CN115651265B - 一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法 - Google Patents

一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法 Download PDF

Info

Publication number
CN115651265B
CN115651265B CN202211376154.1A CN202211376154A CN115651265B CN 115651265 B CN115651265 B CN 115651265B CN 202211376154 A CN202211376154 A CN 202211376154A CN 115651265 B CN115651265 B CN 115651265B
Authority
CN
China
Prior art keywords
aerogel
temperature
fiber
polyimide fiber
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211376154.1A
Other languages
English (en)
Other versions
CN115651265A (zh
Inventor
张秋禹
任亚峰
田苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202211376154.1A priority Critical patent/CN115651265B/zh
Publication of CN115651265A publication Critical patent/CN115651265A/zh
Priority to US18/243,103 priority patent/US20240150535A1/en
Application granted granted Critical
Publication of CN115651265B publication Critical patent/CN115651265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法,包括将聚酰亚胺粉末和溶剂混合均匀后进行静电纺丝,得到的纤维毡剪碎备用;将碎纤维、聚酰胺酸和叔丁醇混合后剪切形成稳定分散液进行低温定向冷冻,冷冻干燥和高温热亚胺化,得到聚酰亚胺纤维基气凝胶材料;将上述气凝胶材料浸泡于亲水性单体溶液中进行聚合反应,通过低温定向冷冻和冷冻干燥得到亲水性聚酰亚胺纤维基气凝胶。将该气凝胶置于光源辐照下,使用疏水性填料树脂混合溶液对其上表面进行滴涂,得到不对称润湿性纤维基光热气凝胶。本发明得到以聚酰亚胺纤维为骨架材料的高孔隙率、内部垂直通道、表面疏水的气凝胶,解决了因盐分覆盖材料表面导致蒸发速率下降的问题。

Description

一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法
技术领域
本发明属于气凝胶结构设计领域,具体涉及一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法。
背景技术
全球人口增长、气候变化和环境污染等问题加重了水资源的短缺,导致近30亿人面临着严重的水危机。面对这些挑战,迫切需要开发出一种高效、低成本的海水淡化技术,以减少能源消耗,提高清洁水生产效率。常见的反渗透技术需要大量的资本投资、成熟的供应链和可靠的高品位能源供应才可运行。此外还必须对产生的盐水进行适当管理,这极大限制了反渗透技术的应用。
界面太阳能蒸发是一种新兴的方法,可以利用太阳光可持续地淡化水源,同时实现液体零排放。常见的研究是使用二维材料漂浮在水-空气界面,水被吸入到多孔材料内部,被阳光加热,实现有效蒸发。但由于二维材料的热量损失大、内部孔隙率低等缺点,导致蒸发速率低,淡水产量也随之下降。
聚酰亚胺三维气凝胶是一种具有超高孔隙率低密度的新材料,在隔热防护、压敏探测、能源存储、吸附分离等领域具有广泛的应用。太阳能蒸发用光热气凝胶是利用冷冻成型、冷冻干燥技术得到的,在过程中引入光热材料的同时,实现了微米级大孔的制备。相较于二维材料,聚酰亚胺三维气凝胶具有优异的力学强度,并且分子链中丰富的苯环结构展示出抗紫外老化性能,保证材料使用寿命的同时,可以显著提高能量利用率,增强界面蒸发效果,并且高孔隙率保证了材料的隔热性能,进一步解决了热量向水本体散失导致的材料表面温度低等问题,从而实现零能量输入和高品质水再生。
目前聚酰亚胺大都是通过溶胶凝胶法制备得到的,材料内部孔隙率较低,难以保证水分的充足供应,而使用聚酰亚胺纤维为骨架制备得到的气凝胶,内部孔隙率得到明显提升,通过定向冷冻技术控制晶体生长,使得材料内部具有上下贯通的垂直孔道,可解决水分输送慢的难题。但未经疏水改性的纤维基光热气凝胶,在盐水蒸发过程中,整体亲水使得盐分析出后覆盖材料表面,阻挡了太阳光的有效摄入。因此,需要对材料进行结构亲疏水调控修饰,保证盐水快速运输扩散的同时,析出的盐分可以快速被盐水冲洗,从而实现光热气凝胶优异的抗结盐性能。
发明内容
为了避免现有技术的不足之处,本发明提出一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法,采用本方法所制备的气凝胶内部具备垂直的水通道、较高的孔隙率和表面超疏水其余超亲水的特性,对于解决蒸发速率慢、使用寿命短、盐分阻塞问题有重大功效。
本发明的上述技术目的是采用以下技术方案实现的:
一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法,包括以下步骤:
S1:将聚酰亚胺粉末和溶剂在搅拌作用下混合,形成均一的纺丝溶液。将纺丝溶液转移至一次性注射器中,进行静电纺丝,得到的纤维毡经过真空干燥后剪碎成碎纤维备用。
S2:将所述碎纤维、聚酰胺酸和叔丁醇混合后,在匀浆机中剪切形成稳定的分散液。将分散液倒入聚四氟乙烯模具中,置于低温冷冻台表面进行定向冷冻,随后进行冷冻干燥和高温热亚胺化处理,得到聚酰亚胺纤维基气凝胶材料。
S3:将S2制备得到的聚酰亚胺纤维基气凝胶材料通过乙醇润湿后,浸泡于亲水性单体溶液中,振荡条件下进行聚合反应,随后通过低温冷冻和冷冻干燥,得到亲水性聚酰亚胺纤维基气凝胶。
S4:将上述S3中制备的亲水性聚酰亚胺纤维基气凝胶置于氙灯光源辐照下,使用填料树脂混合溶液对亲水性聚酰亚胺纤维基气凝胶上表面进行滴涂,待溶剂挥发完全,实现疏水改性,制备得到不对称润湿性纤维基光热气凝胶。
进一步地,在步骤S1中,聚酰亚胺为聚酰胺酸亚胺化后的产物,亚胺化反应可通过与三乙胺反应或热处理来实现,所述溶剂可以选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙酮、氯仿、二甲基亚砜或乙腈,或者它们的任意组合,所述聚酰亚胺粉末与所述溶剂混合质量比可以为1~1.5:7.5~10。另外,所述搅拌的时间可以为8~16h,在所述静电纺丝中,静电纺丝的温度可以为19~28℃,湿度可以为30~50%,接收滚筒转速可以为300~500rpm,推进速度可以为0.1~0.5mL/h,静电纺丝用一次性注射器的针头与接收器的距离可以为8~20cm,正负两极电压可以为+10~14kV、-1~5kV。所述真空干燥为真空下在80~100℃处理8~20h,以去除残留溶剂。
进一步地,在步骤S2中,所述聚酰胺酸为步骤S1中所述聚酰亚胺的前驱物,其制备方法为:等摩尔的4,4’-二氨基二苯醚和3,3’,4,4’-联苯四羧酸二酐在溶剂N,N-二甲基甲酰胺中充分聚合反应4~6h,产物聚酰胺酸与N,N-二甲基甲酰胺溶剂的质量比可以为1:5~10,该聚酰胺酸分散液随后在水中沉淀并干燥得到聚酰胺酸粉末。另外,碎纤维、聚酰胺酸和叔丁醇的质量比可以为0.1~0.6:0.1~0.6:1。所述剪切的剪切速度可以为10~15k/min,剪切时长可以为15~30min。另外,冷冻模具为带有金属铜底的聚四氟乙烯模具,可根据所需气凝胶的形状进行定制,低温定向冷冻时仅限于模具底部金属铜受冷,其余聚四氟乙烯部暴露于常温,冷冻温度为-196~-20℃,冷冻时长为6~10h,冷冻干燥时长为10~20h。另外,高温热亚胺化处理的条件为100℃、200℃和300℃各自反应1~2h。
进一步地,在步骤S3中,低温定向冷冻和冷冻干燥的方式和条件与上述步骤S2中所述相同。另外,所述亲水性单体溶液选自吡咯单体溶液、多巴胺单体溶液或它们的组合。其中吡咯单体溶液的制备方法为:按质量比0.1~0.5:10~50:5~25称取吡咯单体、超纯水和FeCl3乙醇溶液(2.5%,w/w),经超声充分混合得到吡咯单体溶液,在吡咯单体溶液的情况下,所述聚合温度为15~30℃,聚合时间为4~8h;多巴胺单体溶液的制备方法为:pH=6.5~8.5的磷酸盐缓冲溶液和盐酸多巴胺在搅拌作用下混合均匀得到多巴胺单体溶液,在多巴胺单体溶液的情况下,所述聚合温度为15~30℃,聚合时间为18~24h。
进一步的,在步骤S4中,所述填料树脂溶液优选为黑色填料树脂溶液,是将黑色填料和Nafion树脂溶液按质量比为0.1~0.5:100,通过超声混合得到的;所述黑色填料为碳纳米管、石墨烯、炭黑中的一种或多种。另外,所述光源辐照为氙灯光源辐照,模拟的太阳光强度为1kW/m2
本发明通过定向冷冻、原位包覆、不对称亲疏水修饰工艺制备得到一种高孔隙率、内部垂直通道、表面疏水的气凝胶,聚酰亚胺纤维为气凝胶的骨架材料。气凝胶整体包覆的亲水聚合物和垂直通道有助于水分快速运输,同时气凝胶上表面修饰的黑色疏水层中,黑色填料可以进一步改进气凝胶的光热转换效率,提高材料的蒸发速率,疏水层可以阻挡盐分的析出,解决了因盐分覆盖材料表面导致蒸发速率下降的关键问题,极大延长了气凝胶的使用寿命。
附图说明
图1为本发明实施例1的气凝胶结构的SEM图;
图2为本发明实施例1的气凝胶蒸发质量变化图;
图3为本发明实施例1的气凝胶抗结盐效果图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图和实施例对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
下述实施例中所使用的实验方法,如无特殊说明,均为常规实验方法,所用的试剂、方法和设备,如无特殊说明,均为本技术领域的常规试剂、方法和设备。
实施例1
本实施例为碳纳米管不对称疏水修饰聚吡咯包覆聚酰亚胺纤维基气凝胶的制备
(1)取0.8g聚酰亚胺粉末与7.2g N,N-二甲基甲酰胺溶剂混合,室温下搅拌10h,使得聚酰亚胺粉末完全溶解,得到质量分数为10%的淡黄色纺丝溶液。将纺丝液转移至10mL注射器中,设置接收器转速为450rpm,推进速度为0.3mL/h,接收距离为10cm,正负极电压为+12kV、-5kV。纺丝得到的纤维毡在真空烘箱中95℃中处理10h,去除残留溶剂后用剪刀剪碎备用。
(2)取0.024g聚酰亚胺碎纤维,0.024g聚酰胺酸,5.952g叔丁醇置于50mL离心管中,使用匀浆机在13k/min速度下,剪切15min,得到的剪切液转移到自制的带有金属铜底的聚四氟乙烯模具中。随后将上述模具底部放置在-20℃冷冻台,叔丁醇溶剂受冷结晶,晶体自下而上生长,冷冻8h后,转移到-20℃20Pa冷冻干燥机中,经过10h最终得到白色的聚酰亚胺气凝胶。将上述得到的白色聚酰亚胺气凝胶放置于马弗炉中,分别于100℃、200℃和300℃恒温1h进行热亚胺化反应,该过程聚酰胺酸转化为聚酰亚胺,对聚酰亚胺纤维骨架进行物理交联,最终得到浅黄色聚酰亚胺纤维基气凝胶。
(3)取15g 2.5%的FeCl3乙醇溶液和30g 1%的吡咯水溶液混合制备吡咯单体溶液,将上述步骤(2)中得到的气凝胶经乙醇润湿后,置于吡咯单体溶液中,在室温20℃振荡条件下聚合反应4h,得到的湿态气凝胶经水洗、冷冻和冷冻干燥,制备得到黑色的亲水聚吡咯包覆聚酰亚胺纤维基光热气凝胶。
(4)称量5mg碳纳米管和5g Nafion树脂溶液,超声作用下得到质量分数为0.1%的碳纳米管树脂溶液。将上述步骤(3)得到的气凝胶放置在1kW/m2强度的氙灯光源下,使用碳纳米管树脂溶液进行滴涂,直至溶剂受热挥发完全,气凝胶表面生成致密的碳纳米管疏水复合膜,最终制备得到碳纳米管不对称疏水修饰聚吡咯包覆聚酰亚胺纤维基气凝胶,其气凝胶结构如图1所示,图中虚线箭头所指表示定向生长的叔丁醇晶体被去除后形成的定向平行通道。
实施例2
本实施例为碳纳米管不对称疏水修饰聚多巴胺包覆聚酰亚胺纤维基气凝胶的制备
(1)取1g聚酰亚胺粉末与7g二甲基亚砜溶剂混合,室温下搅拌8h,使得聚酰亚胺粉末完全溶解,得到质量分数为12.5%的淡黄色纺丝溶液。将纺丝液转移至10mL注射器中,设置接收器转速为450rpm,推进速度为0.3mL/h,接收距离为10cm,正负极电压为+13kV、-4kV。纺丝得到的纤维毡在真空烘箱中95℃中处理10h,去除残留溶剂后用剪刀剪碎备用。
(2)取0.036g聚酰亚胺碎纤维,0.036g聚酰胺酸,5.928g叔丁醇置于50mL离心管中,使用匀浆机在14k/min速度下,剪切20min,得到的剪切液转移到自制的带有金属铜底的聚四氟乙烯模具中。随后将上述模具底部放置在-196℃冷冻台,叔丁醇溶剂受冷结晶,晶体自下而上生长,冷冻10h后,转移到-20℃20Pa冷冻干燥机中,经过10h,得到白色的聚酰亚胺气凝胶。将上述得到的白色聚酰亚胺气凝胶转移到马弗炉中,分别于100℃、200℃和300℃恒温1.5h进行热亚胺化反应,该过程聚酰胺酸转化为聚酰亚胺,对聚酰亚胺纤维骨架进行物理交联,得到浅黄色聚酰亚胺纤维基气凝胶。
(3)取10mg盐酸多巴胺加入到20g pH=8.5磷酸盐缓冲中,在搅拌作用下溶解完全制备多巴胺单体溶液,将上述步骤(2)中得到的气凝胶经乙醇润湿后,置于多巴胺单体溶液中,在避光25℃振荡条件下反应24h,得到的湿态气凝胶经水洗、冷冻和冷冻干燥,得到黑色的亲水聚酰亚胺纤维基光热气凝胶。
(4)称量15mg碳纳米管和5g Nafion树脂溶液,超声作用下得到质量分数为0.3%的碳纳米管树脂溶液。将上述步骤(3)得到的气凝胶放置在1kW/m2强度的氙灯光源下,将碳纳米管树脂溶液进行滴涂,直至溶剂受热挥发干,气凝胶表面生成致密的碳纳米管疏水复合膜,最终制备得到碳纳米管不对称疏水修饰聚多巴胺包覆聚酰亚胺纤维基气凝胶。
实施例3
本实施例为炭黑不对称疏水修饰聚吡咯包覆聚酰亚胺纤维基气凝胶的制备
(1)取1.6g聚酰亚胺粉末与6.4g N,N-二甲基甲酰胺溶剂混合,室温下搅拌10h,使得聚酰亚胺粉末完全溶解,得到质量分数为20%的淡黄色纺丝溶液。将纺丝液转移至10mL注射器中,设置接收器转速为300rpm,推进速度为0.5mL/h,接收距离为15cm,正负极电压为+12kV、-5kV。纺丝得到的纤维毡在真空烘箱中95℃中处理10h,去除残留溶剂后用剪刀剪碎备用。
(2)取0.012g聚酰亚胺碎纤维,0.012g聚酰胺酸,5.976g叔丁醇置于50mL离心管中,使用匀浆机在15k/min速度下,剪切30min,得到的剪切液转移到自制的带有金属铜底的聚四氟乙烯模具中。随后将上述模具底部放置在-80℃冷冻台,叔丁醇溶剂受冷结晶,晶体自下而上生长,冷冻8h后,转移到-20℃20Pa冷冻干燥机中,经过10h,最终得到白色的聚酰亚胺气凝胶。将上述得到的白色聚酰亚胺气凝胶转移到马弗炉中,分别于100℃、200℃和300℃恒温1h进行热亚胺化反应,该过程聚酰胺酸转化为聚酰亚胺,对聚酰亚胺纤维骨架进行物理交联,最终得到浅黄色聚酰亚胺纤维基气凝胶。
(3)取18g 2.5%的FeCl3乙醇溶液和30g 1%的吡咯水溶液混合制备吡咯聚合溶液,将上述步骤(2)中得到的气凝胶经乙醇润湿后,置于吡咯聚合溶液中,在室温20℃振荡条件下反应8h,得到的湿态气凝胶经水洗、冷冻和冷冻干燥,最终得到黑色的亲水聚吡咯包覆聚酰亚胺纤维基光热气凝胶。
(4)称量25mg炭黑和5gNafion树脂溶液,超声作用下得到质量分数为0.1%的炭黑树脂溶液。将上述步骤(3)得到的气凝胶放置在1kW/m2强度的氙灯光源下,将炭黑树脂溶液进行滴涂,直至溶剂受热挥发干,气凝胶表面生成致密的碳纳米管疏水复合膜,最终制备得到炭黑不对称疏水修饰聚吡咯包覆聚酰亚胺纤维基气凝胶。
效果试验
将实施例1制备得到的不对称润湿性聚酰亚胺纤维基光热气凝胶进行光热水蒸发试验和抗结盐效果试验,试验结果分别如图2和图3所示。
水蒸发试验方法:在烧杯内装有一定量的盐水,在水面上方并且距离水表面一定高度放置隔热聚苯乙烯泡沫,在泡沫上表面放置和气凝胶相同底面积的无纺布。使用无纺布卷通过聚苯乙烯泡沫的中心将烧杯内的盐水和泡沫上表面的无纺布相连,实现盐水定向毛细输送。光热气凝胶材料放置于无纺布上方,调节氙灯光源的输出电流控制气凝胶表面的光照强度。使用四位数分析天平记录整体材料在光照下的质量变化情况,并使用数码相机记录气凝胶表面的盐分析出情况。通过计算单位面积下单位时间的水分蒸发量,得到材料的蒸发速率。
试验结果:气凝胶的蒸发速率可以一直稳定在2.5kg/(m2·h),高于绝大多数光热材料的蒸发速率。这一性能的提升主要归结于亲水性聚吡咯对气凝胶骨架的包覆提高了材料整体亲水性,定向冷冻生成的垂直结构保证了水分的定向快速传输,另外气凝胶自身具有的隔热效应可以将热量集中在材料的表面减少了向水本体的传导损失。在气凝胶表面碳纳米管的引入,极大提高了材料的可见光光热转换性能。并且以20%的浓盐水为试验水样,气凝胶经过12h的长时间蒸发,表面未有明显的盐分析出,表明材料表面疏水复合层的修饰,可以有效解决盐分在材料表面析出导致水分运输变慢、太阳光摄入变少导致的蒸发速率降低的问题。
综上所述,根据本发明方法制备得到的不对称润湿性聚酰亚胺纤维基气凝胶具有更高的蒸发速率和抗结盐性能。本发明通过定向冷冻和表面疏水改性工艺制备得到高孔隙率、具有垂直通道的复合气凝胶材料,此外该气凝胶表面的疏水层可以有效阻挡盐分析出,将热量集中在材料表面实现了从而进一步提高了蒸发速率。该材料对于解决传统光热材料蒸发速率慢、使用寿命短的问题具有重要意义。

Claims (6)

1.一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法,包括以下步骤:
S1:将聚酰亚胺粉末和溶剂在搅拌作用下混合,形成均一的纺丝溶液后进行静电纺丝,得到的纤维毡经过真空干燥后剪碎成碎纤维备用;
S2:将所述碎纤维、聚酰胺酸和叔丁醇混合后剪切形成稳定的分散液,将分散液倒入模具中进行低温定向冷冻,随后进行冷冻干燥和高温热亚胺化处理,得到聚酰亚胺纤维基气凝胶材料,其中所述模具为带有金属铜底的聚四氟乙烯模具,低温定向冷冻时,所述模具置于低温冷冻台表面,只有所述金属铜底受冷,其余聚四氟乙烯部暴露于常温,冷冻温度为-196~-20℃,冷冻时长为6~10h,冷冻干燥时长为10~20h;
S3:将聚酰亚胺纤维基气凝胶材料通过乙醇润湿后,浸泡于亲水性单体溶液中,振荡条件下进行聚合反应,随后通过低温定向冷冻和冷冻干燥,得到亲水性聚酰亚胺纤维基气凝胶;
S4:将亲水性聚酰亚胺纤维基气凝胶置于光源辐照下,使用疏水性填料树脂混合溶液对亲水性聚酰亚胺纤维基气凝胶上表面进行滴涂,待滴涂的疏水性填料树脂混合溶液的溶剂挥发完全,在气凝胶表面生成致密的疏水复合膜,最终制备得到不对称润湿性纤维基光热气凝胶,其中所述疏水性填料树脂混合溶液是将黑色填料和Nafion树脂溶液按质量比为0.1~0.5:100,通过超声混合得到的,其中黑色填料为碳纳米管、石墨烯、炭黑中的一种或多种。
2.按照权利要求1所述的方法,其中步骤S1中,所述溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙酮、氯仿、二甲基亚砜、乙腈或者它们的任意组合,所述聚酰亚胺粉末与所述溶剂的质量比为1~1.5:7.5~10。
3.按照权利要求1所述的方法,其中步骤S1中,所述搅拌的时间为8~16h,在所述静电纺丝中,静电纺丝的温度为19~28℃,湿度为30~50%,接收滚筒转速为300~500rpm,推进速度为0.1~0.5mL/h,静电纺丝用一次性注射器的针头与接收器的距离为8~20cm,正负两极电压分别为+10~14kV和-1~5kV,所述真空干燥为真空下在80~100℃处理8~20h,以去除残留溶剂。
4.按照权利要求1所述的方法,其中步骤S2中,所述碎纤维、聚酰胺酸和叔丁醇的质量比为0.1~0.6:0.1~0.6:1。
5.按照权利要求1所述的方法,其中步骤S3中,所述亲水性单体溶液选自吡咯单体溶液、多巴胺单体溶液或它们的组合,其中在吡咯单体溶液的情况下,所述聚合温度为15~30℃,聚合时间为4~8h,在多巴胺单体溶液的情况下,所述聚合温度为15~30℃,聚合时间为18~24h。
6.按照权利要求1所述的方法,其中步骤S4中,所述光源辐照为氙灯光源辐照,模拟的太阳光强度为1kW/m2
CN202211376154.1A 2022-11-04 2022-11-04 一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法 Active CN115651265B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211376154.1A CN115651265B (zh) 2022-11-04 2022-11-04 一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法
US18/243,103 US20240150535A1 (en) 2022-11-04 2023-09-07 Method for preparing asymmetric wettable polyimide fiber-based photothermal aerogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211376154.1A CN115651265B (zh) 2022-11-04 2022-11-04 一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN115651265A CN115651265A (zh) 2023-01-31
CN115651265B true CN115651265B (zh) 2024-01-30

Family

ID=84995293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211376154.1A Active CN115651265B (zh) 2022-11-04 2022-11-04 一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法

Country Status (2)

Country Link
US (1) US20240150535A1 (zh)
CN (1) CN115651265B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116976A (zh) * 2019-12-30 2020-05-08 东华大学 一种纳米纤维气凝胶基太阳能水蒸发器及其制备方法
CN113603935A (zh) * 2021-06-25 2021-11-05 浙江大学 一种具有Janus特性的复合气凝胶及其制备方法与应用
CN113754920A (zh) * 2021-09-30 2021-12-07 合肥学院 一种聚酰亚胺复合气凝胶、制备方法及其作为太阳能蒸发器的应用
CN115124101A (zh) * 2022-06-17 2022-09-30 武汉纺织大学 多孔疏水/亲水结构的界面蒸发装置及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116976A (zh) * 2019-12-30 2020-05-08 东华大学 一种纳米纤维气凝胶基太阳能水蒸发器及其制备方法
CN113603935A (zh) * 2021-06-25 2021-11-05 浙江大学 一种具有Janus特性的复合气凝胶及其制备方法与应用
CN113754920A (zh) * 2021-09-30 2021-12-07 合肥学院 一种聚酰亚胺复合气凝胶、制备方法及其作为太阳能蒸发器的应用
CN115124101A (zh) * 2022-06-17 2022-09-30 武汉纺织大学 多孔疏水/亲水结构的界面蒸发装置及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩雅芳等. 走近前沿新材料.中国科学技术大学出版社,2019,第138页. *

Also Published As

Publication number Publication date
CN115651265A (zh) 2023-01-31
US20240150535A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
CN109133962B (zh) 一种静电纺纳米纤维复合碳气凝胶及其制备方法
CN108607365B (zh) 一种膜蒸馏用超疏水纳米纤维复合膜及其制备方法
CN112980044B (zh) 一种高性能大块芳纶纳米纤维气凝胶及其制备方法和应用
CN104028112B (zh) 一种规模化制备碳纳米管中空纤维膜的方法
CN110170304A (zh) 一种海绵状多孔碳纤维膜的制备方法
CN105543995B (zh) 一种聚丙烯腈有机气凝胶纤维材料及其制备方法和应用
CN110725024A (zh) 一种纤维状光热转换材料的制备方法
Zong et al. Electrospun fibrous sponges: principle, fabrication, and applications
CN109545578A (zh) 酰胺类聚合物衍生一维氮掺杂纳米碳电极材料及制备方法
CN106435841A (zh) 一种聚丙烯腈基多孔碳纤维的制备方法
CN105923622A (zh) 一种聚丙烯腈纳米纤维/聚酰亚胺基碳气凝胶吸附材料及其制备方法
CN113559721A (zh) 一种具有自漂浮结构的静电纺海水淡化膜的制备方法
CN113754920A (zh) 一种聚酰亚胺复合气凝胶、制备方法及其作为太阳能蒸发器的应用
CN106449130B (zh) 多级孔碳氮微球材料的制备方法
CN115651265B (zh) 一种不对称润湿性聚酰亚胺纤维基光热气凝胶的制备方法
CN107021549A (zh) 石墨烯/碳纳米管/碳纳米纤维膜三元复合电容型脱盐电极的制备方法
CN110379637B (zh) 一种多孔碳气凝胶纤维全固态超级电容器及其制备方法
CN110327789B (zh) 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN105845455A (zh) 一种聚丙烯腈纳米纤维/聚酰亚胺基复合碳气凝胶电极材料及其制备方法
CN106115689A (zh) 一种纳米壁厚泡沫炭的制备方法
CN114619748A (zh) 碳纳米管基单向导湿光热膜、制备方法和制得的太阳能界面蒸发装置
CN110615912B (zh) 一种超低密度多孔聚合物气凝胶及其制备方法和应用
CN114908438B (zh) 一种基于同轴纺丝的聚酰亚胺气凝胶纤维及其制备方法
CN110756129A (zh) 一种制备纳米纤维气凝胶复合材料的方法
CN109569327A (zh) 一种聚丙烯腈纳米纤维多孔膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant