CN115584044B - 一种复合离子选择性膜的制备方法以及复合离子选择性膜 - Google Patents

一种复合离子选择性膜的制备方法以及复合离子选择性膜 Download PDF

Info

Publication number
CN115584044B
CN115584044B CN202211187306.3A CN202211187306A CN115584044B CN 115584044 B CN115584044 B CN 115584044B CN 202211187306 A CN202211187306 A CN 202211187306A CN 115584044 B CN115584044 B CN 115584044B
Authority
CN
China
Prior art keywords
ion selective
selective membrane
composite ion
polybutadiene
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211187306.3A
Other languages
English (en)
Other versions
CN115584044A (zh
Inventor
随欣
车洪林
谭艳丽
高利龙
陈桂焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Huashitong Metal Materials Co.,Ltd.
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202211187306.3A priority Critical patent/CN115584044B/zh
Publication of CN115584044A publication Critical patent/CN115584044A/zh
Application granted granted Critical
Publication of CN115584044B publication Critical patent/CN115584044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2315/00Characterised by the use of rubber derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及离子选择性膜领域,具体而言,涉及一种以聚丁二烯交联、部分包埋多孔材料形成的复合离子选择性膜的制备方法以及复合离子选择性膜。采用聚丁二烯作为原料,加入三羟甲基丙烷三(3‑巯基丙酸酯)以及偶氮二异丁腈等溶剂,加入碳纳米管等多孔材料制成。其有益效果包括:聚丁二烯交联膜强度高,稳定性好,耐溶剂且可大面积制备;碳纳米管被部分包埋,其结构仍贯穿膜两侧,可用于离子的有效传输,二者结合可制得高效的离子选择性膜。更重要的是,我们提供的这种方法,不仅可用于碳纳米管成膜,还可用于类似结构的难易成膜的无机材料,如多孔碳等。

Description

一种复合离子选择性膜的制备方法以及复合离子选择性膜
技术领域
本发明涉及离子选择性膜领域,具体而言,涉及一种以聚丁二烯交联、部分包埋多孔材料形成的复合离子选择性膜的制备方法以及复合离子选择性膜。
背景技术
离子选择性膜作为反电渗析法捕获盐差能的关键部件,应具有高强度、高离子选择性、高通量及可大面积制备等优点。碳材料如碳纳米管具有可调的通道尺寸及可调控的离子基团,有利于离子在通道中传输,有望实现盐度梯度下的能量转换。但多孔材料本身无法成膜,通过简单物理复合的方式与其他材料结合通常也不稳定,因此限制了其在盐差能发电方面的应用。
发明内容
本发明的目的是提供一种复合离子选择性膜的制备方法。
本发明解决上述技术问题的技术方案如下:
一种复合离子选择性膜的制备方法,包括以下步骤:
步骤S100,取聚丁二烯作为原料,加入三羟甲基丙烷三(3-巯基丙酸酯)和溶剂A配置成溶液;
步骤S200,向所述溶液中加入多孔材料;
步骤S300,加入溶剂B并根据膜厚配置成对应浓度的稀释液;
步骤S400,将所述稀释液缓慢加热进行反应,制得所述复合离子选择性膜;
其中,所述溶剂A为偶氮二异丁腈或过氧化苯甲酰,所述溶剂B为二氯乙烷、二氯甲烷、四氢呋喃、丙酮中的任一种,所述多孔材料为碳纳米管或多孔碳。
作为本发明的一种优选技术方案,所述碳纳米管预先经过等离子体处理或酸化处理。
作为本发明的一种优选技术方案,所述碳纳米管为羰基化多臂碳纳米管或氨基化多臂碳纳米管,其长度为1~50μm,直径为2~15nm。
作为本发明的一种优选技术方案,所述聚丁二烯与三羟甲基丙烷三(3-巯基丙酸酯)的体积比为1∶1~3。
作为本发明的一种优选技术方案,所述三羟甲基丙烷三(3-巯基丙酸酯)与所述溶剂A的体积比为1∶10。
作为本发明的一种优选技术方案,所述步骤S400中的加热的停止温度为50℃,加热时间为1~2min,反应时间为1~2min。
作为本发明的一种优选技术方案,所述聚丁二烯为端羟基聚丁二烯、端羧基聚丁二烯、端氨基聚丁二烯中的任一种。
本发明还公开了一种复合离子选择性膜,其由上述的制备方法制备,其结构为所述聚丁二烯形成膜体,部分包埋所述多孔材料,使所述多孔材料的通孔形成供离子通过的通道。
本发明提供了一种复合离子选择性膜的制备方法以及复合离子选择性膜,本发明针对多孔材料本身无法成膜用于盐产能发电电池隔膜的问题,利用聚丁二烯热交联成膜将其部分包埋,其与现有技术相比,本发明至少具有以下有益效果:
一方面,聚丁二烯交联膜强度高,稳定性好,耐溶剂且可大面积制备;
另一方面,碳纳米管被部分包埋,其结构仍贯穿膜两侧,可用于离子的有效传输,二者结合可制得高效的离子选择性膜。更重要的是,我们提供的这种方法,不仅可用于碳纳米管成膜,还可用于类似结构的难易成膜的无机材料,如多孔碳等。
附图说明
图1为本发明的复合离子选择性膜的照片;
图2为本发明的复合离子选择性膜的扫描电镜照片;
图3为本发明的实施例在不同溶液中浸泡前后变化;
图4为本发明实施例在盐度梯度下高功率密度的能量转换。
下面通过具体实施方式和实施例,对本发明的技术方案作进一步的详细描述。
具体实施方式
下面通过具体实施方式对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的具体实施方式公开了一种复合离子选择性膜的制备方法,包括以下步骤:
步骤S100,取聚丁二烯作为原料,加入三羟甲基丙烷三(3-巯基丙酸酯)和溶剂A配置成溶液,其中所述聚丁二烯为端羟基聚丁二烯、端羧基聚丁二烯、端氨基聚丁二烯中的任一种,所述聚丁二烯与三羟甲基丙烷三(3-巯基丙酸酯)的体积比为1∶1~3,所述溶剂A为偶氮二异丁腈或过氧化苯甲酰,所述三羟甲基丙烷三(3-巯基丙酸酯)与所述溶剂A的体积比为1∶10。
步骤S200,向所述溶液中加入多孔材料,所述的多孔材料为碳纳米管或多孔碳,所述碳纳米管为羰基化多臂碳纳米管或氨基化多臂碳纳米管,其长度为1~50μm,直径为2~15nm。碳纳米管预先经过等离子体处理或酸化处理,等离子体处理或酸化处理的目的在于处理后的碳纳米管产生了羧基,羧基具有极性,同时减小碳纳米管之间的范德华力,从而使碳纳米管管壁间距增大,改善了碳纳米管在溶液中的分散性,分散相对更均匀不易团聚。相比而言处理之前的碳纳米管很快就会沉淀,而碳纳米管的用量对膜性能会有影响,过少会导致通道的量少,离子传输性能低。碳纳米管的等离子体处理方法有很多,例如将碳纳米管放入GPT-3型等离子处理仪,氨气气压30Pa,功率250W,打开射频进行等离子化。碳纳米管的酸化处理可以是将碳纳米管在V(浓H2SO4,):V(浓HNO3)=3:1的混酸中混合均匀,室温条件下超声分散30min,然后置于三颈瓶中60℃搅拌酸化处理3h。冷却至室温后用蒸馏水稀释,并用孔径G5的过滤漏斗真空过滤,过滤物再用蒸馏水稀释并真空过滤,多次清洗至中性,产物于80℃真空干燥24h得到酸化的碳纳米管。
步骤S300,加入溶剂B并根据膜厚配置成对应浓度的稀释液,所述溶剂B为二氯乙烷、二氯甲烷、四氢呋喃、丙酮中的任一种,一般我们采用多次添加溶剂B以实现精确制备对应浓度的溶液,通过不同的浓度制备不同厚度的膜。
步骤S400,将所述稀释液缓慢加热进行反应,制得所述复合离子选择性膜,其中加热的停止温度为50℃,加热时间为1~2min,反应时间为1~2min。一般在表面皿内完成上述反应。待反应结束后,把制成的膜取下来,如图1和2所示,可以清晰观察到碳纳米管/聚丁二烯复合膜的成功制备,以及我们通过扫描电镜可以观察到材料表面漏出的碳纳米管聚集体,碳纳米管被部分包埋在聚合物中,可以为离子的传输提供通道。
实施例1
称取0.1ml聚丁二烯,然后加入交联剂三羟甲基丙烷三(3-巯基丙酸酯)0.2ml、偶氮二异丁腈2ml配置成溶液,再加入0.01g等离子体处理或酸化处理的碳纳米管,第一次加入1ml二氯乙烷混匀形成原溶液,再称取0.3ml的原溶液再加入0.7ml二氯乙烷混匀后加入到表面皿中,使用加热台从30℃在1~2min内缓慢加热到50℃反应1~2min,即得。
实施例2
称取0.2ml聚丁二烯,然后加入交联剂三羟甲基丙烷三(3-巯基丙酸酯)0.3ml、过氧化苯甲酰3ml配置成溶液,再加入0.015g等离子体处理或酸化处理的碳纳米管,第一次加入1ml二氯甲烷混匀形成原溶液,再称取0.3ml的原溶液再加入0.7ml二氯甲烷混匀后加入到表面皿中,使用加热台从30℃在1~2min内缓慢加热到50℃反应1~2min,即得。
实施例3
称取0.1ml聚丁二烯,然后加入交联剂三羟甲基丙烷三(3-巯基丙酸酯)0.2ml、偶氮二异丁腈2ml配置成溶液,再加入0.015g等离子体处理或酸化处理的碳纳米管,第一次加入1ml二氯乙烷混匀形成原溶液,再称取0.3ml的原溶液再加入0.7ml二氯乙烷混匀后加入到表面皿中,使用加热台从30℃在1~2min内缓慢加热到50℃反应1~2min,即得。
实施例4
称取0.1ml聚丁二烯,然后加入交联剂三羟甲基丙烷三(3-巯基丙酸酯)0.3ml、偶氮二异丁腈3ml配置成溶液,再加入0.015g等离子体处理或酸化处理的碳纳米管,第一次加入1ml二氯乙烷混匀形成原溶液,再称取0.3ml的原溶液再加入0.7ml二氯乙烷混匀后加入到表面皿中,使用加热台从30℃在1~2min内缓慢加热到50℃反应1~2min,即得。
以上实施例不足以穷尽本发明的实际使用方式,本发明根据其制备的目的,制备复合离子选择性膜,可以根据预设要求合理选择碳纳米管/多孔碳的规格和用量,以及各溶剂之间的比例调节成膜的膜厚使膜能够满足特定需求。
此外,由于本发明的复合离子选择性膜的应用场景是作为盐产能发电电池隔膜,对膜自身在不同溶液中的稳定性要求较高,为了验证本发明的复合离子选择性膜的稳定性进行了如下实验:
如图3所示,将本发明的复合离子选择性膜浸泡于硫酸、氢氧化钠、正己烷等溶液中2h,可以看出膜无明显变化,表明耐酸耐碱耐有机试剂性能较好。
如图4所示,盐产能发电电池隔膜不仅要求稳定性达到要求,也需要具有良好的离子电导率和选择性,进行发电实验,得到图4中的曲线图,其在10000欧姆电阻时功率密度达到3.25W/m2,能量转换效率较高。
以上对本发明的较佳实施例进行了具体说明,当然,本发明还可以采用与上述实施方式不同的形式,熟悉本领域的技术人员在不违背本发明精神的前提下所作的等同的变换或相应的改动,都应属于本发明的保护范围内。

Claims (8)

1.一种复合离子选择性膜的制备方法,其特征在于,包括以下步骤:
步骤S100,取聚丁二烯作为原料,加入三羟甲基丙烷三(3-巯基丙酸酯)和溶剂A配置成溶液;
步骤S200,向所述溶液中加入多孔材料;
步骤S300,加入溶剂B并根据膜厚配置成对应浓度的稀释液;
步骤S400,将所述稀释液缓慢加热进行反应,制得所述复合离子选择性膜;
其中,所述溶剂A为偶氮二异丁腈或过氧化苯甲酰,所述溶剂B为二氯乙烷、二氯甲烷、四氢呋喃、丙酮中的任一种,所述多孔材料为碳纳米管或多孔碳。
2.根据权利要求1所述的复合离子选择性膜的制备方法,其特征在于,所述碳纳米管预先经过等离子体处理或酸化处理。
3.根据权利要求2所述的复合离子选择性膜的制备方法,其特征在于,所述碳纳米管为羰基化多臂碳纳米管或氨基化多臂碳纳米管,其长度为1~50μm,直径为2~15nm。
4.根据权利要求1所述的复合离子选择性膜的制备方法,其特征在于,所述聚丁二烯与三羟甲基丙烷三(3-巯基丙酸酯)的体积比为1∶1~3。
5.根据权利要求3所述的复合离子选择性膜的制备方法,其特征在于,所述三羟甲基丙烷三(3-巯基丙酸酯)与所述溶剂A的体积比为1∶10。
6.根据权利要求1所述的复合离子选择性膜的制备方法,其特征在于,所述步骤S400中的加热的停止温度为50℃,加热时间为1~2min,反应时间为1~2min。
7.根据权利要求1所述的复合离子选择性膜的制备方法,其特征在于,所述聚丁二烯为端羟基聚丁二烯、端羧基聚丁二烯、端氨基聚丁二烯中的任一种。
8.一种复合离子选择性膜,其特征在于,所述复合离子选择性膜由权利要求1至7任一项所述的制备方法制备,其结构为所述聚丁二烯形成膜体,部分包埋所述多孔材料,使所述多孔材料的通孔形成供离子通过的通道。
CN202211187306.3A 2022-09-28 2022-09-28 一种复合离子选择性膜的制备方法以及复合离子选择性膜 Active CN115584044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211187306.3A CN115584044B (zh) 2022-09-28 2022-09-28 一种复合离子选择性膜的制备方法以及复合离子选择性膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211187306.3A CN115584044B (zh) 2022-09-28 2022-09-28 一种复合离子选择性膜的制备方法以及复合离子选择性膜

Publications (2)

Publication Number Publication Date
CN115584044A CN115584044A (zh) 2023-01-10
CN115584044B true CN115584044B (zh) 2023-08-11

Family

ID=84778622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211187306.3A Active CN115584044B (zh) 2022-09-28 2022-09-28 一种复合离子选择性膜的制备方法以及复合离子选择性膜

Country Status (1)

Country Link
CN (1) CN115584044B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775818A (zh) * 2005-12-15 2006-05-24 上海交通大学 碳纳米管/聚合物纳米复合材料制备的方法
CN101121791A (zh) * 2006-08-09 2008-02-13 清华大学 碳纳米管/聚合物复合材料的制备方法
KR20130046100A (ko) * 2011-10-27 2013-05-07 한국과학기술연구원 고신축성 탄소나노튜브 복합체 전극의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775818A (zh) * 2005-12-15 2006-05-24 上海交通大学 碳纳米管/聚合物纳米复合材料制备的方法
CN101121791A (zh) * 2006-08-09 2008-02-13 清华大学 碳纳米管/聚合物复合材料的制备方法
KR20130046100A (ko) * 2011-10-27 2013-05-07 한국과학기술연구원 고신축성 탄소나노튜브 복합체 전극의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
含氟聚合物修饰碳纳米管及其聚氨酯复合疏水膜的研究;张超;郭述忠;汪伟志;刘天西;;化学学报(第09期) *

Also Published As

Publication number Publication date
CN115584044A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2018113547A1 (zh) 一种多巴胺及其衍生物聚合并交联固化的表面改性方法
CN100430118C (zh) 一种聚丙烯多孔膜表面持久亲水化改性的方法
CN101205305A (zh) 一种荷负电聚偏氟乙烯改性膜及其制备方法
CN111097341B (zh) 一种酚醛树脂增强三维石墨烯气凝胶的制备方法
CN111009665A (zh) 一种微孔层、气体扩散层及其制备方法和应用
CN107619600A (zh) 一种功能化氧化石墨烯制备聚苯并咪唑交联膜的方法
CN112403282A (zh) 一种双亲聚丙烯多孔膜及其制备方法和应用
Tian et al. Preparation of PVDF anionic exchange membrane by chemical grafting of GMA onto PVDF macromolecule
CN111229059A (zh) 一种环糊精接枝埃罗石纳米管有机溶剂纳滤膜及其制备方法
CN115513505B (zh) 一种离子液体/聚合物复合膜及其制备方法和应用
CN107658478B (zh) 一种全钒液流电池隔膜及其制备方法
CN110429231B (zh) 交联型氧化石墨烯/聚丙烯复合隔膜、制备方法及应用
CN109110886B (zh) 一种用于电渗析处理氨氮废水的阳离子交换膜及制备方法
CN115584044B (zh) 一种复合离子选择性膜的制备方法以及复合离子选择性膜
CN114053888A (zh) 一种亲水导电蒸馏膜及其制备方法和使用方法
CN108630866B (zh) 一种亲水全氟电池隔膜及其制备方法
CN111509176B (zh) 一种交联型聚酰亚胺/陶瓷复合隔膜及其制备方法
CN112058105A (zh) 一种复合纳滤膜及其制备方法
CN106317714B (zh) 纳米三氧化二铝低温等离子体改性处理方法
CN103865092B (zh) 改性碳纳米管与pvdf杂化制备阴离子交换膜的方法
JP3668772B2 (ja) 分離膜及びその製造方法
JP3668771B2 (ja) 分離膜及びその製造方法
CN112537767B (zh) 一种高弹性三维石墨烯宏观体及其制备方法
CN114212778A (zh) 一种氮掺杂石墨烯膜的制备方法以及氮掺杂石墨烯膜
CN114409950A (zh) 一种高导电性的石墨烯改性聚苯乙烯泡沫板及制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240418

Address after: 266109, 200 meters south of Jinhai Thermal Power East Gate, Jihongtan Street, Chengyang District, Qingdao City, Shandong Province

Patentee after: Qingdao Huashitong Metal Materials Co.,Ltd.

Country or region after: China

Address before: 266071 Shandong city of Qingdao province Ningxia City Road No. 308

Patentee before: QINGDAO University

Country or region before: China