CN115627465A - 一种耐盐穴高压气氛防腐镀层的施镀工艺及应用 - Google Patents

一种耐盐穴高压气氛防腐镀层的施镀工艺及应用 Download PDF

Info

Publication number
CN115627465A
CN115627465A CN202211314698.5A CN202211314698A CN115627465A CN 115627465 A CN115627465 A CN 115627465A CN 202211314698 A CN202211314698 A CN 202211314698A CN 115627465 A CN115627465 A CN 115627465A
Authority
CN
China
Prior art keywords
solution
plating
salt
zif
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211314698.5A
Other languages
English (en)
Other versions
CN115627465B (zh
Inventor
张明
易锫
余建飞
李阳海
张莹
叶建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Priority to CN202211314698.5A priority Critical patent/CN115627465B/zh
Publication of CN115627465A publication Critical patent/CN115627465A/zh
Application granted granted Critical
Publication of CN115627465B publication Critical patent/CN115627465B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1676Heating of the solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

本发明提供了一种耐盐穴高压气氛防腐镀层的施镀工艺及应用,所述施镀工艺通过对Q345钢试片前处理后,将试片放置于Ni‑P基的化学镀液中,分批次加入新鲜镀液来维持浓度,并根据表面状态加入ZIF‑8固体粉末以及稳定剂,最后通过除盐水冲洗,制备出高压重腐蚀空气环境中抗腐蚀、高稳定性的镀层。本发明通过采用ZIF‑8,其强大的表面能可以强化对Ni‑P相之间的连接,从而在高空气压力下,避免了微裂纹的产生,提高了复合镀层的硬度与耐磨性。

Description

一种耐盐穴高压气氛防腐镀层的施镀工艺及应用
技术领域
本发明属于盐穴压缩空气储能领域,具体是一种耐盐穴高压气氛防腐镀层的施镀工艺及应用。
背景技术
盐穴压缩空气储能技术造价成本低、环保无污染并且有较强的调峰作用,近些年在国内外电力行业受到了越来越多的重视。盐穴储气库是在原残余盐穴的基础上简单修建而来,在高频注采空气过程中,周边岩层会渗出H2S、SO2等气体物质,并且由于盐穴内残留少量的盐份,这些物质都会融入压缩空气中,并随着空气进入相关管道和设备。
目前为了节省成本,压缩空气储能管道一般不会采用石油行业的管线钢,而采用耐蚀性能较差的Q345钢,内表面涂敷常压使用的耐蚀镀层。但在高压和应力腐蚀的作用下,这种镀层极易失效,从而发生管道的疲劳损伤和断裂失效等问题,造成报废和机组停运等现象。严重制约了储能项目正常运行和设备的使用年限,从而带来了巨大的经济损失,因此,需要对Q345内表面镀层的耐蚀性能进一步改进。
发明内容
针对上述现有技术的不足,本发明提供一种耐盐穴高压气氛防腐镀层的施镀工艺及应用,本发明的施镀工艺可以在样品表面制备出高压重腐蚀空气环境中抗腐蚀、高稳定性的镀层。
本发明提供的技术方案:一种耐盐穴高压气氛防腐镀层的施镀工艺,包括如下步骤:
(1)配制硫酸镍和次磷酸钠水溶液,将硫酸镍和次磷酸钠水溶液混合后,制作为基液,向基液中缓慢倒入柠檬酸钠溶液、乳酸溶液和醋酸钠溶液,定容后得到Ni-P基的化学镀液,所述硫酸镍、次磷酸钠、柠檬酸钠、乳酸和醋酸钠在Ni-P基的化学镀液的浓度分别为16-22g/L,9.5-11.5g/L,8-15g/L,0.25-0.5ml/L,0.1-0.2g/L;
(2)取Q345基材采用丙酮除油后,用质量浓度8-13%的盐酸酸洗试样表面至无明显腐蚀点,再用质量浓度5-8%盐酸对样品拟镀表面活化后,最后用除盐水冲洗干净;
(3)将步骤(1)配置好的化学镀液放置于水浴锅中加热至70-90℃,用氢氧化钠溶液调节PH值至9.5-10.2后,将经过步骤(2)前处理好的样品放入镀液后开始计时,缓慢搅拌并每隔8-10min添加80-150mL新镀液,并监测PH值,当下降至8.0以下时,加入氢氧化钠溶液调整至9.5-10.5;
(4)取ZIF-8复合粉末放置于一定的步骤(1)所配置的化学镀液中,再将混合液用超声波分散后,加热,得到质量浓度为20-30g/L的ZIF-8混合液;
(5)当步骤(3)完成3-4次投加新镀液后,将步骤(4)得到ZIF-8混合液投加入步骤(3)所得的施镀溶液中,使ZIF-8在溶液中质量浓度控制在1.5-3.5g/L之间,进行共沉积;再加入稳定剂,随后继续保持温度,再施镀20-30min后,取出试样,用流动清水冲洗表面残夜,冷风吹干后,获得化学镀后的样品。
进一步的,所述步骤(2)中活化时间为10-20秒。
进一步的,所述步骤(3)中氢氧化钠溶液的质量分数为8-12%
进一步的,所述步骤(4)中超声波的功率为60-90W,分散时间12-18min,磁力搅拌的水浴锅中加热温度为80-90℃。
进一步的,所述步骤(5)中按照每L施镀液加入稳定剂15-25mL的比例进行投加,稳定剂的质量浓度为1-1.5g/L,所述稳定剂为硫代硫酸钠与苯并三氮唑按照质量比0.7-1:0.8-1.1复配获得。
经过施镀工艺处理后的样品的应用,所述样品用于制作盐穴压缩空气储能气体管道。
本发明的有益效果:
(1)本发明的镀液配方为根据常规Ni-P配方进行的改良,目的是更好的接纳ZIF-8固体颗粒。特别是由于ZIF-8固体颗粒在酸性介质中不稳定,因此采用氢氧化钠溶液调节PH值至9.5-10.2环境,以便有助于ZIF-8固体颗粒分散。此外,在常规的镀液配方中,配位剂乳酸的浓度和用量并不多,这是因为常规镀液为酸性环境,本身的氢离子即可对拟镀基体产生活化作用,而本发明镀液中,为了在碱性环境下仍然保持基体和镍离子的活性,先用高浓度乳酸活化,在投加ZIF-8前,用氢氧化钠调整并保持PH在8.0-10.0之间,从而既保障了活性,又避免了ZIF-8的分解。
(2)本发明技术方案中,当镀液与Q345施镀表面基体发生氧化还原反应时,ZIF-8颗粒中的微碳孔骨架一方面为镀层电化学反应提供了导电环境,另一方面也为电解质离子创造了更多的迁移通道。此外,当施镀反应发生后,ZIF-8颗粒与镍离子和磷离子形成持续共沉积,逐渐嵌入至镀层之中。当颗粒直径小于等于镀层厚度时,ZIF-8颗粒被镀层完全包覆,从而形成Ni-P基的复合镀层。
(3)本发明技术方案中,ZIF-8颗粒在与镍离子、磷离子共沉积的过程中,增加了形核点数量,对复合镀层产生了细晶强化的效果,使镀层结构更致密,晶粒更细小,有效地改善了复合镀层的显微组织,提高了复合镀层的硬度与耐磨性。与此同时,ZIF-8有着较高的表面积,其强大的表面能可以强化对Ni-P相之间的连接,从而在高空气压力下,避免了微裂纹的产生,提高耐腐蚀性。
附图说明
图1是本发明的工艺流程图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种耐盐穴高压气氛防腐镀层的施镀工艺,包括以下步骤:
S1、配制50g/L硫酸镍和32g/L次磷酸钠水溶液,将两种溶液各取350mL后混合,制作为基液。向基液中缓慢倒入150g/L的柠檬酸钠100mL,再倒入10mL/L的乳酸溶液50mL,4g/L的醋酸钠溶液50mL。然后将配置好的溶液定容至1L后备用。
S2、取Q345基材(50mm×10mm×3mm)进行前处理,采用丙酮除油后,用13%的盐酸酸洗试样表面至无明显腐蚀点,再用5%盐酸对拟镀表面活化15秒后,用除盐水冲洗干净。
S3、取300mLS1配置好的镀液放置于水浴锅中加热至85℃,用10%浓度的氢氧化钠溶液调节PH值至9.5-10.2后,迅速将前处理好的样品放入镀液后开始计时,缓慢搅拌并每隔10min添加100mL新镀液,并监测PH值,当下降至8.0以下时,加入10%浓度的氢氧化钠溶液调整至10.0左右。
S4、再S3步骤进行同时,取2.7g的ZIF-8复合粉末放置于100mL镀液中,再将混合液用90W的超声波分散15min后,放置于带磁力搅拌的水浴锅中,加热至90℃。
S5、当S3步骤完成三次投加新镀液后,将ZIF-8混合液投加入施镀溶液,进行共沉积,同时加入稳定剂20mL。稳定剂为硫代硫酸钠与苯并三氮唑按照1:1复配获得,质量浓度为1.2g/L。随后继续保持温度,再施镀30min后,取出试样,用流动清水冲洗表面残夜,冷风吹干后,获得化学镀后的样品A。
实施例2
一种耐盐穴高压气氛防腐镀层的施镀工艺,包括以下步骤:
S1、配制60g/L硫酸镍和28g/L次磷酸钠水溶液,将两种溶液各取350mL后混合,制作为基液。向基液中缓慢倒入150g/L的柠檬酸钠100mL,再倒入10mL/L的乳酸溶液50mL,4g/L的醋酸钠溶液50mL。然后将配置好的溶液定容至1L后备用。
S2、取Q345基材(50mm×10mm×3mm)进行前处理,采用丙酮除油后,用9%的盐酸酸洗试样表面至无明显腐蚀点,再用6%盐酸对拟镀表面活化12秒后,用除盐水冲洗干净。
S3、取300mLS1配置好的镀液放置于水浴锅中加热至80℃,用10%浓度的氢氧化钠溶液调节PH值至9.5-10.2后,迅速将前处理好的样品放入镀液后开始计时,缓慢搅拌并每隔8min添加80mL新镀液,并监测PH值,当下降至8.0以下时,加入10%浓度的氢氧化钠溶液调整至10.0左右。
S4、再S3步骤进行同时,取2.7g的ZIF-8复合粉末放置于100mL镀液中,再将混合液用70W的超声波分散18min后,放置于带磁力搅拌的水浴锅中,加热至85℃。
S5、当S3步骤完成三次投加新镀液后,将ZIF-8混合液投加入施镀溶液,进行共沉积,同时加入稳定剂15mL,质量浓度为1.2g/L。稳定剂为硫代硫酸钠与苯并三氮唑按照1:1复配获得。随后继续保持温度,再施镀20min后,取出试样,用流动清水冲洗表面残夜,冷风吹干后,获得化学镀后的样品B。
实施例3
一种耐盐穴高压气氛防腐镀层的施镀工艺,包括以下步骤:
S1、配制60g/L硫酸镍和32g/L次磷酸钠水溶液,将两种溶液各取350mL后混合,制作为基液。向基液中缓慢倒入80g/L的柠檬酸钠100mL,再倒入5mL/L的乳酸溶液50mL,2g/L的醋酸钠溶液50mL。然后将配置好的溶液定容至1L后备用。
S2、取Q345基材(50mm×10mm×3mm)进行前处理,采用丙酮除油后,用10%的盐酸酸洗试样表面至无明显腐蚀点,再用7%盐酸对拟镀表面活化10秒后,用除盐水冲洗干净。
S3、取300mLS1配置好的镀液放置于水浴锅中加热至90℃,用12%浓度的氢氧化钠溶液调节PH值至9.5-10.2后,迅速将前处理好的样品放入镀液后开始计时,缓慢搅拌并每隔10min添加150mL新镀液,并监测PH值,当下降至8.0以下时,加入12%浓度的氢氧化钠溶液调整至10.0左右。
S4、再S3步骤进行同时,取2.2g的ZIF-8复合粉末放置于100mL镀液中,再将混合液用80W的超声波分散16min后,放置于带磁力搅拌的水浴锅中,加热至85℃。
S5、当S3步骤完成三次投加新镀液后,将ZIF-8混合液投加入施镀溶液,进行共沉积,同时加入稳定剂20mL,质量浓度为1.0g/L。稳定剂为硫代硫酸钠与苯并三氮唑按照1:1复配获得。随后继续保持温度,再施镀30min后,取出试样,用流动清水冲洗表面残夜,冷风吹干后,获得化学镀后的样品C。
实施例4
一种耐盐穴高压气氛防腐镀层的施镀工艺,包括以下步骤:
S1、配制60g/L硫酸镍和32g/L次磷酸钠水溶液,将两种溶液各取350mL后混合,制作为基液。向基液中缓慢倒入80g/L的柠檬酸钠100mL,再倒入5mL/L的乳酸溶液50mL,2g/L的醋酸钠溶液50mL。然后将配置好的溶液定容至1L后备用。
S2、取Q345基材(50mm×10mm×3mm)进行前处理,采用丙酮除油后,用12%的盐酸酸洗试样表面至无明显腐蚀点,再用5%盐酸对拟镀表面活化15秒后,用除盐水冲洗干净。
S3、取300mLS1配置好的镀液放置于水浴锅中加热至85℃,用10%浓度的氢氧化钠溶液调节PH值至9.5-10.2后,迅速将前处理好的样品放入镀液后开始计时,缓慢搅拌并每隔10min添加100mL新镀液,并监测PH值,当下降至8.0以下时,加入10%浓度的氢氧化钠溶液调整至10.0左右。
S4、再S3步骤进行同时,取3.0g的ZIF-8复合粉末放置于100mL镀液中,再将混合液用85W的超声波分散16min后,放置于带磁力搅拌的水浴锅中,加热至90℃。
S5、当S3步骤完成四次投加新镀液后,将ZIF-8混合液投加入施镀溶液,进行共沉积,同时加入稳定剂25mL,质量浓度为1.5g/L。稳定剂为硫代硫酸钠与苯并三氮唑按照1:1复配获得。随后继续保持温度,再施镀25min后,取出试样,用流动清水冲洗表面残夜,冷风吹干后,获得化学镀后的样品D。
对比例1
本对比例1为采用市售Ni-P化学镀液,按照使用说明对Q345试样进行镀膜,获得化学镀后的样品E。
对比例2
本对比例1为采用市售Ni-P-Al2O3复合化学镀液,按照使用说明对Q345试样进行镀膜,获得化学镀后的样品F。
现对50mm×50mm×3mmQ345试样经过化学镀后的样品A、B、C、D、E、F进行盐雾+气体加速腐蚀试验。
测试方法:
1、试样前处理。用酒精清洗试样并吹干,存放在干燥器里至少8小时后,称重,记录初始重量;
2、盐雾试验。在35℃,用含质量分数为5%的氯化钠溶液进行中性盐雾试验(GB/T10125)2小时,然后在标准实验室气候中干燥22小时;
3、气体腐蚀试验。在高压反应釜内进行,压力为9-10mPa,介质为含腐蚀性气体的空气,其中二氧化硫浓度在控制在5×10-6(体积分数),硫化氢的浓度在10×10 -6(体积分数),暴露时间为72小时。暴露完毕后分别在标准实验室气候中干燥24小时,按照GB/T16545《腐蚀试样上腐蚀产物的清除》对腐蚀产物进行处理,称重,计算腐蚀速率。
试样制作过程中的镀速、镀层的显微硬度和腐蚀测试结果如表1所示:
表1不同镀层的Q345试样腐蚀速率
Figure BDA0003908658650000101
由上表1可知,本发明实施例基于Q345基体制备的新型镀层相比于传统化学镀层有着更高的显微硬度和更好的耐高压气氛腐蚀,而在施镀速度方面与传统镀液基本相同。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (6)

1.一种耐盐穴高压气氛防腐镀层的施镀工艺,其特征在于包括如下步骤:
(1)配制硫酸镍和次磷酸钠水溶液,将硫酸镍和次磷酸钠水溶液混合后,制作为基液,向基液中缓慢倒入柠檬酸钠溶液、乳酸溶液和醋酸钠溶液,定容后得到Ni-P基的化学镀液,所述硫酸镍、次磷酸钠、柠檬酸钠、乳酸和醋酸钠在Ni-P基的化学镀液的浓度分别为16-22g/L,9.5-11.5g/L,8-15g/L,0.25-0.5ml/L,0.1-0.2g/L;
(2)取Q345基材采用丙酮除油后,用质量浓度8-13%的盐酸酸洗试样表面至无明显腐蚀点,再用质量浓度5-8%盐酸对样品拟镀表面活化后,最后用除盐水冲洗干净;
(3)将步骤(1)配置好的化学镀液放置于水浴锅中加热至70-90℃,用氢氧化钠溶液调节PH值至9.5-10.2后,将经过步骤(2)前处理好的样品放入镀液后开始计时,缓慢搅拌并每隔8-10min添加80-150mL新镀液,并监测PH值,当下降至8.0以下时,加入氢氧化钠溶液调整至9.5-10.5;
(4)取ZIF-8复合粉末放置于一定的步骤(1)所配置的化学镀液中,再将混合液用超声波分散后,加热,得到质量浓度为20-30g/L的ZIF-8混合液;
(5)当步骤(3)完成3-4次投加新镀液后,将步骤(4)得到ZIF-8混合液投加入步骤(3)的施镀溶液中,使ZIF-8在溶液中质量浓度控制在1.5-3.5g/L之间,进行共沉积;再加入稳定剂,随后继续保持温度,再施镀20-30min后,取出试样,用流动清水冲洗表面残夜,冷风吹干后,获得化学镀后的样品。
2.根据权利要求1所述的耐盐穴高压气氛防腐镀层的施镀工艺,其特征在于:所述步骤(2)中活化时间为10-20秒。
3.根据权利要求1所述的耐盐穴高压气氛防腐镀层的施镀工艺,其特征在于:所述步骤(3)中氢氧化钠溶液的质量分数为8-12%
4.根据权利要求1所述的耐盐穴高压气氛防腐镀层的施镀工艺,其特征在于:所述步骤(4)中超声波的功率为60-90W,分散时间12-18min,磁力搅拌的水浴锅中加热温度为80-90℃。
5.根据权利要求1所述的耐盐穴高压气氛防腐镀层的施镀工艺,其特征在于:所述步骤(5)中按照每L施镀液加入稳定剂15-25mL的比例进行投加,稳定剂的质量浓度为1-1.5g/L,所述稳定剂为硫代硫酸钠与苯并三氮唑按照质量比0.7-1:0.8-1.1复配获得。
6.根据权利要求1-5任一项所述施镀工艺处理后的样品的应用,其特征在于,用于制作盐穴压缩空气储能气体管道。
CN202211314698.5A 2022-10-26 2022-10-26 一种耐盐穴高压气氛防腐镀层的施镀工艺及应用 Active CN115627465B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211314698.5A CN115627465B (zh) 2022-10-26 2022-10-26 一种耐盐穴高压气氛防腐镀层的施镀工艺及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211314698.5A CN115627465B (zh) 2022-10-26 2022-10-26 一种耐盐穴高压气氛防腐镀层的施镀工艺及应用

Publications (2)

Publication Number Publication Date
CN115627465A true CN115627465A (zh) 2023-01-20
CN115627465B CN115627465B (zh) 2024-05-24

Family

ID=84906217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211314698.5A Active CN115627465B (zh) 2022-10-26 2022-10-26 一种耐盐穴高压气氛防腐镀层的施镀工艺及应用

Country Status (1)

Country Link
CN (1) CN115627465B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021364A1 (de) * 2007-05-04 2008-11-06 Henkel Ag & Co. Kgaa Metallisierende Vorbehandlung von Zinkoberflächen
KR20100000350A (ko) * 2008-06-24 2010-01-06 (주)인터플렉스 무전해 니켈-금도금을 이용한 연성인쇄회로기판 표면처리방법
CN104388920A (zh) * 2014-11-12 2015-03-04 华南理工大学 一种用于化学镀Ni-P镀层无铬钝化的方法
EP2998378A1 (fr) * 2014-09-18 2016-03-23 MOF Application Services Procédé de revêtement d'un support métallique avec un adsorbant mof
CN105951062A (zh) * 2016-05-23 2016-09-21 河海大学 纳米碳化物增强Ni-W-P复合镀层及其施镀工艺
US20180138513A1 (en) * 2016-11-11 2018-05-17 GM Global Technology Operations LLC Metal deposition methods for forming bimetallic structures, batteries incorporating bipolar current collectors made therefrom, and applications thereof
CN108963228A (zh) * 2018-07-20 2018-12-07 淮安新能源材料技术研究院 一种在金属有机骨架材料zif-8上制备锂离子电池三元正极材料的方法及产品
CN111808499A (zh) * 2020-07-07 2020-10-23 安徽新大陆特种涂料有限责任公司 一种有机骨架改性环氧树脂抗刮伤水性涂料
CN211904846U (zh) * 2020-03-10 2020-11-10 国网湖北省电力有限公司电力科学研究院 实验室用腐蚀产物去除装置
CN113897603A (zh) * 2021-08-31 2022-01-07 信丰正天伟电子科技有限公司 一种耐腐蚀钯类化学镀液及其应用
CN114182241A (zh) * 2021-11-24 2022-03-15 国网浙江省电力有限公司舟山供电公司 Ni-W-P/Ni-P纳米氧化铈复合防腐镀层及工艺
CN114797916A (zh) * 2022-04-25 2022-07-29 武汉工程大学 一种Ni-ZIF衍生的磷化镍-碳材料及其制备方法和应用
CN116083890A (zh) * 2023-03-10 2023-05-09 深圳市金岸达实业有限公司 一种基材表面处理方法及其应用
WO2023138283A1 (zh) * 2022-01-24 2023-07-27 中国科学院深圳先进技术研究院 一种金属有机框架化合物薄膜镀层的绿色快速制备方法
CN117570279A (zh) * 2023-11-13 2024-02-20 浙江汇甬新材料有限公司 一种陶瓷管端部连接体构件及其制造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021364A1 (de) * 2007-05-04 2008-11-06 Henkel Ag & Co. Kgaa Metallisierende Vorbehandlung von Zinkoberflächen
KR20100000350A (ko) * 2008-06-24 2010-01-06 (주)인터플렉스 무전해 니켈-금도금을 이용한 연성인쇄회로기판 표면처리방법
EP2998378A1 (fr) * 2014-09-18 2016-03-23 MOF Application Services Procédé de revêtement d'un support métallique avec un adsorbant mof
CN104388920A (zh) * 2014-11-12 2015-03-04 华南理工大学 一种用于化学镀Ni-P镀层无铬钝化的方法
CN105951062A (zh) * 2016-05-23 2016-09-21 河海大学 纳米碳化物增强Ni-W-P复合镀层及其施镀工艺
US20180138513A1 (en) * 2016-11-11 2018-05-17 GM Global Technology Operations LLC Metal deposition methods for forming bimetallic structures, batteries incorporating bipolar current collectors made therefrom, and applications thereof
CN108963228A (zh) * 2018-07-20 2018-12-07 淮安新能源材料技术研究院 一种在金属有机骨架材料zif-8上制备锂离子电池三元正极材料的方法及产品
CN211904846U (zh) * 2020-03-10 2020-11-10 国网湖北省电力有限公司电力科学研究院 实验室用腐蚀产物去除装置
CN111808499A (zh) * 2020-07-07 2020-10-23 安徽新大陆特种涂料有限责任公司 一种有机骨架改性环氧树脂抗刮伤水性涂料
CN113897603A (zh) * 2021-08-31 2022-01-07 信丰正天伟电子科技有限公司 一种耐腐蚀钯类化学镀液及其应用
CN114182241A (zh) * 2021-11-24 2022-03-15 国网浙江省电力有限公司舟山供电公司 Ni-W-P/Ni-P纳米氧化铈复合防腐镀层及工艺
WO2023138283A1 (zh) * 2022-01-24 2023-07-27 中国科学院深圳先进技术研究院 一种金属有机框架化合物薄膜镀层的绿色快速制备方法
CN114797916A (zh) * 2022-04-25 2022-07-29 武汉工程大学 一种Ni-ZIF衍生的磷化镍-碳材料及其制备方法和应用
CN116083890A (zh) * 2023-03-10 2023-05-09 深圳市金岸达实业有限公司 一种基材表面处理方法及其应用
CN117570279A (zh) * 2023-11-13 2024-02-20 浙江汇甬新材料有限公司 一种陶瓷管端部连接体构件及其制造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何宇航;张明;余建飞;叶建锋;: "某输电线路铁塔角钢锈蚀分析", 湖北电力, no. 02, 28 April 2020 (2020-04-28) *
秦文峰;范宇航;韩孝强;游文涛;徐宇恒;: "一种飞机结构用铝合金表面镀层的制备及其耐蚀性", 腐蚀与防护, no. 03, 15 March 2020 (2020-03-15) *
闫春立;孙建疆;: "镍-磷复合镀的研究", 新疆有色金属, no. 2, 15 August 2008 (2008-08-15) *
马壮;关博文;王顺争;赵轶群;: "42CrMo钢Ni-W-P三元化学镀层耐蚀性研究", 热加工工艺, no. 16, 25 August 2012 (2012-08-25) *

Also Published As

Publication number Publication date
CN115627465B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
CN101532153B (zh) 电沉积镍基系列非晶态纳米合金镀层、电镀液及电镀工艺
CN101649477B (zh) 一种金属碳气凝胶复合材料的制备方法
CA2941123C (en) Passivation of micro-discontinuous chromium deposited from a trivalent electrolyte
CN107012453B (zh) 一种绿色低温快速制备磷化膜的方法
CN101135050B (zh) 一种硅酸盐清洁钝化工艺
CN113800606B (zh) 一种循环冷却水处理用涂层钛阳极、制备方法及应用
CN111593335A (zh) 一种用于金属表面处理的改良锆基转化膜及其制备方法与应用
CN111575689A (zh) 一种耐候钢表面锈层稳定剂及其制备和使用方法
CN113690455A (zh) 一种长寿命阳极电极材料及其制备方法
CN114774903A (zh) 一种适用于铝合金无铬钝化的锆钛基复合钝化液及钝化工艺
CN109797420B (zh) 一种耐高温的陶瓷氧化膜及其加工工艺
CN101054665A (zh) 一种电镀锌及锌铁合金硅酸盐清洁钝化液
CN104561980A (zh) 一种镁合金表面处理方法
CN106894005B (zh) 一种化学镀铜液、制备方法及一种非金属化学镀的方法
CN115627465B (zh) 一种耐盐穴高压气氛防腐镀层的施镀工艺及应用
CN107749350B (zh) 一种超级电容铜镍复合电极及其制备工艺
GB2080338A (en) Coating Fibrous Glass With Amorphous Ni-P
CN103695905B (zh) 一种在镁合金微弧氧化膜表面制备复合镀镍层的方法
CN109468622A (zh) 一种钢铁常温环保型磷化液及其应用
CN111197176B (zh) 一种铜箔的电化学处理方法及复合铜箔材料
CN107460481A (zh) 一种镁合金微弧氧化-化学镀镍复合涂层的制备方法
CN104099650B (zh) 一种脱水剂
CN103320779B (zh) 一种抑制三价铬钝化层中六价铬形成的钝化液及制备方法和应用
CN115029744A (zh) 一种具有自修复功能的复合膜的制备方法、产品及应用
CN107164749A (zh) 一种用于铝合金表面制备铝磷酸盐涂层的涂料及使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant