CN115555021A - 一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法 - Google Patents

一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法 Download PDF

Info

Publication number
CN115555021A
CN115555021A CN202211217473.8A CN202211217473A CN115555021A CN 115555021 A CN115555021 A CN 115555021A CN 202211217473 A CN202211217473 A CN 202211217473A CN 115555021 A CN115555021 A CN 115555021A
Authority
CN
China
Prior art keywords
catalyst
carbon dioxide
preparing
carbon
liquid hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211217473.8A
Other languages
English (en)
Other versions
CN115555021B (zh
Inventor
赵会吉
李文旭
潘兴城
李国鹏
刘欣欣
鲁长波
安高军
赵瑞玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202211217473.8A priority Critical patent/CN115555021B/zh
Publication of CN115555021A publication Critical patent/CN115555021A/zh
Application granted granted Critical
Publication of CN115555021B publication Critical patent/CN115555021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法,利用天然铁矿石粉制备二氧化碳加氢催化剂,催化剂原料易得,制备方法简单,活性组分和载体氧化铝混合均匀后直接浸渍助剂碱金属的碱性盐或氢氧化物,通过冷冻干燥脱除水分,无需高温焙烧,可保持活性组分的晶体结构不发生改变。催化剂具有较好的二氧化碳加氢催化性能,在适当条件下单程转化率可达40%以上,产物中甲烷和一氧化碳的选择性均低于10%,液体烃和低碳烯烃的选择性高。

Description

一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法
技术领域
本发明涉及二氧化碳催化加氢技术领域,具体涉及一种二氧化碳加氢制备液体烃联产低碳烯烃的催化剂制备方法。
背景技术
煤、石油、天然气等化石燃料的使用造成大量二氧化碳的排放,从而导致温室效应日益加重。为了应对气候变化,除了从根源上节能减排外,还要对二氧化碳进行捕集、封存和利用。
二氧化碳作为自然界唾手可得的可再生碳源,利用其合成有价值的产品,既可以缓解温室效应,又能减少对化石燃料的依赖。在二氧化碳利用中,通过富余电能和来自可再生能源的电力进行电解水制氢,然后利用二氧化碳催化加氢生成烃类化合物,是最可行且最有潜力的研究方向。既可作为当前的有效储能技术,又可在将来化石能源枯竭之后,作为可持续提供烃类燃料和有机化学品的关键技术,实现碳的绿色循环。
二氧化碳加氢制备烃类化合物一般采用铁基催化剂,通过连续催化逆水煤气反应,以及费托合成反应生成长链烃。但是目前有关二氧化碳加氢的铁基催化剂制备方法繁琐,催化剂活性重现性和稳定性差,如文献报道的过饱和浸渍法、共沉淀法、有机燃烧法等制备的铁基二氧化碳催化剂活性差异较大,不利于实际的工业应用。
浸渍法难以提高载体上活性金属铁的负载量,即使采用过饱和浸渍法,也难以保证载体上的活性金属均匀分布。共沉淀法等制备的铁氧化物的晶粒细小,热稳定性差,虽然处于粉末状态时表面积较高具有较高的活性,但是如果通过挤条、压片等方法制成大颗粒催化剂,会由于小晶粒之间的团聚和互相遮盖,造成催化剂的有效表面积大幅减小,影响催化剂的整体活性。
发明内容
本发明的目的在于提供一种简单、实用的二氧化碳加氢催化剂制备方法。考虑到化学合成的铁氧化物的晶粒尺寸一般较小,晶体结构不稳定,合成产物性质难以精确控制,造成铁基催化剂的活性重现性和稳定性差的问题,本发明采用具有一定纯度的天然铁矿石粉和氧化锰粉制备二氧化碳加氢催化剂,以不同孔容的氧化铝作为载体,碱金属的碱性盐或氢氧化物作为助剂。将铁矿石粉、氧化锰粉和载体氧化铝按照一定比例混合均匀后直接浸渍负载助剂,然后通过冷冻干燥脱除水分,无需高温焙烧,可保持活性组分的晶体结构不发生改变。
天然铁矿石粉的晶体结构稳定,从而可以保证所制备的铁基催化剂活性具备很好的重现性和活性稳定性。孔容较小的氧化铝粘结性好有利于提高催化剂的强度,孔容较大的氧化铝可以有效分隔活性金属组分,丰富的孔道结构可以提高催化剂的有效表面积,并可提供反应物和产物的扩散通道,从而有利于提高活性金属的利用效率,提高催化剂的整体活性。采用浸渍法负载碱金属的碱性盐或氢氧化物助剂,可以保证其在活性金属和载体氧化铝上的均匀分布,有利于发挥碱性助剂促进二氧化碳吸附的作用。所制备的催化剂在实际应用中表现出很好的二氧化碳加氢反应活性,以及较好的液体烃和低碳烯烃选择性。
本发明的目的通过如下措施来达到:首先称量质量百分含量15%-45%的天然铁矿石粉、0%-30%的氧化锰粉和25%-85%的载体氧化铝粉,将其充分研磨混合均匀。同时称取上述混合物质量百分数10%-25%的碱金属的碱性盐或氢氧化物,配制成水溶液均匀加入上述混合物中,之后将混合物放入冷冻干燥机的冷阱中冷冻4~8小时后,再转入干燥室干燥10-24h。将干燥好的催化剂取出后研磨,用压片机在5~20MPa的压力下压片成型,并破碎、筛分出10-20目颗粒,即可得到二氧化碳加氢催化剂。
所述的天然铁矿石为天然磁铁矿、赤铁矿、褐铁矿中的一种或二种以上组合,其中铁的质量百分含量为62-72%,颗粒直径为1-150μm。所述的氧化锰为天然或化学合成的二氧化锰、三氧化二锰、四氧化三猛、一氧化锰中的一种或二种以上组合,天然的氧化锰包括软锰矿、硬锰矿、水锰矿、黑锰矿、褐锰矿、方锰矿中的一种或二种以上组合,其中锰的质量百分含量为60-77%,颗粒直径为1-150μm。载体氧化铝为孔容 0.2-0.6cm3/g的氧化铝和孔容0.8-1.2cm3/g的氧化铝中的一种或二种组合,二者质量比优选5:1-1:5。助剂碱金属的碱性盐或氢氧化物为碳酸钾、碳酸氢钾、氢氧化钾、碳酸钠、碳酸氢钠、氢氧化钠中的一种或二种以上组合。
本发明的有益效果为:
(1)本发明采用性质稳定的天然矿物制备铁基二氧化碳加氢催化剂,方法简单、实用且成本低廉,易于工业实现;
(2)催化剂机械强度高,稳定性好且催化活性较高,CO2的单程转化率可达40%以上,产物中甲烷和一氧化碳的选择性均低于10%,低碳烯烃和液体烃的选择性相对较高。
具体实施方式
下面结合具体实施方式,对本发明作进一步描述,本发明的保护范围不受下列实施例限制。
本发明所采用的催化剂评价过程如下:
采用固定床反应器进行二氧化碳催化加氢的反应评价,催化剂填装量20mL,反应产物经2℃冷凝,接取液体烃类产物和水,根据水生成量估算二氧化碳单程转化率。不能冷凝的气相产物通过装有TCD和FID检测器的在线气相色谱进行含量分析,通过采用氮气内标法得到一氧化碳、甲烷和低碳烯烃的选择性。
进行二氧化碳加氢反应前,催化剂需首先进行还原和碳化。还原过程具体为:反应器通入氢气充压至2-4MPa,调整氢气空速为200~600mL/(h·g cat),以1℃/min的速度升温至350-450℃并持续还原4-10小时。碳化过程具体为:氢气还原后将反应器温度降低至100℃,通入二氧化碳,调整H2/CO2摩尔比为2.0-4.0,总气体空速500~ 800mL/(h·g cat),保持压力2-4MPa,以1℃/min的速度升温至250-350℃碳化4-10小时。
碳化结束后调整反应条件进行二氧化碳加氢:保持H2/CO2摩尔比2.0-4.0,反应温度250-350℃,压力2-4MPa,通入10mL/min的高纯氮气作为内标气体,总气体空速 500~1000mL/(h·g cat),采用低温恒温槽控制反应装置中的冷凝罐、高压和低压分离罐的温度为2℃。反应持续24h之后,接取冷凝的液体烃类产物和水,同时用在线色谱分析不能冷凝的气体组成。
实施例1
将13.05g天然磁铁矿粉(铁质量百分含量69%),4.24g孔容0.2-0.6cm3/g的氧化铝粉和12.71g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取4.50g碳酸钾溶于14mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥 16h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
实施例2
将7.05g天然磁铁矿粉(铁质量百分含量69%),5.70g化学合成的质量百分含量98%的市售二氧化锰,3.45g孔容0.2-0.6cm3/g的氧化铝粉和13.80g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取4.50g碳酸钾溶于14mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥16h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
实施例3
将7.05g天然磁铁矿粉(铁质量百分含量69%),5.70g软锰矿粉(锰质量百分含量62%),3.45g孔容0.2-0.6cm3/g的氧化铝粉和13.80g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取6.00g碳酸氢钾溶于15mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥18h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
实施例4
将7.29g天然赤铁矿粉(铁质量百分含量65%),5.21g硬锰矿粉(锰质量百分含量60%),5.80g孔容0.2-0.6cm3/g的氧化铝粉和11.70g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取3.60g氢氧化钾溶于15mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥18h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
实施例5
将9.75g天然褐铁矿粉(铁质量百分含量62%),4.65g方锰矿粉(锰质量百分含量76%),7.80g孔容0.2-0.6cm3/g的氧化铝粉和7.80g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取4.50g碳酸钠溶于12mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥14h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
实施例6
将9.05g天然磁铁矿粉(铁质量百分含量69%),3.00g黑锰矿粉(锰质量百分含量70%),11.95g孔容0.2-0.6cm3/g的氧化铝粉和6.00g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取6.60g碳酸氢钠溶于14mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥16h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
实施例7
将6.20g天然磁铁矿粉(铁质量百分含量69%),6.20g褐锰矿粉(锰质量百分含量67%),13.20孔容0.2-0.6cm3/g的氧化铝粉和4.40g g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取3.30g氢氧化钠溶于15mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥18h,用压片机在10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
对比例1:
将7.05g化学合成的质量百分含量99%的市售四氧化三铁,5.70g化学合成的质量百分含量98%的市售二氧化锰,3.45g孔容0.2-0.6cm3/g的氧化铝粉和13.80g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取4.50g碳酸钾溶于15mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥18h,用压片机在 10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
对比例2:
将7.30g化学合成的质量百分含量98%的市售三氧化二铁,4.65g化学合成的质量百分含量99%的市售一氧化锰,3.60g孔容0.2-0.6cm3/g的氧化铝粉和14.45g孔容0.8-1.2cm3/g的氧化铝粉,充分搅拌混合均匀。称取4.50g无水碳酸钾溶于15mL水中,将溶液均匀加入上述混合物中至完全润湿。浸渍好的样品经冷冻干燥18h,用压片机在 10MPa的压力下压片,压片经破碎、筛分后得到10-20目的催化剂颗粒。
下表为实施例1-7和对比例1-2制备的20mL催化剂连续运行24h的活性评价结果对比表,包括反应生成的水量以及计算得出的CO2转化率,以及产物中甲烷、一氧化碳、C5 +以上的液体烃收率和C2-C4低碳烃中的烯烷比。可以看出,采用本发明以天然铁矿石粉制备的铁基催化剂具有较好的二氧化碳加氢活性,二氧化碳单程转化率可达 40%以上,产物中甲烷和一氧化碳的选择性均低于10%,低碳烯烃和液体烃的选择性均高于采用化学合成的四氧化三铁或三氧化二铁制备的铁基催化剂。
实施例 水(mL/24h) CO<sub>2</sub>转化率(%) CH<sub>4</sub>(%) CO(%) C<sub>5</sub><sup>+</sup>(%) C<sub>2</sub>-C<sub>4</sub>烯烷比
实施例1 50.5 43.65 9.54 3.51 53.93 3.86
实施例2 48.5 41.92 9.01 4.36 53.89 3.88
实施例3 49.0 42.35 8.24 4.43 55.16 4.23
实施例4 47.5 41.05 8.46 4.89 54.63 3.94
实施例5 46.5 40.19 8.63 4.92 53.87 3.91
实施例6 49.5 42.78 7.98 4.50 54.15 4.02
实施例7 46.5 40.19 7.65 5.14 54.23 4.15
对比例1 26.0 22.47 18.87 11.75 18.76 1.46
对比例2 22.0 19.01 17.12 12.03 20.24 1.58

Claims (5)

1.一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法,其特征在于,包括如下步骤:
(1)以质量百分含量计,将天然铁矿石粉15%-45%、氧化锰粉0%-30%、氧化铝25%-85%混合均匀。
(2)以质量百分含量计,称取上述混合物质量百分数10%-25%的碱金属的碱性盐或氢氧化物,配制成水溶液加入上述混合物中,水的加入量使混合物可完全均匀润湿。之后将混合物冷冻干燥10-24h,研磨、压片成型并破碎、筛分为10-20目颗粒,得到二氧化碳加氢催化剂。
2.根据权利要求1所述的二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法,其特征在于:所述的天然铁矿石为天然磁铁矿、赤铁矿、褐铁矿中的一种或二种以上组合,其中铁的质量百分含量为62-72%,颗粒直径为1-150μm。
3.根据权利要求1所述的二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法,其特征在于:所述的氧化锰为天然或化学合成的二氧化锰、三氧化二锰、四氧化三猛、一氧化锰中的一种或二种以上组合,天然的氧化锰包括软锰矿、硬锰矿、水锰矿、黑锰矿、褐锰矿、方锰矿中的一种或二种以上组合,其中锰的质量百分含量为60-77%,颗粒直径为1-150μm。
4.根据权利要求1所述的二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法,其特征在于:所述的氧化铝为孔容0.2-0.6cm3/g的氧化铝和孔容0.8-1.2cm3/g的氧化铝中的一种或二种组合,二者质量比优选5:1-1:5。
5.根据权利要求1所述的二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法,其特征在于,所述的碱金属的碱性盐或氢氧化物为碳酸钾、碳酸氢钾、氢氧化钾、碳酸钠、碳酸氢钠、氢氧化钠中的一种或二种以上组合。
CN202211217473.8A 2022-10-04 2022-10-04 一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法 Active CN115555021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211217473.8A CN115555021B (zh) 2022-10-04 2022-10-04 一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211217473.8A CN115555021B (zh) 2022-10-04 2022-10-04 一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法

Publications (2)

Publication Number Publication Date
CN115555021A true CN115555021A (zh) 2023-01-03
CN115555021B CN115555021B (zh) 2024-02-02

Family

ID=84745939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211217473.8A Active CN115555021B (zh) 2022-10-04 2022-10-04 一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法

Country Status (1)

Country Link
CN (1) CN115555021B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011252180A1 (en) * 2010-05-10 2012-11-01 Casale Sa Process for the production of light olefins from synthesis gas
US20130116350A1 (en) * 2011-11-03 2013-05-09 University Of Saskatchewan Promoted iron catalysts supported on carbon nanotubes for fischer-tropsch synthesis
US20150080210A1 (en) * 2013-07-29 2015-03-19 Korea Institute Of Energy Research Method for Preparing Iron-Based Catalyst and Iron-Based Catalyst Prepared by the Same
US20160045901A1 (en) * 2013-03-19 2016-02-18 Korea Institute Of Energy Research Iron-based catalyst and method for preparing the same and use thereof
CN105709775A (zh) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 一种铁基催化剂及其制备方法和应用
CN106423183A (zh) * 2016-09-22 2017-02-22 中国石油大学(华东) 高金属含量加氢催化剂的制备方法
US9598644B1 (en) * 2013-08-02 2017-03-21 U.S. Department Of Energy Method of CO and/or CO2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
CN108620089A (zh) * 2018-05-30 2018-10-09 中国科学院广州能源研究所 一种二氧化碳加氢制低碳烯烃催化剂及其制备方法与应用
US20190016964A1 (en) * 2016-09-19 2019-01-17 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for direct production of gasoline-range hydrocarbons from carbon dioxide hydrogenation
CN109865516A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种铁基催化剂及其制备方法和应用
CN112174764A (zh) * 2019-07-02 2021-01-05 中国科学院大连化学物理研究所 铁基催化剂在催化二氧化碳加氢合成低碳烯烃的应用
CN113908840A (zh) * 2021-11-18 2022-01-11 山东能源集团有限公司 一种Fe基多功能催化剂及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130046033A1 (en) * 2010-05-10 2013-02-21 Casale Chemicals Sa Process for the Production of Light Olefins from Synthesis Gas
AU2011252180A1 (en) * 2010-05-10 2012-11-01 Casale Sa Process for the production of light olefins from synthesis gas
US20130116350A1 (en) * 2011-11-03 2013-05-09 University Of Saskatchewan Promoted iron catalysts supported on carbon nanotubes for fischer-tropsch synthesis
US20160045901A1 (en) * 2013-03-19 2016-02-18 Korea Institute Of Energy Research Iron-based catalyst and method for preparing the same and use thereof
US20150080210A1 (en) * 2013-07-29 2015-03-19 Korea Institute Of Energy Research Method for Preparing Iron-Based Catalyst and Iron-Based Catalyst Prepared by the Same
US9598644B1 (en) * 2013-08-02 2017-03-21 U.S. Department Of Energy Method of CO and/or CO2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
CN105709775A (zh) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 一种铁基催化剂及其制备方法和应用
US20190016964A1 (en) * 2016-09-19 2019-01-17 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for direct production of gasoline-range hydrocarbons from carbon dioxide hydrogenation
CN106423183A (zh) * 2016-09-22 2017-02-22 中国石油大学(华东) 高金属含量加氢催化剂的制备方法
CN109865516A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种铁基催化剂及其制备方法和应用
CN108620089A (zh) * 2018-05-30 2018-10-09 中国科学院广州能源研究所 一种二氧化碳加氢制低碳烯烃催化剂及其制备方法与应用
CN112174764A (zh) * 2019-07-02 2021-01-05 中国科学院大连化学物理研究所 铁基催化剂在催化二氧化碳加氢合成低碳烯烃的应用
CN113908840A (zh) * 2021-11-18 2022-01-11 山东能源集团有限公司 一种Fe基多功能催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘洋洋;孙超;MALHI HARIPAL SINGH;位重洋;张振洲;涂维峰;: "载体对铁基催化剂结构及CO_2加氢制烯烃反应性能的影响特性", 化工学报, no. 10, pages 334 - 344 *
郑斌;张安峰;刘民;丁凡舒;代成义;宋春山;郭新闻;: "纳米铁基催化剂在CO_2加氢制烃中的性能", 物理化学学报, no. 08, pages 153 - 160 *

Also Published As

Publication number Publication date
CN115555021B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
CN101116816B (zh) 用于高碳烯烃氢甲酰化制高碳醛的负载型铑催化剂的制备方法
Zhang et al. Synthesis of stable Ni-CeO2 catalysts via ball-milling for ethanol steam reforming
Sun et al. An oxygen carrier catalyst toward efficient chemical looping-oxidative coupling of methane
Cai et al. Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane
CN103586046A (zh) 一种合成气制低碳烯烃催化剂及其制备方法
Qiujie et al. Hydrogen production from steam reforming of ethanol over Ni/MgO-CeO2 catalyst at low temperature
HAI et al. Hydrogenation of furfural to 1, 5-pentanediol over CuCo bimetallic catalysts
CN110721678A (zh) 一种光热耦合催化CO2甲烷化的Ru基催化剂
Tao et al. Sol–gel auto-combustion synthesis of Ni–Ce x Zr 1− x O 2 catalysts for carbon dioxide reforming of methane
Liu et al. Ni-hydrocalumite derived catalysts for ethanol steam reforming on hydrogen production
WO2023029192A1 (zh) 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用
Yang et al. Advances in the preparation of light alkene from carbon dioxide by hydrogenation
Han et al. High selective synthesis of methanol from CO2 over Mo2C@ NSC
Tang et al. Sustainable production of acetaldehyde from lactic acid over the carbon catalysts
Tian et al. Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
JIANG et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol
Liang et al. Effect of Na promoter and reducing atmosphere on phase evolution of Fe-based catalyst and its CO2 hydrogenation performance
CN111450834B (zh) 用于乙酸自热重整制氢的二氧化铈负载的钴基催化剂
Guo et al. Catalytic steam reforming of ethanol for hydrogen production over Ni/CeO2-ZrO2 catalysts
CN115555021A (zh) 一种二氧化碳加氢制液体烃联产低碳烯烃的催化剂制备方法
Bai et al. Cerium doped Co/AC catalysts for higher alcohols synthesis from syngas
Chen et al. Carbon template synthesis of CeO2 catalyst for direct conversion of methanol and carbon dioxide to dimethyl carbonate
CN107952442B (zh) 一种生物质与煤制甲烷的催化剂及其制备方法和应用
Chiang et al. Synthesis of alcohols and alkanes over potassium and vanadium promoted molybdenum carbides
CN114602449B (zh) 一种ZnZrO2表面固溶体催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant