal-Wallis,GraphPad Prizm)分析数据。
将对肿瘤区段执行例程组织结构和免疫组织化学(IHC)以评估坏死以及特定形式的细胞死亡,例如与mCherry表达空间关联的细胞凋亡。将执行TdT介导dUTP点切末端标记(TUNEL)和活性卡斯蛋白酶3IHC,且将评估区段以对细胞凋亡的程度进行评分。如所描述将使用图像J脚本执行半定量分析。H&E染色载玻片将用以评估发炎性浸润和坏死程度。
预期结果--FCEP会导致所治疗肿瘤之间的表达的变化率的减少。较大量的pDNA转染预期与所计算时间常数的较高相对下降相关。另外,预期在时间常数的相对下降增加时将观察到更多细胞凋亡和发炎。
实例7:(预期实验)
目标(目标2)是通过执行旨在肿瘤消退的瘤内免疫疗法实验而在活体内检验反馈控制系统。
在活体内表征后,将以FCEP系统执行一组实验以检验肿瘤消退和表达的耐久性。为了与公布的研究进行比较且控制变化率,将使用对侧肿瘤的均质黑素瘤模型。将在白化B6小鼠(n=10/群组)的侧腹中皮下植入B16/OVA黑素瘤细胞(1x106/注射部位)。当肿瘤是75mm3时,每一小鼠上的一个肿瘤将被注入编码介白素-12(IL-12)、荧光素酶和mCherry的多顺反子质体(在1mg/ml的50μl)。此质体的表达允许免疫疗法和长期生物发光定量。将以FCEP系统使用350V/cm对肿瘤进行脉冲,其中脉冲宽度针对每一个别脉冲设定于五个时间常数。用于第一群组的EP停止准则将基于目标1中的反馈控制群组而选择,其中pDNA的最大表达与观察到的组织学特征无关。第二反馈群组将通过选择示出具有最少组织损伤的显著表达量的群组而从目标1中选择。对此实验的对照动物将包含无治疗、仅pDNA注入,以及pDNA注入随后是针对此肿瘤模型优化的条件。为了应用这些条件,将使用具有6电极施加器的MedPulser以施加6个旋转脉冲,其各自持续时间为100μs且具有1,500V/cm的电场强度。
来自这些实验的数据将以两个不同方式收集。所治疗和对侧肿瘤的肿瘤生长速率将在治疗后每48小时以二维测径规测量法收集。将通过在治疗之后48小时开始且随后每4天注入D-荧光素(腹腔,在15mg/mL的200μl)。肿瘤体积和发光数据将继续被观察多达30天或直到肿瘤负荷超过1,000mm3,此时动物将根据所建立的IACUC协议安乐死。将执行三个独立实验,包含每实验群组12个动物。将使用单因素方差分析(Kruskal-Wallis)分析数据。
除监视肿瘤生长速率之外,还将通过在研究结束时采集脾脏来确定肿瘤特定的新抗原CD8响应。脾脏将机械分离且红细胞将通过悬浮于ACK缓冲剂中而裂解。隔离脾细胞将在染色之前借助细胞分离介质(淋巴溶解素-M,Cedarline)纯化。纯化的细胞将随后与四聚体溶液(例如,SIINFEKL,TS-5001-2C,MBL)混合。CD8正T细胞随后将通过流式细胞测量术分析(LSR II,BD)而确定。
预期结果--预期FCEP装置将产生相对于所公布EP方法更大的IL-12和IFN-γ。质体表达的较大持续时间以及用FCEP治疗的荷瘤动物的长期生存率,归因于治疗成功的保证。增强的生存率将充当评估此系统的额外度量,这应当高于基于相似研究的具有近似47%的预期长期生存率的传统的EP治疗群组,且对照群组将可能不响应于治疗。
潜在问题和替代方案--可能的问题是CD8正T细胞可能难以在治疗之后的30天评估。在这发生的情况下,将用此目标中描述的条件治疗荷瘤动物的单独群组。将在治疗之后14天从安乐死动物切离肿瘤。
实例8:(预期实验)
目标(目标3)是通过在异构自发乳癌模型中执行瘤内EP来证实反馈控制系统。
在均质肿瘤模型中的优化和检验后,将执行一组实验以用异构模型证实FCEP。这些实验将使用在小鼠乳房肿瘤病毒促进剂(MMTV-PyVT)的方向下表达多瘤病毒病毒中间T抗原的转基因小鼠模型,其按8到10周的年龄形成自发可触知的乳房肿瘤。表达IL-12、荧光素酶和mCherry的质体(在1mg/mL的50μl)将在10周的年龄递送到MMTV-PyVT小鼠的乳房肿瘤中。将使用来自目标2的停止准则以350V/cm脉冲治疗肿瘤,从而导致最长平均存活。对照群组将包含无治疗、仅pDNA注入,以及pDNA注入然后以1,500V/cm施加当前临床参数的6个脉冲达100μs。将以每一治疗条件治疗总共10个肿瘤,其中每一小鼠中将治疗这些肿瘤中的两个。实验将运行总共三次。
利用由所述质体编码的蛋白质中的每一种将允许产生多个数据流。将在D-荧光素的注入(腹腔,200μl的15mg/ml)后多达21天每72小时进行活体内成像而量化发光。5个动物的群体将安乐死且在7、14和21天收集肿瘤。收集的肿瘤将被平分以直接评估IL-12表达且确定转染细胞的百分比。这些切离肿瘤的一部分将被集结且均质化。IL-12表达将从通过ELISA测定(安迪生物公司)取样的这些肿瘤直接量化。另一半肿瘤将被分离(肿瘤分离套件,Miltenyl Biotec)且运行通过使用特定用于mCherry蛋白质的光学元件的流式细胞仪(LSR II,BD)。这将使得能够确定经转染的细胞的百分比。将使用单因素方差分析来分析数据。
预期结果--预期FCEP将产生这些异构肿瘤的比当前临床EP协议更多的可再生转染。这将由发光数据和IL-12表达直接测量。另外,将预期此新颖方法与最高转染百分比相关。
潜在问题和替代方案--在本研究的过程期间会产生的可能问题是IL-12的表达可能难以在肿瘤中评估。在这发生的情况下,将执行ELISA以直接测量荧光素酶水平。另外,下游细胞因子干扰素-γ将被直接评估为IL-12表达的替代。
时间线。此阶段I努力的完成将在12个月周期内执行。预期目标1将持续总共3个月。目标2将在5个月中完成。最后,目标3将在4个月中完成。此时间线在表1中概括。
表1.目标的时间表(以月计)
Figure BDA0003881654740000791

Claims (10)

1.一种电穿孔EP系统,包括:
至少两个电穿孔电极EPE,被配置为定位在组织中或与所述组织相邻;
信号产生器,所述信号产生器电连接到所述至少两个EPE并且基于至少一个控制参数生成至少一个电信号,其中所述至少一个电信号经由所述至少两个EPE施加到所述组织;
测量装置,电连接到所述至少两个EPE并且生成测量的传感器数据;以及
控制器,被配置为:
从所述测量装置接收所述测量的传感器数据,以及
至少部分地基于所述测量的传感器数据更新所述至少一个控制参数。
2.如权利要求1所述的EP系统,其中,所述至少一个电信号包括激励信号或电穿孔脉冲中的至少一个。
3.如权利要求1所述的EP系统,其中,所述测量装置包括电压传感器,其中所述测量的传感器数据指示当施加所述至少一个电信号时跨越所述组织的测量电压。
4.如权利要求1所述的EP系统,其中,所述测量装置包括电流传感器,其中所述测量的传感器数据指示当施加所述至少一个电信号时跨越所述组织的测量电流。
5.如权利要求1所述的EP系统,其中,所述至少一个控制参数包括要施加到所述组织的所述至少一个电信号的脉冲宽度的时间常数。
6.如权利要求1所述的EP系统,还包括:
至少一个探头,被配置成接收一个或多个治疗部分并将所述一个或多个治疗部分递送至所述组织。
7.如权利要求6所述的EP系统,其中,所述控制器基于来自所述测量的传感器数据的多个电阻或阻抗测量来确定所述一个或多个治疗部分是否存在于所述至少两个EPE处或与所述至少两个EPE相邻。
8.如权利要求7所述的EP系统,其中,所述控制器被配置为在基于所述多个电阻或阻抗测量检测到电阻或阻抗的减小的情况下检测所述一个或多个治疗部分的存在。
9.如权利要求6所述的EP系统,其中,所述一个或多个治疗部分包含质体DNA。
10.如权利要求1所述的EP系统,其中,所述控制器被配置为将所述测量的传感器数据应用于至少一个经训练的诊断模型。
CN202211232730.5A 2015-03-31 2016-03-31 用于改进的基于组织感测的电穿孔的系统和方法 Pending CN115737104A (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201562141142P 2015-03-31 2015-03-31
US201562141164P 2015-03-31 2015-03-31
US201562141256P 2015-03-31 2015-03-31
US201562141182P 2015-03-31 2015-03-31
US62/141,164 2015-03-31
US62/141,256 2015-03-31
US62/141,182 2015-03-31
US62/141,142 2015-03-31
US201562214872P 2015-09-04 2015-09-04
US201562214807P 2015-09-04 2015-09-04
US62/214,807 2015-09-04
US62/214,872 2015-09-04
PCT/US2016/025416 WO2016161201A2 (en) 2015-03-31 2016-03-31 Systems and methods for improved tissue-sensing based electroporation
CN201680026625.2A CN107872982B (zh) 2015-03-31 2016-03-31 用于改进的基于组织感测的电穿孔的系统和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680026625.2A Division CN107872982B (zh) 2015-03-31 2016-03-31 用于改进的基于组织感测的电穿孔的系统和方法

Publications (1)

Publication Number Publication Date
CN115737104A true CN115737104A (zh) 2023-03-07

Family

ID=55755735

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680026625.2A Active CN107872982B (zh) 2015-03-31 2016-03-31 用于改进的基于组织感测的电穿孔的系统和方法
CN202211232730.5A Pending CN115737104A (zh) 2015-03-31 2016-03-31 用于改进的基于组织感测的电穿孔的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680026625.2A Active CN107872982B (zh) 2015-03-31 2016-03-31 用于改进的基于组织感测的电穿孔的系统和方法

Country Status (10)

Country Link
US (2) US11318305B2 (zh)
EP (2) EP3277368B1 (zh)
JP (3) JP6860497B2 (zh)
CN (2) CN107872982B (zh)
CA (1) CA2981474A1 (zh)
DK (1) DK3277368T3 (zh)
ES (1) ES2807439T3 (zh)
HK (1) HK1250675A1 (zh)
PL (1) PL3277368T3 (zh)
WO (1) WO2016161201A2 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2569618B1 (en) 2010-05-08 2017-03-01 The Regents of the University of California Sem scanner sensing apparatus, system and methodology for early detection of ulcers
CA2981474A1 (en) 2015-03-31 2016-10-06 Oncosec Medical Incorporated Systems and methods for improved tissue-sensing based electroporation
WO2016172263A1 (en) 2015-04-24 2016-10-27 Bruin Biometrics Llc Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
KR20190031424A (ko) 2015-12-18 2019-03-26 온코섹 메디컬 인코포레이티드 이종 단백질 발현을 위한 플라스미드 작제물 및 사용 방법
JP7158820B2 (ja) * 2016-10-26 2022-10-24 ロレアル エレクトロポレーションデバイスおよびエレクトロポレーションデバイスを制御するための方法
AU2018217190B2 (en) 2017-02-03 2020-04-30 Bbi Medical Innovations, Llc Measurement of susceptibility to diabetic foot ulcers
US20180303543A1 (en) * 2017-04-24 2018-10-25 Medtronic Cryocath Lp Enhanced electroporation of cardiac tissue
GB201710973D0 (en) 2017-07-07 2017-08-23 Avacta Life Sciences Ltd Scaffold proteins
US11219764B2 (en) 2017-07-28 2022-01-11 Scandinavian Chemotech Ab Dynamic electro enhanced pain control (DEEPC) device for delivery of electrical pulses to a desired body part of a mammal
CN109679844B (zh) * 2017-10-19 2023-08-22 苏州壹达生物科技有限公司 一种流式电穿孔装置
EP4085968A1 (en) * 2017-10-23 2022-11-09 Mayo Foundation for Medical Education and Research Systems for treating hypertension
GB2584226B (en) 2018-02-09 2022-06-22 Bruin Biometrics Llc Detection of tissue damage
KR102132370B1 (ko) * 2018-03-13 2020-08-05 주식회사 지씨에스 피부관리장치, 피부관리장치의 구동방법 및 컴퓨터 판독가능 기록매체
KR20210018228A (ko) * 2018-05-02 2021-02-17 온코섹 메디컬 인코포레이티드 전기천공 시스템, 방법, 및 장치
CA3100859A1 (en) 2018-07-03 2020-01-09 Edwin Chang Using alternating electric fields to increase cell membrane permeability
CN109171947A (zh) * 2018-09-17 2019-01-11 重庆大学 靶向消融细胞装置、方法、介质及电子设备
LT3861601T (lt) 2018-10-11 2024-03-12 Bruin Biometrics, Llc Prietaisas su vienkartiniu elementu
EP3881894B1 (en) * 2018-11-16 2024-04-17 Agnes Medical Co., Ltd. Skin treatment needle and skin treatment device having energy uniformizing wrinkles
CN109688354B (zh) * 2018-12-28 2021-09-07 北京思比科微电子技术股份有限公司 一种模拟增强图像对比度的方法
AU2020218502B2 (en) * 2019-02-04 2022-03-03 Rutgers, The State University Of New Jersey Device for tissue electrotransfer using a microelectrode
US11071860B2 (en) 2019-02-06 2021-07-27 Oncosec Medical Incorporated Systems and methods for detecting fault conditions in electroporation therapy
US11135439B2 (en) * 2019-03-29 2021-10-05 Advanced Neuromodulation Systems, Inc. Implantable pulse generator for providing a neurostimulation therapy using complex impedance measurements and methods of operation
US11660139B2 (en) 2019-04-10 2023-05-30 Radioclash Inc. Electroporation probe
BR102019013577A2 (pt) * 2019-06-28 2021-01-05 Eqt Equipamentos E Tecnologia Ltda. Equipamento para aplicação de fármacos simultânea à eletroporação durante procedimento de eletroquimioterapia, dispositivo aplicador de fármacos e de eletroporação, método de preparo de dispositivo aplicador e método de cálculo e de ajuste de corrente elétrica para eletroporação
EP3791924A4 (en) 2019-07-17 2022-03-30 Jeisys Medical Inc. NEEDLE TIP FOR APPLYING CURRENT, HANDPIECE AND SKIN TREATMENT DEVICE
TW202120551A (zh) 2019-08-12 2021-06-01 美商普瑞諾生物科技公司 藉由adcc靶向cd39表現細胞促進及增強t細胞介導免疫反應之方法及組合物
US11912975B2 (en) 2019-09-02 2024-02-27 Mirai Medical Limited Electroporation apparatus and method
TW202128775A (zh) 2019-10-16 2021-08-01 英商阿法克塔生命科學有限公司 PD-L1抑制劑-TGFβ抑制劑雙特異性藥物部分
US11619618B2 (en) 2019-12-09 2023-04-04 International Business Machines Corporation Sensor tuning—sensor specific selection for IoT—electronic nose application using gradient boosting decision trees
US11499953B2 (en) 2019-12-09 2022-11-15 International Business Machines Corporation Feature tuning—application dependent feature type selection for improved classification accuracy
US11903638B2 (en) * 2019-12-11 2024-02-20 Biosense Webster (Israel) Ltd. Regulating delivery of irreversible electroporation pulses according to transferred energy
CN111308058B (zh) * 2020-03-14 2021-12-14 深圳联开生物医疗科技有限公司 计数孔电压报警阈值自适应方法、装置以及血细胞分析仪
EP3915633A1 (en) * 2020-05-29 2021-12-01 Imec VZW Control of cell electroporation
GB202101299D0 (en) 2020-06-09 2021-03-17 Avacta Life Sciences Ltd Diagnostic polypetides and methods
US12006507B2 (en) * 2020-07-22 2024-06-11 Nantcell, Inc. Electroporation with active compensation
US20220071692A1 (en) * 2020-09-08 2022-03-10 Biosense Webster (Israel) Ltd. Impedance based irreversible-electroporation (ire)
WO2022169850A1 (en) 2021-02-03 2022-08-11 Bruin Biometrics, Llc Methods of treating deep and early-stage pressure induced tissue damage
KR102576604B1 (ko) * 2021-02-16 2023-09-08 주식회사 밀알 의료용 정밀 약물주입 및 전기천공 융합 전극
CA3212487A1 (en) * 2021-03-09 2022-09-15 Bruin Biometrics, Llc Method for diagnosis and treatment of deep tissue injury using sub-epidermal moisture measurements
WO2022234003A1 (en) 2021-05-07 2022-11-10 Avacta Life Sciences Limited Cd33 binding polypeptides with stefin a protein
CN117881353A (zh) * 2021-06-16 2024-04-12 安泰尔医疗公司 电穿孔治疗
CN113229930B (zh) * 2021-06-18 2023-09-22 杭州维纳安可医疗科技有限责任公司 电极针、消融设备及消融方法、装置、存储介质
CN113229928B (zh) * 2021-06-18 2023-12-15 杭州维纳安可医疗科技有限责任公司 电极针、消融设备及消融方法、装置、存储介质
WO2023288314A1 (en) * 2021-07-15 2023-01-19 Georgia Tech Research Corporation Methods of determining viable cell count and impedance-based biosensors for the same
EP4413038A1 (en) 2021-10-07 2024-08-14 Avacta Life Sciences Limited Pd-l1 binding affimers
TW202332694A (zh) 2021-10-07 2023-08-16 英商阿凡克塔生命科學公司 血清半衰期延長之pd-l1結合多肽
KR20230161840A (ko) * 2022-05-19 2023-11-28 주식회사 밀알 스네어 형태의 전기천공용 전극
CN114983551B (zh) * 2022-07-12 2022-10-25 深圳迈微医疗科技有限公司 组织消融装置以及电化学阻抗测量装置
GB202213953D0 (en) * 2022-09-23 2022-11-09 Creo Medical Ltd An apparatus for sensing a biological tissue

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5386023A (en) 1990-07-27 1995-01-31 Isis Pharmaceuticals Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5644048A (en) 1992-01-10 1997-07-01 Isis Pharmaceuticals, Inc. Process for preparing phosphorothioate oligonucleotides
ATE199392T1 (de) 1992-12-04 2001-03-15 Medical Res Council Multivalente und multispezifische bindungsproteine, deren herstellung und verwendung
US5637684A (en) 1994-02-23 1997-06-10 Isis Pharmaceuticals, Inc. Phosphoramidate and phosphorothioamidate oligomeric compounds
US5642035A (en) 1994-06-16 1997-06-24 Bio-Rad Laboratories Transfection high-voltage controller
EP0814855A4 (en) * 1995-03-10 2002-07-17 Theramed Inc FLOW ELECTROPORATION CHAMBER AND ASSOCIATED METHOD
US6241701B1 (en) 1997-08-01 2001-06-05 Genetronics, Inc. Apparatus for electroporation mediated delivery of drugs and genes
CA2368728A1 (en) 1999-03-25 2000-09-28 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US6678558B1 (en) 1999-03-25 2004-01-13 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US7092753B2 (en) * 1999-06-04 2006-08-15 Impulse Dynamics Nv Drug delivery device
US6258592B1 (en) 1999-06-14 2001-07-10 Bio-Rad Laboratories, Inc. Electroporation cell with arc prevention/reduction
US6387671B1 (en) * 1999-07-21 2002-05-14 The Regents Of The University Of California Electrical impedance tomography to control electroporation
CA2416581A1 (en) 2000-07-25 2002-04-25 Rita Medical Systems, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
CA2453822C (en) 2001-08-03 2011-02-22 Tyco Healthcare Group Lp Tissue marking apparatus and method
US7245963B2 (en) * 2002-03-07 2007-07-17 Advisys, Inc. Electrode assembly for constant-current electroporation and use
US8209006B2 (en) * 2002-03-07 2012-06-26 Vgx Pharmaceuticals, Inc. Constant current electroporation device and methods of use
US6912417B1 (en) 2002-04-05 2005-06-28 Ichor Medical Systmes, Inc. Method and apparatus for delivery of therapeutic agents
US20030204161A1 (en) * 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US7103418B2 (en) * 2002-10-02 2006-09-05 Medtronic, Inc. Active fluid delivery catheter
US7130700B2 (en) * 2002-11-19 2006-10-31 Medtronic, Inc. Multilumen body for an implantable medical device
US7742809B2 (en) * 2003-08-25 2010-06-22 Medtronic, Inc. Electroporation catheter with sensing capabilities
US7878145B2 (en) 2004-06-02 2011-02-01 Varian Semiconductor Equipment Associates, Inc. Monitoring plasma ion implantation systems for fault detection and process control
CA2572122A1 (fr) * 2004-06-24 2006-02-02 Sphergen Dispositif pour le transfert de molecules aux cellules utilisant une force electrique
US20060036210A1 (en) * 2004-06-30 2006-02-16 Lei Zhang Modular electroporation device with disposable electrode and drug delivery components
US8409167B2 (en) * 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7937143B2 (en) * 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US8874227B2 (en) 2009-03-20 2014-10-28 ElectroCore, LLC Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient
CA2635437C (en) * 2006-02-11 2020-01-28 Genetronics, Inc. Device and method for single-needle in vivo electroporation
US20070232984A1 (en) 2006-03-30 2007-10-04 Michael Lovell Hand-held electrical stimulation device
US8377005B2 (en) * 2006-09-11 2013-02-19 Custom Medical Applications Neural injection system and related methods
CN101563132A (zh) * 2006-10-17 2009-10-21 Vgx药品公司 电穿孔装置及用其进行哺乳动物细胞电穿孔的方法
PT2066399T (pt) * 2006-10-17 2019-01-11 Inovio Pharmaceuticals Inc Dispositivos de eletroporação e métodos de usar os mesmos para eletroporação de células em mamíferos
US7655004B2 (en) * 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8738125B1 (en) * 2007-03-30 2014-05-27 University Of South Florida Devices and methods for delivering molecules to the heart with electric fields
US20100298759A1 (en) 2007-10-11 2010-11-25 Region Hovedstaden V/Herlev Hospital electroporation device for improved electrical field control
WO2009121009A2 (en) * 2008-03-27 2009-10-01 The Regents Of The University Of California Irreversible electroporation device for use in attenuating neointimal
US8926606B2 (en) * 2009-04-09 2015-01-06 Virginia Tech Intellectual Properties, Inc. Integration of very short electric pulses for minimally to noninvasive electroporation
US10448989B2 (en) * 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US8992517B2 (en) * 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US20090281477A1 (en) * 2008-05-09 2009-11-12 Angiodynamics, Inc. Electroporation device and method
CA2743140A1 (en) * 2008-11-11 2010-05-20 Shifamed, Llc Low profile electrode assembly
FR2941572B1 (fr) 2009-01-28 2011-05-06 Jacques Gascuel Dispositif de surveillance et de protection de l'alimentation d'un appareil electrique et procede de mise en oeuvre de ce dispositif
WO2010093692A2 (en) 2009-02-10 2010-08-19 Hobbs Eamonn P Irreversible electroporation and tissue regeneration
CN102307524B (zh) 2009-03-16 2014-10-29 基础灌注公司 用于人体中胃阻抗谱的特征参数评估的系统和方法
DK2440283T3 (en) * 2009-06-09 2018-11-26 Neuronano Ab MICROELECTRODE AND MULTIPLE MICROELECTRODES INCLUDING AGENTS FOR THE RELEASE OF MEDICINAL PRODUCTS IN THE TISSUE
EP2859862B1 (en) 2009-07-28 2017-06-14 Neuwave Medical, Inc. Ablation system
EP2488251A4 (en) * 2009-10-16 2014-02-19 Virginia Tech Intell Prop TREATMENT PLANNING FOR ELECTROPORATION THERAPIES
CN101745178B (zh) 2009-12-17 2013-01-02 重庆大学 便携式高压纳秒方波脉冲发生器
US20110238057A1 (en) * 2010-02-16 2011-09-29 Angiodynamics, Inc. Dual Bracketed Energy Delivery Probe and Method of Use
DK2542300T3 (en) * 2010-03-01 2016-11-28 Inovio Pharmaceuticals Inc Tolerable (almost painless) and minimally invasive device for electroporation of the skin.
WO2011109399A1 (en) * 2010-03-01 2011-09-09 Inovio Pharmaceuticals, Inc. Multiple tissue layer electroporation applicator and device
JP2014036576A (ja) 2010-12-10 2014-02-27 Ajinomoto Co Inc L−アミノ酸の製造法
CN102005732A (zh) 2010-12-10 2011-04-06 江苏省电力公司常州供电公司 电容器组的谐波保护方法
US10131900B2 (en) * 2010-12-15 2018-11-20 Old Dominion University Research Foundation Electroporation-induced electrosensitization
ITTO20110374A1 (it) * 2011-04-29 2012-10-30 Igea S P A Metodo di controllo di un dispositivo di elettro-porazione
US20120310230A1 (en) * 2011-06-01 2012-12-06 Angiodynamics, Inc. Coaxial dual function probe and method of use
EP3797824B1 (en) * 2011-06-28 2024-06-12 Inovio Pharmaceuticals, Inc. A miniminally invasive dermal electroporation device
US20130030430A1 (en) * 2011-07-29 2013-01-31 Stewart Mark T Intracardiac tools and methods for delivery of electroporation therapies
US20130345779A1 (en) * 2012-01-12 2013-12-26 The Regents Of The University Of California Two dimensional and one dimensional field electroporation
AU2013266240B9 (en) 2012-05-23 2018-04-19 Stryker Corporation Battery and control module for a powered surgical tool unit that includes a user-actuated switch for controlling the tool unit
CN103446667A (zh) 2012-05-30 2013-12-18 张涛 全时段高压陡脉冲癌症治疗装置及方法
US20140052216A1 (en) * 2012-08-15 2014-02-20 Ethicon Endo-Surgery, Inc. Methods for promoting wound healing
WO2014066655A2 (en) * 2012-10-25 2014-05-01 Oncosec Medical Incorporation Electroporation device
US9545523B2 (en) * 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US10447023B2 (en) 2015-03-19 2019-10-15 Ripd Ip Development Ltd Devices for overvoltage, overcurrent and arc flash protection
CA2981474A1 (en) 2015-03-31 2016-10-06 Oncosec Medical Incorporated Systems and methods for improved tissue-sensing based electroporation
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
KR20210018228A (ko) 2018-05-02 2021-02-17 온코섹 메디컬 인코포레이티드 전기천공 시스템, 방법, 및 장치
US11071860B2 (en) 2019-02-06 2021-07-27 Oncosec Medical Incorporated Systems and methods for detecting fault conditions in electroporation therapy

Also Published As

Publication number Publication date
JP2018510015A (ja) 2018-04-12
EP3695877A1 (en) 2020-08-19
JP2021094467A (ja) 2021-06-24
PL3277368T3 (pl) 2021-01-25
CA2981474A1 (en) 2016-10-06
US11318305B2 (en) 2022-05-03
EP3277368A2 (en) 2018-02-07
US20230001189A1 (en) 2023-01-05
EP3277368B1 (en) 2020-05-20
WO2016161201A2 (en) 2016-10-06
WO2016161201A3 (en) 2016-11-10
ES2807439T3 (es) 2021-02-23
DK3277368T3 (da) 2020-07-27
HK1250675A1 (zh) 2019-01-11
CN107872982B (zh) 2022-10-28
JP6860497B2 (ja) 2021-04-14
CN107872982A (zh) 2018-04-03
JP2023029619A (ja) 2023-03-03
US20190117964A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
CN107872982B (zh) 用于改进的基于组织感测的电穿孔的系统和方法
CN112236192B (zh) 电穿孔系统、方法和设备
RU2195332C2 (ru) Способ и устройство для использования опосредованной электропорообразованием доставки лекарственных препаратов и генов
JP2023029619A5 (zh)
JP5756165B2 (ja) 可変電流密度単一針電気穿孔システムおよび方法
CA3063263C (en) Device and method for single-needle in vivo electroporation
JP2018510015A5 (zh)
US10173057B2 (en) Device and method of electroporating drug-delivering by using hollow needle electrode
US20080045880A1 (en) Device and method for single-needle in vivo electroporation
KR102601524B1 (ko) 미세전극을 사용한 조직 전기이동을 위한 소자
CA2686855C (en) Device and method for single-needle in vivo electroporation
AU2022348518A1 (en) Controlled lesion and immune response to pulsed electric field therapy
US20230256236A1 (en) Transformable needle for electroporation
RU2792194C2 (ru) Аппликатор и система для электропорации
WO2021158685A1 (en) Hemostatic combination therapy with low voltage electroporation
CN118234445A (zh) 脉冲电场疗法的受控损伤和免疫反应
MXPA97008316A (en) Method of treatment using administration of drugs and genes through electroporac

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240326

Address after: Room 3302, Central Centre, 99 Queen's Road Central, Hong Kong, China

Applicant after: Hongnian Development Co.,Ltd.

Country or region after: Hong-Kong

Address before: California, USA

Applicant before: ONCOSEC MEDICAL Inc.

Country or region before: U.S.A.