CN115632085A - 一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件 - Google Patents

一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件 Download PDF

Info

Publication number
CN115632085A
CN115632085A CN202210994780.0A CN202210994780A CN115632085A CN 115632085 A CN115632085 A CN 115632085A CN 202210994780 A CN202210994780 A CN 202210994780A CN 115632085 A CN115632085 A CN 115632085A
Authority
CN
China
Prior art keywords
sic
patterned
nano
sic wafer
array film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210994780.0A
Other languages
English (en)
Inventor
尉国栋
吴显通
李兰
苏莹
丁利苹
翟配郴
袁帅
董李艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210994780.0A priority Critical patent/CN115632085A/zh
Publication of CN115632085A publication Critical patent/CN115632085A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Weting (AREA)

Abstract

本发明提供一种图案化4H‑SiC纳米阵列薄膜及其制备方法和光电探测器件,将4H‑SiC晶片进行p型掺杂,并干法氧化,得到覆盖有氧化层的4H‑SiC晶片;将聚苯乙烯微球溶液旋涂在覆盖有氧化层的4H‑SiC晶片上,加热使聚苯乙烯微球缩小并自组装形成单层膜,蒸镀沉积金,去除聚苯乙烯微球,得到具有金纳米图案的4H‑SiC晶片;将其与铜板接触作为阳极,在三电极系统中外加脉冲电流对具有金纳米图案的4H‑SiC晶片进行刻蚀处理,在晶片上形成图案化4H‑SiC纳米线阵列薄膜,剥离图案化4H‑SiC纳米线阵列薄膜。本发明制备出有序的、图案化的纳米线阵列薄膜,缺陷少,经图案化后具有较高的分辨率。

Description

一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测 器件
技术领域
本发明属于光电探测器件制备技术领域,具体来说,涉及一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件。
背景技术
随着近年来天文、高能物理、空间技术等领域的研究与探索工作的不断深入,及在宇宙探测、人造卫星等方面应用前景的迅速拓展,具有半导体、光、电、磁等性能的图案化金属和金属氧化物纳米结构材料,因其独特的性能而在太阳能电池、传感器、纳米发电机等领域具有广阔的应用前景,是微电子元器件微型化、智能化、高速化的主流发展方向,已成为当今前沿领域的研究热点之一。由于图案化纳米结构材料,尤其是图案化纳米线阵列,依据其种类、尺寸、形貌、空间位置和密度的差异而呈现出不同的性能,因此研究尺寸、位置、密度和生长取向均可控的图案化纳米线阵列的制备与应用具有十分重要的理论意义和广阔的应用前景。而近年来纳米科技的兴起,低维SiC纳米结构引起了广泛的注意。低维SiC纳米结构具有优异的物理和化学性能,比如高的禁带宽度、高临界击穿电场、高的热导率、电子饱和迁移率、小的介电常数,良好的化学稳定性,同时具有很高的硬度、耐磨性和低的热膨胀系数和较好的机械性能等,使其在极端环境下仍能保持相对稳定的工作状态。SiC是目前最被看好的第三代半导体材料,其最大优势可以概括为拥有较大的能量带隙、较高的热导率和较大的电子饱和漂移速率,使其在紫外探测领域受到青睐,很适合用于制备高密度集成的紫外光光电探测器件,主要的探测对象为紫外和近紫外波段的光。
SiC低维纳米材料的合成,是其实际应用的基础。然而当前已有的SiC低维材料的制备方法,绝大部分涉及高温(一般大于或等于1000℃)以及高压的环境,导致其材料制备面临着工艺复杂、设备要求高、SiC纳米材料形貌难以调控,以及工艺重复、稳定性较差等问题。因此,探索在较低成本条件下实现具有良好形貌的图案化低维SiC材料的可控制备,具有良好的现实意义和发展前景。
制备SiC纳米线的方法有很多,可分为两类,即“自下而上”的生长法和“自上而下”的刻蚀方法。“自下而上”的生长法,是指从独立的原子分子建立起需要的纳米结构。对于半导体纳米线而言,制备方法包括气-液-固(vapor-liquid-solid,VLS)法、化学沉积法(CVD)、固-液-固法、激光烧蚀法、纳米多孔模板法、电弧放电法和很多热还原方法。采用这些方法制备出的纳米线一般为立方结构,易产生较多的缺陷,产物量少,有金属催化剂颗粒的污染,成本高,合成时间长。“自上而下”的刻蚀方法包括干法刻蚀和湿法刻蚀。对于干法刻蚀已有很多报道,制备中易出现损伤以及小锥状物,且不易控制,制备出的尺寸较大,不适于一维纳米材料器件的制备。
发明内容
针对上述存在的问题,本发明提供一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件,可通过较为简单的工艺流程制备出有序的、图案化的纳米线阵列薄膜,缺陷少,经图案化后具有较高的分辨率(特征尺寸和间距<50nm),形状和间距可控并应用于光电探测器材料。
本发明通过以下技术方案实现:
一种图案化4H-SiC纳米阵列薄膜的制备方法,所述方法包括如下步骤:
将厚度为350±25μm,晶相<1120>的N型4H-SiC晶圆先切割成矩形或圆形的SiC晶片,再清洗、浸泡、干燥;
将清洗过后的SiC晶片与p型掺杂源混合均匀后,装入石英管密封,封管后石英管内压强为1毫托;将密封后的石英管放入马弗炉中加热,升温速率为3-10℃/min,加热温度为1000-1200℃,保温时间为60-600min,待加热完成后样品随炉自然冷却到室温后取出,得到掺杂后的SiC晶片;
掺杂后的SiC晶片在空气气氛中、1000-1100℃下保温15-40min进行干法氧化,在SiC晶片上得到约200nm的氧化层,得到覆盖有氧化层的SiC晶片;
将直径在100nm左右的聚苯乙烯(PS)微球旋涂在覆盖有氧化层的SiC晶片上,在石墨电热板上加热到250℃保持15min使聚苯乙烯(PS)微球缩小到60nm左右,此时聚苯乙烯(PS)微球间间隔约为80nm,并附着更为牢固,自组装形成单层膜,再通过电子束蒸发在表面沉积约100nm厚的Au纳米颗粒,最后在无水乙醇中超声去除PS微球,制得了具有蜂窝状金纳米图案的SiC晶片,并以其为催化剂模板;
在电化学腐蚀过程中,具有蜂窝状金纳米图案的SiC晶片和石墨片分别作为阳极和阴极,在HF、C2H5OH、H2O2组成的刻蚀液中,外加脉冲电流对具有蜂窝状金纳米图案的SiC晶片室温刻蚀处理;随后,剥离4H-SiC纳米线阵列薄膜;最后,将所得4H-SiC纳米线阵列薄膜分别用乙醇和去离子水洗涤,干燥,得到4H-SiC纳米线阵列薄膜。
基于该4H-SiC纳米阵列薄膜的光电探测器件的制备方法,将清洗过的叉指电极(电极间距200μm)用砂纸打磨,将退火的4H-SiC纳米阵列薄膜转移到叉指电极上,然后压制,改善材料与电极之间的接触;若无叉指电极,则可电子束蒸发蒸镀间距40μm的镍电极,再重复以上操作。最后真空退火炉快速退火,制备完成了基于该4H-SiC纳米阵列薄膜的光电探测器件。
作为优选,所述4H-SiC晶片为工业级。即4H-SiC晶片表面划痕累计长度<1条直径,且个数≤3条,微管密度≤1个/cm2
作为优选,所述清洗为:将4H-SiC晶片分别在丙酮、去离子水依次超声清洗10min。
作为优选,所述浸泡在氢氟酸与乙醇的混合液中进行,浸泡时间为120s,其中氢氟酸与乙醇的体积比为0.8-1.2:1。选取合适的清洗试剂和合适的浸泡时间可以充分清洗碳化硅晶片,避免混入杂质。
作为优选,所述干燥为将4H-SiC晶片置于35-45℃的烘箱中干燥8-12min。
作为优选,掺杂时的p型掺杂源选用纯度为99.99%的氯化铵或氯化铝。
作为优选,所述旋涂聚苯乙烯(PS)微球是利用旋涂仪在2000rpm下旋涂1-3min。
作为优选,所述刻蚀液的成分中氢氟酸、乙醇、双氧水的体积比为2.5-3.5:6:1。进一步优选,所述刻蚀液中,氢氟酸、乙醇、双氧水的体积比为3:6:1。
作为优选,所述刻蚀处理的时间为15-25min,剥离处理的时间为20-40s。
作为优选,刻蚀处理采用的电流密度为100-140mA/cm2,循环时间0.8ms,暂停时间0.4ms,在刻蚀过程中,可通过控制刻蚀时间、电流大小等因素调控4H-SiC晶片的形貌,可通过SEM技术进行监控,最终准确获得所需形貌的4H-SiC纳米阵列薄膜。
作为优选,所述剥离处理的方法为直流剥离法,即施加直流电流以剥离4H-SiC纳米阵列薄膜。
作为优选,所述4H-SiC纳米阵列薄膜的形貌为长纳米线,所述长纳米线的直径为30-45nm。
作为优选,4H-SiC纳米阵列薄膜退火处理是:进行1000℃退火,程序设置:室温经10min升温至200℃,经20min升温至980℃,经10min升温至1000℃,保温60min,自然冷却至室温。制备基于该4H-SiC纳米阵列薄膜的光电探测器件时要严格控制冷压时的作用力以及冷压温度,300℃下50N压制5min,再200℃下50N压制3h,压力过大器件会产生裂纹甚至断裂,过小时无法达到性能要求;温度过高则器件会发生导通。
与现有技术相比,本发明具有如下的有益效果:
本发明采用外加脉冲电流的化学刻蚀法,这种方法通过选择性的刻蚀减小维度的大小,通过调控脉冲电流制备4H-SiC纳米线,与传统不加电流或加上直流电流的化学刻蚀法相比,本发明制备的纳米线具有较少缺陷,且具有简单、可批量、成本低廉的优点。本发明区别于传统方法制备的单一形貌的4H-SiC纳米阵列,本发明SiC纳米阵列薄膜制备方法,工艺方法简单,具有很好的重复性,且剥离方法简单,剥离的SiC纳米阵列薄膜完整,成功率高,这对于使用较大的晶片基板作为原料,大规模制备有序、定向SiC纳米孔阵列及其应用奠定了良好的基础。
进一步的,本发明的阳极氧化刻蚀过程可以通过对刻蚀工艺参数的调控较好地控制4H-SiC纳米阵列的形貌变化,可从纳米孔过渡到纳米线再到无序多孔形貌,且通过刻蚀时间可对纳米线长度进行调控,而本发明需要选用具有较长纳米线形貌的4H-SiC纳米阵列作为可实际应用的产品,短纳米线形貌和无序多孔形貌均会造成产品应用过程中性能的下降。
本发明图案化4H-SiC纳米线阵列薄膜中阵列为垂直纳米线阵列,与薄膜或平面无序纳米线相比,垂直纳米线阵列结构显示出更优越的光吸收能力、更高的载流子生成和更高的恢复效率,这得益于高的表面体积比、表面载流子复合、有效的光耦合。可应用于光电探测器,对于365nm的紫外光具有快速响应,响应时间为0.25s,在紫外探测领域具有较高的潜力。
附图说明
图1为本发明实施例1制备的4H-SiC纳米阵列薄膜微观形貌。
图2为本发明基于实施例1所制备的图案化4H-SiC纳米阵列的紫外探测器在365nm激发光源下IT曲线图。
图3为本发明实施例2制备的4H-SiC纳米阵列薄膜微观形貌。
图4为本发明实施例3制备的4H-SiC纳米阵列薄膜微观形貌。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明进行描述,这些描述只是进一步解释本发明的特征和优点,并非用于限制本发明的权利要求。
实施例1
将工业级4H-SiC晶圆先切割成尺寸为0.7×1.5cm2的4H-SiC晶片,分别在丙酮、去离子水中进行超声清洗15min,再浸入体积比为1:1的氢氟酸、乙醇的混合溶液中120s,取出后将4H-SiC晶片置于60℃的烘箱中干燥10min;
将清洗过后的4H-SiC晶片与氯化铵(p型掺杂源)的质量比为10:1混合均匀后,装入管长15cm、管内径1cm、管壁厚2mm、封管后石英管内压强为1毫托的石英管密封。将密封后的石英管放入马弗炉中加热,升温速率为10℃/min,加热温度为1200℃,保温时间为180min,待加热完成后样品随炉自然冷却到室温后取出;
4H-SiC晶片在空气气氛中、1100℃下保温40min进行干法氧化,得到约200nm的氧化层;
利用旋涂仪在2000rpm下旋涂2min,将直径在100nm左右的聚苯乙烯(PS)微球旋涂在4H-SiC晶片上,在石墨电热板上250℃加热15min后使PS微球缩小到60nm左右,此时PS微球间间隔约为80nm,并附着更为牢固,自组装形成单层膜,再蒸镀沉积金,最后在无水乙醇中超声20min去除PS微球,干燥,制得了蜂窝状金纳米图案,并以其为催化剂模板;
将具有蜂窝状金纳米图案的4H-SiC晶片放入模具作为阳极,4H-SiC晶片的C面(磨砂面)与铜片接触,石墨板作为阴极,连接导线,浸入由体积比为3:6:1的氢氟酸、乙醇、双氧水混合的刻蚀液中,在电流密度为100mA/cm2的脉冲电流下刻蚀处理20min;其中,循环时间0.8ms,暂停时间0.4ms;
改脉冲电流为直流电流,刻蚀30s进行剥离,将4H-SiC晶片剥离下来,取出干燥,使用双面胶实现大面积的4H-SiC纳米线阵列薄膜从4H-SiC晶片基底的剥离,再用乙醇去除双面胶。
将在1000℃退火60min后的4H-SiC纳米线阵列薄膜转移到叉指电极上,然后300℃下50N压制5min,再200℃下50N压制3h,改善材料与电极之间的接触,最后真空退火炉1000℃快速退火,并制备完成了基于该4H-SiC纳米阵列薄膜的光电探测器件并进行光电性能测试。4H-SiC纳米阵列薄膜微观形貌如附图1所示,可以看出,4H-SiC纳米阵列垂直薄膜厚度方向,阵列结构规整。光电探测器件在365nm激发光源下的性能测试结果如图2所示,可以看出对365nm的紫外光具有快速响应,响应时间为0.25s。
实施例2
将工业级4H-SiC晶圆先切割成尺寸为0.7×1.5cm2的4H-SiC晶片,分别在丙酮、去离子水中进行超声清洗15min,再浸入体积比为1:1的氢氟酸、乙醇的混合溶液中120s,取出后将4H-SiC晶片置于60℃的烘箱中干燥10min;
将清洗过后的4H-SiC晶片与氯化铵(p型掺杂源)的质量比为10:1混合均匀后,装入管长15cm、管内径1cm、管壁厚2mm、封管后石英管内压强为1毫托的石英管密封。将密封后的石英管放入马弗炉中加热,升温速率为3℃/min,加热温度为1000℃,保温时间为60min,待加热完成后样品随炉自然冷却到室温后取出;
4H-SiC晶片在空气气氛中、1100℃下保温20min进行干法氧化,得到氧化层;
利用旋涂仪在2000rpm下旋涂2min,将直径在100nm左右的聚苯乙烯(PS)微球旋涂在4H-SiC晶片上,在石墨电热板上250℃加热15min后使PS微球缩小到60nm左右,此时PS微球间间隔约为80nm,并附着更为牢固,自组装形成单层膜,再蒸镀沉积金,最后在无水乙醇中超声20min去除PS微球,干燥,制得了蜂窝状金纳米图案,并以其为催化剂模板;
将具有蜂窝状金纳米图案的4H-SiC晶片放入模具作为阳极,4H-SiC晶片的C面(磨砂面)与铜片接触,石墨板作为阴极,连接导线,浸入由体积比为2.5:6:1的氢氟酸、乙醇、双氧水混合的刻蚀液中,在电流密度为120mA/cm2的脉冲电流下刻蚀处理15min;其中,循环时间0.8ms,暂停时间0.4ms;
改脉冲电流为直流电流,刻蚀30s进行剥离,将4H-SiC晶片剥离下来,取出干燥,使用双面胶实现大面积的4H-SiC纳米线阵列薄膜从4H-SiC晶片基底的剥离,再用乙醇去除双面胶。
实施例3
将工业级4H-SiC晶圆先切割成尺寸为0.7×1.5cm2的4H-SiC晶片,分别在丙酮、去离子水中进行超声清洗15min,再浸入体积比为1:1的氢氟酸、乙醇的混合溶液中120s,取出后将4H-SiC晶片置于60℃的烘箱中干燥10min;
将清洗过后的4H-SiC晶片与氯化铵(p型掺杂源)的质量比为10:1混合均匀后,装入管长15cm、管内径1cm、管壁厚2mm、封管后石英管内压强为1毫托的石英管密封。将密封后的石英管放入马弗炉中加热,升温速率为10℃/min,加热温度为1100℃,保温时间为600min,待加热完成后样品随炉自然冷却到室温后取出;
4H-SiC晶片在空气气氛中、1050℃下保温30min进行干法氧化,得到氧化层;
利用旋涂仪在2000rpm下旋涂2min,将直径在100nm左右的聚苯乙烯(PS)微球旋涂在4H-SiC晶片上,在石墨电热板上250℃加热15min后使PS微球缩小到60nm左右,此时PS微球间间隔约为80nm,并附着更为牢固,自组装形成单层膜,再蒸镀沉积金,最后在无水乙醇中超声20min去除PS微球,干燥,制得了蜂窝状金纳米图案,并以其为催化剂模板;
将具有蜂窝状金纳米图案的4H-SiC晶片放入模具作为阳极,4H-SiC晶片的C面(磨砂面)与铜片接触,石墨板作为阴极,连接导线,浸入由体积比为3.5:6:1的氢氟酸、乙醇、双氧水混合的刻蚀液中,在电流密度为130mA/cm2的脉冲电流下刻蚀处理25min;其中,循环时间0.8ms,暂停时间0.4ms;
改脉冲电流为直流电流,刻蚀30s进行剥离,将4H-SiC晶片剥离下来,取出干燥,使用双面胶实现大面积的4H-SiC纳米线阵列薄膜从4H-SiC晶片基底的剥离,再用乙醇去除双面胶。
实施例4
将工业级4H-SiC晶圆先切割成尺寸为0.7×1.5cm2的4H-SiC晶片,依次在丙酮、去离子水中进行超声清洗15min,再浸入体积比为1:1的氢氟酸、乙醇的混合溶液中120s,取出后将4H-SiC晶片置于60℃的烘箱中干燥10min;
将清洗过后的4H-SiC晶片与氯化铵(p型掺杂源)的质量比为10:1混合均匀后,装入管长15cm,管内径1cm,管壁厚2mm,封管后石英管内压强为1毫托的石英管密封。将密封后的石英管放入马弗炉中加热,升温速率为每min升3-10摄氏度,加热温度为1100℃,保温时间为180min,待加热完成后样品随炉自然冷却到室温后取出;
4H-SiC晶片在空气气氛中、1100℃下保温30min进行干法氧化,得到约200nm的氧化层;
利用旋涂仪在2000rpm下旋涂3min,将直径在100nm左右的聚苯乙烯(PS)微球旋涂在碳化硅片上,在石墨电热板上250℃加热15min后使其缩小到60nm左右,此时小球间间隔约为80nm,并附着更为牢固,自组装形成单层膜,再蒸镀沉积金,最后在无水乙醇中超声20min去除PS微球,干燥,制得了蜂窝状金纳米图案,并以其为催化剂模板;
将干燥后具有蜂窝状金纳米图案的4H-SiC晶片作为阳极,石墨板作为阴极,连接导线,浸入由体积比为3.5:6:1的氢氟酸、乙醇、双氧水混合的刻蚀液中,在电流密度为140mA/cm2的脉冲电流下刻蚀处理20min后取出;其中,循环时间0.8ms,暂停时间0.4ms;
改脉冲电流为直流电流,刻蚀30s进行剥离,取出干燥,使用双面胶实现大面积的4H-SiC纳米线阵列薄膜剥离,再用乙醇去除双面胶,其微观形貌如附图4所示,可明显看出其形貌由于电压过大导致纳米线崩塌,其形貌不如实施例1条件下制备样品规整。
对比例1
将工业级4H-SiC晶圆先切割成尺寸为0.7×1.5cm2的4H-SiC晶片,分别在丙酮、去离子水中进行超声清洗15min,再浸入体积比为1:1的氢氟酸、乙醇的混合溶液中120s,取出后将4H-SiC晶片置于60℃的烘箱中干燥10min;
将清洗过后的4H-SiC晶片与氯化铵(p型掺杂源)的质量比为10:1混合均匀后,装入管长15cm、管内径1cm、管壁厚2mm、封管后石英管内压强为1毫托的石英管密封。将密封后的石英管放入马弗炉中加热,升温速率为10℃/min,加热温度为1200℃,保温时间为180min,待加热完成后样品随炉自然冷却到室温后取出;
4H-SiC晶片在空气气氛中、1100℃下保温40min进行干法氧化,得到约200nm的氧化层;
利用旋涂仪在2000rpm下旋涂3min,将直径在100nm左右的聚苯乙烯(PS)微球旋涂在碳化硅片上,在石墨电热板上250℃加热15min后使其缩小到60nm左右,此时小球间间隔约为80nm,并附着更为牢固,自组装形成单层膜,再蒸镀沉积金,最后在无水乙醇中超声20min去除PS微球,干燥,制得了蜂窝状金纳米图案,并以其为催化剂模板;
将具有蜂窝状金纳米图案的4H-SiC晶片4H-SiC晶片放入模具作为阳极,4H-SiC晶片的C面与铜片接触,石墨板作为阴极,连接导线,浸入由体积比为2.5:6:1的氢氟酸、乙醇、双氧水混合的刻蚀液中,在电流密度为100mA/cm2的直流电流下刻蚀处理20min;
外加直流电流,刻蚀30s进行剥离,取出干燥,使用双面胶实现大面积的4H-SiC纳米线阵列薄膜剥离,再用乙醇去除双面胶,其微观形貌如图3所示,可明显看出其形貌不如实施例1利用脉冲电流制备样品规整。
通过对实施例1、4、对比例1的表征及性能测试结果及对比,可以得到通过实施例1方法制备出的4H-SiC薄膜具有良好光电响应性能,并在光电探测领域具有较大潜力的结论。

Claims (10)

1.一种图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,包括:
步骤1,将4H-SiC晶片与p型掺杂源混合均匀,进行热处理,得到掺杂后的4H-SiC晶片;
步骤2,将掺杂后的4H-SiC晶片进行干法氧化,得到覆盖有氧化层的4H-SiC晶片;
步骤3,将聚苯乙烯微球溶液旋涂在覆盖有氧化层的4H-SiC晶片上,加热使聚苯乙烯微球缩小并自组装形成单层膜,然后蒸镀沉积金,采用无水乙醇去除聚苯乙烯微球,得到具有金纳米图案的4H-SiC晶片;
步骤4,将具有金纳米图案的4H-SiC晶片与铜板接触作为阳极,氢氟酸、乙醇和双氧水组成的刻蚀液作为电解液,在三电极系统中外加脉冲电流对具有金纳米图案的4H-SiC晶片进行刻蚀处理,在具有金纳米图案的4H-SiC晶片上形成图案化4H-SiC纳米线阵列薄膜,然后剥离得到图案化4H-SiC纳米线阵列薄膜。
2.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤1中,所述4H-SiC晶片为晶相<1120>的N型4H-SiC晶片,所述p型掺杂源为氯化铵或氯化铝。
3.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤1中,热处理是以3-10℃/min的升温速率升温至1000-1200℃,保温60-600min。
4.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤2中,干法氧化是在空气气氛中、1000-1100℃下保温15-40min。
5.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤3中,加热温度为250℃,加热时间为15min。
6.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤4中,氢氟酸、乙醇和双氧水的体积比为(2.5-3.5):6:1。
7.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤4中,刻蚀处理采用的电流密度为100-140mA/cm2,刻蚀处理时间为15-25min。
8.根据权利要求1所述的图案化4H-SiC纳米阵列薄膜的制备方法,其特征在于,步骤4中,剥离具体是:先采用直流电流将4H-SiC晶片从铜板上剥离下来,干燥,再使用双面胶将图案化4H-SiC纳米线阵列薄膜从4H-SiC晶片上剥离下来。
9.采用权利要求1-8任一项所述的制备方法得到的图案化4H-SiC纳米阵列薄膜。
10.基于权利要求9所述的图案化4H-SiC纳米阵列薄膜的光电探测器件。
CN202210994780.0A 2022-08-18 2022-08-18 一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件 Pending CN115632085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210994780.0A CN115632085A (zh) 2022-08-18 2022-08-18 一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210994780.0A CN115632085A (zh) 2022-08-18 2022-08-18 一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件

Publications (1)

Publication Number Publication Date
CN115632085A true CN115632085A (zh) 2023-01-20

Family

ID=84903629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210994780.0A Pending CN115632085A (zh) 2022-08-18 2022-08-18 一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件

Country Status (1)

Country Link
CN (1) CN115632085A (zh)

Similar Documents

Publication Publication Date Title
CN102400109A (zh) 一种用聚苯乙烯固态碳源低温化学气相沉积生长大面积层数可控石墨烯的方法
Hong et al. Nanostructuring methods for enhancing light absorption rate of Si-based photovoltaic devices: A review
KR20150017422A (ko) 그래핀/실리콘 나노선 분자 센서 또는 이의 제조 방법과 이를 이용한 분자 확인 방법
CN111403475A (zh) 一种二维二碲化钼垂直异质结及其制备方法和应用
Leng et al. Progress in metal-assisted chemical etching of silicon nanostructures
CN103296141B (zh) 一种枝状异质结纳米线阵列结构材料的制备方法
CN104724664A (zh) 单晶金刚石纳米柱阵列结构的制备方法和应用
CN109216496B (zh) 应用派瑞林n薄膜直接生长石墨烯的硅肖特基结探测器
CN112760612B (zh) 一种自支撑纳米针多孔金刚石的制备方法
JP2012524402A (ja) 光起電力デバイス用途の半導体ナノワイヤアレイ及びその製造方法
CN111312851A (zh) 一种AlN纳米线日盲区探测器的制备方法
CN115632085A (zh) 一种图案化4H-SiC纳米阵列薄膜及其制备方法和光电探测器件
US10147789B2 (en) Process for fabricating vertically-aligned gallium arsenide semiconductor nanowire array of large area
US20220177313A1 (en) Graphene nanoribbon composite structure and method for making the same
US8945794B2 (en) Process for forming silver films on silicon
US11658232B2 (en) Field effect transistor based on graphene nanoribbon and method for making the same
CN115101404A (zh) 一种二维碲烯的局部减薄方法
CN108640091B (zh) 一种化学气相沉积法制备二硒化钽纳米片的方法
CN112516931A (zh) 一种海胆结构氧化镓微结构及其制备方法与应用
US11948793B2 (en) Field effect transistor based on graphene nanoribbon and method for making the same
CN116219544B (zh) 一种基于激光干涉技术制备单晶硅薄膜的方法
CN113604792B (zh) 一种金刚石纳米毛刺结构的制备方法
CN115692189B (zh) 一种氮化镓纳米线阵列及其加工方法
CN115867055A (zh) SiC-石墨烯核壳纳米线阵列、及其制备方法和在自供电光电探测器中的应用
CN115020500A (zh) 一种降低导通电阻的氧化镓肖特基二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination