CN115521374A - 条件活性多肽 - Google Patents

条件活性多肽 Download PDF

Info

Publication number
CN115521374A
CN115521374A CN202211275600.XA CN202211275600A CN115521374A CN 115521374 A CN115521374 A CN 115521374A CN 202211275600 A CN202211275600 A CN 202211275600A CN 115521374 A CN115521374 A CN 115521374A
Authority
CN
China
Prior art keywords
antibody
polypeptide
conditionally active
activity
single chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211275600.XA
Other languages
English (en)
Inventor
杰·M·少特
华文昌
格哈德·弗雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioatla Inc
Original Assignee
Bioatla Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2016/019242 external-priority patent/WO2016138071A1/en
Application filed by Bioatla Inc filed Critical Bioatla Inc
Publication of CN115521374A publication Critical patent/CN115521374A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

本发明公开了一种非天然存在的多肽或分离的多肽,其具有至少1.3的活性比值,所述活性比值为在第一pH下、在具有小于900a.m.u.的分子量且pKa与所述第一pH相差高达4个pH单位的至少一种物质的存在下的测试中的活性与在第二pH下、在相同的所述至少一种物质的存在下的测试中的活性的比值。所述物质的pKa在所述第一pH与所述第二pH之间,并且可以为小分子。还公开了包括所述多肽的药物制剂及其用途。还公开了产生条件活性多肽的方法。

Description

条件活性多肽
本申请是申请日为2016年8月31日、中国专利申请号为201680077540.7且发明名称为“条件活性多肽”的中国专利申请的分案申请,并且本申请要求享有US 62/249,907和PCT/US2016/019242的优先权。
技术领域
本发明涉及提供具有期望活性的改进的多肽的领域。具体而言,本发明涉及从亲本多肽产生条件活性多肽的方法,其中在特定化合物或离子物质的存在下,所述条件活性多肽在一种条件下比在另一种条件下更具活性。
背景技术
有大量文献描述了演变蛋白(特别是酶或抗体)的各种特性以使蛋白在不同条件下具有活性或稳定性的方法。例如,酶已经被演变为在较高温度下是稳定的。在酶活性在较高温度下增强的情况下,该活性增强大部分可归因于Q10规则中普遍描述的更高的动力活性,对于酶来说,预计温度每增加10℃,其转换率增加一倍。
此外,还存在使蛋白在其正常工作条件下变得不稳定的自然突变,从而降低正常工作条件下的蛋白活性。例如,存在在较低温度下具有活性的已知的温度突变体,但与衍生出该突变体的野生型蛋白相比活性通常处于降低的水平。
期望生成具有条件活性的多肽,例如在一种条件下活性较低或几乎无活性,但在另一种条件下具有活性。还期望产生在特定环境中被激活或失活的多肽,或随着时间推移被激活或失活的多肽。除了温度以外,能够演变多肽或提供条件活性的其它条件包括pH、渗透压、重量摩尔渗透压浓度、氧化应激和电解质浓度。除了多肽的活性之外,通常期望在演变过程中改进其它特性,包括耐化学性和蛋白水解抗性。
以前已经描述了演变多肽的许多策略。例如,US 2005/0100985公开了通过用编码20种天然存在的氨基酸的密码子替换模板多核苷酸中的每个原始密码子位置而从亲本模板多核苷酸产生一组突变多核苷酸的快速且便利的方法。该方法简单地称为饱和诱变,并且可以与其它诱变方法组合使用,例如其中将两种或更多种相关的多核苷酸引入到合适的宿主细胞中以通过重组和减少重排产生杂合多核苷酸的方法。
Giver等人,“Directed evolution of a thermostable esterase(热稳定性酯酶的定向演变),”Proc.Natl.Acad.Sci.USA,vol.95,pp.12809-12813(1998),用体外演变来研究嗜中温酯酶的稳定性与活性之间的关系。六代的随机诱变、重组和筛选显著地稳定了枯草芽孢杆菌对硝基苄基酯酶(Tm增加>14℃),而不损害其在较低温度下的催化活性。该研究发现,在保持低温活性的同时增加热稳定性的突变非常罕见。通过积累氨基酸替换来改善一个性质通常以另一个性质为代价,不管这两个性质是否呈反相关或完全不相关。
将亲本多肽演变为在其通常的工作条件下为失活或几乎失活(小于50%、30%或10%活性,特别是1%活性),同时在异常条件下保持等同的活性或更好的活性可能需要失稳突变(destabilizing mutation)与活性增强突变共存,所述活性增强突变不对抗失稳效应(destabilizing effect)。可预期的是,失稳突变对多肽活性的降低会比标准规则如Q10所预测的效果要大,因此,演变出在异常条件下有效工作例如同时在它们的正常工作条件下是低活性的或失活的多肽的能力将会产生条件活性多肽。
因此,条件活性多肽在异常条件下与亲本蛋白相比活性增强,而在正常生理条件下与亲本蛋白相比活性下降。当用作治疗性蛋白时,条件活性多肽因此优选地作用于存在异常条件的位置,例如肿瘤微环境。由于这种优先作用,条件活性多肽会潜在地对存在正常生理条件的正常组织/器官造成较小的伤害,因此产生较少的副作用。这允许待使用的条件活性多肽的更长时间的治疗或更高的剂量,从而导致治疗的更高功效。
WO2010/104821和WO2011/009058公开了用于演变和筛选条件活性蛋白的方法。
仍然需要在特定环境中和/或在特定条件下具有较高活性和/或选择性的条件活性多肽。
发明内容
在一个实施方案中,本发明涉及一种具有至少1.3的活性比值的非天然存在的多肽或分离的多肽,所述活性比值为在第一pH下、在具有小于900a.m.u.的分子量且pKa与所述第一pH相差高达0.5、1、2、3或4个pH单位的至少一种物质的存在下的测试中的活性与在第二pH下、在相同的所述至少一种物质的存在下的测试中的活性的比值。
在一个实施方案中,本发明涉及一种具有至少1.3的活性比值的非天然存在的多肽或分离的多肽,所述活性比值为在第一pH下、在具有小于900a.m.u.的分子量的至少一种物质的存在下的测试中的活性与在第二pH下、在相同的所述至少一种物质的存在下的测试中的活性的比值,并且其中所述物质的pKa在所述第一pH与所述第二pH之间。
在一个实施方案中,本发明涉及一种具有至少1.3的活性比值的非天然存在的多肽或分离的多肽,所述活性比值为在第一pH下、在选自组氨酸、组胺、氢化的二磷酸腺苷、氢化的三磷酸腺苷、柠檬酸盐、碳酸氢盐、乙酸盐、乳酸盐、二硫化物、硫化氢、铵、磷酸二氢盐及它们的任意组合中的物质的存在下的测试中的活性与在第二pH下、在相同的所述物质的存在下的测试中的活性的比值。
前述实施方案中任一个所述的多肽在第一pH下的测试中的活性与在第二pH下的测试中的活性的比值可以为至少1.5,或至少1.7,或至少2.0,或至少3.0,或至少4.0,或至少6.0,或至少8.0,或至少10.0,或至少20.0,或至少40.0,或至少60.0,或至少100.0。前述实施方案中所述的多肽可以在为酸性pH的第一pH和为碱性pH或中性pH的第二pH下测试。第二pH可以是正常生理pH,在将多肽施用给个体的位点处的生理条件的正常范围内或在个体中多肽作用位点处的组织或器官处的生理条件的正常范围内;第一pH可以是异常pH,其偏离在多肽施用位点处的生理条件的正常范围或在多肽作用位点处的组织或器官处的生理条件的正常范围。
第一pH可以在5.5-7.2的范围内,或在6.2-6.8的范围内。第二pH可以在7.2-7.6的范围内。第一pH可以为约6.0,并且第二pH可以为约7.4。
前述实施方案中任一个所述的多肽可以是从亲本多肽演变的非天然存在的突变多肽。前述实施方案中任一个所述的突变多肽可以衍生自包括非天然存在的多肽的野生型亲本多肽。前述实施方案中任一个所述的突变多肽与亲本多肽相比可以含有至少一个氨基酸替换。前述实施方案中任一个所述的突变多肽可以比亲本多肽具有更高比例的带电荷的氨基酸残基。
前述实施方案中任一个所述的多肽或突变多肽可以是蛋白或蛋白片段。前述实施方案中任一个所述的多肽或突变多肽可以选自抗体、单链抗体和抗体片段,并且所述活性是与抗原的结合活性。前述实施方案中任一个所述的多肽或突变多肽可以是抗体的Fc区。所述多肽或突变多肽可以是酶,并且所述活性可以是酶活性。所述多肽或突变多肽可以选自受体、调节蛋白、可溶性蛋白、细胞因子,以及受体、调节蛋白、可溶性蛋白或细胞因子的片段。
前述实施方案中任一个所述的物质可以是硫化氢、碳酸氢盐或二硫化物。前述实施方案中任一个所述的物质的pKa可以大于6.2。
前述实施方案中任一个所述的多肽可以具有两个功能结构域,并且所述活性是所述两个功能结构域之一的活性。所述两个功能结构域都可以具有pH依赖性活性。所述多肽可以是双特异性抗体。
在另一个实施方案中,前述实施方案中任一个所述的多肽可以用于治疗实体瘤、发炎关节或者脑部疾病或病症。
在另一个实施方案中,本发明涉及一种治疗实体瘤、发炎关节或者脑部疾病或病症的方法,所述方法包括施用前述实施方案中任一个所述的多肽。所述多肽可以作为用于T细胞的包含所述多肽的嵌合抗原受体的一部分施用或者作为包含所述多肽的抗体-药物缀合物施用。
在另一个实施方案中,本发明涉及一种用于T细胞的包含所述多肽的嵌合抗原受体。在每个前述实施方案中,所述抗体可以与纳米颗粒连接。
在另一个实施方案中,本发明涉及一种包含所述多肽的抗体-药物缀合物。
在另一个实施方案中,本发明提供一种药物组合物,其包括条件活性生物蛋白和药学上可接受的载体。
在另一个实施方案中,本发明提供了一种从亲本多肽生产条件活性多肽的方法,所述方法包括以下步骤:
(i)通过对亲本多肽活性位点外的至少一个区域进行突变来演变所述亲本多肽以产生一种或多种突变多肽;
(ii)使所述一种或多种多肽和亲本多肽在正常生理条件下进行第一测试以测量在正常生理条件下活性位点的活性,并且在异常条件下进行第二测试以测量在异常条件下活性位点的活性,其中正常生理条件和异常条件是具有不同的值的相同条件;以及
(iii)从所述一种或多种突变多肽中选择表现出以下两种特性的条件活性多肽:(a)在第一测试中与亲本多肽的相同活性相比活性下降,和(b)在第二测试中与亲本多肽的相同活性相比活性增强。
附图说明
图1显示实施例9中产生的条件活性抗体及其在pH6.0下相对于pH7.4的选择性。
图2显示在不同缓冲溶液中测试的条件活性抗体与抗原的结合活性。
图3显示改变Krebs缓冲液的组成对条件活性抗体的结合活性的影响。
图4显示如实施例12中所述,三种不同的条件活性抗体的结合活性取决于pH 7.4下碳酸氢盐的存在和浓度。
图5是显示嵌合抗原受体(CAR)的结构的图。
图6是显示在脱氧血红蛋白中形成盐桥的图,其中三个氨基酸残基形成稳定脱氧血红蛋白的T四级结构的两个盐桥,导致对氧的较低亲和力。
图7显示在不同缓冲溶液中条件活性抗体对Ror2的活性。
图8显示在不同缓冲溶液中条件活性抗体对Axl的活性。
图9显示使用具有10mM二硫化物离子的测试溶液发现的条件活性抗体对Axl的活性。
定义
为了便于理解本文提供的实例,将对一些频繁出现的方法和/或术语在本文中进行定义。通过引用美国专利第8,709,755 B2号来并入以下术语的定义:“试剂”、“多义碱基要求(ambiguous base requirement)”、“氨基酸”、“扩增”、“嵌合特性”、“同源”(cognate)、“比较窗口”、“保守氨基酸替换”、“对应于”、“降解有效”、“确定的序列骨架”、“确定的序列内核”、“消化”、“定向连接”、“DNA改组”、“药物”或“药物分子”、“有效量”、“表位”、“酶”、“演变”或“进行演变”、“片段”或“衍生物”或“类似物”、“单个氨基酸全方位替换”、“基因”、“遗传不稳定”、“异源”、“同源(homologous)”或“部分同源(homeologous)”、“工业应用”、“相同”或“同一性(identity)”、“同一性区”、“分离的”、“分离的核酸”、“配体”、“连接”、“接头”或“间隔子”、“微环境”、“要被演变的分子特性”、“突变”、“N,N,G/T”、“正常生理条件”或“野生型工作条件”、“核酸分子”、“核酸分子”、“用于编码…的核酸序列”或“DNA编码序列”或“编码…的核苷酸序列”、“编码酶(蛋白)的核酸”或“编码酶(蛋白)的DNA”或“编码酶(蛋白)的多核苷酸”、“特定的核酸分子种类”、“将工作的核酸样品组装至核酸库中”、“核酸库”、“构建体”、“寡核苷酸”(或同义的“寡”)、“同源”、“可操作连接的”、“亲本多核苷酸组合”、“患者”或“个体”、“生理条件”、“群”、“前体形式”、“伪随机”、“准重复单元(quasi-repeatedunits)”、“随机肽库”、“随机肽序列”、“受体”、“重组”酶、“合成”的酶、“相关的多核苷酸”、“减少重排(Reductive reassortment)”、“参考序列”、“重复指数(RI)”、“限制位点”、“可选择的多核苷酸”、“序列同一性”、“相似性”、“特异性结合”、“特异性杂交”、“特定的多核苷酸”、“严格杂交条件”、“基本上相同”、“基本上纯的酶”、“基本上纯的”、“治疗”、“可变区段”和“变体”。
本文中使用的与测试量有关的术语“约”是指测试量的正常变化,其可由本领域熟练技术人员进行测量和实施与测量目的和测量仪器精度相称的关注等级(level of care)所预期。除非另有说明,“约”是指所给值+/-10%的变化。
本文中使用的术语“活性”是指蛋白可以进行的任何功能,包括催化反应和与配偶体结合。对于酶,活性可以是酶活性。对于抗体,活性可以是抗体与其抗原之间的结合活性(即,结合活性)。对于受体或配体,活性可以是受体与其配体之间的结合活性。
本文中使用的术语“抗体”是指完整的免疫球蛋白分子以及免疫球蛋白分子的片段,如Fab、Fab'、(Fab')2、Fv和SCA片段,其能够结合抗原表位。这些抗体片段保留了选择性地与衍生出其的抗体的抗原(例如多肽抗原)结合的一些能力,可以使用本领域熟知的方法制备这些抗体片段(参见,例如Harlow和Lane,同上),并如下进一步描述这些抗体。抗体可用于通过免疫亲和层析分离制备量的抗原。这类抗体的各种其它用途是诊断疾病和/或对疾病(例如,瘤形成)进行分期和用于治疗应用以治疗疾病,诸如例如:瘤形成、自身免疫疾病、AIDS、心血管疾病、感染等。嵌合的、人样的、人源化的或全人的抗体对于施用于人类患者是特别有用的。
Fab片段由抗体分子的单价抗原结合片段组成,并且可通过用为木瓜蛋白酶的酶消化完整的抗体分子来产生Fab片段,以产生由完整轻链和部分重链组成的片段。
抗体分子的Fab'片段可通过以下获得:用胃蛋白酶处理完整的抗体分子,接着还原以产生由完整轻链和部分重链组成的分子。以这种方式处理每个抗体分子获得两个Fab'片段。
抗体的(Fab')2片段可通过用胃蛋白酶酶处理完整的抗体分子而不进行随后的还原来获得。(Fab')2片段是两个Fab'片段通过两个二硫键结合在一起的二聚体。
Fv片段被定义为含有轻链可变区和重链可变区的基因工程片段,表示为两条链。
单链抗体(“SCA”或scFv)是含有轻链可变区和重链可变区的基因工程单链分子,其通过合适的柔性多肽接头连接,并且可以在氨基-和/或羧基-末端包含额外的氨基酸序列。例如,单链抗体可以包括用于连接编码多核苷酸的系链区段(tether segment)。功能性单链抗体通常包含足够部分的轻链可变区和足够区域的重链可变区以便保留全长抗体与特定靶分子或表位结合的性质。
术语“抗体依赖性细胞介导的细胞毒性”或“ADCC”是指其中分泌的免疫球蛋白与某些细胞毒性细胞(例如,自然杀伤(NK)细胞、嗜中性粒细胞和巨噬细胞)上存在的Fc受体(FcR)结合的细胞毒性形式,其使这些细胞毒性效应细胞能够特异性地结合携带抗原的靶细胞,并随后用细胞毒素杀死靶细胞。指向靶细胞表面的配体特异性高亲和力IgG抗体刺激细胞毒性细胞并且是这种杀伤所需的。靶细胞的裂解是细胞外的,需要直接的细胞与细胞的接触,并且不涉及补体。
可以测试任何特定抗体通过ADCC介导靶细胞裂解的能力。为了评估ADCC活性,将感兴趣的抗体添加到靶细胞,从而展示靶配体与免疫效应细胞组合,靶配体可以被抗原抗体复合物活化,导致靶细胞的细胞溶解。通常通过从裂解的细胞释放标签(例如,放射性底物、荧光染料或天然细胞内蛋白)来检测细胞溶解。用于这种测试的有用效应细胞包括外周血单核细胞(PBMC)和自然杀伤(NK)细胞。体外ADCC测试的特定实例描述于Bruggemann etal,1987,J Exp Med,vol.166,page 1351;Wilkinson et al,2001,J Immunol.Methods,vol.258,page 183;Patel et al,1995J.Immunol.Methods,vol.184,page 29中。或者或另外,感兴趣的抗体的ADCC活性可以在体内评估,例如在动物模型中,例如在Clynes et al.,1998,PNAS USA,vol.95,p.652中公开的。
本文中使用的术语“抗原”或“Ag”被定义为能够引发免疫反应的分子。这种免疫反应可能涉及抗体产生,或特异性免疫活性细胞的活化,或这两者。本领域技术人员将会理解,任何大分子(包括几乎所有的蛋白或肽)都可以用作抗原。显而易见的是,抗原可以从生物样品中产生、合成或衍生。这样的生物样品可以包括但不限于组织样品、肿瘤样品、细胞或生物流体。
本文中使用的术语“反义RNA”是指能够通过与第二RNA分子互补或部分互补而与第二RNA分子形成双链体的RNA分子。反义RNA分子可以与第二RNA分子的翻译区或非翻译区互补。反义RNA不需要与第二RNA分子完全互补。反义RNA可以与或可以不与第二RNA分子具有相同的长度;反义RNA分子可以比第二RNA分子更长或更短。如果第二RNA分子是mRNA,则反义RNA的结合将完全或部分地阻止mRNA被翻译成功能性蛋白产物。
术语“生物仿制药”或“后续生物制剂”的使用方式与美国食品和药物管理局(FDA)颁布的工作定义一致,该定义将生物仿制药定义为与参考产品“非常相似”(尽管临床上在非活性组分方面存在细微差异)。在实践中,参考产品与生物仿制药产品在安全性、纯度和效力方面在临床上不存在有意义的差异(公共卫生署(PHS)第262条)。生物仿制药也可以是满足欧洲药品管理局人用药品委员会(CHMP)2012年5月30日通过并由欧盟出版为“含有单克隆抗体的类似生物药品指南-非临床和临床问题”(文档引用EMA/CHMP/BMWP/403543/2010)的一项或多项指南的一种生物仿制药。例如,“抗体生物仿制药”是指通常由不同公司制造的创新者抗体(参考抗体)的后续版本。抗体生物仿制药与参考抗体之间的差异可以包括翻译后修饰,例如,通过将其它生化基团如磷酸酯、各种脂质和碳水化合物连接到抗体上;通过翻译后的蛋白水解酶切割;通过改变氨基酸的化学性质(例如,甲酰化);或通过许多其它机制。其它翻译后修饰可能是制造过程操作的结果-例如,糖基化可随着产品暴露于还原糖而发生。在一些情况下,储存条件可能允许某些降解途径发生,如氧化、脱酰胺作用或聚集。因为所有这些产品相关的变体都可能包含在抗体生物仿制药中。
术语“癌症”和“癌性”是指或描述哺乳动物中通常以不受调节的细胞生长/增殖为特征的生理状况。“肿瘤”包含一种或多种癌细胞。癌症的实例包括但不限于癌、淋巴瘤、母细胞瘤、肉瘤和白血病或淋巴恶性肿瘤。这样的癌症的更具体的实例包括鳞状细胞癌(例如,上皮鳞状细胞癌)、肺癌(包括小细胞肺癌、非小细胞肺癌(“NSCLC”)、肺腺癌和肺鳞状细胞癌)、腹膜癌、肝细胞癌、胃部癌症(gastric cancer)或胃癌(stomach cancer)(包括胃肠癌)、胰腺癌、成胶质细胞瘤、子宫颈癌、卵巢癌、肝癌、膀胱癌、肝瘤、乳腺癌、结肠癌、直肠癌、结肠直肠癌、子宫内膜癌或子宫癌、唾液腺癌、肾脏癌症(kidney cancer)或肾癌(renalcancer)、前列腺癌、外阴癌、甲状腺癌、肝癌、肛门癌、阴茎癌以及头颈癌。
本文中使用的术语“嵌合抗原受体”或“CAR”指工程化受体,其将抗原特异性移植到细胞毒性细胞上,例如T细胞、NK细胞和巨噬细胞。本发明的CAR可以包括至少一个抗原特异性靶向区(ASTR)、细胞外间隔结构域(ESD)、跨膜结构域(TM)、一个或多个共刺激结构域(CSD)和细胞内信号传导结构域(ISD)。在一些实施方案中,ESD和/或CSD是可选的。在一个实施方案中,ASTR是双特异性的并且可以识别两种不同的抗原或表位。在ASTR特异性地结合靶抗原后,ISD激活细胞毒性细胞的细胞内信号传导。例如,依赖于CAR的抗原结合特性,ISD可以以非MHC限制性方式将T细胞特异性和细胞毒性重新导向至选定的靶标。非MHC限制性抗原识别使得表达CAR的细胞毒性细胞有能力识别抗原而不依赖于抗原加工,从而绕过了肿瘤逃逸的主要机制。而且,当在T细胞中表达时,CAR有利地不与内源性T细胞受体(TCR)α链和β链进行二聚化。
术语“条件活性多肽”是指亲本多肽的变体或突变体,其在至少一种条件下比亲本多肽活性高且在第二种条件下比亲本多肽活性低,或者术语“条件活性多肽”是指亲本多肽的变体或突变体,其中所述变体或突变多肽在第一条件下的活性是在第二条件下的活性的至少1.3倍。该条件活性多肽可以在身体的一个或多个选定位置表现出活性和/或在身体的另一位置表现出增强或降低的活性。例如,在一个方面,演变的条件活性生物蛋白在体温下几乎无活性,但在较低温度下有活性。条件活性多肽包括条件活性蛋白、蛋白片段、抗体、抗体片段、酶、酶片段、受体和受体片段、细胞因子及其片段、激素及其片段、配体及其片段、调节蛋白及其片段、生长因子及其片段,以及包括应激蛋白、穹窿体相关蛋白、神经元蛋白、消化道蛋白、生长因子、线粒体蛋白、胞质蛋白、动物蛋白、结构蛋白、植物蛋白和这些蛋白中任一种的片段的蛋白。本文所述的每种条件活性多肽优选为条件活性生物多肽。
本文中使用的术语“细胞因子”或“细胞因子”是指影响免疫系统细胞的一大类生物分子。该定义旨在包括但不限于通过血液循环局部或在远离分泌位点的其它位置处起作用以控制或调节个体免疫应答的那些生物分子。示例性的细胞因子包括但不限于干扰素-α(IFN-α)、干扰素-β(IFN-β)、和干扰素-γ(IFN-γ)、白细胞介素(例如,IL-1至IL-29,特别是IL-2、IL-5、IL-6、IL-7、IL-10、IL-12、IL-15和IL-18)、肿瘤坏死因子(例如,TNF-α和TNF-β)、促红细胞生成素(M-CSF)、MIP3a、单核细胞趋化蛋白(MCP)-1、细胞内粘附分子(ICAM)、巨噬细胞集落刺激因子(M-CSF)、粒细胞集落刺激因子(G-CSF)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)。
本文中使用的术语“电解质”用于定义血液或其它体液中携带电荷的矿物质。例如,在一个方面,正常生理条件和异常条件可以是不同值的“电解质浓度”。示例性的电解质包括但不限于离子化的钙、钠、钾、镁,氯化物、柠檬酸盐、乳酸盐、碳酸氢盐和磷酸盐。
术语“全长抗体”是指包含抗原结合可变区(VH或VL)以及轻链恒定结构域(CL)和重链恒定结构域CHI、CH2和CH3的抗体。恒定结构域可以是天然序列恒定结构域(例如人天然序列恒定结构域)或其氨基酸序列变体。根据其重链的恒定结构域的氨基酸序列,可以将全长抗体归属为不同的“类别”。全长抗体有五种主要类型:IgA、IgD、IgE、IgG和IgM,其中几种可进一步分为“亚类”(同种型),例如IgG1、IgG2、IgG3、IgG4、IgA和IgA2。对应于不同类别抗体的重链恒定结构域分别称为α、δ、ε、γ和μ。
本文中使用的术语“生长因子”是指能够实现细胞分化的多肽分子。生长因子的实例包括但不限于表皮生长因子(EGF)、转化生长因子-α(TGFα)、转化生长因子-β(TGF-β)、人内皮细胞生长因子(ECGF)、粒细胞巨噬细胞集落刺激因子(GM-CSF)、骨形态发生蛋白(BMP)、神经生长因子(NGF)、血管内皮生长因子(NEGF)、成纤维细胞生长因子(FGF)、胰岛素样生长因子(IGF)、软骨衍生形态发生蛋白(CDMP)和血小板衍生的生长因子(PDGF)。
本文中使用的术语“激素”表示通常被鉴定为介体的物质,其通常被生物体的一部分中的细胞或腺体释放以充当生物体其它部分的信使。示例性的激素包括直接释放至血流中的内分泌激素和直接分泌到导管中和从导管分泌的外分泌激素(或外激素),这些激素或流入血流中或在称为旁分泌信号的过程中通过扩散从细胞扩散到细胞。脊椎动物激素可以分为三个化学类:肽类激素、脂质和磷脂衍生的激素和一元胺。肽类激素由多肽链组成。肽类激素的实例包括胰岛素和生长激素。脂质和磷脂衍生的激素来源于脂质(如亚油酸和花生四烯酸)和磷脂。主要类别是由胆固醇和类花生酸衍生的类固醇激素。类固醇激素的实例是睾酮和皮质醇。通过芳香族氨基酸脱羧酶的作用从芳香族(例如苯丙氨酸、酪氨酸和色氨酸)衍生一元胺。一元胺的实例是甲状腺素和肾上腺素。
本文中使用的术语“免疫调节剂”是指其对免疫系统的作用导致参与免疫反应的至少一种途径的活性立即增强或延迟增强或者降低的试剂。这种反应可以自然发生或人为触发,作为先天免疫系统或适应性免疫系统或两者的一部分。免疫调节剂的实例包括细胞因子、干细胞生长因子、淋巴毒素如肿瘤坏死因子(TNF)和造血因子如白细胞介素(例如,白细胞介素-1(IL-1)、IL-2、IL-3、IL-6、IL-10、IL-12、IL-18和IL-21)、集落刺激因子(例如,粒细胞集落刺激因子(G-CSF)和粒细胞巨噬细胞集落刺激因子(GM-CSF))、干扰素(例如,干扰素-α,干扰素-β和干扰素-γ)、称为“S1因子”的干细胞生长因子、促红细胞生成素和血小板生成素。合适的免疫调节剂部分的实例包括IL-2、IL-6、IL-10、IL-12、IL-18、IL-21、干扰素、TNF(例如TNF-α)等。
“个体”或“对象”是哺乳动物。哺乳动物包括但不限于驯养的动物(例如,牛、羊、猫、狗和马)、灵长类动物(例如人和非人灵长类动物如猴)、兔子和啮齿动物(例如,小鼠和大鼠)。
本文中使用的术语“文库”是指在单个库中的蛋白的集合。文库优选使用DNA重组技术产生。例如,可以将cDNA或任何其它蛋白质编码DNA的集合插入到表达载体中以产生蛋白文库。也可以将cDNA或蛋白质编码DNA的集合插入到噬菌体基因组中以产生野生型蛋白的噬菌体展示文库。可以从选择的细胞群或组织样品中产生cDNA的集合,例如通过Sambrook等人(Molecular Cloning,Cold Spring Harbor Laboratory Press,1989)公开的方法产生。由所选细胞类型产生的cDNA集合也可从诸如
Figure BDA0003896412110000131
的供应商商购获得。本文中使用的野生型蛋白文库不是生物样品的集合。
本文中使用的术语“配体”是指被特定受体识别并且在一个或多个结合位点特异性地结合受体的分子。配体的实例包括但不限于细胞膜受体的激动剂和拮抗剂、毒素和毒液、病毒表位、激素、激素受体肽、酶、酶底物、辅因子、药物(例如阿片制剂、类固醇等)、凝集素、糖、多核苷酸、核酸、低聚糖、蛋白质和单克隆抗体。通常,配体包含两个结构部分:参与配体与其受体结合的第一部分和不参与此类结合的第二部分。
本文中使用的“受体”是指对给定的配体具有亲和力的分子。受体可以是天然存在或人工合成的分子。受体可以以其未改变的状态或作为与其它物质形成的聚集体而应用。受体可直接地或通过特定的结合物质共价或非共价连接于结合单元。受体的实例包括但不限于抗体(其包括单克隆抗体且能够与特定的抗原决定簇(如位于病毒、细胞或其它材料上)发生抗血清反应)、细胞膜受体、碳水化合物和糖蛋白的复合物、酶和激素受体。配体与其受体的结合表明该配体与其受体分子通过特异性分子识别组合以形成复合物,这可通过本领域技术人员已知的多种配体受体结合测试来检测。
本文中使用的术语“微RNA”或“miRNA”是指来自miRNA基因的未加工或加工的RNA转录物。未加工的微RNA基因转录物通常包含长度约70-100个核苷酸的RNA转录物。转录的微RNA可以通过用RNase(例如,Dicer、Argonaut或RNase III)消化成为有活性的19-25个核苷酸的RNA分子。这种有活性的19-25核苷酸RNA分子也被称为“加工的”微RNA基因转录物或“成熟的”微RNA。
本文中使用的术语“多特异性抗体”是对至少两种不同表位具有结合特异性的抗体。示例性的多特异性抗体可以结合BBB-R和脑抗原两者。可以将多特异性抗体作为全长抗体或抗体片段(例如F(ab')2双特异性抗体)进行制备。还考虑了具有两个、三个或更多个(例如四个)功能性抗原结合位点的工程化抗体(参见例如US 2002/0004587A1)。
本文中使用的术语“纳米颗粒”是指其尺寸以纳米(nm)为单位的微观粒子,其最大线性尺寸小于约1000nm或小于约500nm,或小于约200nm,或小于约100nm,或小于约50nm。如本文所使用的,线性尺寸是指以直线测量的纳米颗粒上任何两点之间的距离。本发明的纳米颗粒可以是不规则的、椭圆形的、纺锤形的、棒状的、盘状的、扁平状的、圆柱形的、红血球状的、球形的或基本上球形的形状,只要它们的形状和大小允许结合相互作用。本发明的纳米颗粒优选由生物相容性材料(聚合物或脂质)制成。
当应用于对象时,本文中使用的术语“天然存在的”所指的事实是对象可以在自然界中存在。例如,存在于生物体(包括病毒)中的多肽或多核苷酸序列为天然存在的,其可以从自然来源中分离,且未在实验室中被人为地有意改造过。从较大的多肽切下的多肽不是天然存在的多肽,原因是切下的多肽的末端基团在被切下的形式中将不同于在较大的天然存在的多肽中的末端基团,因为这些末端基团将不再与相邻多肽结合。一般而言,术语“天然存在的”是指存在于非病理(未病变)的个体中的对象,例如在物种中是普遍存在的。
本文中使用的术语“亲本多肽”和“亲本蛋白”是指可使用本发明的方法进行演变以产生条件活性多肽或蛋白的多肽或蛋白。亲本多肽蛋白可以是包括非天然存在的蛋白的野生型蛋白。例如,治疗性多肽或蛋白或者突变多肽或变体多肽或蛋白可以用作亲本多肽或蛋白。亲本多肽和蛋白的实例包括抗体、抗体片段、酶、酶片段、细胞因子及其片段、激素及其片段、配体及其片段、受体及其片段、调节蛋白及其片段、以及生长因子及其片段。
本文中使用的术语“pH依赖性”是指在不同pH值下具有不同性质或活性的多肽。
本文中使用的术语“多肽”是指其中单体为氨基酸且单体通过肽或二硫键连接在一起的聚合物。“多肽”可以是全长天然存在的氨基酸链或其片段、突变体或变体,例如在结合相互作用中感兴趣的氨基酸链的选定区域。多肽还可以是合成氨基酸链,或者是天然存在的氨基酸链或其片段与合成氨基酸链的组合。片段是指作为全长蛋白的一部分的氨基酸序列,其长度通常为约8个氨基酸至约500个氨基酸,优选约8个氨基酸至约300个氨基酸,更优选约8个氨基酸至约200个氨基酸的氨基酸序列,更加优选约10个氨基酸至约50或100个氨基酸。此外,除天然存在的氨基酸之外的氨基酸(例如β-丙氨酸、苯基甘氨酸和高精氨酸)可以包含在多肽中。通常遇到的非基因编码的氨基酸也可以包括在多肽中。氨基酸可以是D-旋光异构体或L-旋光异构体。D-异构体优选用于如下进一步描述的特定情形。此外,其它肽模拟物也是有用的,例如用于多肽的接头序列中(参见Spatola,1983,in Chemistry andBiochemistry of Amino Acids.Peptides and Proteins,Weinstein,ed.,MarcelDekker,New York,p.267)。通常,除了包括通过共价键或非共价键保持在一起的两个或多个多肽链的结构外,术语“蛋白”不旨在表达与术语“多肽”的任何显著差异。
本文中使用的术语“重组抗体”是指由宿主细胞表达的抗体(例如嵌合、人源化或人抗体或其抗原结合片段),所述宿主细胞包含编码该抗体的核酸。用于制备重组抗体的“宿主细胞”的实例包括:(1)哺乳动物细胞,例如中国仓鼠卵巢(CHO)、COS、骨髓瘤细胞(包括Y0和NS0细胞)、幼仓鼠肾(BHK)、Hela和Vero细胞;(2)昆虫细胞,例如sf9,sf21和Tn5;(3)植物细胞,例如属于烟草属的植物(例如烟草(Nicotiana tabacum));(4)酵母细胞,例如属于酵母属(Saccharomyces)的酵母细胞(例如酿酒酵母)或属于曲霉属的酵母细胞(例如黑曲霉);(5)细菌细胞,例如大肠杆菌细胞或枯草芽孢杆菌细胞等。
本文中使用的术语“调节蛋白”是指具有以下作用的任何蛋白:增强或降低另一多肽或RNA分子的活性;增加或减少另一多肽或RNA分子的丰度;改变另一多肽或RNA分子与其它多肽、DNA或RNA分子或任何其它结合底物之间的相互作用;和/或改变另一多肽或RNA分子的细胞位置。当调节蛋白增加或减少基因的转录速率时,它们通常被称为对基因的启动子或增强子区域有影响的转录因子。转录因子的实例包括哺乳动物转录因子如NFkB、NF1、环AMP响应元件结合蛋白(CREB)、MyoD1、同源框转录因子、Sp1、致癌基因和jun、Mep-1、GATA-1、Isl-1、LFB1、NFAT、Pit-1、OCA-B、Oct-1和Oct-2、酵母A/α、cErb-A、myc、mad和max、p53、mdml和如Latchman,1998,Eukaryotic Transcription Factors(真核转录因子),3rd.Ed.,Academic Press:New York中所列举的其他因子。也可以使用这些或其它转录因子的融合蛋白衍生物,其中融合蛋白的DNA结合基序(至少提供结合特异性)与小分子调节剂结合位点融合。
本文中使用的术语“小干扰RNA”或“siRNA”是指可以相互作用并引起对与siRNA具有序列同源性的mRNA分子的破坏的RNA或RNA样分子(Elbashir et al.,Genes Dev,vol.15,pp.188-200,2001)。据认为,可以将siRNA掺入到称为RNA诱导的沉默复合体(RISC)的核糖核蛋白复合体中。RISC使用siRNA序列来鉴定与掺入的siRNA链至少部分互补的mRNA分子,然后切割这些靶mRNA分子或抑制其翻译。典型的siRNA是双链核酸分子,每条链具有约19个核苷酸至约28个核苷酸(即约19、20、21、22、23、24、25、26、27或28个核苷酸)。siRNA也可以是单链RNA,虽然不如双链siRNA有效。单链siRNA具有约19个核苷酸至约49个核苷酸的长度。单链siRNA具有5'磷酸基或在5'位置原位或体内磷酸化。单链siRNA可以化学合成或通过体外转录合成或者从表达载体或表达盒内源性表达。5'磷酸基可以通过激酶添加,或者可以是RNA的核酸酶切割的结果。
术语“小分子”是指通常分子量小于900a.m.u.,或更优选小于500a.m.u.或更优选地小于200a.m.u.或更加优选小于100a.m.u.的分子或离子。在本发明的测试和环境中,小分子通常可以作为分子和分子的去质子化离子的混合物存在,主要取决于测试或环境的pH。
本文中使用的术语“治疗性蛋白”是指由例如研究人员或临床医师施用于哺乳动物以引起正在寻找的组织、系统、动物或人的生物学或医学响应的任何蛋白和/或多肽。治疗性蛋白可引起多于一种的生物学或医学响应。治疗性蛋白的实例包括抗体、酶、激素、细胞因子、调节蛋白及它们的片段。
本文中使用的术语“治疗有效量”是指任何量,与未接受该量的相应个体相比,该量导致但不限于疾病、病症或副作用的治愈、预防或改善,或者疾病或病症的发展速度的降低。该术语在其范围内还包括有效增强正常生理功能的量以及有效引起患者中增强或有助于第二药剂的治疗效果的生理功能的量。
本文中使用的术语“肿瘤微环境”是指支持肿瘤细胞的生长和转移的实体瘤中的微环境和实体瘤周围的微环境。肿瘤微环境包括可促进致瘤性转化、支持肿瘤生长和浸润、保护肿瘤不被宿主免疫攻击、促进治疗抗性并为休眠的转移瘤提供微环境(niches)的周围血管、免疫细胞、成纤维细胞、其它细胞、可溶性因子、信号分子、细胞外基质以及机械信号。肿瘤与其周围的微环境密切相关,并不断相互作用。肿瘤可通过释放细胞外信号、促进肿瘤血管生成并诱导外周免疫耐受来影响其微环境,而微环境中的免疫细胞可影响癌细胞的生长和演变。参见Swarts et al.“Tumor Microenvironment Complexity:Emerging Rolesin Cancer Therapy,”Cancer Res,vol.,72,pp.2473-2480,2012;Weber et al.,“Thetumor microenvironment,”Surgical Oncology,vol.21,pp.172-177,2012;Blagosklonny,“Antiangiogenic therapy and tumor progression,”Cancer Cell,vol.5,pp.13-17,2004;Siemann,“Tumor microenvironment,”Wiley,2010;and Bagley,“The tumor microenvironment,”Springer,2010。
本文中使用的术语“野生型”是指不包含任何突变的多核苷酸。“野生型蛋白”、“野生-型蛋白”、“野生-型生物蛋白”或“野生型生物蛋白”可以指可从自然界中分离的在自然条件下具有一定水平活性的蛋白,包括在自然条件下发现的氨基酸序列。术语“亲本分子”和“靶蛋白”也包括野生型蛋白。
具体实施方式
A.pH依赖性条件活性多肽
在一个方面,本发明涉及在物质的存在下具有pH依赖性活性的条件活性多肽,所述物质的pKa在期望有活性的pH的0.5、1、2或4个单位内。在另一方面,本发明涉及在物质的存在下具有pH依赖性活性的条件活性多肽,所述物质的pKa为约4至约10、或约4.5至约9.5或约5至约9、或约5.5至约8、或约6.0至约7.0。在另一方面,本发明涉及在选自组氨酸、组胺、氢化的二磷酸腺苷、氢化的三磷酸腺苷、柠檬酸盐、碳酸氢盐、乙酸盐、乳酸盐、二硫化物、硫化氢、铵、磷酸二氢盐及其任何组合的物质的存在下具有pH依赖性活性的条件活性多肽。
存在于测试培养基中的对条件活性多肽的活性具有显著影响的物质倾向于是具有至少两种电离状态的物质:不带电荷或带电荷较少的状态以及带电荷或带电荷较多的状态。结果,影响条件活性多肽的活性的物质的pKa可以在以下方面起作用:确定该物质对多肽的特定活性和/或在特定pH下的影响程度。
pH依赖性条件活性多肽在第一pH下比在不同的第二pH下具有更高的活性,这两种活性均在存在一种或多种上述物质的测试中进行测试。为了确定条件活性多肽的pH依赖性,在两个不同的pH值下,在相同测试培养基中测试所述多肽的相同活性。
在相同测试培养基中,第一pH下的活性与第二pH下的相同活性的比值可以称为pH依赖性条件活性多肽的选择性。pH依赖性条件活性多肽的选择性为至少约1.3、或至少约1.5、或至少约1.7、或至少约2.0、或至少约3.0、或至少约4.0、或至少约6.0、或至少约8.0、或至少约10.0、或至少约20.0、或至少约40.0、或至少约60.0、或至少约100.0。
已经观察到,与衍生出条件活性多肽的亲本多肽的氨基酸残基相比,pH依赖性条件活性多肽含有增加数量(或比例)的带电荷的氨基酸残基。有三种带正电荷的氨基酸残基:赖氨酸,精氨酸和组氨酸;以及两种带负电荷的氨基酸残基:天冬氨酸和谷氨酸。与衍生出pH依赖性条件活性多肽的亲本多肽相比,这些带电荷的氨基酸残基在pH依赖性条件活性多肽中过度表现(over-represented)。结果是,由于带电荷的氨基酸残基的数量增加,因此pH依赖性条件活性多肽更可能与测试培养基中的带电荷的物质相互作用。这反过来影响了条件活性多肽的活性。
还观察到,在测试培养基中,pH依赖性条件活性多肽在不同物质的存在下通常具有不同的活性。具有至少两种电离状态(不带电荷或带电荷较少的状态以及带电荷或带电荷较多的状态)的物质可以在特定的pH下更大程度地解离(这取决于pKa值),从而增加与存在于条件活性多肽中的带电荷的氨基酸残基相互作用的可能性。该因素可用于增强条件活性多肽的选择性和/或pH依赖性活性。
条件活性多肽的电荷的性质可以是用于确定影响条件活性多肽的活性的合适物质的一个因素。在一些实施方案中,与亲本多肽相比,条件活性多肽可以具有更多带正电荷的氨基酸残基:赖氨酸、精氨酸和组氨酸。因此可以选择条件活性多肽以与在期望该活性的环境中存在的特定物质具有期望水平的相互作用,和/或以与在期望活性降低的环境中存在的特定物质具有期望水平的相互作用。同样地,与亲本多肽相比,条件活性多肽可以具有更多的带负电荷的氨基酸残基:天冬氨酸和谷氨酸。
pH依赖性条件活性多肽上带电荷的氨基酸残基的位置也可能对活性有影响。例如,带电荷的氨基酸残基与条件活性多肽的结合位点的接近度可用于影响多肽的活性。
在一些实施方案中,带电荷的环境物质与条件活性多肽的相互作用可阻断或阻碍pH依赖性条件活性多肽的活性。例如,与带电荷的环境物质相互作用的带电荷的氨基酸可体现出对条件活性多肽的结合位点的变构效应。
在其它实施方案中,可能的情况是:带电荷的环境物质与条件活性多肽的相互作用可在多肽上不同部分之间形成盐桥,特别是带电荷或被极化的部分。已知盐桥的形成稳定了多肽结构(Donald,et al.,“Salt Bridges:Geometrically Specific,DesignableInteractions,”Proteins,79(3):898–915,2011,Hendsch,et al.,“Do salt bridgesstabilize proteins?A continuum electrostatic analysis,”Protein Science,3:211-226,1994)。盐桥可以稳定或固定蛋白结构,蛋白结构通常经历称为“呼吸(breathing)”的不断的微小结构变化(Parak,“Proteins in action:the physics of structuralfluctuations and conformational changes,”Curr Opin Struct Biol.,13(5):552-557,2003)。蛋白结构的“呼吸”对于蛋白质功能及蛋白与其配偶体的结合是重要的,因为结构波动允许条件活性蛋白有效识别并结合其配偶体(Karplus,et al.,“Moleculardynamics and protein functions,”PNAS,vol.102,pp.6679-6685,2015)。通过形成盐桥,条件活性多肽上的结合位点,特别是结合口袋(binding pocket)不易与其配偶体接触,可能是因为盐桥可直接阻断配偶体进入结合位点。即使盐桥远离结合位点,变构效应也可以改变结合位点的构象以抑制结合。因此,在盐桥稳定(固定)条件活性多肽的结构之后,多肽可变得不具有与其配偶体结合的活性,导致活性降低。
如何通过盐桥稳定多肽以及其结构的一个已知实例是血红蛋白。结构和化学研究已经表明,至少有两组化学基团负责形成盐桥:组氨酸β146和α122的氨基末端以及侧链,其pKa值接近pH 7。在脱氧血红蛋白中,β146的末端羧基与另一αβ二聚体的α亚基中的赖氨酸残基形成盐桥。如果组氨酸残基的咪唑基被质子化,则该相互作用会将组氨酸β146的侧链锁定在这样的位置:在该位置其可以与同一链中具有负电荷的天冬氨酸94一起形成盐桥(图6)。在高pH下,组氨酸β146的侧链未被质子化,并且不形成盐桥。然而,随着pH下降,组氨酸β146的侧链被质子化,组氨酸β146和天冬氨酸β94之间的盐桥形成,这稳定了脱氧血红蛋白的四级结构,导致在活性代谢组织(具有较低的pH)中氧被释放的趋势更大。血红蛋白在低pH下显示对氧的pH依赖性结合活性,由于盐桥的形成,对氧的结合活性降低。另一方面,在高pH下,由于不存在盐桥,对氧的结合活性增强。
同样地,通过在条件活性多肽中形成盐桥,小分子诸如碳酸氢盐可以降低条件活性多肽与其配偶体的结合活性。例如,在低于pKa为6.4的碳酸氢盐的pH下,碳酸氢盐被质子化并因此不带电荷。不带电荷的碳酸氢盐不能形成盐桥,因此对条件活性多肽与其配偶体的结合几乎没有影响。因此,条件活性多肽在低pH下与其配偶体具有高结合活性。另一方面,在高于碳酸氢盐的pKa的高pH下,碳酸氢盐通过失去质子而被电离,从而变成带负电荷的。带负电荷的碳酸氢盐将在条件活性多肽上带正电荷的部分或极化部分之间形成盐桥以稳定条件活性多肽的结构。这将阻断或减少条件活性多肽与其配偶体的结合。因此,条件活性多肽在高pH下具有低活性。因此,条件活性多肽在碳酸氢盐存在下具有条件活性,在低pH下比在高pH下具有更高的结合活性。
当测试培养基中不存在诸如碳酸氢盐的物质时,条件活性多肽可能失去其条件活性。这可能是由于条件活性多肽上缺乏盐桥来稳定(固定)多肽的结构。因此,配偶体将在任何pH下对条件活性多肽上的结合位点具有相似的可及性,在第一pH和第二pH下产生相似的活性。
在其它实施方案中,在小分子或离子与条件活性多肽之间的相互作用可以以增强其活性的方式改变多肽的结构。例如,结构的改变可以通过改变结合亲和力所需的结合位点的位置、空间位阻或结合能来提高条件活性多肽的结合亲和力。在这种情况下,可能需要选择在期望有活性的pH下与条件活性多肽结合的小分子。
应该理解,虽然盐桥(离子键)是化合物和离子影响条件活性多肽的活性的最强且最常见的方式,但是这些化合物和离子与条件活性多肽之间的其它相互作用也可能有助于稳定(固定)条件活性多肽的结构。其它相互作用包括氢键、疏水相互作用和范德华相互作用。
在一些实施方案中,为了选择合适的化合物或离子,将条件活性多肽与演变出其的亲本多肽进行比较,以确定条件活性多肽是具有较高比例的带负电荷的氨基酸残基或是带正电荷的氨基酸残基。然后可选择分别在第二pH下具有合适电荷的化合物以影响条件活性多肽的活性。例如,当条件活性多肽比亲本多肽具有更高比例的带正电荷的氨基酸残基时,合适的小分子通常应在第二pH下带负电荷以与条件活性多肽相互作用。另一方面,当条件活性多肽比亲本多肽具有更高比例的带负电荷的氨基酸残基时,合适的小分子通常应在第二pH下带正电荷以与条件活性多肽相互作用。
在其它实施方案中,通过小分子或离子与靶多肽的相互作用来控制条件活性多肽的活性,所述靶多肽作为条件活性多肽的结合配偶体。在这种情况下,与上述讨论相同的原理也是适用的,除了目标是在小分子或离子与靶多肽之间产生相互作用之外。靶多肽可以是,例如,条件活性抗体的抗原或条件活性受体的配体。
合适的小分子可以是从第一pH下的不带电荷或带电荷较少的状态转变为第二pH下带电荷或带电荷较多的状态的任何无机或有机分子。因此,小分子通常应具有在第一pH与第二pH之间的pKa。例如,碳酸氢盐的pKa为6.4。因此,在较高pH诸如pH为7.4时,带负电荷的碳酸氢盐将与条件活性多肽中带电荷的氨基酸残基结合并降低活性。另一方面,在较低pH诸如pH为6.0下,较少的带电荷的碳酸氢盐将不以相同的量与条件活性多肽结合,从而允许条件活性多肽具有较高活性。
二硫化物的pKa为7.05。因此,在更高的pH诸如pH为7.4下,更多的带负电荷的二硫化物将与条件活性多肽中带正电荷的氨基酸残基结合并降低其活性。另一方面,在较低pH诸如pH为6.2-6.8时,带电荷较少的硫化氢/二硫化物不会以相同的水平与条件活性多肽结合,从而允许条件活性多肽具有较高活性。
具有介于第一pH和第二pH之间的pKa的小分子优选用于本发明。优选的物质选自二硫化物、硫化氢、组氨酸、组胺、柠檬酸盐、碳酸氢盐、乙酸盐和乳酸盐。这些小分子中的每一个都具有介于6.2和7.0之间的pKa。此外,也可以使用其它小分子,诸如N-三(羟甲基)甲基甘氨酸(tricine,pKa8.05)和N,N-二羟乙基甘氨酸(bicine,pKa 8.26)。使用本申请的原理可以在教科书中找到其它合适的小分子,诸如CRC出版社出版的CRC Handbook ofChemistry and Physics(化学和物理CRC手册),第96版;Chemical Properties Handbook(化学性质手册),McGraw-Hill Education,1998。
测试培养基或环境中小分子的浓度优选为或接近个体中小分子的生理浓度。例如,碳酸氢盐(在人血清中)的生理浓度在15mM至30mM的范围内。因此,测试培养基中碳酸氢盐的浓度可以是10mM至40mM,或15mM至30mM,或20mM至25mM,或约20mM。二硫化物的生理浓度也很低。测试培养基中二硫化物的浓度可以为3nM至500nM,或5nM至200nM,或10nM至100nM,或10nM至50nM。
在本发明中,选择和采用的条件活性多肽的浓度使得环境中具体物质的正常生理浓度将对感兴趣的pH范围内的条件活性多肽的活性具有显著影响。因此,在许多疗法中,可能有利的是使条件活性多肽在pH 7.2-7.4左右的血液或人血清中具有低活性以允许通过血流递送治疗,同时最小化或防止条件活性多肽激活。结果是,对于这样的治疗,将有利的是选择pKa低于pH 7.2-7.4的小分子,以确保血流pH下小分子发生足够量的电离,从而对条件活性多肽的活性产生显著影响。同时,小分子的pKa应当等于或高于条件活性多肽在其下具有期望活性的pH,以确保通过小分子的质子化来释放条件活性多肽上的结合位点从而激活条件活性多肽。
小分子优选具有低分子量和/或相对小的构象,以通过最小化空间位阻来确保对靶多肽或条件活性多肽上的小口袋的最大可及性。出于这个原因,小分子的分子量通常小于900a.m.u.,或更优选小于500a.m.u.,或更优选小于200a.m.u.,或更加优选小于100a.m.u.。例如,如下文实施例13和14所示,硫化氢、二硫化物和碳酸氢盐均具有低分子量和小的结构,提供对靶多肽或条件活性多肽上的口袋的可及性。
小分子可以以基本相同的浓度存在于测试或环境中,例如,碳酸氢盐为约20μM。在一些实施方案中,小分子在不同的环境中可以以不同的浓度存在,因此可能希望在测试中模拟这一点。例如,二硫化物在肿瘤微环境中比在人血清中具有更高的浓度。因此,一个测试可以模拟具有酸性pH和较高浓度的二硫化物的肿瘤微环境,而第二测试可以模拟具有中性或弱碱性pH和较低浓度的二硫化物的人血清。酸性pH可以在6.0至6.8的范围内,而中性或弱碱性pH可以为约7.4。用于第一测试的二硫化物的较高浓度可以是30μM,而用于第二缓冲液的二硫化物的较低浓度可以是10μM或更小,或5μM。
在一些实施方案中,当存在两种或更多种不同的小分子(例如,碳酸氢盐和组氨酸的组合)时,条件活性多肽是pH依赖性的。
当小分子不存在时,条件活性多肽可能失去其pH依赖性。因此,在不存在小分子时,条件活性多肽可以在不存在小分子的情况下在第一pH与第二pH之间具有相似的活性。
在一些实施方案中,第一pH为酸性pH,而第二pH为碱性或中性pH。在其它实施方案中,第一pH为碱性pH,而第二pH为酸性或中性pH。例如,第一pH可以是范围为约5.5-7.2、或约6.0-7.0、或约6.2-6.8的pH。第二pH可以是范围为约7.0-7.8、或约7.2-7.6的pH。
在酸性pH下更有活性且在碱性或中性pH下活性较低的条件活性多肽可靶向pH为约5.5-7.2、或约6.2-6.8的酸性肿瘤微环境。
在其它实施方案中,pH依赖性多肽更具活性的第一pH可以是例如7.6-7.9的碱性pH,诸如在滑液中(参见Jebens et al.,“On the viscosity and pH of synovial fluidand pH of blood,”Journal of Bone and Joint Surgery,vol.41 B,pp.388-400,1959)。第二pH可以是约7.2-7.6的血液pH,在该pH下条件活性多肽的活性较低。这些条件活性多肽可能适用于靶向关节疾病,特别是关节的炎症。
在其它实施方案中,可以设计条件活性多肽以靶向脑。血脑屏障两侧之间存在pH差异,脑侧的pH比血液pH低0.2个pH单位。因此,条件活性多肽更具活性的脑的第一pH可以是约7.0-7.2(脑pH),而第二pH可以是约7.4(血液pH)。
条件活性多肽可以是酶、细胞因子、受体尤其是细胞受体、调节多肽、可溶性多肽、抗体或激素。
条件活性多肽可以是亲本多肽的片段。例如,条件活性多肽可以是抗体片段、单链抗体、酶片段、受体片段、细胞因子片段或激素片段。抗体片段可以是抗体的Fc片段。
可以使用Fc片段作为产生条件活性Fc片段的亲本多肽,所述条件活性Fc片段在第一pH下对补体的结合活性比在第二pH下对相同补体的结合活性更高。Fc片段与补体的结合可用于提供抗体依赖性的、细胞介导的细胞毒性。第一pH可以是5.5-7.2或6.2-6.8范围内的酸性,诸如肿瘤微环境中的pH,而第二pH的范围为7.2-7.6。第一pH不同于通常为约4.0的溶酶体中的pH。此外,溶酶体是Fc片段(与任何其它多肽一样)被靶向降解的位置。溶酶体中没有补体并且没有通过溶酶体引起的细胞介导的细胞毒性。
条件活性多肽可具有两个功能结构域,其中至少一个,优选两个功能结构域具有pH依赖性活性。可以同时演变这两个功能结构域并进行选择以鉴定同一突变多肽中的两个功能结构域。或者,可独立地演变这两个功能结构域并进行选择以分别鉴定pH依赖性活性。如果两个功能结构域不在同一突变多肽中,则它们可以融合成具有两个单独鉴定的功能结构域的嵌合多肽。
在一个方面,在存在诸如蛋白的因子的情况下,条件活性多肽与亲本多肽相比在第一pH下显示出增强的活性,并且与亲本多肽相比在第二pH下显示出降低的活性。蛋白可以是存在于血液、人血清或存在于身体微环境(诸如肿瘤微环境、发炎区域等)中的蛋白。一种合适的蛋白可以是白蛋白,特别是哺乳动物白蛋白,诸如牛白蛋白或人白蛋白。
在一个方面,诸如白蛋白的蛋白存在于用于从由演变步骤产生的突变多肽中筛选和选择条件活性多肽的测试溶液中。在另一方面,具有诸如白蛋白的蛋白的测试溶液也用于在相同或不同条件下测试所选择的条件活性多肽的活性。
B.条件活性多肽的工程化
条件活性多肽可以通过本文描述的一种或多种蛋白质工程技术工程化。蛋白质工程化技术的非限制性实例包括将条件活性多肽缀合至核酸,将条件活性多肽缀合至纳米颗粒,工程化嵌合抗原受体中的条件活性多肽以及工程化掩蔽的条件活性多肽。
本发明的条件活性多肽可以通过接头缀合至核酸分子,例如DNA或RNA分子。条件活性多肽可帮助将核酸分子递送至个体中具有一种条件的靶位置,条件活性多肽在该靶位置下比在不存在所述条件的其它位置下更具活性。例如,条件活性多肽可以是在肿瘤微环境中的条件下比在其它位置诸如人血清中的条件下具有对其抗原更高结合活性的条件活性抗体。该效果可用于通过将核酸分子缀合至条件活性多肽并将缀合物施用于个体来将核酸分子递送至肿瘤微环境。
在一些实施方案中,核酸分子可以是用于调节靶位点处基因表达的试剂。异常基因表达与许多疾病有关。因此纠正异常基因表达可有助于控制或甚至治愈这些疾病。例如,异常基因表达是大多数癌细胞的特征,其中一些基因在癌细胞中具有升高的表达水平,诸如许多癌基因(例如,表皮生长因子受体2(HER2)在乳腺癌细胞中过表达)。选择性抑制癌基因的组成型升高的表达提供了抑制癌细胞增殖的机会。
可抑制基因表达的核酸分子包括反义RNA、小干扰RNA(siRNA)、微RNA、寡DNA和具有与核碱基连接的不带电荷的非手性聚酰胺骨架的寡核苷酸模拟物(Pooga et al.,CurrCancer Drug Targets,1(3):231-9,2001;Pandey et al.,Expert Opin Biol Ther.,9(8):975-89,2009)。
反义RNA是可通过碱基配对与mRNA的特定互补区域结合从而以序列特异性方式抑制mRNA的表达的短RNA分子。反义RNA可以诱导RNaseH(其在与反义RNA结合的位点切割mRNA),或者可以物理阻断mRNA加工和蛋白合成中的翻译或其它步骤。
小干扰RNA(siRNA)通常是短的双链RNA区段,其序列的至少一部分与翻译将被阻断的mRNA序列互补。siRNA通过使用染色质重塑、抑制蛋白质翻译或直接mRNA降解的转录后基因沉默机制起作用,这在真核细胞中普遍存在(Caplen,“Gene therapy progress andprospects.Downregulating gene expression:the impact of RNA interference,”GeneTher.,11(16):1241-1248,2004)和Bertrand et al.,“Comparison of antisenseoligonucleotides and siRNAs in cell culture and in vivo,”Biochem Biophys ResCommun.,296(4):1000-1004,2002)。
特别地,通过RISC,siRNA可以启动与siRNA具有同源性的mRNA的序列特异性降解的强效级联反应(Fire et al.,“Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans,”Nature 391:806–811,1998)。当将siRNA引入细胞时,它被称为Dicer的RNase III酶加工,该酶将长siRNA切割成具有对称的2-3个核苷酸3'突出端和5'磷酸基和3'羟基的短的21-23个核苷酸双链体(Tuschl et al.,“Targeted mRNA degradation by double-stranded RNA in vitro,”Genes Dev.13:3191–3197,1999;Hamilton and Baulcombe,“A species of small antisense RNA inposttranscriptional gene silencing in plants,”Science,286:950–952,1999)。因此,有效的siRNA仅需要小段的连续互补序列与mRNA配对以触发siRNA介导的沉默(Jacksonand Linsley,“Noise amidst the silence:off-target effects of siRNAs?”TrendsGenet.,20:521–524,2004)。siRNA不整合到基因组中,因此比质粒或病毒载体提供更高的安全性。
微RNA(miRNA)是一类长度为21-25个核苷酸的天然存在的小的非编码RNA分子。微RNA与微RNA起作用的mRNA分子部分互补。微RNA的主要功能是通过翻译抑制、mRNA切割和去腺苷酸化来降低基因表达。由英国桑格研究所主办的miRNA种类、序列数据、注释和目标预测的中心在线资源库称为miRBase。微RNA基因被RNA聚合酶II转录以产生具有5'帽和poly-A尾的pri-miRNA。在细胞核中,pri-miRNA被微加工复合物(由RNAse III酶Drosha和双链RNA Pasha/DGCR8组成)加工以产生pre-miRNA。这些pre-miRNA通过核转运蛋白输出蛋白(Exp5)和Ran-GTP复合物输出到细胞质中,Ran GTPase在细胞质中与Exp5结合形成具有pre-miRNA的核异三聚体。这些pre-miRNA再被RNAse III酶Dicer加工以产生成熟的微RNA。
可以通过条件活性多肽递送的另一类核酸是寡核苷酸模拟物,寡核苷酸模拟物包含与核碱基连接的不带电荷的非手性聚酰胺骨架。寡核苷酸模拟物通常被称为肽核酸(PNA)。更具体地,PNA是其中N-(2-氨基乙基)甘氨酸聚酰胺替代磷酸-核糖环骨架的DNA类似物,并且亚甲基-羰基接头将天然核碱以及非天然核碱连接到N-(2-氨基乙基)甘氨酸。尽管骨架结构发生了根本性的变化,但PNA能够按照瓦特生-克里克(Watson-Crick)碱基配对原则与DNA和mRNA进行序列特异性结合。
PNA以比天然核酸更高的亲和力与互补DNA/RNA结合,这部分是由于骨架上缺乏负电荷并因此降低了电荷-电荷排斥,以及有利的几何因素。PNA和DNA/mRNA的复合物在生物体液中非常稳定,从而导致通过与DNA或mRNA特异性杂交来抑制靶基因的转录和翻译。通常,使用熟知的固相肽合成方案合成PNA。参见Kim et al.,J.Am.Chem.Soc.,115,6477–6481,1993;Hyrup et al.,J.Am.Chem.Soc.,116,7964–7970,1994;Egholm et al.,Nature,365,566–568,1993;Dueholm et al.,New J.Chem.,21,19–31,1997;Wittung etal.,J.Am.Chem.Soc.,118,7049–7054,1996;Leijon et al.,Biochemistry,33,9820–9825,1994;Orum et al.,BioTechniques,19,472–480,1995;Tomac et al.,J.Am.Chem.Soc.,118,5544–5552,1996)。与用强酸处理时脱嘌呤并在碱性氢氧化物中水解的DNA相比,PNA完全是酸稳定的,并且对弱碱而言是足够稳定的。
可由条件活性多肽递送的另一类核酸是寡DNA。寡DNA是DNA的短单链区段,在进入细胞血浆后其可选择性地抑制具有与寡DNA互补的序列的基因的表达。对于反义应用,寡DNA与靶mRNA或pre-mRNA相互作用并形成双链体,抑制其翻译或加工,从而抑制蛋白的生物合成。对于抗原应用,寡DNA必须进入细胞核,与双链基因组DNA形成三链体,抑制基因的转录,从而产生更少的mRNA,导致产生的蛋白的基因产物更少。
可由条件活性多肽递送的另一类核酸是球形核酸(SNA,参见Zhang,J Am ChemSoc.,134(40):16488–16491,2012)。SNA包含共价连接至金属的、半导体的或绝缘的无机或聚合物核心材料表面的密集官能化和高度取向的核酸。它们也可以是几乎完全由核酸分子组成的无核空心结构。这种球形核酸能够绕过个体的对外源性核酸的天然防御。球形核酸利用其密集堆积的、高度定向的核酸壳产生的独特性质实现了核酸的保护和有效递送。这种壳产生高局部盐浓度的区域,当与空间抑制组合时,其用于降低核酸酶活性并保护核酸免于酶促降解。此外,这些球形核酸从天然细胞外环境向其表面募集促进内吞作用的清除蛋白。
在进入细胞质后,球形核酸可通过反义或siRNA途径抑制靶基因的表达。因此,球形核酸相比于病毒载体和许多其它合成系统提供了几个优点,包括低毒性、低免疫原性、对酶促降解的抗性和更持久的基因敲低。条件活性多肽,特别是条件活性抗体可将球形核酸递送至靶位置,诸如患病或发炎的组织(例如,肿瘤和炎症关节)。
条件活性多肽还可通过接头缀合至纳米颗粒以帮助将纳米颗粒递送至具有使条件活性多肽更具活性的条件的靶位置。纳米颗粒是毒素、放射性试剂或其它治疗剂(它们被封装在纳米颗粒中)的已知载体。
封装在纳米颗粒中的治疗剂可以是能使肿瘤细胞去分化并因此可能使肿瘤细胞逆转回正常细胞的蛋白(Friedmann-Morvinski and Verma,“Dedifferentiation andreprogramming:origins of cancer stem cells,”EMBO Reports,15(3):244-253,2014)。纳米颗粒可以与条件活性抗体连接以选择性地将连接的纳米颗粒和封装的治疗剂递送至条件活性抗体最具活性的环境。
在本发明中可以使用具有不同构型的几种类型的纳米颗粒。纳米颗粒可由一系列生物相容性材料制成,包括生物稳定聚合物、生物可降解聚合物、富勒烯、脂质或其组合。生物稳定聚合物是指在体内不降解的聚合物。生物可降解聚合物是指在递送给患者后能够被降解的聚合物。例如,当聚合物暴露于体液诸如血液时,它们可以被体内的酶逐渐吸收和/或消除。生产具有各种降解速率的纳米颗粒的方法是本领域技术人员已知的,参见,例如,美国专利第6,451,338号、美国专利第6,168,804号和美国专利第6,258,378号。
本发明的示例性纳米颗粒包括脂质体、聚合物囊泡和聚合物颗粒。脂质体是指被通常由磷脂组成的双层完全封闭的室。可以根据本领域技术人员已知的标准技术来制备脂质体。一种技术是将合适的脂质(例如磷脂酰胆碱)悬浮在水性介质中,随后超声处理该混合物。另一种技术是将脂质溶液迅速混合在乙醇-水中,例如通过使用针将脂质注入搅动的乙醇-水溶液中。在一些实施方案中,另外地或可选地,脂质体也可包含其它两亲性物质,例如含有聚乙二醇(PEG)的鞘磷脂或脂质。
聚合物囊泡包含经修饰以形成类似于脂质体的双层结构的二嵌段或三嵌段共聚物。取决于嵌段共聚物的长度和组成,聚合物囊泡可以大体上比脂质体更牢固。另外,控制嵌段共聚物的每个嵌段的化学性质的能力允许调节聚合物囊泡的组成以适应所期望的应用。例如,可以通过改变嵌段共聚物中单个嵌段的链长来控制聚合物囊泡的膜厚度,即双层结构的厚度。调节共聚物中每个嵌段的玻璃化转变温度将影响聚合物囊泡的流动性并因此影响其膜的渗透性。甚至也可通过改变共聚物的特性来改进被封装的试剂的释放机制。
可以通过包括以下步骤的方法制备聚合物囊泡:(i)将嵌段共聚物溶解在有机溶剂中,(ii)将所得溶液施用到容器表面,然后(iii)除去溶剂,从而在容器壁上留下共聚物的膜。然后将该膜水合形成聚合物囊泡。或者,将嵌段共聚物溶解在溶剂中,然后加入对于共聚物的一个嵌段而言是弱溶剂的溶剂也将产生聚合物囊泡。
可以使用多种技术将治疗剂封装在聚合物囊泡中。例如,治疗剂可以在水中混合,然后用于再水合共聚物膜。另一实例是渗透性地将治疗剂驱动至预先形成的聚合物囊泡的核心中,该过程称为力加载。另一实例是使用双重乳液技术,其可以生成具有相对单分散性和高负载效率的聚合物囊泡。双重乳液技术涉及使用微流体技术以产生包含被有机溶剂层包围的水滴的双重乳液。然后将这些液滴中的有微滴(droplet-in-a-drop)的结构分散在连续的水相中。嵌段共聚物溶解在有机溶剂中,并在双重乳液的同心界面上自组装成原聚合物囊泡。在将有机溶剂从原聚合物囊泡的壳完全蒸发后形成最终的聚合物囊泡。该技术允许很好地控制聚合物囊泡的尺寸。此外,在整个过程中保持内部流体与外部流体完全分离的能力允许非常有效地封装治疗剂。
与脂质体和聚合物囊泡的壳结构相反,聚合物颗粒是指固体或多孔颗粒。将治疗剂附着到聚合物颗粒的表面或者将生物活性剂整合到聚合物颗粒的结构中的方法是本领域技术人员已知的。
可用于制备本发明纳米颗粒的聚合物包括但不限于,聚(N-乙酰葡糖胺)(壳多糖)、壳聚糖、聚(3-羟基戊酸酯)、聚(丙交酯-共-乙交酯)、聚(3-羟基丁酸酯)、聚(4-羟基丁酸酯)、聚(3-羟基丁酸酯-共-3-羟基戊酸酯)、聚原酸酯、聚酐、聚乙醇酸、聚乙交酯、聚(L-乳酸)、聚(L-丙交酯)、聚(D,L-乳酸)、聚(D,L-丙交酯)、聚(L-丙交酯-共-D,L-丙交酯)、聚(己内酯)、聚(L-丙交酯-共-己内酯)、聚(D,L-丙交酯-共-己内酯)、聚(乙交酯-共-己内酯)、聚(三亚甲基碳酸酯)、聚酯酰胺、聚(乙醇酸-共-三亚甲基碳酸酯)、共-聚醚酯(例如PEO/PLA)、聚磷腈、生物分子(诸如纤维蛋白、纤维蛋白胶、纤维蛋白原、纤维素、淀粉、胶原和透明质酸、弹性蛋白和透明质酸)、聚氨酯、聚硅酮、聚酯、聚烯烃、聚异丁烯和乙烯-α烯烃共聚物、丙烯酸聚合物和除聚丙烯酸酯以外的共聚物、卤乙烯聚合物和共聚物(诸如聚氯乙烯)、聚乙烯醚(诸如聚乙烯基甲基醚)、聚偏二卤乙烯(polyvinylidene halides)(诸如聚偏二氯乙烯)、聚丙烯腈、聚乙烯基酮、聚乙烯基芳族化合物(诸如聚苯乙烯)、聚乙烯酯(诸如聚乙酸乙烯酯)、丙烯腈-苯乙烯共聚物、丙烯腈丁二烯苯乙烯(ABS)树脂、聚酰胺(诸如尼龙66和聚己内酰胺)、包括基于酪氨酸的聚碳酸酯、聚甲醛、聚酰亚胺、聚醚、聚氨酯、人造丝(rayon)、人造三醋酸酯、纤维素、醋酸纤维素、丁酸纤维素、乙酸丁酸纤维素、玻璃纸、硝酸纤维素、丙酸纤维素、纤维素醚和羧甲基纤维素。
在一些实施方案中,除了来自条件活性多肽的选择性之外,纳米颗粒还可以通过涂层来提供组织选择性。例如,可以通过用静电吸附的聚(谷氨酸)基肽涂层来涂覆纳米颗粒以改变核心颗粒的外部组成。含有精氨酸-甘氨酸-天冬氨酸(RGD)配体的带负电荷的聚谷氨酸基肽,与含有RDG而不是RGD的杂乱序列涂覆的颗粒相比,可增加体外基因递送至内皮细胞。这些肽由三部分组成:提供负电荷的一段聚(谷氨酸)、聚甘氨酸的接头以及电荷变化并具有改变颗粒生物物理特性和组织选择性的潜力的末端序列。涂层以及颗粒本身分别通过其酰胺键和酯键而是可生物降解的。参见Harris等人(“Tissue-Specific GeneDelivery via Nanoparticle Coating,”Biomaterials,vol.31,pp.998-1006,2010)。
哺乳动物免疫系统使用T细胞来对抗具有外来抗原的物质或细胞。在遇到实体瘤时,T细胞往往不能产生有效的反应。即使当T细胞到达肿瘤位点时,它们也面临能使癌细胞逃脱免疫系统的一系列免疫抑制因子。CAR-T技术使用遗传工程方法通过将嵌合抗原受体(CAR)插入T细胞以产生高度特异性CAR-T细胞来重编程天然循环T细胞,其中CAR通过特异性结合靶组织表面上的抗原来将工程化CAR-T细胞引导至靶组织。因此,CAR-T细胞可以特异性地靶向肿瘤细胞,使得CAR-T细胞比天然循环的T细胞更有效。也可以工程化CAR-T细胞以靶向其它靶组织,诸如发炎的关节和脑组织。
本发明的CAR包括至少一个抗原特异性靶向区(ASTR)、细胞外间隔结构域(ESD)、跨膜结构域(TM)、一个或多个共刺激结构域(CSD)和细胞内信号传导结构域(ISD),参见图5和Jensen et al.,“Design and implementation of adoptive therapy with chimericantigen receptor-modified T cells(用嵌合抗原受体修饰的T细胞进行过继性治疗的设计和实施),”Immunol Rev.,vol.257,pp.127–144,2014。在ASTR特异性地结合肿瘤或其它靶组织上的靶抗原之后,ISD激活CAR-T细胞中的细胞内信号传导。例如,利用抗体的抗原结合特性,ISD可以以非MHC限制性的方式将CAR-T细胞特异性和反应性重定向至所选择的靶标(例如肿瘤细胞或其它靶向细胞)。非MHC限制性的抗原识别使CAR-T细胞具有识别肿瘤细胞并启动抗原加工的能力,从而绕过肿瘤逃脱免疫系统监视的主要机制。在一个实施方案中,ESD和/或CSD是可选的。在另一个实施方案中,ASTR具有双特异性,这允许其特异性地与两种不同的抗原或表位结合。
本发明的条件活性多肽可以工程化为ASTR或其一部分,以便使CAR在特定环境(例如肿瘤微环境或滑液)中比在存在不同环境的血液或身体的其它部位中具有更高的结合靶抗原的活性。这样的CAR可以优先将T细胞递送至疾病位点,从而显著降低T细胞攻击正常组织引起的副作用。这使得能够使用更高剂量的T细胞来增加治疗效果并改善个体对治疗的耐受性。
这些CAR对开发在受试者中短时间或有限时间内所需的新疗法是特别有价值的。有益应用的实例包括高剂量的全身治疗以及高浓度的局部治疗。参见Maher,“Immunotherapy of Malignant Disease Using Chimeric Antigen Receptor EngraftedT Cells,”ISRN Oncology,vol.2012,article ID 278093,2012。
ASTR可以包含特异性地结合肿瘤或其它靶组织上的抗原的条件活性多肽,诸如抗体,特别是单链抗体或其片段。适合于ASTR的多肽的一些实例包括连接的细胞因子(其导致识别携带细胞因子受体的细胞)、亲和体(affibody)、来自天然存在的受体的配体结合结构域和受体(例如肿瘤细胞上的受体)的可溶性蛋白/肽配体。事实上,几乎任何能够以高亲和力结合给定抗原的分子都可以用于ASTR。
在一些实施方案中,本发明的CAR包括靶向至少两种不同抗原或相同抗原上的两种表位的至少两种ASTR。在一个实施方案中,CAR包含靶向至少三种或更多种不同抗原或表位的三种或更多种ASTR。当CAR中存在多种ASTR时,ASTR可以串联布置并且可以被接头肽隔开(图5)。
在又一个实施方案中,ASTR包括双抗体。在双抗体中,用对于两个可变区而言太短而使它们不能折叠在一起的连接肽形成scFv,从而驱动scFv二聚化。更短的接头(一个或两个氨基酸)导致形成三聚体,即所谓的三分体(triabody)或三体抗体(tribody)。四体抗体(tetrabody)也可以用于ASTR。
CAR靶向的抗原存在于被靶向去除的组织中的细胞的表面或内部,所述组织诸如肿瘤、腺体(例如前列腺)增生、疣和不需要的脂肪组织。当表面抗原被CAR的ASTR更有效地识别和结合时,细胞内抗原也可以被CAR靶向。在一些实施方案中,靶抗原优选地是癌症、炎性疾病、神经元病症、糖尿病、心血管疾病或传染病所特有的。靶抗原的实例包括由各种免疫细胞、癌、肉瘤、淋巴瘤、白血病、生殖细胞肿瘤、胚细胞和与各种血液疾病、自身免疫疾病和/或炎性疾病相关的细胞表达的抗原。
可被ASTR靶向的癌症所特有的抗原包括以下中的一种或多种:4-IBB、5T4、腺癌抗原、甲胎蛋白、BAFF、B-淋巴瘤细胞、C242抗原、CA-125、碳酸酐酶9(CA-IX)、C-MET、CCR4、CD152、CD19、CD20、CD200、CD22、CD221、CD23(IgE受体)、CD28、CD30(TNFRSF8)、CD33、CD4、CD40、CD44 v6、CD51、CD52、CD56、CD74、CD80、CEA、CTLA-4、DR5、EGFR、EpCAM、CD3、FAP、纤连蛋白额外结构域-B、叶酸受体1、GD2、GD3、神经节苷脂、糖蛋白75、GPNMB、HER2/neu、HGF、人散射因子受体激酶、IGF-1受体、IGF-I、IgG1、LI-CAM、IL-13、IL-6、胰岛素样生长因子I受体、整联蛋白α5β1、整联蛋白αvβ3、MORAb-009、MS4A1、MUC1、粘蛋白CanAg、N-羟乙酰神经氨酸、NPC-1C、PDGF-R a、PDL192、磷脂酰丝氨酸、前列腺癌细胞、RANKL、RON、ROR1、SCH900105、SDC1、SLAMF7、TAG-72、腱生蛋白C、TGFβ2、TGF-β、TRAIL-R1、TRAIL-R2、肿瘤抗原CTAA16.88、VEGF-A、VEGFR-1、VEGFR2或波形蛋白。
可被ASTR靶向的炎性疾病所特有的抗原包括以下中的一种或多种:AOC3(VAP-1)、CAM-300、CCL11(嗜酸细胞活化趋化因子-1)、CD125、CD147(基础免疫球蛋白,basigin)、CD154(CD40L)、CD2、CD20、CD23(IgE受体)、CD25(IL-2受体链)、CD3、CD4、CD5、IFN-α、IFN-γ、IgE、IgE Fc区、IL-1、IL-12、IL-23、IL-13、IL-17、IL-17A、IL-22、IL-4、IL-5、IL-5、IL-6、IL-6受体、整联蛋白α4、整联蛋白α4β7、Lama glama、LFA-1(CD1 1a)、MEDI-528、肌生成抑制素、OX-40、rhuMAbβ7、硬化蛋白(scleroscin)、SOST、TGFβ1、TNF-α或VEGF-A。
可被本发明的ASTR靶向的神经元病症所特有的抗原包括β淀粉样蛋白或MABT5102A中的一种或多种。可被本发明的ASTR靶向的糖尿病所特有的抗原包括L-Iβ或CD3中的一种或多种。可被本发明的ASTR靶向的心血管疾病所特有的抗原包括C5、心肌肌球蛋白、CD41(整联蛋白α-lib)、纤维蛋白II、β链、ITGB2(CD18)和鞘氨醇-1-磷酸中的一种或多种。
可被本发明的ASTR靶向的传染病所特有的抗原包括以下中的一种或多种:炭疽毒素、CCR5、CD4、聚集因子A、巨细胞病毒、巨细胞病毒糖蛋白B、内毒素、大肠杆菌、乙型肝炎表面抗原、乙型肝炎病毒、HIV-1、Hsp90、甲型流感血凝素、脂磷壁酸、铜绿假单胞菌、狂犬病病毒糖蛋白、呼吸道合胞病毒和TNF-α。
靶抗原的其它实例包括以特有或扩增的方式存在于癌细胞上的表面蛋白,例如B细胞淋巴瘤的IL-14受体、CD19、CD20和CD40,多种癌的Lewis Y和CEA抗原,乳腺和结肠直肠癌的Tag72抗原,肺癌的EGF-R,叶酸结合蛋白以及通常在人乳腺癌和卵巢癌中扩增的HER-2蛋白,或病毒蛋白,例如人类免疫缺陷病毒(HIV)的gp120和gp41包膜蛋白,B型肝炎病毒和C型肝炎病毒的包膜蛋白,人巨细胞病毒的糖蛋白B和其它包膜糖蛋白,以及来自诸如卡波西肉瘤相关疱疹病毒的肿瘤病毒的包膜蛋白。其它可能的靶抗原包括CD4,其中配体是HIVgp120包膜糖蛋白,以及其它病毒受体,例如ICAM,其是人类鼻病毒的受体,以及脊髓灰质炎病毒的相关受体分子。
在另一个实施方案中,CAR可以靶向参与癌症治疗细胞例如NK细胞的抗原以通过充当免疫效应细胞来激活癌症治疗细胞。其中一个实例是靶向CD16A抗原以使NK细胞对抗表达CD30的恶性肿瘤的CAR。双特异性四价AFM13抗体是可以递送这种效果的抗体的实例。这种类型的实施方案的进一步细节可以发现于例如,Rothe,A.,et al.,“A phase 1studyof the bispecific anti-CD30/CD16A antibody construct AFM13 in patients withrelapsed or refractory Hodgkin lymphoma,”Blood,25June 2015,Vl.125,no.26,pp.4024-4031。
在一些实施方案中,细胞外间隔结构域和跨膜结构域可以是抗泛素化的(ubiquitylation-resistant),这可以增强CAR-T细胞信号传导并由此增强抗肿瘤活性(Kunii et la.,“Enhanced function of redirected human t cells expressinglinker for activation of t cells that is resistant to ubiquitylation,”HumanGene Therapy,vol.24,pp.27–37,2013)。在这个区域内,细胞外间隔结构域在CAR-T细胞外,因此暴露于不同的条件下,并且可能有条件地产生泛素化抗性。
C.工程化掩蔽的条件活性多肽
本发明的条件活性多肽,特别是条件活性抗体,可掩蔽其条件活性和/或通过掩蔽部分来掩蔽与其缀合的试剂的活性。一旦将掩蔽部分从条件活性多肽中去除或切割,便可获得被掩蔽的活性。合适的掩蔽技术描述于例如Desnoyers et al.,“Tumor-SpecificActivation of an EGFR-Targeting Probody Enhances Therapeutic Index,”Sci.Transl.Med.5,207ra144,2013。
在一些实施方案中,条件活性抗体与掩蔽部分连接,掩蔽部分掩蔽该条件活性和/或与其缀合的试剂的活性。例如,当条件活性抗体与掩蔽部分连接时,这种连接或修饰会引起结构变化,所述结构变化可降低或抑制条件活性抗体与其抗原特异性结合的能力。一旦条件活性抗体到达靶组织或微环境,掩蔽部分就被靶组织或微环境中存在的酶切割,从而释放被掩蔽的活性。例如,酶可以是在肿瘤微环境中通常具有活性的蛋白酶,其可以切割掩蔽部分以释放在肿瘤组织内具有活性的条件活性抗体。
在一些实施方案中,活性被掩蔽至小于原始活性的约50%,或小于原始活性的约30%,或小于原始活性的约10%,或小于原始活性的约5%,或小于原始活性的约2%,或小于原始活性的约1%,或小于原始活性的约0.1%,或小于原始活性的约0.01%。例如,在某些实施方案中,为了确保足够的递送时间,掩蔽效应被设计为在进行体内测量或在体外免疫吸附测试的靶置换中持续至少2、4、6、8、12、28、24、36、48、60、72、84、96小时,或5、10、15、30、45、60、90、120、150、180天,或1、2、3、4、5、6、7、8、9、10、11、12个月或更长。
在某些实施方案中,掩蔽部分在结构上类似于条件活性抗体的天然结合配偶体(抗原)。掩蔽部分可以是条件活性抗体的经修饰的天然结合配偶体,其含有至少可轻微降低与条件活性抗体结合的亲和力和/或抗体亲抗原性的氨基酸变化。在一些实施方案中,掩蔽部分不包含条件活性抗体的天然结合配偶体或基本上与条件活性抗体的天然结合配偶体没有同源性。在其它实施方案中,掩蔽部分与条件活性抗体的天然结合配偶体之间的序列同一性不超过5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%。
掩蔽部分可以以各种不同的形式提供。在某些实施方案中,掩蔽部分可以是条件活性抗体的已知结合配偶体,条件是掩蔽部分与条件活性抗体的结合亲和力和/或抗体亲抗原性比掩蔽部分被切割后条件活性抗体靶向的靶蛋白与条件活性抗体的结合亲和力和/或抗体亲抗原性小,以便减少掩蔽部分对所期望的与靶标的结合的干扰。因此,掩蔽部分优选为具有以下特性的掩蔽部分:在掩蔽部分被切割之前,掩蔽部分掩蔽条件活性抗体使其不与靶标结合,但当掩蔽部分已从抗体切割下来之后,其不会本质上或显著干扰活性分子与靶标的结合或与靶标竞争。在具体的实施方案中,条件活性抗体和掩蔽部分不包含天然存在的结合配偶体对的氨基酸序列,这使得条件活性抗体和掩蔽部分中的至少一个不具有作为天然存在的结合配偶体成员的氨基酸序列。
或者,掩蔽部分可以不特异性结合条件活性抗体,而是通过非特异性相互作用(如空间位阻)干扰条件活性抗体-靶标的结合。例如,掩蔽部分可以被定位成使抗体的结构或构象允许掩蔽部分通过例如基于电荷的相互作用来掩蔽条件活性抗体,从而干扰靶标接近条件活性抗体。
在一些实施方案中,掩蔽部分通过共价结合连接到条件活性抗体。在另一个实施方案中,通过将掩蔽部分与条件活性抗体的N-末端结合,防止条件活性抗体与其靶标结合。在另一个实施方案中,通过掩蔽部分和条件活性抗体之间的半胱氨酸-半胱氨酸二硫键,条件活性抗体连接到掩蔽部分。
在某些实施方案中,条件活性抗体还与可裂解部分(CM)连接。CM能够被酶切割,或者CM能够被还原剂还原,或者CM能够被光解。在一个实施方案中,CM的氨基酸序列可与掩蔽部分重叠或包含在掩蔽部分内。在另一个实施方案中,CM在条件活性抗体和掩蔽部分之间。应当注意,CM的全部或一部分可以帮助在裂解之前掩蔽条件活性抗体。当CM被切割掉时,条件活性抗体与其抗原结合的活性增强。
CM可以是酶的底物,所述酶与靶抗原共定位在个体的治疗部位。或者或另外,CM可以具有半胱氨酸-半胱氨酸二硫键,该二硫键可以由于对其进行的还原而断裂。CM也可以是可由光源激活的、对光不稳定的底物。
切割CM的酶应优先位于条件活性抗体的所期望的靶组织中,其中条件活性抗体在靶组织(如病变组织或肿瘤组织)提供的条件(异常条件)下更具有活性。例如,存在在许多癌症(例如实体瘤)中具有增加的水平的已知蛋白酶。参见例如La Rocca et al,(2004)British J.of Cancer 90(7):1414-1421。这些疾病的非限制性实例包括:所有类型的癌症(乳腺癌、肺癌、结肠直肠癌、前列腺癌、头颈癌、胰腺癌等)、类风湿性关节炎、克罗恩病、黑素瘤、SLE、心血管损伤、局部缺血等。因此,可以选择合适的CM,其包含可被存在于肿瘤组织中的蛋白酶切割的肽底物,特别是与非癌性组织相比在肿瘤组织中以升高的水平存在的蛋白酶。
在一些实施方案中,CM可以是选自豆蔻质素、纤溶酶、TMPRSS-3/4、MMP-9、MT1-MMP、组织蛋白酶、半胱天冬酶、人嗜中性粒细胞弹性蛋白酶、β-分泌酶、uPA和PSA的酶的底物。切割CM的酶在治疗部位的靶组织(例如患病组织或肿瘤组织;例如用于治疗性治疗或诊断治疗)中存在的水平与在非治疗部位的组织(例如在健康组织)中存在的水平相比相对较高。因此,抗体的条件活性在患病组织或肿瘤组织处活性更高,而且在患病组织或肿瘤组织中存在的酶可以切割CM,这进一步增强了条件活性抗体的活性或与其缀合的试剂的活性。未修饰或未切割的CM可以有效地抑制或掩蔽条件活性抗体的活性,使得条件活性抗体在正常组织(正常生理条件)中活性较低。抑制条件活性抗体在正常组织中的活性的双重机制(条件活性和掩蔽部分)使得可以使用高剂量的条件活性抗体,而不引起显著的不良反应。
在一些实施方案中,CM可以是选自下表1所列酶的酶的底物。
表1.示例性酶/蛋白酶
Figure BDA0003896412110000391
或者或此外,CM可以包括半胱氨酸对的二硫键,该二硫键可以通过诸如细胞还原剂的还原剂断裂,所述细胞还原剂包括谷胱甘肽(GSH)、硫氧还蛋白、NADPH、黄素、抗坏血酸盐等,其可以大量存在于实体瘤的组织内或周围。
在一些实施方案中,条件活性抗体包含CM和掩蔽部分两者。在酶将CM切割掉时,解除对条件活性抗体的活性的掩蔽。在一些实施方案中,可能需要在抗体、掩蔽部分和CM之间插入一个或多个接头(例如柔性接头)以提供柔性。例如,掩蔽部分和/或CM可能没有包含足够数量的残基(例如Gly、Ser、Asp、Asn,特别是Gly和Ser,特别是Gly)以提供所需的柔性。因此,引入一个或多个氨基酸以提供柔性接头可能是有益的。例如,被掩蔽的条件活性抗体可以具有以下结构(其中下式表示N-至C-末端方向或C-至N-末端方向的氨基酸序列):
(MM)-L1-(CM)-(AB)
(MM)-(CM)-L1-(AB)
(MM)-L1-(CM)-L2-(AB)
环[L1-(MM)-L2-(CM)-L3-(AB)]
其中MM是掩蔽部分,AB是条件活性抗体;L1、L2和L3各自独立地且任选地存在或不存在,它们是包含至少一个柔性氨基酸(例如Gly)的相同或不同的柔性接头;在环存在的情况下,由于在结构的N末端和C末端处或N末端和C末端附近的一对半胱氨酸之间存在二硫键,整个结构是环状结构的形式。
适用于本发明的接头通常是为掩蔽部分提供柔性以便于抑制条件活性抗体的活性的接头。这样的接头通常被称为柔性接头。合适的接头可以容易地选择并且可以具有任何合适的不同的长度,例如1个氨基酸(例如Gly)到20个氨基酸、2个氨基酸至15个氨基酸、3个氨基酸至12个氨基酸,包括4个氨基酸至10个氨基酸、5个氨基酸至9个氨基酸、6个氨基酸至8个氨基酸、或7个氨基酸至8个氨基酸,并且可以是1、2、3、4、5、6或7个氨基酸。
示例性的柔性接头包括甘氨酸聚合物(G)n、甘氨酸-丝氨酸聚合物(包括例如(GS)n、(GSGGS)n和(GGGS)n,其中n是至少为1的整数)、甘氨酸-丙氨酸聚合物、丙氨酸-丝氨酸聚合物和本领域已知的其它柔性接头。示例性的柔性接头包括但不限于Gly-Gly-Ser-Gly、Gly-Gly-Ser-Gly-Gly、Gly-Ser-Gly-Ser-Gly、Gly-Ser-Gly-Gly-Gly、Gly-Gly-Gly-Ser-Gly、Gly-Ser-Ser-Ser-Gly等。
WO2010081173A2中描述了用于掩蔽条件活性抗体活性的一些技术。
本发明提供了从亲本多肽例如野生型多肽或治疗性多肽制备条件活性多肽的方法。该方法包括以下步骤:使用一种或多种演变技术演变编码亲本多肽的DNA以产生突变DNA;表达突变DNA以获得突变多肽;使突变多肽和亲本多肽进行在第一条件下的测试和在第二条件下的测试;和从突变多肽中选择具有以下两种特性的条件活性多肽:(a)在第一条件下的测试中与亲本多肽相比活性下降,和(b)在第二条件下的测试中与亲本多肽相比活性增强。第一条件下的测试和第二条件下的测试在含有选自无机化合物、离子和有机分子中的至少一种组分的测试溶液中进行。在一些实施方案中,第一条件是正常生理条件,第二条件是异常条件。
条件活性多肽在第一条件或正常生理条件下可逆或不可逆地失活,但在与第一条件或正常生理条件相同或相当水平的第二条件或异常条件下有活性。美国专利第8,709,755B2号中已经描述了这些条件活性多肽和生产这些多肽的方法。条件活性多肽对于发展在短时间或有限的时期内在宿主中有活性的新疗法是特别有价值的。在给定剂量的治疗剂的延长作用对宿主是有害的但为了进行期望的治疗需要其有限的活性的情况下,这是特别有价值的。有益的应用实例包括高剂量的局部或全身治疗,以及高浓度的局部治疗。在第一条件或正常生理条件下的失活可以通过给药和多肽失活速率的组合来确定。这种基于条件的失活对酶治疗剂而言是尤其重要的,其中催化活性在相对较短的时间内引起大的负面影响。
本发明还涉及工程化或演变亲本多肽以产生条件活性多肽的方法,所述条件活性多肽随时间推移可逆地或不可逆地活化或失活,或仅当它们在体内的某些微环境(包括体内特定器官(如肿瘤微环境、滑液、膀胱或肾脏))中时活化或失活。在一些实施方案中,条件活性多肽是针对本文所述的一种或多种靶蛋白(抗原)的抗体或抗体片段。
条件活性多肽可以是具有pH依赖性活性的分离的多肽,其中在选自组氨酸、组胺、氢化二磷酸腺苷、氢化三磷酸腺苷、柠檬酸盐、碳酸氢盐、乙酸盐、乳酸盐、二硫化物、硫化氢、铵、磷酸二氢盐及其任何组合中的物质的存在下,第一pH下的活性是第二pH下的活性的至少约1.3倍。在不存在小分子的情况下,相同的活性不是pH依赖性的。在一些实施方案中,第一pH下的活性第二pH下相同活性的至少约1.5、或至少约1.7、或至少约2.0、或至少约3.0、或至少约4.0、或至少约6.0、或至少约约8.0、或至少约10.0、或至少约20.0、或至少约40.0、或至少约60.0、或至少约100.0倍。第一pH可以是约5.5-7.2或约6.2-6.8范围内的异常pH,而第二pH可以是约7.2-7.6范围内的正常生理pH。
D.亲本多肽
亲本多肽可以是包括非天然存在的多肽的野生型多肽、衍生自野生型多肽的突变多肽例如治疗性多肽、衍生自不同野生型多肽的嵌合多肽,或者甚至是合成多肽。亲本多肽可以选自抗体、酶、细胞因子、调节蛋白、激素、受体、配体、生物仿制药、免疫调节剂、生长因子和这些多肽的片段。
美国专利第8,709,755 B2号中已经记载了对合适的野生型多肽以及它们可被演变和选择以用于生产条件活性多肽的方式的说明。
在一些实施方案中,亲本多肽可以选自野生型多肽或突变多肽的文库,例如噬菌体展示文库。在这样的实施方案中,大量的候选多肽在噬菌体文库中表达,特别是通过表面展示技术表达。对来自文库的候选多肽进行筛选以得到合适的亲本多肽。典型的噬菌体文库可含有在细菌宿主中表达数千或甚至数百万个候选多肽的噬菌体。在一个实施方案中,噬菌体文库可以包含多个噬菌体。
为了构建噬菌体文库,通常通过将编码候选多肽的寡核苷酸插入到噬菌体外壳蛋白之一的编码序列中,对丝状噬菌体例如丝状大肠杆菌噬菌体M13进行遗传修饰。噬菌体的外壳蛋白随后与候选多肽一起表达,使得候选多肽展示在噬菌体颗粒的表面上。然后可以筛选所展示的候选多肽以获得合适的亲本多肽。
用于筛选合适的亲本多肽的一种常用技术是通过将具有期望的候选多肽的噬菌体颗粒固定在支持物上。支持物可以是涂有可与期望的候选多肽结合的“诱饵”的塑料板。可以将未结合的噬菌体颗粒从板上洗掉。通过洗涤洗脱结合到板上的噬菌体颗粒(具有期望的候选物),并且将洗脱的噬菌体颗粒在细菌中扩增。然后可以通过测序确定编码所选择的噬菌体颗粒中的候选多肽的序列。候选多肽和诱饵之间的关系可以是例如配体-受体或抗原-抗体关系。
筛选合适的亲本多肽的另一种常用技术是使用酶测试法测试各个噬菌体克隆的所需酶活性,该酶活性为候选多肽所展示的酶活性。根据具体的酶活性,本领域技术人员可以设计合适的测试法以筛选具有所需水平的酶活性的候选多肽。
在一些实施方案中,噬菌体文库作为阵列提供,使得每个噬菌体克隆占据阵列上的特定位置。这种阵列可以提供在固体支持物,例如膜、琼脂板或微量滴定板上,文库的每个噬菌体克隆被放置在这些固体支持物上或粘附到固体支持物的特定的预定位置。在琼脂板的情况下,这样的板优选包括细菌生长培养基以支持细菌生长。当阵列设置在膜(例如硝化纤维素或尼龙膜)上时,将细菌培养物施加到膜上,并用营养生长培养基浸泡该膜。此外,也可以在珠粒上提供噬菌体克隆,在这种情况下,可以将单个噬菌体克隆粘附到单个珠粒上。或者,每个噬菌体克隆可以设置在光纤的端部上,在这种情况下,光纤用于光学传递来自光源的紫外线辐射。
典型的噬菌体文库可以含有106至1010种噬菌体,其中每一种噬菌体的特征在于携带不同候选多肽的外壳蛋白(例如噬菌体M113的gp3或gp8)。噬菌体文库的细菌宿主可以选自细菌属,包括例如沙门氏菌属(Salmonella)、葡萄球菌属(Staphylococcus)、链球菌属(Streptococcus)、志贺氏菌属(Shigella)、李斯特菌属(Listeria)、弯曲杆菌属(Campylobacter)、克雷伯菌属(Klebsiella)、耶尔森菌属(Yersinia)、假单胞菌属(Pseudomonas)和埃希氏菌属(Escherichia)。
编码候选多肽的寡核苷酸可以是编码野生型多肽的cDNA的集合。已知用于从生物样品合成cDNA由此可以表达合适的亲本多肽的方法。任何通过转录物表现生理活性的遗传信息可以作为cDNA收获。当产生cDNA时,必须合成全长cDNA。有若干可用于合成全长cDNA的方法。例如,合适的方法包括使用酵母或Hela细胞的帽结合蛋白标记5'帽位点的方法(I.Edery et al.,"An Efficient Strategy To Isolate Full-length cDNAs Based ona mRNA Cap Retention Procedure(CAPture)",Mol.Cell.Biol.,vol.15,pp.3363-3371,1995);和通过使用碱性磷酸酶除去不具有5'帽的不完整cDNA的磷酸,然后用烟草花叶病毒的脱帽酶处理完整cDNA,从而使得仅全长cDNA具有磷酸的方法(K.Maruyama et al.,"Oligo-capping:a simple method to replace the cap structure of eukaryoticmRNAs with oligoribonucleotides",Gene,vol.138,pp.171-174,1995;和S.Kato etal.,"Construction of a human full-length cDNA bank",Gene,vol.150,pp.243-250,1995)。
在亲本多肽是抗体的实施方案中,可以使用衍生自生物体的完整抗体谱的重组抗体来产生候选多肽文库。表示该抗体谱的遗传信息被汇编为完整抗体的大集合,可以对其进行筛选获得具有所需抗原结合活性和/或一种或多种其它功能特征的合适的亲本抗体。在一些实施方案中,分离来自用抗原免疫的动物(例如免疫的人、小鼠或兔)的B细胞。收集来自分离的B细胞的mRNA,并将其转化为cDNA,然后进行测序。将编码轻链的最常见的cDNA片段和编码重链的最常见的cDNA片段组装成抗体。在一个实施方案中,组装编码轻链的100个最常见的cDNA片段和编码重链的100个最常见的cDNA片段以产生候选抗体。在另一个实施方案中,组装仅编码重链的可变区和轻链的可变区的最常见的cDNA片段以产生仅包含可变区而不包含恒定区的抗体片段。
在一些实施方案中,编码IgG重链可变区的cDNA片段与IgK的最常见的可变区或IgK轻链组装。组装的抗体含有来自IgG的重链可变区和来自IgK的轻链可变区或IgK。
然后克隆并表达编码组装的抗体的cDNA,优选以板为基础的形式。可以用基于磁珠(bead)的ELISA测试法测试表达的抗体的结合活性,并且可以基于ELISA测试法选择合适的亲本抗体。也可以在噬菌体展示文库中表达编码组装的抗体的cDNA,然后可以通过本文公开的任何一种技术筛选一种或多种所需的亲本抗体。
在亲本多肽为抗体的实施方案中,亲本抗体优选具有至少一种使其更容易将亲本抗体演变成条件活性抗体的特征。在某些实施方案中,亲本抗体在正常生理条件和异常条件下都可具有相似的结合活性和/或特征。在这样的实施方案中,基于在正常生理条件和异常条件下都具有最相似的结合活性和/或最相似的一个或多个特征的组合来选择亲本抗体。例如,如果正常生理条件和异常条件分别为pH7.4和pH6.0,则相对于在pH7.4和pH6.0具有不太相似的结合活性的抗体,可以选择在pH7.4和pH6.0下具有最相似结合活性的亲本抗体。
E.鉴定条件活性多肽
在选择亲本多肽之后,使用合适的诱变技术演变编码亲本多肽的DNA以产生突变DNA,然后可以将突变DNA表达以产生突变多肽,对突变多肽进行筛选以确定条件活性多肽。在一些实施方案中,演变可能是极小的,例如,为了产生具有所需条件活性的突变多肽,仅将少量突变引入亲本多肽。例如,通过全面位置演变(CPE,comprehensive positionalevolution)在每个位点引入少于约20个变化(可能少于约18个变化)可能足以产生合适的条件活性多肽。对于全面位置合成(CPS,comprehensive positional synthesis),在亲本多肽中少于约6个改善型突变、或少于约5个改善型突变、或少于约4个改善型突变,或少于约3个改善型突变,或少于约2个改善型突变的组合可能足以产生理想的条件活性多肽。
在一些实施方案中,当候选多肽文库(例如噬菌体文库和/或重组抗体文库)足够大时,演变和表达步骤可能是不必要的。这样一个大的文库可以含有具有条件活性特征的亲本多肽(与参考多肽相比,在正常生理条件下的测试中具有低活性且在异常条件下的测试中具有高活性,或者在正常生理条件下的测试中比在异常条件下的测试中具有更低的活性)。在这些实施方案中,文库中的亲本多肽经受选择步骤以发现具有以下特性的条件活性多肽:其在正常生理条件下的测试中的活性低于其在异常条件下的测试中的活性。在一个实施方案中,对文库中的亲本多肽与参考多肽分别进行正常生理条件下的测试和异常条件下的测试。从文库中选择的条件活性多肽为与参考多肽相比在正常生理条件下表现出较低活性、与参考多肽相比在异常条件下显示出较高活性的条件活性多肽。在该实施方案中,由于文库已经足够大,文库中存在具有条件活性特征的候选多肽。所以出于发现条件活性多肽的目的,不需要对亲本多肽进行演变。
在一些实施方案中,参考多肽可不具有条件活性,因为它在正常生理条件和异常条件下具有相似或相同的活性。参考多肽是与文库中候选多肽相同类型的多肽,例如相同类型的酶、细胞因子、调节蛋白、抗体、激素或功能性肽。参考多肽也可以是相同类型的组织纤溶酶原激活剂、链激酶、尿激酶、肾素、透明质酸酶、降钙素基因相关的肽(CGRP)、物质P(SP)、神经肽Y(NPY)、血管活性肠肽(VTP)、加压素或血管抑素。例如,当文库含有大量针对抗原的候选抗体时,参考多肽是针对相同抗原的抗体,其在正常生理条件和异常条件下具有相同或相似的与抗原的结合活性。
因此,在一个实施方案中,对文库中的候选多肽与参考多肽分别进行正常生理条件下的测试和异常条件下的测试。从文库中选择的条件活性多肽显示以下两种特性:(a)在正常生理条件下与参考多肽相比活性降低,和(b)在异常条件下与参考多肽相比活性增强。
F.生成条件活性多肽的方法
使用一种或多种诱变技术来演变编码亲本多肽的DNA,以产生突变DNA;将突变DNA进行表达以产生突变多肽;并对突变多肽进行在可为正常生理条件的第一条件下的筛选测试和在可为异常条件的第二条件下的筛选测试。条件活性多肽选自表现出以下两种特性的那些突变多肽:(a)在第一条件下的测试中与亲本多肽相比活性降低,和(b)在第二条件下的测试中与亲本多肽相比活性增强。条件活性多肽在第一条件或正常生理条件中的活性降低可以是可逆或不可逆的。
在一些实施方案中,待演变的多肽可以是野生型多肽的片段、治疗性多肽的片段或抗体片段。在一些其它实施方案中,亲本多肽可以是选自通过诱变方法生成的突变多肽的多肽,该诱变方法选择具有所需特性,例如高结合活性、高表达水平或人源化的多肽。所选择的多肽可以在本文公开的方法中用作待演变的亲本多肽。
美国专利第8,709,755B2号中已经描述了从编码亲本多肽的DNA生成突变DNA的方法。
对编码亲本多肽的DNA进行演变以产生突变DNA可以使用点突变(置换、插入和/或缺失)或DNA中大区段的突变来进行。在一些方面,演变步骤不改变亲本多肽的活性位点,而是仅改变活性位点周围的一个或多个区域和/或远离活性位点的一个或多个区域。
在一个方面,演变步骤涉及将亲本全长抗体转化为单链抗体。在这种情况下,尽管活性位点,即可变区,特别是CDR,相对于亲本抗体可能没有任何突变,但活性位点存在的环境已经因消除恒定区而改变。在一个实施例中,亲本全长抗体是IgG抗体,突变抗体是由其衍生的单链抗体。
在一些方面,单链抗体是具有两个臂的双特异性抗体,每个臂与不同的表位结合。一个臂上的突变可能会影响另一臂的活性。因此,演变步骤可能涉及仅使是双特异性抗体的亲本多肽的一个臂发生突变。在一个实施例中,可以通过缺失来缩短该臂或通过插入来延长该臂以演变一个臂的长度。或者,演变步骤可以在同一演变步骤中或在连续的演变步骤中演变双特异性抗体的两个臂,任选地在每个步骤之后进行筛选。
在又一方面,亲本多肽是抗体或抗体片段。演变步骤可对Fc区进行突变。Fc区中的突变可以是替换、插入和/或缺失。Fc区可以通过缺失Fc区的片段而缩短,或者通过将片段插入Fc区而延长。
在又一方面,亲本多肽包含多个被骨架区中断的互补决定区。例如,这种亲本多肽可以是抗体、轻链或重链的可变区。在某些实施方案中,演变步骤可以仅突变骨架区或突变互补决定区和骨架区的组合。可以以单个步骤或多个连续步骤进行骨架区和互补决定区的演变,任选地在每个步骤之后进行筛选。
在又一方面,亲本多肽在其活性位点外具有几个区域。可以在多个演变步骤中依次突变这几个区域,任选地在一个或多个演变步骤之后进行筛选。例如,演变步骤可以演变多肽的一个区域,随后筛选条件活性多肽;然后演变多肽的另一个区域,接着筛选条件活性多肽;然后进一步演化多肽的又一个区域,然后进行筛选条件活性多肽的又一步骤。
在一些情况下,对亲本多肽和/或突变条件活性多肽活性位点以外的的一个或多个区域(例如,周围区域或偏远区域)进行演变可改变活性位点的活性。突变周围区域或偏远区域而不是活性位点在某些情况下可以使突变多肽的活性位点在特定条件下比亲本多肽的活性位点具有更多或更少的活性。在其它实施方案中,通过演变亲本多肽或突变多肽包含活性位点的区域以外的一个或多个区域,实现了期望的条件活性,或者改善了选择性。
在一些方面,衍生自对亲本多肽的含有活性位点的区域以外的区域进行的演变的条件活性多肽可产生至少2种、或至少3种、或至少5种选择性。
美国专利第8,709,755 B2号中已经描述了表达产生的突变DNA以产生突变多肽的合适方法。
美国专利第8,709,755B2号中已经描述了筛选突变多肽以选择条件活性多肽的方法。
用于筛选和选择条件活性多肽的测试条件
可以使用选自温度、pH、渗透压、重量摩尔渗透压浓度、氧化应激、电解质浓度以及两种或更多种这样条件的组合的条件进行筛选步骤中使用的用于测试的第一条件和第二条件或者正常生理条件和异常条件。例如,温度的正常生理条件可以是37.0℃的正常人体温度,而温度的异常条件可以是与37.0℃的温度不同的温度,例如肿瘤微环境中的温度可比正常生理温度高1-2℃。在另一个实例中,正常生理条件和异常条件也可以是在7.2-7.8或7.2-7.6范围内的正常生理pH和例如在肿瘤微环境中呈现的在5.5-7.2、6-7或6.2-6.8范围内的异常pH。
在第一条件和第二条件或者正常生理条件和异常条件下的测试可以在测试培养基中进行。测试培养基可以是溶液,该溶液可以包含例如缓冲液以及其它组分。可以在测试培养基中使用的普通缓冲液包括柠檬酸盐缓冲液(例如柠檬酸钠)、磷酸盐缓冲液、碳酸氢盐缓冲液(例如Krebs缓冲液)、磷酸盐缓冲盐水(PBS)、Hank's缓冲液、Tris缓冲液、HEPES缓冲液等。可以使用本领域技术人员已知的适于该测试的其它缓冲液。这些缓冲液可以用于模拟人或动物的体液(如血浆或淋巴液)组成的特征或组分。
用于本发明方法的测试溶液可以含有选自无机化合物、离子和有机分子的至少一种组分,优选通常存在于哺乳动物(例如人或动物)的体液中的组分。这些组分的实例包括营养成分和代谢物,以及可存在于体液中的任何其它组分。本发明预期该组分可以是或可以不是缓冲系统的一部分。例如,测试溶液可以是添加有碳酸氢根离子的PBS缓冲液,其中碳酸氢根离子不是PBS缓冲液的一部分。或者,碳酸氢根离子是碳酸氢盐缓冲液的一部分。
该组分可以以基本上相同的浓度存在于两种测试溶液中(对于第一条件和第二种条件),而两种测试溶液在其它方面不同,例如pH、温度、电解质浓度或渗透压。因此,该组分被用作一个常数,而不是第一条件和第二条件或者正常的生理条件和异常条件的两个条件之间的差异。
在一些实施方案中,该组分以与哺乳动物特别是人类中该组分的正常生理浓度接近或相同的浓度存在于两种测试溶液中。
无机化合物或离子可以选自硼酸,氯化钙,硝酸钙,磷酸二铵,硫酸镁,磷酸一铵,磷酸一钾,氯化钾,硫酸钾,硫酸铜,硫酸铁,硫酸锰,硫酸锌,硫酸镁,硝酸钙,钙、铜、铁、锰和锌的螯合物,钼酸铵,硫酸铵,碳酸钙,磷酸镁,碳酸氢钾,硝酸钾,盐酸,二氧化碳,硫酸,磷酸,碳酸,尿酸,氯化氢,尿素,磷离子,硫酸离子,氯离子,镁离子,钠离子,钾离子,铵离子,铁离子,锌离子和铜离子中的一种或多种。
一些无机化合物的正常生理浓度的实例包括:浓度范围为2-7.0mg/dL的尿酸、浓度范围为8.2-11.6mg/dL的钙离子、浓度范围为355-381mg/dL的氯离子、浓度范围为0.028-0.210mg/dL的铁离子、浓度范围为12.1-25.4mg/dL的钾离子、浓度范围为300-330mg/dL的钠离子、浓度范围为15-30mM的碳酸、约80μM的柠檬酸根离子、0.05-2.6mM的组氨酸离子、0.3-1μM的组胺、1-20μM的HAPT离子(氢化的三磷酸腺苷)、1-20μM的HADP离子。
在一些实施方案中,用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的离子选自氢氧根离子、卤离子(氯离子、溴离子、碘离子)、卤氧根离子、硫酸根离子、镁离子、钙离子、硫酸氢根离子、碳酸根离子、碳酸氢根离子、磺酸根离子、卤氧根离子、硝酸根离子、亚硝酸根离子、磷酸根离子、磷酸氢根离子、磷酸二氢根离子、过硫酸根离子、单过硫酸根离子、硼酸根离子、铵离子,或有机离子,例如羧酸根离子、酚盐离子、磺酸根离子(有机硫酸盐如甲基硫酸盐)、钒酸根离子、钨酸根离子、硼酸根离子、有机硼酸根离子、柠檬酸根离子、草酸根离子、乙酸根离子、五硼酸根离子、组氨酸离子和酚酸根离子。
用于在第一条件和第二条件或者正常生理条件和异常条件下的测试溶液中存在的有机化合物可以选自例如氨基酸,如组氨酸、丙氨酸、异亮氨酸、精氨酸、亮氨酸、天冬酰胺、赖氨酸、天冬氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、谷氨酸、苏氨酸、谷氨酰胺、色氨酸、甘氨酸、缬氨酸、吡咯赖氨酸、脯氨酸、硒代半胱氨酸、丝氨酸、酪氨酸及其混合物。
一些氨基酸的正常生理浓度的实例包括:3.97±0.70mg/dL的丙氨酸、2.34±0.62mg/dL的精氨酸、3.41±1.39mg/dL的谷氨酸、5.78±1.55mg/dL的谷氨酰胺、1.77±0.26mg/dL的甘氨酸、1.42±0.18mg/dL的组氨酸、1.60±0.31mg/dL的异亮氨酸、1.91±0.34mg/dL的亮氨酸、2.95±0.42mg/dL的赖氨酸、0.85±0.46mg/dL的甲硫氨酸、1.38±0.32mg/dL的苯丙氨酸、2.02±6.45mg/dL的苏氨酸、1.08±0.21mg/dL的色氨酸、1.48±0.37mg/dL的酪氨酸和2.83±0.34mg/dL的缬氨酸。
用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的有机化合物可以选自非蛋白的含氮化合物,如肌酸、肌酸酐、胍基乙酸、尿酸、尿囊素、腺苷、尿素、氨和胆碱。这些化合物中的一些化合物的正常生理浓度的实例包括:1.07±0.76mg/dL的肌酸、0.9-1.65mg/dL的肌酸酐,0.26±0.24mg/dL的胍基乙酸、4.0±2.9mg/dL的尿酸、0.3-0.6mg/dL的尿囊素、1.09±0.385mg/dL的腺苷、27.1±4.5mg/dL的尿素和0.3-1.5mg/dL的胆碱。
用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的有机化合物可以是有机酸,例如柠檬酸、α-酮戊二酸、琥珀酸、苹果酸、富马酸、乙酰乙酸、β-羟基丁酸、乳酸、丙酮酸、α-酮酸、乙酸和挥发性脂肪酸。这些有机酸中的一些有机酸的正常生理浓度的实例包括:2.5±1.9mg/dL柠檬酸、0.8mg/dL的α-酮戊二酸、0.5mg/dL的琥珀酸、0.46±0.24mg/dL的苹果酸、0.8-2.8mg/dL的乙酰乙酸、0.5±0.3mg/dL的β-羟基丁酸、8-17mg/dL的乳酸、1.0±0.77mg/dL的丙酮酸、0.6-2.1mg/dL的α-酮酸、1.8mg/dL的挥发性脂肪酸。
用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的有机化合物可以选自糖(碳水化合物),如葡萄糖、戊糖、己糖、木糖、核糖、甘露糖和半乳糖、以及包括乳糖、GlcNAcβ1-3Gal、Galα1-4Gal、Manα1-2Man、GalNAcβ1-3Gal和O-糖苷、N-糖苷、C-糖苷或S-糖苷的二糖。这些糖类中的一些糖的正常生理浓度的实例包括:83±4mg/dL的葡萄糖、102±73mg/dL的多糖(如己糖)、77±63mg/dL的葡糖胺、0.4-1.4mg/dL的己糖醛酸酯(作为葡萄糖醛酸)和2.55±0.37mg/dL的戊糖。
用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的有机化合物可以选自脂肪或其衍生物,例如胆固醇、卵磷脂、脑磷脂、鞘磷脂和胆汁酸。这些化合物中的一些化合物的正常生理浓度的实例包括:40-70mg/dL的游离胆固醇、100-200mg/dL的卵磷脂、0-30mg/dL的脑磷脂、10-30mg/dL的鞘磷脂和0.2-0.3mg/dL的胆汁酸(作为胆酸)。
用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的有机化合物可以选自蛋白,例如纤维蛋白原、抗血友病球蛋白、免疫γ球蛋白、免疫优球蛋白、同种凝集素、β-假球蛋白、糖蛋白、脂蛋白和白蛋白。例如,哺乳动物血清白蛋白的正常生理浓度为3.35-5.0g/dL。在一个实施方案中,白蛋白为牛血清白蛋白。
用于在第一条件和第二条件或者正常生理条件和异常条件下测试的测试溶液中存在的有机化合物可以选自维生素,例如维生素A、胡萝卜素、维生素E、抗坏血酸、硫胺素、肌醇、叶酸、生物素、泛酸、核黄素。这些维生素中一些维生素的正常生理浓度的实例包括:0.019-0.036mg/dL的维生素A、0.90-1.59mg/dL的维生素E、0.42-0.76mg/dL的肌醇、0.00162-0.00195mg/dL的叶酸和0.00095-0.00166mg/dL的生物素。
测试溶液(用于在第一条件和第二条件或者正常生理条件下和异常条件下的测试)中的无机化合物、离子或有机分子的浓度可以在人或动物血清中的无机化合物、离子或有机分子的正常生理浓度范围内。然而,也可以使用在正常生理范围之外的浓度。例如,人血清中镁离子的正常范围为1.7-2.2mg/dL,钙为8.5-10.2mg/dL。测试溶液中镁离子的浓度可以为约0.17mg/dL至约11mg/dL。测试溶液中钙离子的浓度可以为约0.85mg/dL至约51mg/dL。通常,测试溶液中无机化合物、离子或有机分子的浓度可以低至人血清中无机化合物、离子或有机分子的正常生理浓度的5%、或10%、或20%、或30%、或40%、或50%、或60%、或70%、或80%,或是人血清中无机化合物、离子或有机分子的正常生理浓度的1.5倍、或2倍、或3倍、或4倍、或5倍、或7倍、或9倍、或10倍、或甚至20倍。测试溶液的不同组分可以以相对于它们各自的正常生理浓度不同的浓度水平使用。
在第一条件和第二条件或者正常生理条件和异常条件下的测试用于测量突变多肽的活性。在测试期间,突变多肽及其结合配偶体存在于测试溶液中。突变多肽与其结合配偶体之间的关系可以是例如抗体-抗原、配体-受体、酶-底物或激素-受体。为了使突变多肽表达其活性,突变多肽应该能够与其结合配偶体接触并结合。然后在突变多肽与其结合配偶体结合之后证明并测量突变多肽对其结合配偶体的活性。
在一些实施方案中,用于测试中的离子可在形成被筛选的突变多肽与其结合配偶体之间的桥接方面起作用,特别是包含带电荷的氨基酸残基的那些离子。因此离子可以通过氢键和/或离子键与突变多肽和其结合配偶体两者结合。这可以通过使离子能够到达大分子(突变多肽或其结合配偶体)可能难以达到的位点来帮助突变多肽与其结合配偶体之间的结合。在一些情况下,测试溶液中的离子可增加突变多肽及其结合配偶体彼此结合的可能性。此外,离子可以通过与更大的分子(突变多肽或其结合配偶体)结合而另外或可选地辅助突变多肽与其结合配偶体之间的结合。这种结合可改变大分子的构象和/或使较大的分子保持在有利于与其结合配偶体结合的特定构象。
已观察到,离子可以辅助突变多肽与其结合配偶体之间的结合,该作用可能通过与突变多肽和其结合配偶体形成离子键来实现。因此,与没有离子的相同测试相比,筛选可以有效得多,并且可以鉴定更多的命中物(hit)(候选条件活性多肽)。合适的离子可以选自镁离子、硫酸根离子、硫酸氢根离子、碳酸根离子、柠檬酸根离子、HAPT离子、HADP离子、碳酸根离子、硝酸根离子、亚硝酸根离子、磷酸根离子、磷酸氢根离子、磷酸二氢根离子、过硫酸根离子、单硫酸根离子、硼酸根离子、乳酸根离子、柠檬酸根离子、组氨酸离子、组胺离子和铵离子。
已发现离子在接近其pKa的pH条件下有助于突变多肽与其结合配偶体之间的结合。优选地,相对于突变多肽的尺寸,这样的离子相对较小。
在一个实施方案中,当异常条件是与正常生理条件下的正常生理pH不同的pH时,适于增加候选条件活性多肽的命中物数量的离子可以选自pKa接近测试中要测试的异常pH的离子。例如,离子的pKa可以与异常pH相差多达2个pH单位,与异常pH相差多达1个pH单位,与异常pH相差多达0.8个pH单位,与异常pH相差多达0.6个pH单位,与异常pH相差多达0.5个pH单位,与异常pH相差多达0.4个pH单位,与异常pH相差多达0.3个pH单位,与异常pH相差多达0.2个pH单位,或与异常pH相差多达0.1个pH单位。
可用于本发明的离子的pKa可以在不同温度下略微变化,示例性的离子的pKa如下:pKa约为9.24的铵离子、pKa约为7.2的二氢磷酸根、pKa约为4.76的乙酸、pKa约为6.04的组氨酸、pKa约为6.4的碳酸氢根离子、pKa为6.4的柠檬酸根、pKa约为3.86乳酸根离子、pKa约为6.9的组胺、pKa为6.95的HATP
Figure BDA0003896412110000541
pKa为6.88的HADP
Figure BDA0003896412110000542
在一个实施方案中,条件活性多肽在二硫化物的存在下进行测试和选择。二硫化物的pKa为7.05。在一些实施方案中,可以在代表正常和异常生理条件的测试中使用不同浓度的二硫化物。或者,用于正常生理条件和异常条件的测试培养基具有大致相同的二硫化物浓度,特定条件的数值上有一些差异,例如,可以在不同的pH下进行测试。在测试中使用的二硫化物的浓度可以为1mM至约100mM。优选地,测试培养基中使用的二硫化物浓度为2-500nM、3-200nM或5-100nM。在一些方面,二硫化物浓度可以为1mM至20mM或2mM至10mM。在二硫化物存在下进行的测试是已知的。
在某些实施方案中,一旦知晓异常条件的pH(即异常pH),适合于增加候选条件活性多肽的命中物的离子可以选自pKa与异常pH相同的或相近的离子,例如,候选离子的pKa可以与异常pH相差多达4个pH单位,与异常pH相差多达3个pH单位,与异常pH相差多达2个pH单位,与异常pH相差多达1个pH单位,与异常pH相差多达0.8个pH单位,与异常pH相差多达0.6个pH单位,与异常pH相差多达0.5个pH单位,与异常pH相差多达0.4个pH单位,与异常pH相差多达0.3个pH单位,与异常pH相差多达0.2个pH单位,或与异常pH相差多达0.1个pH单位。
如上所述,在pH与离子的pKa相同或相近的条件下,离子最有效地辅助突变多肽与其结合配偶体之间的结合。例如,已经发现,在pH为7.2-7.6的测试溶液中,碳酸氢根离子(pKa约为6.4)在辅助突变多肽与其结合配偶体之间的结合方面不是非常有效。当测试溶液中的pH降低至6.7并进一步降至约6.0时,碳酸氢根离子在辅助突变多肽与其结合配偶体之间的结合方面变得越来越有效。结果,与pH为7.2-7.6的测试相比,在pH为6.0的测试中可以鉴定更多的命中物。类似地,在pH 7.4下,组氨酸在辅助突变多肽与其结合配偶体之间的结合方面不是很有效。当测试溶液的pH降低至6.7并进一步降至约6.0时,组氨酸在辅助突变多肽与其结合配偶体之间的结合方面变得越来越有效,同样使得在例如约6.2-6.4的pH范围内能够鉴定出更多的命中物。
本发明惊奇地发现,当正常生理条件(即,正常生理pH)和异常条件(即,异常pH)的测试溶液的pH不同时,具有下述pKa的离子可以大大辅助正在被筛选的突变多肽与其结合配偶体之间的结合:pKa为从正常生理pH和异常pH的约中间点至约异常pH。结果是,筛选测试在发现于异常条件下具有高活性的更多命中物或候选条件活性多肽方面的效率更高。
在一些实施方案中,pKa甚至可以与异常pH相差至少一个pH单位。当异常pH是酸性pH时,合适离子的pKa可以在从(异常pH-1)至异常pH与正常生理pH之间的中间点的范围内。当异常pH是碱性pH时,合适离子的pKa可以在从异常pH和正常生理pH之间的中间点至(异常pH+1)的范围内。离子可以选自本申请中描述的那些离子。然而,也可以使用尚未在本申请中明确描述的更多离子。应当理解,一旦选择了用于筛选测试的异常pH和正常生理pH,本领域技术人员可以使用本发明的指导原则来选择具有合适pKa的任何离子以提高在鉴别更多在异常条件下具有高活性的命中物方面的筛选效率。
例如,当示例性筛选的异常pH为8.4以及正常生理pH为7.4时,pKa在约7.9(中间点)至9.4(即8.4+1)的范围内的任何离子都可以用于筛选。pKa在这个范围内的一些离子包括衍生自N-三(羟甲基)甲基甘氨酸(pKa8.05)、肼(pKa 8.1)、N,N-二羟乙基甘氨酸(pKa8.26)、N-(2-羟乙基)哌嗪-N'-(4-丁磺酸)(pKa 8.3)、N-三[羟甲基]甲基-3-氨基丙磺酸(pKa 8.4)、牛磺酸(pKa 9.06)的离子。再举一例,当示例性筛选的异常pH为6以及正常生理pH为7.4时,pKa在约5(即6-1)至6.7(中间点)范围内的任何离子可以用于筛选。pKa在这个范围内的一些离子包括衍生自苹果酸盐(pKa 5.13)、吡啶(pKa 5.23)、哌嗪(pKa 5.33)、卡可基酸盐(pKa 6.27)、琥珀酸盐(pKa 5.64)、2-(N-吗啉代)乙磺酸酸(pKa 6.10)、柠檬酸盐(pKa 6.4)、组氨酸(pKa 6.04)和bis-tris(6.46)的离子。本领域技术人员将能够参考大量的化学手册和教科书来确定可以转化为pKa在所述范围内的离子的已知化合物,所述化合物包括无机化合物和有机化合物。在具有合适的pKa的化合物中,分子量较小的化合物可能是优选的。
因此,本发明意外地发现,最终鉴定的条件活性多肽的生产不仅取决于产生正确的多肽突变体,而且还取决于在测试溶液中使用具有合适pKa的离子。本发明设想除了产生大型突变多肽文库(例如,通过CPE和CPS)之外,还应努力找到用于测试溶液中的合适的离子(具有适当的pKa),因为离子可以促进从大型文库中高效地选择具有高活性的突变体。进一步设想,在没有合适的离子的情况下,筛选效率较低,且发现具有高活性的突变体的可能性降低。因此,在没有合适的离子的情况下,可能需要进行多轮筛选以获得相同数量的具有高活性的突变体。
测试溶液中的离子可以由测试溶液的组分原位形成,或直接包含在测试溶液中。例如,来自空气的CO2可以溶解在测试溶液中以提供碳酸根离子和碳酸氢根离子。再举一例,可以将磷酸二氢钠加入到测试溶液中以提供磷酸二氢根离子。
测试溶液(对于在第一条件或正常生理条件下的测试和在第二条件或异常条件下的测试)中该组分的浓度可以与通常在哺乳动物(例如人)的天然存在的体液中发现的相同组分的浓度相同或基本相同。在其它实施方案中,组分的浓度可能更高,特别是当组分为能够起到辅助突变多肽与其结合配偶体之间的结合的作用的离子的情况下,因为已观察到较高浓度的这种离子可以与突变多肽及其结合配偶体形成离子键,所以它们实际上可促进结合并增加发现更多命中物或候选条件活性多肽的可能性。
在一些实施方案中,测试溶液中的离子的浓度与使用该测试发现更多命中物的概率成正相关,特别是当使用超过正常生理浓度的浓度时。例如,人血清中碳酸氢根离子的浓度约为15-30mM。在一个实例中,当测试溶液中的碳酸氢根离子的浓度从3mM增加至10mM、增加至20mM、增加至30mM、增加至50mM和增加至100mM时,测试中的命中物的数目也随着每次碳酸氢根浓度的增加而增加。鉴于此,测试溶液可以使用的碳酸氢根浓度范围为约3mM至约200mM,或约5mM至约150mM,或约5mM至约100mM,或约10mM至约100mM,或约20mM至约100mM,或约25mM至约100mM,或约30mM至约100mM,或约35mM至约100mM,或约40mM至约100mM,或约50mM mM至约100mM。
在另一个实施方案中,测试溶液中柠檬酸根的浓度可以为约30μM至约120μM,或约40μM至约110μM,或约50μM至约110μM,或约60μM至约100μM,或约μM至约90μM,或约μM。
在一个实施方案中,正常生理条件是7.2-7.6的正常生理pH,异常条件是5.5-7.2、6-7或6.2-6.8范围内的异常pH。用于正常生理条件下的测试的测试溶液具有正常的生理pH和50mM的碳酸氢根离子。用于异常条件下测试的测试溶液具有异常的pH和50mM的碳酸氢根离子。由于碳酸氢根离子的pKa为约6.4,所以碳酸氢根离子可以辅助在异常pH 6.0-6.4(如pH6.0或6.2)下突变多肽与其结合配偶体之间的结合。
在另一个实施方案中,正常生理条件是7.2-7.6的正常生理pH,异常条件是5.5-7.2、6-7或6.2-6.8的异常pH。用于正常生理条件下的测试的测试溶液具有正常的生理pH和80μM的柠檬酸根离子。用于异常条件下测试的测试溶液具有异常的pH和80μM的柠檬酸根离子。由于柠檬酸根离子的pKa为6.4,所以柠檬酸根离子可以有效地辅助在用于pH6.0-6.4的异常条件的测试溶液中突变多肽与结合配偶体之间的结合。因此,可以鉴定更多在pH为6.0-6.4的条件下具有较高结合活性且在pH为7.2-7.8的条件下活性较低的候选条件活性多肽。包括乙酸根、组氨酸、碳酸氢根、HATP和HADP在内的其它离子以类似的方式起作用,以使含有离子的测试溶液能有效筛选出在离子的pKa附近的pH下结合活性较高、在不同于离子的pKa的pH下(例如,正常生理pH)下的结合活性较低的突变多肽。
在另一个实施方案中,正常生理条件是37℃下的正常生理温度,异常条件是38-39℃(某些肿瘤微环境中的温度)下的异常温度。用于正常生理条件下的测试的测试溶液具有正常生理温度和20mM碳酸氢根离子。用于在异常条件下测试的测试溶液具有异常温度和20mM碳酸氢根离子。
在另一个实施方案中,正常生理条件是正常人血清中电解质的特定浓度,异常条件是同种电解质的不同的、异常的浓度,该异常浓度可能位于动物或人的不同位置,或者可能是由动物或人的病症导致的,所述病症改变人血清中电解质的正常生理浓度。
突变多肽和/或其结合配偶体之间的结合也可能以许多其它方式受到影响。通常,这种影响将通过在测试溶液中包含一种或多种其它组分来实现。可以将这些其它组分设计为与突变多肽、结合配偶体或两者相互作用。此外,这些其它组分可以使用两种或更多种相互作用的组合以及两种或更多种类型的相互作用的组合来影响结合。
在一个实施方案中,感兴趣的结合相互作用在抗体和抗原之间。在该实施方案中,可以在测试溶液中包含一种或多种其它组分以对抗体、抗原或两者施加影响。以这种方式,可以增强所需的结合相互作用。
除了可以与突变多肽和/或其结合配偶体形成离子键以辅助突变多肽与结合配偶体之间的结合的离子之外,本发明还包括可以用于辅助突变多肽与其结合配偶体结合的其它组分。在一个实施方案中,使用可以与突变多肽和/或其结合配偶体形成氢键的分子。在另一个实施方案中,可以使用能够与突变多肽和/或其结合配偶体进行疏水相互作用的分子。在另一个实施方案中,考虑了能够与突变多肽和/或其结合配偶体进行范德华氏相互作用的分子。
本文中所用的术语“氢键”是指共价键合到电负性原子(如碳、氮、氧、硫、氯或氟)的氢(氢键供体)与具有非共享电子对的电子供体原子(例如氮、氧、硫、氯或氟)(氢键受体)之间的相对弱的非共价相互作用。
能够与突变多肽和/或其结合配偶体形成氢键的组分包括有机分子以及具有极性键的无机分子。突变多肽和/或突变多肽的结合配偶体通常含有可形成氢键的氨基酸。合适的氨基酸具有含有极性基团的侧链,所述极性基团能够形成氢键。合适的氨基酸的非限制性实例包括谷氨酰胺(Gln)、谷氨酸(Glu)、精氨酸(Arg)、天门冬酰胺(Asn)、天冬氨酸(Asp)、赖氨酸(Lys)、组氨酸(His)、丝氨酸(Ser)苏氨酸(Thr)、酪氨酸(Tyr)、半胱氨酸(Cys)、甲硫氨酸(Met)和色氨酸(Trp)。
这些氨基酸可以充当氢供体和氢受体。例如,-OH基团(例如可以在Ser、Thr和Tyr中发现)中的氧原子、-C=O基团(例如可以在Glu和Asp中发现)中的氧原子、-SH基团或-SC-(例如可以在Cys和Met中发现)中的硫原子、-NH3 +基团(例如可以在Lys和Arg中发现)中的氮原子以及-NH-基团(例如可以在Trp、His和Arg中发现)中的氮原子都可以作为氢受体。此外,此列表中包含氢原子的基团(例如-OH、-SH、NH3 +和-NH-)可以作为氢供体。
在一些实施方案中,突变多肽和/或其结合配偶体的骨架也可以参与形成一个或多个氢键。例如,骨架可以具有-(C=O)-NH-的重复结构,例如在肽键中。该结构中的氧原子和氮原子可以用作氢受体,而氢原子可以参与氢键。
具有至少一个包含可用于与氢键合的氢原子或氧原子的极性键的无机化合物可以包括例如H2O、NH3、H2O2、肼、碳酸盐、硫酸盐和磷酸盐。有机化合物如醇;酚;硫醇;脂肪族、胺类、酰胺类;环氧化物、羧酸;酮;醛;醚,酯;有机氯化物和有机氟化物。可以形成氢键的化合物在化学文献中是众所周知的,例如在例如“The Nature of the Chemical Bond,"byLinus Pauling,Cornell University Press,1940,pp.284-334”中讨论的那些化合物。
在一些实施方案中,醇可以包括甲醇、乙醇、丙醇、异丙醇、丁醇、戊醇、1-己醇、2-辛醇、1-癸醇、环己醇和高级醇;二醇,如乙二醇、丙二醇、甘油、二甘醇和聚亚烷基二醇。合适的酚包括氢醌、间苯二酚、儿茶酚、苯酚、邻甲酚、间甲酚和对甲酚、百里酚、α-萘酚和β-萘酚、连苯三酚、愈创木酚和间苯三酚。合适的硫醇包括甲硫醇、乙硫醇、1-丙硫醇、2-丙硫醇、丁硫醇、叔丁硫醇、戊硫醇、己硫醇、苯硫酚、二巯基琥珀酸、2-巯基乙醇和2-巯基吲哚。合适的胺包括甲胺、乙胺、丙胺、异丙胺、苯胺、二甲胺和甲基乙胺、三甲胺、氮丙啶、哌啶、N-甲基哌啶、联苯胺、环己胺、乙二胺、六亚甲基二胺、邻甲苯胺、间甲苯胺和对甲苯胺和N-苯基哌啶。合适的酰胺包括乙酰胺、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N,N-二甲基甲氧基乙酰胺和N-甲基-N-对氰基乙基甲酰胺。环氧化物可以包括环氧乙烷、环氧丙烷、叔丁基过氧化氢、氧化苯乙烯、环氧化物缩水甘油(epoxide glycidol)、环己烯氧化物、二叔丁基过氧化物、氢过氧化枯烯或过氧化氢乙苯、异丁烯氧化物和1,2-环氧辛烷。羧酸可以包括对苯二甲酸、间苯二甲酸、邻苯二甲酸、水杨酸、苯甲酸、乙酸、月桂酸、己二酸、乳酸、柠檬酸、丙烯酸、甘氨酸、六氢苯甲酸、邻甲苯甲酸、间甲苯甲酸和对甲苯甲酸、烟酸、异烟酸和对氨基苯甲酸。酮可以包括丙酮、3-丙酮、丁酮、戊酮、甲基乙基酮、二异丁基酮、乙基丁基酮、甲基异丁基酮、甲基叔丁基酮、环己酮、丙酮、甲基乙基酮、甲基丙基酮、甲基丁基酮、甲基戊基酮、甲基己基酮、二乙基酮、乙基丁基酮、二丙基酮、二异丁基酮、双丙酮醇、佛尔酮、异佛尔酮、环己酮、甲基环己酮和苯乙酮。醛可以包括甲醛、乙醛、丙醛、丁醛、苯甲醛、肉桂醛、异丁醛(sobutyraldehyde)、戊醛、辛醛、苯甲醛、肉桂醛、环己酮、水杨醛和糠醛。酯包括乙酸乙酯、乙酸甲酯、甲酸乙酯、乙酸丁酯、乳酸乙酯、丁酸乙酯、乙酸丙酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、甲酸戊酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸戊酯、甲基异戊乙酸酯、乙酸甲氧基丁酯、乙酸己酯、乙酸环己酯、乙酸苄酯、丙酸甲酯、丙酸乙酯、丙酸丁酯、丁酸甲酯、丁酸乙酯、丁酸丁酯、丁酸戊酯、乙酰乙酸甲酯和乙酰乙酸乙酯等。可用于本发明的醚包括二甲醚、甲基乙基醚、乙醚、甲基丙基醚和二甲氧基乙烷。醚可以是环状的,例如环氧乙烷、四氢呋喃和二噁烷。
有机氯化物包括氯仿、五氯乙烷、二氯甲烷、三氯甲烷、四氯化碳、四氯甲烷、四氯乙烷、五氯乙烷、三氯乙烯、四氯乙烯和二氯乙烯。有机氟可以包括氟甲烷、二氟甲烷、三氟甲烷、三氟乙烷、四氟乙烷、五氟乙烷、二氟丙烷、三氟丙烷、四氟丙烷、五氟丙烷、六氟丙烷和七氟丙烷。
可以按照键的强度将氢键分为强氢键、中等氢键或弱氢键(Jeffrey,George A.;An introduction to hydrogen bonding,Oxford University Press,1997)。强氢键的供体-受体距离为
Figure BDA0003896412110000611
能量在14-40kcal/mol的范围内。中等氢键的供体-受体距离为
Figure BDA0003896412110000612
能量在4-15kcal/mol的范围内。弱氢键的供体-受体距离为
Figure BDA0003896412110000613
能量在<4kcal/mol的范围内。具有能级的氢键的一些实例为F-H:F(38.6kcal/mol)、O-H:N(6.9kcal/mol)、O-H:O(5.0kcal/mol)、N-H:N(3.1kcal/mol)和N-H:O(1.9kcal/mol)。更多实例请参见Perrin et al.“Strong”hydrogen bonds in chemistry and biology,Annual Review of Physical Chemistry,vol.48,pp.511-544,1997;Guthrie,“Shortstrong hydrogen bonds:can they explain enzymic catalysis?”Chemistry&BiologyMarch 1996,3:163-170。
在一些实施方案中,本发明中使用的组分可以与突变多肽和/或其结合配偶体形成强氢键。这些组分往往含有具有强电负性的原子。已知具有最强电负性的原子依次为F>O>Cl>N。因此,本发明优选使用包含氟、羟基或羰基的有机化合物来形成氢键。在一个实施方案中,有机氟可用于本发明中以形成强氢键。
在另一个实施方案中,使用能够与突变多肽和/或其结合配偶体进行疏水相互作用的组分。这些组分包括具有疏水基团的有机化合物。
本文中使用的术语“疏水相互作用”是指疏水化合物或化合物的疏水区域与另一疏水化合物或另一个化合物的疏水区域之间的可逆吸引相互作用。这种相互作用已在文献“Hydrophobic Interactions,”A.Ben-Nairn(1980),Plenum Press,New York中有描述。
疏水物质由于其非极性而被水分子排斥。当水溶液中相对非极性的分子或基团与其它非极性分子缔合而不与水缔合时,称为“疏水相互作用”。
突变多肽及其结合配偶体通常包含能够进行疏水相互作用的氨基酸。通常这些氨基酸的特征在于具有至少一个含有能够进行疏水相互作用的非极性基团的侧链。疏水性氨基酸包括例如丙氨酸(Ala)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、缬氨酸(Val)、脯氨酸(Pro)、甘氨酸(Gly),在较小程度上,蛋氨酸(Met)和色氨酸(Trp)。
能够与突变蛋白和/或其结合配偶体进行疏水相互作用的组分包括有机化合物,该有机化合物为疏水分子或含有至少一个疏水部分的分子。在一些实施方案中,这些疏水组分可以是选自芳烃、取代的芳烃、聚芳烃、芳族或非芳族杂环、环烷烃、烷烃、烯烃和炔烃的烃。疏水基团可以包括芳基、烷基、环烷基、烯基和炔基。本文中使用的术语“烷基”、“烯基”和“炔基”是指具有一至三十个碳原子的不饱和脂族基团,包括直链烯基/炔基、支链烯基/炔基、环烯基(脂环族)基团、烷基取代的环烷基和环烷基取代的烯基/炔基。这样的烃部分也可以在一个或多个碳原子上被取代。
可以理解,疏水相互作用的强度基于可以彼此相互作用的“疏水物”的可用量。因此,疏水相互作用可以通过例如增加参与疏水相互作用的分子中的疏水部分的量和/或“疏水”性来调节。例如,可以将疏水部分(其原始形式可以包括烃链)进行修饰,通过使其具有连接至其碳骨架的碳原子之一的疏水侧链来增加其疏水性(增加该部分所参与的疏水相互作用的强度的能力)。在本发明的优选实施方案中,这可包括各种多环化合物的连接,包括例如各种类固醇化合物和/或其衍生物,例如甾醇型化合物,更具体是胆固醇。通常,侧链可以是本领域技术人员所想到的直链、芳族、脂族、环状、多环或任何各种其它类型的疏水性侧链。
能够与突变多肽和/或其结合配偶体进行范德华相互作用的组分的类型通常是但不总是具有极性部分的化合物。本文中使用的“范德华相互作用”是指原子、部分、分子和表面之间的吸引力,该吸引力由在邻近的原子、部分或分子的波动极化中作为量子动力学结果发生的偶极-偶极相互作用和/或相关性引起。
本发明范德华相互作用是突变多肽或结合配偶体与组分之间的吸引力。范德华相互作用可能来自三个来源。首先,一些分子/部分虽然是电中性的,但它们可以是永久的电偶极子。由于在一些分子/部分的结构中电子电荷分布的固定变形,分子/部分的一侧总是稍微带正电的,而相对的一侧则是稍微带负电的。这种永久偶极子的彼此对齐的倾向导致净吸引力。这是两个永久偶极子之间的相互作用(葛生力(Keesom force))。
第二,作为永久偶极子的分子的存在可以暂时使附近的其它极性或非极性分子中的电子电荷变形,从而引起进一步的极化。永久偶极子与邻近的诱导偶极子之间的相互作用产生了另一种吸引力。这是永久偶极子和相应的诱导偶极子之间的相互作用,可以称之为德拜力(Debye force)。第三,尽管参与的分子不是永久偶极子(例如有机液体苯),但在分子中在具有两个瞬时诱导偶极子的分子之间存在吸引力。这是两个瞬时诱导的偶极子之间的相互作用,可以称之为伦敦分散力(London dispersion force)。
突变多肽和/或结合配偶体中存在很多能够进行范德华相互作用的氨基酸。这些氨基酸可以具有极性侧链,包括谷氨酰胺(Gln)、天冬酰胺(Asn)、组氨酸(His)、丝氨酸(Ser)、苏氨酸(Thr)、酪氨酸(Tyr)、半胱氨酸(Cys)、甲硫氨酸(Met)、色氨酸(Trp)。这些氨基酸还可以具有包含非极性基团的侧链,包括丙氨酸(Ala)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、缬氨酸(Val)、脯氨酸(Pro)、甘氨酸(Gly)。
能够与突变多肽和/或其结合配偶体进行范德华相互作用的组分包括可溶于测试溶液中的极性或非极性无机化合物。测试溶液通常是水溶液,因此这些极性或非极性无机化合物优选可溶于水。用于进行范德华相互作用的优选物质为极性物质,如此它们能够进行偶极-偶极相互作用。例如AIF3具有极性的Al-F键,并且可溶于水(在20℃下约为0.67g/100ml水)。HgCl2具有极性的Hg-Cl键,并且在20℃下可以以7.4g/100ml水的量溶于水中。PrCl2具有极性Pr-Cl键,并且在20℃下可以以约1g/100ml水的量溶于水中。
能够进行范德华相互作用的合适的极性化合物包括醇、硫醇、酮、胺、酰胺、酯、醚和醛。这些化合物的合适实例已经在上文关于形成氢键的内容中进行了描述。能够进行范德华相互作用的合适的非极性化合物包括芳烃、取代的芳烃、聚芳烃、芳族或非芳族杂环、环烷烃、烷烃、烯烃、炔烃。
可以使用形成氢键的组分、疏水组分和范德华组分以多种方式影响突变多肽与其结合配偶体的结合。在一个实施方案中,氢键、疏水相互作用和/或范德华相互作用可以在突变多肽与其结合配偶体之间形成桥连。这样的桥连可以使突变多肽和结合配偶体更靠近彼此,以促进结合和/或将突变多肽和/或结合配偶体以促进结合的方式相对于彼此定位。
在另一个实施方案中,氢键形成和/或疏水相互作用可以增加突变多肽与其结合配偶体的结合的可能性,例如通过以增加结合可能性的方式使多肽和结合配偶体相互聚集或缔合。因此,这些相互作用中的一种或多种可以单独使用或组合使用以使突变多肽和结合配偶体更加靠近地聚集在一起,或以促进结合的方式排列突变多肽和结合配偶体,例如通过将结合位点拉近在一起或使分子的非结合部分彼此更加远离排列,从而使结合位点彼此靠得更近。
在另一个实施方案中,氢键形成和/或疏水相互作用可影响突变多肽和/或其结合配偶体的构象,以提供更有利于突变多肽与其结合配偶体结合的构象。具体地,与突变多肽和/或结合配偶体的一个或多个氨基酸的结合或相互作用可能引起突变多肽或结合配偶体中有利于突变多肽/结合配偶体结合反应的一个或多个构象变化。
本发明进行两对测试,一对测试是寻找具有以下特性的突变多肽:在正常生理条件下的测试中,与衍生出突变多肽的亲本多肽在所述正常生理条件下的活性相比,该突变多肽活性降低;第二对测试是寻找具有以下特性的突变独特:在异常条件下的测试中,与衍生出突变多肽的亲本多肽在所述异常条件下的活性相比,该突变多肽的活性增强。
用于本发明的两对测试中的条件可以选自温度、pH、渗透压、重量摩尔渗透压浓度、氧化应激、电解质浓度以及测试溶液或培养基的任何其它组分的浓度。因此,测试培养基的特定组分可以在两对测试中以基本上相同的浓度使用。在这种情况下,该组分的存在通常用于模拟人或动物中的特定环境,例如血清、肿瘤微环境、肌肉环境、神经环境或在施用点可能遇到的任何其它环境、所施加的治疗可能经历的任何其它环境或者在治疗点可能遇到的任何其它环境。选择模拟这些环境的一种或多种组分的一个重要方面在于它可以改进使用两对测试进行的选择过程的结果。例如,模拟特定环境使得能够在选择过程中得到该环境的特定组分对待评估突变多肽的各种效果。特定环境的组分可以例如改变突变多肽或与突变多肽结合,抑制突变多肽的活性,使突变多肽失活等。
在一些实施方案中,测试溶液的一种或多种组分优选为小化合物,例如二硫化物、硫化氢、组氨酸、组胺、柠檬酸盐、碳酸氢盐、乳酸盐和乙酸盐。在一个实施方案中,小分子组分在测试溶液中优选以约100μM至约100mM、或更优选约0.5mM至约50mM、或约1mM至约10mM的浓度存在。
测试溶液中组分的浓度可以与通常在哺乳动物(例如人)的天然存在的体液中发现的相同组分的浓度相同或基本相同。该浓度可以被称为体液中该组分的正常生理浓度。在其它实施方案中,测试溶液中特定组分的浓度可以小于或大于哺乳动物(例如人)的天然存在的体液中通常存在的同种组分的浓度。
在另一个实施方案中,在每对测试中组分可以以明显不同的浓度存在。在这种情况下,组分的存在、不存在或组分浓度成为正在被测试的条件,因为正是该组分的浓度是在用于正常生理条件下的测试的测试溶液和用于异常条件下测试的测试溶液之间存在差异的条件。因此,将对根据本发明方法的该实施方案产生的条件活性多肽进行选择以获得其活性至少部分地依赖于所述组分的浓度的条件活性多肽。
在一些实施方案中,组分可以在一对测试溶液中存在,但在另一对测试溶液中完全不存在。例如,异常条件的测试溶液中的乳酸盐浓度可以设定为模拟肿瘤微环境中乳酸盐浓度的水平。在用于正常生理条件的一对测试溶液中,可能不存在乳酸盐。
在一个实施方案中,正常生理条件是代表正常生理条件的第一乳酸盐浓度,异常条件是代表存在于身体特定位置的异常条件的第二乳酸盐浓度。
在另一个实例中,在异常条件的测试溶液中可能不存在葡萄糖,以模拟可能在肿瘤微环境中发现的葡萄糖缺乏,而在用于正常生理条件的一对测试溶液中,可以将葡萄糖设定为模拟血浆葡萄糖浓度的水平。该特征可以用于将条件活性多肽优先递送到所述位置或环境,而在运输过程中条件活性多肽没有活性或具有最小活性,并且当到达用于异常条件的测试溶液中的组分浓度存在的环境时,活化条件活性多肽。
例如,与人血清相比,肿瘤微环境通常具有较低的葡萄糖浓度和较高的乳酸盐浓度。在血清中葡萄糖的正常生理浓度在约2.5mM至约10mM的范围内。另一方面,在肿瘤微环境中葡萄糖的浓度通常非常低,在0.05mM至0.5mM的范围内。在一个实施方案中,用于在正常生理条件下的测试的测试溶液具有在约2.5mM至约10mM的范围内的葡萄糖浓度,用于在异常条件下测试的测试溶液具有在约0.05mM至约0.5mM的范围内的葡萄糖浓度。由此产生的条件活性多肽在低葡萄糖环境中(在肿瘤微环境中)比在较高葡萄糖环境中(在正常组织或血液中)具有更高的活性。该条件活性多肽将在肿瘤微环境中起作用,但在血流中的运输过程中活性较低。
血清中乳酸盐的正常生理浓度在约1mM至约2mM的范围内。另一方面,在肿瘤微环境中,乳酸盐浓度通常在10mM至20mM的范围内。在一个实施方案中,用于在正常生理条件下的测试的测试溶液具有约1mM至约2mM的乳酸盐浓度,用于在异常条件下的测试的测试溶液具有约10mM至约20mM的乳酸盐浓度。由此产生的条件活性多肽在高乳酸盐环境中(在肿瘤微环境中)比在较低乳酸盐环境中(在正常组织或血液中)具有更高的活性。因此,该条件活性多肽在肿瘤微环境中起作用,但在血流中的运输过程中活性较低。
类似地,已知疼痛肌肉比正常肌肉具有更高(异常)的乳酸盐浓度。因此,当寻求在疼痛肌肉环境中有活性的突变多肽时,异常条件下的一对测试可在较高浓度的乳酸盐的存在下进行以模拟疼痛肌肉环境,而在正常生理条件下的一对测试可在较低浓度的乳酸盐或不存在乳酸盐的条件下进行。以这种方式,可以选择在具有增加的乳酸盐浓度的疼痛肌肉环境中活性增强的突变多肽。这样的条件活性多肽可以用作例如抗炎剂。
在另一个实施方案中,可以在两对测试溶液中使用两种或更多种组分。在这种类型的测试中,可以使用上述的两种测试的特征来选择条件活性多肽。或者,可以使用两种或更多种组分来增加条件活性多肽的选择性。例如,就肿瘤微环境而言,可以在具有高乳酸盐浓度和低葡萄糖浓度的测试培养基中进行异常条件下的一对测试,而在正常生理条件下的相应的一对测试可以在具有相对较低的乳酸盐浓度和相对较高葡萄糖浓度的测试培养基中进行。
本发明设想选自无机化合物、离子和有机分子的每种组分可以单独使用或组合使用以选择在组分的一个浓度下比在相同组分的不同浓度下更有活性的条件活性多肽。
依赖于作为正常环境(正常生理条件)和异常环境(异常条件)之间的区分条件的一种或多种代谢物的不同浓度的测试可能特别适用于选择在肿瘤微环境中比在血浆中更有活性的条件活性多肽,因为肿瘤微环境通常具有显著数量的代谢物,这些代谢物具有与血浆中相同代谢物的浓度不同的浓度。
文献Kinoshita et al.,"Absolute Concentrations of Metabolites in HumanBrain Tumors Using In Vitro Proton Magnetic Resonance Spectroscopy,"NMR INBIOMEDICINE,vol.10,pp.2-12,1997比较了正常脑和脑肿瘤中的代谢物。该小组发现,N-乙酰天冬氨酸在正常脑中的浓度为5000-6000μM,但在胶质母细胞瘤中的浓度仅为300-400μM,在星形细胞瘤中的浓度为1500-2000μM,在间变性星形细胞瘤中的浓度为600-1500μM。此外,肌醇在正常脑中的浓度为1500-2000μM,在胶质母细胞瘤中的浓度为2500-4000μM,在星形细胞瘤中的浓度为2700-4500μM,在间变性星形细胞瘤中的浓度为3800-5800μM。磷脂酰乙醇胺在正常脑中的浓度为900-1200μM,但在胶质母细胞瘤中的浓度为2000-2800μM,在星形细胞瘤中的浓度为1170-1370μMμM,在间变性星形细胞瘤中的浓度为1500-2500μM。甘氨酸在正常脑中的浓度为600-1100μM,但在胶质母细胞瘤中的浓度为4500-5500μM,在星形细胞瘤中的浓度为750-1100μM,在间变性星形细胞瘤中的浓度为1900-3500μM。丙氨酸在正常脑中具有700-1150μM的浓度,但在胶质母细胞瘤中的浓度为2900-3600μM,在星形细胞瘤中的浓度为800-1200μM,间变性星形细胞瘤中的浓度为300-700μM。这些代谢物在血液中也可能具有不同的浓度,例如N-乙酰天冬氨酸在血液中的浓度约为85000μM,肌醇在血液中浓度约为21700μM,甘氨酸在血液中的浓度约为220-400μM,丙氨酸在血液中的浓度约为220-300μM。
因此,这些代谢物,至少包括N-乙酰天冬氨酸、肌醇、甘氨酸和丙氨酸,可以在测试溶液中以不同的浓度使用,以选择在脑肿瘤中有活性但在血液或正常脑组织中无活性的条件活性多肽。例如,具有N-乙酰天冬氨酸浓度为85000μM的测试溶液可以用于在正常生理条件下的一对测试,和具有N-乙酰天冬氨酸浓度为350μM的测试溶液可用于在异常条件下的一对测试,以选择在胶质母细胞瘤的肿瘤微环境中有活性、但在血液或正常脑组织中无活性或至少活性较低的条件活性多肽。
文献Mayers et al.,"Elevated circulating branched chain amino acidsare an early event in pancreatic adenocarcinoma development,"Nature Medicine,vol.20,pp.1193-1198,2014研究了胰腺患者预诊血浆中包括支链氨基酸在内的各种不同代谢物的浓度。发现几种代谢物在胰腺肿瘤患者的血流中的浓度与未患胰腺癌的人的血液中相同代谢物的浓度不同。Mayers等人还发现与正常个体相比,胰腺癌患者血浆中的支链氨基酸显著增多。以升高的浓度存在的支链氨基酸包括异亮氨酸、氨酸和缬氨酸(Mayerset al.的表1)。Mayers的图1所示的其它代谢物在胰腺癌患者血浆中的浓度显著不同于在正常健康人中的浓度。这些代谢物至少包括乙酰甘氨酸、甘氨酸、苯丙氨酸、酪氨酸、2-氨基己二酸、牛磺脱氧胆酸/牛磺鹅去氧胆酸盐、乌头酸盐、异柠檬酸、乳酸、α-甘油磷酸酯和尿酸。因此,基于胰腺癌患者和正常健康个体的血浆中某些代谢物以不同的浓度存在这一发现,可以预测胰腺癌的肿瘤微环境中这些代谢物的浓度也会不同于在健康个体的胰腺微环境中的浓度。
因此,在一个实施方案中,这些代谢物中的一种或多种可以用于正常生理条件的测试溶液中,其用量接近健康个体血浆中这些代谢物的浓度(即正常生理浓度的代谢物)。例如,健康个体血浆中已知的异亮氨酸的正常生理浓度约为1.60±0.31mg/dL,亮氨酸约为1.91±0.34mg/dL,缬氨酸约为2.83±0.34mg/dL。正常生理条件的测试溶液可以具有在这些支链氨基酸中的一种或多种的上述范围内的正常生理浓度。异常条件的测试溶液中同种支链氨基酸的浓度是健康个体中相应支链氨基酸的正常生理浓度的约5倍、或约10倍、或约20倍、或约50倍、或约70倍、或约100倍、或约150、或约200倍或约500倍。由于在Mayers等人检测的血浆中发现的高浓度的这些支链氨基酸是源于肿瘤微环境的并在血流中稀释,基于Mayers等人的发现,可以反映出以下事实:预期胰腺肿瘤微环境中这些支链氨基酸的浓度将显著升高。类似地,即使癌症患者中特定代谢物的浓度显著低于正常个体,异常条件下的测试也可反映胰腺癌患者血液中其它代谢物的浓度。以这种方式,筛选可以模拟实际环境,从而确保选择在该特定环境具有最高活性的突变体。
在一些其它实施方案中,正常生理条件的测试溶液可包含一种或多种支链氨基酸,其浓度模拟胰腺癌患者血浆中的浓度,从而模拟这些患者的实际血浆环境。在这样的实施方案中,异常条件的测试溶液可以包含相同的支链氨基酸,其浓度比胰腺癌患者血浆中相应的支链氨基酸的浓度的约2倍、或约3倍、或约4倍、或约5倍、或约7倍、或约8倍、或约10倍、或约15倍、或约20倍、或约50倍,以反映这些较高浓度源于肿瘤微环境以及血流中的浓度代表了对肿瘤微环境实际浓度的稀释的事实。类似地,在用于正常生理条件的测试溶液和异常条件的测试溶液中,其它代谢物也可以具有不同的浓度,以反映根据从血流中收集的数据预期的实际差异。在某些情况下,可以注意到在胰腺患者的血流中特定代谢物的缺乏,在这种情况下,可以在正常生理条件下的测试中使用反映血流中测量到的浓度的浓度,并可在异常条件下的测试中使用更低的浓度,以解释所述代谢物可能在肿瘤微环境中被消耗的预期。使用这些测试溶液如此选择的条件活性多肽将在胰腺癌微环境中比在胰腺癌患者的血浆中更有活性。
在一些实施方案中,胰腺癌患者的整个血浆可用于本发明。例如,在一个实施方案中,在用于正常生理条件下的测试和异常条件下的测试中的一种或两种测试的测试溶液中,可以模拟胰腺癌患者血浆中一种或多种组分。在一个示例性实施方案中,正常生理条件的测试溶液的pH在7.2-7.6的范围内,其中加入了30wt%的胰腺癌患者的血浆,异常条件的测试溶液的pH在6.2-6.8的范围内,其中加入了30wt%的胰腺癌患者的血浆。在本实施方案中,存在胰腺癌患者的血浆,从而即使在存在胰腺癌患者血液中发现的代谢物的组合的情况下(1)确保条件活性多肽在pH为7.2-7.6的血液中不被活化,以及(2)还确保条件活性多肽可以在pH为5.5-7.2、6-7或6.2-6.8的肿瘤微环境中被活化。这将为胰腺癌患者进行定制治疗。
在另一个示例性实施方案中,正常生理条件的测试溶液的pH在7.2-7.6的范围内,其中加入了30wt%的胰腺癌患者的血浆,并且异常条件的测试溶液的pH在5.5-7.2或6.2-6.8的范围内,其中没有加入任何胰腺癌患者的血浆。
选自无机化合物、离子和有机分子的相同组分可以用于上述几种类型的测试中的每一种。例如,在乳酸盐的情况下,在正常生理条件和异常条件下的测试溶液对中,乳酸盐可以以基本相同的浓度使用。然而,正常生理条件和异常条件将在一个或多个其它方面(例如温度、pH、另一组分的浓度等)不同。在不同的实施方案中,乳酸盐可以作为正常生理条件与异常条件之间的区别因素之一,以反映乳酸盐在异常肿瘤微环境中的浓度高于正常生理条件(非肿瘤微环境)中的浓度这一事实。
在一些实施方案中,将两种或更多种组分以基本相同的浓度加入正常生理条件和异常条件的两种测试溶液中。例如,将柠檬酸盐和牛血清白蛋白(BSA)都加入到测试溶液中。在两种测试溶液中,柠檬酸盐的浓度可以为约80μM,BSA浓度可以为约10-20%。更具体而言,用于正常生理条件下的一对测试的测试溶液可以具有7.2-7.6范围内的pH,柠檬酸盐的浓度约为80μM,BSA的浓度约为10-20%。用于异常条件下的一对测试的测试溶液可以具有6.2-6.8范围内的pH,柠檬酸盐的浓度约为80μM,BSA的浓度约为10-20%。
在一个实施方案中,可以向正常生理条件的和异常条件的两种测试溶液中以基本上相同的浓度加入人血清。由于人血清中含有大量的无机化合物、离子、有机分子(包括多肽),因此测试溶液将具有多种和大量的选自无机化合物、离子、有机分子的组分,这些组分在两种测试溶液中的浓度基本相同。测试溶液可以具有5-30体积%、或7-25体积%、或10-20体积%或10-15体积%的血清。在其它一些实施方案中,用于正常生理条件的测试溶液和异常条件的测试溶液不含血清。血清可以是人血清、牛血清白蛋白或来自任何其它哺乳动物的血清。在一些其它实施方案中,测试溶液不含血清。
正常生理条件的测试溶液和异常条件的测试溶液可以具有不同的pH。通过使用碳酸氢盐,可以利用缓冲液中的CO2和O2水平来调节这种测定溶液的pH。
在一些其它实施方案中,将两种或更多种组分中的至少一种以不同的浓度添加到正常生理条件的测试溶液和异常条件的测试溶液。例如,将乳酸盐和牛血清白蛋白(BSA)都加入到测试溶液中。正常生理条件的测试溶液和异常条件的测试溶液的乳酸盐浓度可以不同,而BSA在两种测试溶液中可以具有相同的浓度。在异常条件的测试溶液中,乳酸盐的浓度可以在30-50mg/dL的范围内,在正常生理条件的测试溶液中,乳酸盐的浓度可以在8-15mg/dL的范围内。另一方面,BSA在两种测试溶液中具有相同的浓度,例如约10-20%。在BSA的存在下,使用这些测试溶液选择的条件活性多肽在30-50mg/dL的高乳酸盐浓度下比在8-15mg/dL的低乳酸盐浓度下更有活性。
在一些实施方案中,可以设计测试溶液用于选择具有依赖于两种或更多种条件的活性的条件活性多肽。在一个示例性实施方案中,条件活性多肽可具有依赖于pH和乳酸盐两者的活性。用于选择这种条件活性多肽的测试溶液可以是pH为7.2-7.6的正常生理条件的测试溶液,其乳酸盐浓度在8-15mg/dL的范围内。异常条件的测试溶液的pH可以为6.2-6.8,乳酸盐的浓度在30-50mg/dL的范围内。任选地,正常生理条件的测试溶液和异常条件的测试溶液都还可以包含离子以辅助突变多肽与其结合配偶体之间的结合,从而增加候选生物活性多肽的命中物的数量。
在另一个示例性实施方案中,条件活性多肽可以具有依赖于pH、葡萄糖和乳酸盐的活性。用于选择这种条件活性多肽的测试溶液可以是pH为7.2-7.6的正常生理条件的测试溶液,其葡萄糖浓度在2.5-10mM的范围内,乳酸盐浓度在8-15mg/dL的范围内。异常条件的测试溶液的pH可以为6.2-6.8,葡萄糖浓度在0.05-0.5mM的范围内,乳酸盐浓度在30-50mg/dL的范围内。任选地,正常生理条件的测试溶液和异常条件的测试溶液都还可以包含离子以辅助突变多肽与其结合配偶体之间的结合,从而增加与结合配偶体在pH为6.2-6.8的条件下的结合的候选生物活性多肽的数量。使用这种测试溶液选择的条件活性多肽在pH为6.2-6.8、葡萄糖浓度为0.05-0.5mM、乳酸盐浓度为30-50mg/dL的环境中比在pH为7.2-7.6、葡萄糖浓度为2.5-10mM、乳酸盐浓度为8-15mg/dL的环境中更有活性。
选自无机化合物、离子和有机分子的两种或更多种组分用于制备异常条件的测试溶液,该异常条件的测试溶液模拟所选条件活性多肽将被递送到的位置/位点(即,靶位点)处的环境。在一些实施方案中,可以向测试溶液中添加在靶位点处的环境中存在的至少三种组分,或者可以向测试溶液中添加在靶位点处的环境中存在的至少四种组分,或者可以向测试溶液中添加在靶位点处的环境中存在的至少五种组分,或者可以向测试溶液中添加在靶位点处的环境中存在的至少六种组分。
在一个实施方案中,从靶位点(在靶位点处条件性活性多肽将更具活性)取出的流体可以直接用作用于异常条件下的测试的测试溶液。例如,可以从个体,优选从需要治疗的患有关节疾病的个体,取出滑液。取出的滑液,任选地被稀释的取出滑液,可以在异常条件下的一对测试中用作测试溶液以选择条件活性多肽。通过使用取出的滑液,任选地被稀释的取出的滑液,作为用于异常条件下的测试的测试溶液和模拟人血浆的用于正常生理条件下的测试的测试溶液,所选条件活性多肽(例如TNF-α)在关节处比在其它位置或器官更有活性。例如,可以用TNF-α治疗具有炎症关节(例如关节炎)的个体。然而,TNF-α通常具有损害其它组织和器官的严重副作用。在滑液中更有活性、但在血液中无活性或活性较低的条件活性TNF-α可将TNF-α的活性递送至关节,同时减轻或可能消除TNF-α对身体其余部位的副作用。
具有依赖于多种条件的活性的条件活性多肽的研发将提高条件活性多肽对个体体内的靶位点的选择性。理想情况下,在只存在这些条件中的一些条件的其它位置,条件活性多肽无活性或活性至少显著降低。在一个实施方案中,可以将在pH为6.2-6.8、葡萄糖浓度为0.05-0.5mM和乳酸盐浓度为30-50mg/dL的条件下具有活性的条件活性多肽特异性地递送至肿瘤微环境,因为肿瘤微环境中存在所有这些条件。其它组织或器官中可能存在这些条件中的一种或两种条件但不是三种条件都存在,因此在其它组织或器官中不足以完全活化所述条件活性多肽。例如,运动后的肌肉可以具有在6.2-6.8范围内的低pH。然而,没有另一种测试条件。因此,条件活性多肽在运动后的肌肉中无活性或活性至少较低。
在一些实施方案中,可以采取步骤来确认条件活性多肽的活性的确依赖于用于选择条件活性多肽的条件。例如,条件活性多肽被选择为依赖于以下三种条件:pH 6.2-6.8、0.05-0.5mM的葡萄糖浓度和30-50mg/dL的乳酸盐浓度。然后可以单独地在三种条件中的每一种条件下以及在具有三种条件中的两种条件的多个环境中测试所选择的条件活性多肽,以确认条件活性多肽在这些测试中无活性或活性较低。
在一些实施方案中,可以有目的地将血清的某些组分从测试培养基中减到最少或除去。例如,当筛选抗体时,可以将结合或吸附抗体的血清成分从测试培养基中减到最少或除去。这样的结合的抗体可能会产生假阳性,从而会包含不具有条件活性、而在各种不同条件下仅仅结合至血清中存在的组分的结合的突变抗体。因此,仔细选择测试组分以将测试中可能与突变体结合的组分减到最少或除去,可以使用该方法减少非功能突变体的数量,由于所述非功能突变体在测试中与组分而不是与所期望的结合配偶体结合,因此可能被无意地鉴定为条件活性阳性。例如,在筛选倾向于与人血清中的组分结合的突变多肽的某些实施方案中,BSA可用于测试溶液以减少或消除由突变多肽与人血清的组分结合引起的假阳性的可能性。在特定情况下也可以进行其它类似的替换来实现相同的目标。
在一些实施方案中,筛选环境模拟细胞膜附近的环境,例如细胞膜内部的、细胞膜处的或细胞膜外部的环境,或关节中的环境。在细胞膜环境中进行筛选时,可能影响结合活性的一些因素包括受体的表达、内化、抗体药物复合物(ADC)效价等。
测试形式可以是本领域技术人员已知的任何合适的测试。实例包括ELISA、酶活性测试、体外真实组织筛选(器官等)、组织切片、整个动物、细胞系和使用3D系统。例如,WO2013/040445中描述了基于合适的细胞的测试,US 7,993,271中描述了基于组织的测试,US 2010/0263599中描述了基于整个动物的筛选方法,US 2011/0143960中描述了基于3D系统的筛选方法。
在一些实施方案中,演变步骤可以产生可同时具有上述条件活性特征之外的其它所需特性的突变多肽。可以演变出的合适的其它所需特性可以包括结合活性、表达、人源化等。因此,本发明可以用于生产条件活性多肽,其还具有改进的这些其它所需特性中的至少一种或多种。
在一些实施方案中,本发明产生条件活性多肽。在例如第二演变步骤中,可以使用本文公开的一种诱变技术进一步对所选择的条件活性多肽白进行突变,以改进所选条件活性多肽的另一特性,例如结合活性、表达、人源化等。在第二演变步骤之后,可以筛选突变多肽以获得条件活性和改进的特性。
在一些实施方案中,在演变亲本多肽以产生突变多肽后,选择第一条件活性多肽,其显示以下两种特性:(a)在正常生理条件下的测试中与亲本多肽相比第一活性降低,和(b)在异常条件下的测试中与亲本多肽相比第一活性增强。然后可以进一步对第一条件活性多肽进行一个或多个其它的演变、表达和选择步骤以至少选择第二条件活性多肽,其(1)显示以下两种特性:(a)在正常生理条件下的测试中与亲本多肽相比第二活性降低,和(b)在异常条件下的测试中与亲本多肽相比第二活性增强;或(2)与第一条件活性多肽和/或亲本多肽相比,在异常条件下的第一活性与在正常生理条件下的第一活性的比值更大。注意到,第二条件活性多肽与亲本多肽相比可以在异常条件下具有较高的第一活性和第二活性,并且与亲本多肽相比在正常生理条件下具有较低的第一活性和第二活性。
在某些实施方案中,本发明旨在产生条件活性多肽,其在异常条件(或第二条件)下的活性与在正常生理条件(或第一条件)下的活性的活性比值较大(例如,在异常条件与正常生理条件之间更大的选择性)。在异常条件(或第二条件)下的活性与在正常生理条件(或第一条件)下的活性的比值或选择性可以为至少约2:1,或至少约3:1,或至少约4:1,或至少约5:1,或至少约6:1,或至少约7:1,或至少约8:1,或至少约9:1,或至少约10:1,或至少约11:1,或至少约12:1,或至少约13:1,或至少约14:1,或至少约15:1,或至少约16:1,或至少约17:1,或至少约18:1,或至少约19:1,或至少约20:1,或至少约30:1,或至少约40:1,或至少约50:1,或至少约60:1,或至少约70:1,或至少约80:1,或至少约90:1,或至少约100:1。
在一个实施方案中,条件活性多肽是一种抗体,其在异常条件下的活性与在正常生理条件下的活性的比例为至少约5:1,或至少约6:1,或至少约7:1,或至少约8:1,或至少约9:1,或至少约10:1,或至少约15:1,或至少约20:1,或至少约40:1,或至少约80:1。在一个实施方案中,条件活性多肽用于靶向肿瘤部位,其中条件活性多肽在肿瘤部位(肿瘤微环境)有活性,而在非肿瘤部位(正常生理条件)活性显著较低或不具有活性。
在一个实施方案中,条件活性多肽为旨在与另一种试剂(例如本文别处公开的那些试剂)缀合的抗体。条件活性抗体在异常条件下的活性与在正常生理条件下的活性比值更高。例如,待与另一试剂缀合的条件活性抗体的在异常条件下的活性与在正常生理条件下的活性的比值为至少约10:1,或至少约11:1,或至少约12:1,或至少约13:1,或至少约14:1,或至少约15:1,或至少约16:1,或至少约17:1,或至少约18:1,或至少约19:1,或至少约20:1。当缀合的试剂例如是有毒的或放射性的时,这是特别重要的,因为希望这种缀合的试剂集中在患病部位或治疗部位(其中存在异常条件)。
G.条件活性多肽的生产
可以产生选择的具有可逆或不可逆活性的条件活性多肽用于治疗、诊断、研究和相关的目的,和/或可以使这些条件活性多肽进行一个或多个额外的演变和选择循环。
可以使用多肽表达细胞产生宿主或生物体产生条件活性多肽。为了使生产过程更有效,编码条件活性多肽的DNA可以针对细胞生产宿主或生物体进行密码子优化。先前已经描述了密码子优化,例如Narum et al.,"Codon optimization of gene fragmentsencoding Plasmodium falciparum merzoite proteins enhances DNA vaccine proteinexpression and immunogenicity in mice(编码恶性疟原虫裂殖子表面蛋白的基因片段的密码子优化,提高了DNA疫苗蛋白在小鼠体内的表达和免疫原性),"Infect.Immun.2001December,69(12):7250-3,其描述了在小鼠表达系统中的密码子优化;Outchkourov et al.,"Optimization of the expression of Equistatin in Pichiapastoris,protein expression and purification(Equistatin在毕赤酵母中表达的优化,蛋白表达和纯化),"Protein Expr.Purif.2002February;24(1):18-24,其描述了在酵母系统中的密码子优化;Feng et al.,"High level expression and mutagenesis ofrecombinant human phosphatidylcholine transfer protein using a syntheticgene:evidence for a C-terminal membrane binding domain(使用人工合成的基因进行人磷脂转移蛋白的高效表达重组和诱变:C-末端膜结合结构域的证据)"Biochemistry2000 Dec.19,39(50):15399-409,其描述了在大肠杆菌中的密码子优化;Humphreys etal.,"High-level periplasmic expression in Escherichia coli using a eukaryoticsignal peptide:importance of codon usage at the 5'end of the coding sequence(使用真核生物信号肽在大肠杆菌中进行高水平的周质表达:编码序列5'端密码子使用的重要性)",Protein Expr.Purif.2000 Nov.20(2):252-64,其描述了密码子使用如何影响大肠杆菌中的蛋白分泌。
细胞产生宿主可以是选自CHO、HEK293、IM9、DS-1、THP-1、Hep G2、COS、NIH 3T3、C33a、A549、A375、SK-MEL-28、DU145、PC-3、HCT116、Mia PACA-2、ACHN、Jurkat、MM1、卵巢癌细胞(Ovcar)3、HT 1080、胰腺癌细胞-1(Panc-1)、U266、769P、BT-474、Caco-2、HCC1954、MDA-MB-468、LnCAP、NRK-49F和SP2/0的哺乳动物细胞系;和小鼠脾细胞和兔PBMC。在一个实施方案中,哺乳动物系统选自CHO或HEK293细胞系。在一个具体方面,哺乳动物系统是CHO-S细胞系。在另一个实施方案中,哺乳动物系统是HEK293细胞系。
在一些实施方案中,细胞产生宿主是酵母细胞系统,例如酿酒酵母(S.cerevisiae)酵母细胞或毕赤酵母酵母细胞。在一些实施方案中,细胞产生宿主是原核细胞如大肠杆菌(Owens RJ and Young RJ,J.Immunol.Meth.,vol.168,p.149,1994;Johnson S and Bird RE,Methods Enzymol.,vol.203,p.88,1991)。条件活性多肽也可以在植物中产生(Firek et al.Plant MoI.Biol.,vol.23,p.861,1993)。
条件活性多肽也可以通过合成方法使用本领域公知的化学方法来生产。参见例如Caruthers,"New chemical methods for synthesizing polynucleotides,"NucleicAcids Res.Symp.Ser.215-223,1980;Horn,"Synthesis of oligonucleotides oncellulose.Part II:design and synthetic strategy to the synthesis of 22oligodeoxynucleotides coding for Gastric Inhibitory Polypeptide(GIP),"NucleicAcids Res.Symp.Ser.225-232,1980;Banga,A.K.,Therapeutic Peptides and Proteins,Formulation,Processing and Delivery Systems,Technomic Publishing Co.,Lancaster,Pa,1995。例如,可以使用各种固相技术进行肽合成(参见例如Roberge,"Astrategy for a convergent synthesis of N-linked glycopeptides on a solidsupport",Science 269:202,1995;Merrifield,"Concept and early development ofsolid-phase peptide synthesis",Methods Enzymol.289:3-13,1997);并且可以实现自动化合成,例如根据制造商提供的说明书使用ABI 43 IA肽合成仪(Perkin Elmer)。
自二十世纪六十年代早期以来,固相化学肽合成方法已经是本领域已知的(Merrifield,R.B.,"Solid-phase synthesis I.The synthesis of a tetrapeptide",J.Am.Chem.Soc,85:2149-2154,1963)(还参见Stewart,J.M.and Young,J.D.,Solid PhasePeptide Synthesis,2nd Ed.,Pierce Chemical Co.,Rockford,111.,pp.11-12)),并且最近已被用于市售的实验室肽设计和合成试剂盒(剑桥研究生物化学研究所)。这种市售的的实验室试剂盒通常利用文献H.M.Geysen et al.,"Use of peptide synthesis to probeviral antigens for epitopes to a resolution of a single amino acid(用肽合成法探测表位的病毒抗原以确定单个氨基酸的分辨率),"Proc.Natl.Acad.Sci.,USA,81:3998,1984的教导,并且提供了在多个“棒”或“针”的尖端上合成肽,所有棒或针均连接至单个板。当使用这样的系统时,将连接有棒或针的板倒置并插入对应的孔或储存器的第二板中,其中含有用于将适当的氨基酸附接或锚接到针或棒的尖端的溶液。通过重复这种工艺步骤,即将棒和针的尖端倒置并插入合适的溶液中,将氨基酸组合为所需的肽。此外,还有大量可用的FMOC肽合成系统。例如,可以使用Applied Biosystems,Inc.431ATM自动肽合成仪在固体支持物上进行多肽或片段的组装。这种设备可以通过直接合成或通过合成可使用其它已知技术连接的一系列片段使得容易获得本发明的肽。
条件活性多肽也可以是糖基化的。糖基化可以在翻译后以化学方式或通过细胞生物合成机制添加,其中后者包括已知糖基化基序的使用,该糖基化基序可以对该序列而言是天然的或可以作为肽添加或以核酸编码序列添加。糖基化可以是O-连接的或N-连接的。
条件活性多肽包括所有“模拟物”和“拟肽物”形式。术语“模拟物”和“拟肽物”是指具有与本发明的多肽基本相同的结构和/或功能特性的合成化合物。模拟物可以完全由合成的、非天然的氨基酸类似物组成,或者是部分天然的肽氨基酸和部分非天然的氨基酸类似物的嵌合分子。只要天然氨基酸保守取代不会实质上改变模拟物的结构和/或活性,模拟物也可以包含任何量的这样的取代。就作为保守变体的本发明的多肽而言,常规实验将确定模拟物是否在本发明的范围内,即,确定其结构和/或功能是否未发生实质性改变。
本发明的多肽模拟物组合物可以包含非天然结构组分的任何组合。在另一方面,本发明的模拟物组合物包括以下三个结构基团中的一个或全部:a)除天然酰胺键(“肽键”)连接之外的残基连接基团;b)替代天然存在的氨基酸残基的非天然残基;或c)诱导二级结构模拟的残基,即诱导或稳定二级结构(例如β转角、γ转角、β折叠、α螺旋构象等)的残基。例如,当本发明的多肽的全部或一些残基通过除天然肽键之外的化学手段连接时,其可以称为模拟物。单独的肽模拟物残基可以通过肽键、其它化学键或偶联方式连接,例如戊二醛、N-羟基琥珀酰亚胺酯、双官能马来酰亚胺、N,N'-二环己基碳二亚胺(DCC)或N,N'-二异丙基碳二亚胺(DIC)。可用作传统酰胺键(“肽键”)的替代物的连接基团包括例如酮亚甲基(例如用-C(=O)-CH2-代替-C(=O)-NH-)、氨基亚甲基(CH2-NH)、亚乙基、烯烃(CH=CH)、醚(CH2-O)、硫醚(CH2-S)、四唑(CN4-)、噻唑、逆酰胺(retroamide)、硫代酰胺或酯(参见例如Spatola(1983)in Chemistry and Biochemistry of Amino Acids,Peptides andproteins,第7卷,pp 267-357,"Peptide Backbone Modifications(肽骨架修饰),"Marcell Dekker,N.Y.)。
当本发明的多肽包含全部或一些非天然残基以代替天然存在的氨基酸残基时,本发明的多肽也可称为模拟物。非天然残基在科学和专利文献中有详细描述;以下描述了用作天然氨基酸残基的模拟物的几种示例性非天然组合物及其指南。可以通过使用例如以下物质进行代替生成芳香族氨基酸的模拟物:D-或L-萘丙氨酸;D-或L-苯基甘氨酸;D-或L-2-噻吩基丙氨酸;D-或L-1、-2、3-或4-芘酰基丙氨酸;D-或L-3-噻吩基丙氨酸;D-或L-(2-吡啶基)-丙氨酸;D-或L-(3-吡啶基)-丙氨酸;D-或L-(2-吡嗪基)-丙氨酸;D-或L-(4-异丙基)-苯基甘氨酸;D-(三氟甲基)-苯基甘氨酸;D-(三氟甲基)-苯丙氨酸;D-p-氟-苯丙氨酸;D-或L-p-联苯基苯丙氨酸;D-或L-p-甲氧基-联苯基苯丙氨酸;D-或L-2-吲哚(烷基)丙氨酸;和D-或L-烷基胺,其中烷基可以是取代或未取代的甲基、乙基、丙基、己基、丁基、戊基、异丙基、异丁基、仲丁基(sec-isotyl)、异戊基或非酸性氨基酸。非天然氨基酸的芳香环包括例如噻唑基、噻吩基、吡唑基、苯并咪唑基、萘基、呋喃基、吡咯基和吡啶基芳环。
酸性氨基酸的模拟物可以通过用例如非羧化氨基酸取代并同时保持负电荷,通过用(膦酰基)丙氨酸取代,或通过硫酸化苏氨酸取代生成。羧基侧基(例如,天冬氨酰基或谷氨酰基)还可以通过与诸如1-环己基-3-(2-吗啉基-(4-乙基))碳二亚胺或1-乙基-3(4-氮阳离子-4,4-二甲基戊基)碳二亚胺的碳二亚胺(R'~N—C--N--R')反应来选择性修饰。通过与铵离子反应,天冬氨酰基或谷氨酰基也可以被转化为天冬酰胺酰基和谷氨酰胺酰基残基。可以通过用例如(除赖氨酸和精氨酸外还有)以下氨基酸替换产生碱性氨基酸的模拟物:鸟氨酸、瓜氨酸或(胍基)-乙酸或(胍基)烷基-乙酸取代,其中烷基定义如上。腈衍生物(例如,含有代替COOH的CN-部分)可以被取代以得到天冬酰胺或谷氨酰胺。可以将天冬酰胺酰基和谷氨酰胺酰基残基脱酰胺得到相应的天门冬酰基或谷酰基残基。可以通过使精氨酰基与例如一种或多种常规试剂(包括例如苯甲酰甲醛、2,3-丁二酮、1,2-环己烷二酮或茚三酮)反应来产生精氨酸残基模拟物,该反应优选在碱性条件下进行。可以通过使酪氨酰基与例如芳族重氮化合物或四硝基甲烷反应来产生酪氨酸残基模拟物。N-乙酰基咪唑和四硝基甲烷可分别用于形成O-乙酰基酪氨酰基物质和3-硝基衍生物。通过使半胱氨酰残基与例如α-卤代乙酸酯(如2-氯乙酸或氯乙酰胺)和相应的胺反应产生半胱氨酸残基模拟物;以得到羧甲基或羧氨基甲基衍生物。也可以通过使半胱氨酰残基与例如以下物质反应产生半胱氨酸残基模拟物:溴三氟丙酮、α-溴-β-(5-咪唑基)丙酸、氯乙酰磷酸酯、N-烷基马来酰亚胺、3-硝基-2-吡啶基二硫化物、甲基2-吡啶基二硫化物、对氯汞基苯甲酸盐、2-氯汞基-4-硝基苯酚;或氯-7-硝基苯并-氧杂-1,3-二唑。可通过赖氨酰与例如琥珀酸酐或其它羧酸酐反应产生(和改变氨基末端残基)赖氨酸模拟物。赖氨酸和其它含α-氨基的残基模拟物也可以通过与亚氨酸酯如吡啶亚氨酸甲酯、磷酸吡哆醛、吡哆醛、氯硼氢化物、三硝基苯磺酸、O-甲基异脲、2,4-戊二酮反应以及转酰胺酶催化的与乙醛酸的反应产生。甲硫氨酸的模拟物可以通过与例如甲硫氨酸亚砜反应产生。脯氨酸的模拟物包括例如哌啶酸、噻唑烷羧酸、3-或4-羟基脯氨酸、脱氢脯氨酸、3-或4-甲基脯氨酸或3,3-二甲基脯氨酸。组氨酸残基模拟物可通过组氨酰基与例如二乙基原碳酸酯或对溴苯甲酰甲基溴反应而产生。其它模拟物包括例如通过脯氨酸和赖氨酸的羟基化产生的模拟物;通过丝氨酰或苏氨酰残基的羟基的磷酸化产生的模拟物;通过赖氨酸、精氨酸和组氨酸的α-氨基的甲基化产生的模拟物;通过N-末端胺的乙酰化产生的模拟物;通过骨架酰胺残基的甲基化或用N-甲基氨基酸取代产生的模拟物;或通过C-末端羧基的酰胺化产生的模拟物。
本发明多肽的残基(例如氨基酸)也可以被相反手性的氨基酸(或拟肽残基)替代。因此,以L-构型天然存在的任何氨基酸(根据化学实体的结构,其也可以称为R或S)可以被相同化学结构类型但手性相反的氨基酸或手性相反的肽模拟物取代,称为D-氨基酸,其也可以称为R-或S-形式。
本发明还提供通过天然过程(例如翻译后加工(例如磷酸化、酰化等))或通过化学修饰技术修饰条件活性多肽的方法。修饰可发生在多肽中的任何地方,包括肽骨架、氨基酸侧链和氨基或羧基末端。应当理解,相同类型的修饰可以以相同或不同程度存在于给定多肽中的几个位点。给定的多肽也可以具有许多类型的修饰。修饰包括乙酰化、酰化、PEG化、ADP-核糖基化、酰胺化、黄素的共价连接、血红素部分的共价连接、核苷酸或核苷酸衍生物的共价连接、脂质或脂质衍生物的共价连接、磷脂酰肌醇的共价连接、交联环化、二硫键形成、脱甲基化、形成共价交联、形成半胱氨酸、形成焦谷氨酸、甲酰化、γ-羧化、糖基化、GPI锚形成、羟基化、碘化、甲基化、肉豆蔻酰化、氧化、聚乙二醇化、蛋白水解加工、磷酸化、异戊烯化、外消旋化、硒化、硫酸化和转移RNA介导的氨基酸添加至蛋白质,例如精氨酰化。参见例如Creighton,T.E.,a s—Structure and Molecular Properties(蛋白质—结构和分子性质)2nd Ed.,W.H.Freeman and Company,New York(1993);PosttranslationalCovalent Modification of proteins(蛋白质的翻译后共价修饰),B.C.Johnson,Ed.,Academic Press,New York,pp.1-12(1983)。
H.条件活性抗体的工程化
本发明的条件活性抗体可以通过本文所述的一种或多种抗体工程化技术来工程化。抗体工程化技术的非限制性实例包括抗体缀合、工程化多特异性抗体、工程化针对免疫效应细胞表面抗原和靶抗原的双特异性条件活性抗体、工程化抗体的Fc区。
WO2015/175375中描述了用于缀合条件活性抗体的合适方法。在一个实施方案中,本文公开的用于缀合的条件活性抗体在异常条件下的活性与在正常生理条件下的活性的比值优选为至少约10:1、或至少约12:1、或在至少约14:1、或至少约16:1、或至少约18:1、或至少约20:1、或至少约22:1、或至少约24:1、或至少约26:1。
在一些实施方案中,条件活性抗体可以缀合至这些抗体的Fc区上。上述缀合分子、化合物或药物可以与Fc区缀合,如美国专利号8,362,210中所述。例如,Fc区可以与细胞因子或毒素缀合以被递送至条件活性抗体显示优先活性的部位。将多肽与抗体的Fc区缀合的方法是本领域已知的。参见,例如,美国专利第5,336,603号、第5,622,929号、第5,359,046号、第5,349,053号、第5,447,851号、第5,723,125号、第5,783,181号、第5,908,626号、第5,844,095号和第5,112,946号;EP 307,434;EP 367,166;EP 394,827;WO91/06570、WO96/04388、WO96/22024、WO97/34631和WO99/04813;Ashkenazi et al.,Proc.Natl.Acad.Sci.USA,vol.88,pp.10535-10539,1991;Traunecker et al.,Nature,vol.331,pp.84-86,1988;Zheng et al.,J.Immunol.,vol.154,pp.5590-5600,1995;和ViIet al.,Proc.Natl.Acad.Sci.USA,vol.89,pp.11337-11341,1992。
在一些实施方案中,条件活性抗体可以通过具有至少两个反应性基团的中间体接头共价连接到缀合的试剂上,所述两个反应性基团中的一个与条件活性抗体反应,另一个与缀合的试剂反应。可以选择可包括任何相容的有机化合物的接头,使得与条件活性抗体或与缀合的试剂的反应不会不利地影响条件活性抗体的反应性和/或选择性。此外,接头与缀合的试剂的连接不能破坏缀合的试剂的活性。与条件活性抗体缀合的抗癌剂分子与条件活性多肽分子的比值达到3:1、或4:1、或5:1、或6:1。在一个实例中,抗癌剂与条件活性多肽的比值为约4:1。
用于被氧化的条件活性抗体的合适的接头包括含有选自伯胺、仲胺、肼、酰肼、羟胺、苯肼、氨基脲和氨基硫脲基的基团的接头。用于被还原的条件活性抗体的合适的接头包括具有能够与被还原的条件活性抗体的巯基反应的某些反应性基团的接头。这样的反应性基团包括但不限于反应性卤代烷基(包括例如卤代乙酰基),对-汞苯甲酸酯基和能够进行迈克尔型加成反应的基团(包括例如马来酰亚胺和文献Mitra和Lawton,J.Amer.Chem.Soc.Vol.101,pp.3097-3110,1979中所述的基团类型)。
WO2015/175375中已描述了工程化多特异性条件活性抗体的合适方法。
条件活性抗体可被工程化以产生针对免疫效应细胞表面抗原和靶抗原的双特异性条件活性抗体。本发明的双特异性条件活性抗体可以将免疫效应细胞吸引到存在靶抗原的疾病部位。双特异性条件活性抗体是可以特异性结合两种不同抗原的抗体:免疫效应细胞表面抗原和靶抗原。双特异性抗体可以是全长抗体,其包含两个臂,一个臂与免疫效应细胞表面抗原结合,另一个臂与靶抗原结合。双特异性抗体可以是仅包含重链可变结构域(VH)和轻链可变结构域(VL)的抗体片段。在一个实施方案中,抗体片段包括至少两个VHVL单元:一个用于结合免疫效应细胞表面抗原,另一个臂结合至靶抗原。在另一实施方案中,抗体片段包括至少两个单可变结构域(VH或VL):一个用于结合免疫效应细胞表面抗原,另一个用于结合靶抗原。在一些实施方案中,双特异性条件活性抗体包含两个scFv:一个与免疫效应细胞表面抗原结合,另一个与靶抗原结合。
被吸引的免疫效应细胞对免疫效应细胞和病变细胞或病变组织上的靶抗原均具有结合活性,其能够将免疫效应细胞吸引到含有靶抗原的患病毒细胞或患病组织。然后被吸引的免疫效应细胞将攻击病变细胞或病变组织,从而帮助治愈疾病,因为免疫效应细胞能够抑制或甚至破坏患病细胞或患病组织。例如,免疫效应细胞可以破坏肿瘤细胞或被感染的细胞。免疫效应细胞包括自然杀伤细胞、巨噬细胞、淋巴因子激活的杀伤(LAK)细胞和T细胞。
双特异性条件活性抗体具有两种结合活性,一种针对免疫效应细胞表面抗原和另一种针对靶抗原。在一个实施方案中,两种结合活性都是有条件的,这意味着双特异性条件活性抗体对免疫效应细胞表面抗原和靶抗原的结合活性在正常生理条件下比亲本抗体的结合活性低,而在异常条件下比亲本抗体的结合活性高。在一个实施方案中,两个结合活性中只有一个是有条件的,这意味着双特异性条件活性抗体对免疫效应细胞表面抗原的结合活性或双特异性条件活性抗体对靶抗原的结合活性是有条件的。在这种情况下,双特异性条件活性抗体对免疫效应细胞表面抗原的结合活性或双特异性条件活性抗体对靶抗原的结合活性之一在正常生理条件下比亲本抗体的相应活性低,而在异常条件下比亲本抗体的相应活性高。
双特异性条件活性抗体中的两个臂(例如两个VHVL单元或两个scFv)可以通过常规方法连接起来。如本领域众所周知的,含有完整抗原结合位点的最小抗体片段具有以非共价连接的一个重链可变结构域和一个轻链可变结构域(VH和VL)的二聚体。这种结构对应于天然抗体中发现的结构,其中每个可变结构域的三个互补决定区(CDR)相互作用以界定VH-VL二聚体表面上的抗原结合位点。总共六个CDR赋予抗体抗原结合特异性。CDR侧翼的骨架(FR)具有三级结构,其在例如人和小鼠的物种的天然免疫球蛋白中基本上是保守的。这些FR用于使CDR保持其适当的取向。恒定结构域不是结合功能所必需的,但有助于稳定VH-VL相互作用。即使是单个可变结构域(或仅包含三个对抗原具有特异性的CDR的Fv的一半)也具有识别和结合抗原的能力,但是结合亲和力通常比整个结合位点的结合亲和力更低(Painter et al.,"Contributions of heavy and light chains of rabbitimmunoglobulin G to antibody activity.I.Binding studies on isolated heavy andlight chains,"Biochemistry,vol.11pp.1327-1337,1972)。因此,双特异性条件活性抗体的结合位点的所述结构域可以构建为不同免疫球蛋白的一对VH-VL、VH-VH或VL-VL结构域。
在一些实施方案中,可以通过重组DNA技术将双特异性条件活性抗体构建为连续的多肽链,例如,以下述方式构建:表达编码双特异性条件活性抗体的核酸分子以构建连续的多肽链(例如参见Mack et al.,"A small bispecific antibody construct expressedas a functional single-chain molecule with high tumor cell cytotoxicity,"Proc.Natl.Acad.Sci.USA,vol.92,pp.7021-7025,2005)。多肽链内的VH和VL结构域的顺序对于本发明而言并不是关键的,只要排列VH和VL结构域使得抗原结合位点能够适当折叠以形成针对免疫效应细胞表面抗原的一个结合位点和针对靶抗原的一个结合位点即可。
本文所述的用于工程化多特异性条件活性抗体的一些技术可用于产生针对免疫效应细胞表面抗原和靶抗原的双特异性条件活性抗体。
双特异性抗体可以被构建为单条多肽链,如在WO99/54440;Mack,J.Immunol.(1997),158,3965-3970;Mack,PNAS,(1995),92,7021-7025;Kufer,CancerImmunol.Immunother.,(1997),45,193-197;Loftier,Blood,(2000),95,6,2098-2103;Bruhl,J.Immunol.,(2001),166,2420-2426中描述的。双特异性抗体的特别优选的构型是多肽构建体,其中VH区和VL区通过接头结构域相互连接。单条多肽链中VH区和VL区的顺序并不重要。在一个实施方案中,单条多肽链被构建为VH1-接头结构域-VL1-接头结构域-VH2-接头结构域-VL2。在另一个实施方案中,单条多肽链被构建为VL1-接头结构域-VH1-接头结构域-VL2-接头结构域-VH2。在另一个实施方案中,单条多肽链被构建为VH1-接头结构域-VH2-接头结构域-VL1-接头结构域-VL2。在另一个实施方案中,单条多肽链被构建为VH1-接头结构域-VL2-接头结构域-VL1-接头结构域-VH2。单条多肽链可以折叠成两个臂,每个臂能够与免疫效应细胞表面抗原或靶抗原结合。
双特异性条件活性抗体中的接头结构域是长度足以使得这些VH结构域和VL结构域进行分子间连接的肽片段。现有技术中描述了适用于此目的的接头的设计,例如EP 623679 B1、美国专利第5,258,498号、EP 573 551B1和美国专利第5,525,491号。接头结构域优选为1-25个氨基酸的亲水柔性接头,选自甘氨酸、丝氨酸和/或甘氨酸/丝氨酸。在一个实施方案中,接头结构域是一个15个氨基酸的接头的序列(Gly4Ser)3
其它的接头结构域包含寡聚化结构域。寡聚化结构域可以促进其两个或几个VH结构域和VL结构域的组合折叠成两个臂,每个臂能够与免疫效应细胞表面抗原或靶抗原结合。寡聚化结构域的非限制性实例包括亮氨酸拉链(如jun-fos、GCN4、E/EBP;Kostelny,J.Immunol.148(1992),1547-1553;Zeng,Proc.Natl.Acad.Set 94(1997),3673-3678;Williams,Genes Dev.5(1991),1553-1563;Suter,"Phage Display of Peptides andProteins",Chapter 11,(1996),Academic Press)、抗体衍生的低聚化结构域如恒定结构域CH1和CL(Mueller,FEBS Letters 422(1998),259-264)和/或四聚化结构域如GCN4-LI(Zerangue,Proc.Natl.Acad.Sci.97(2000),3591-3595)。
在一些实施方案中,可以使用杵臼(knob-in-hole)技术来稳定单个多肽链双特异性条件性抗体的折叠。Ridgway等人("'Knobs-into-holes'engineering of antibody CH3domains for heavy chain heterodimerization,"蛋白Eng.1996Jul;9(7):617-21)描述了杵臼技术。这种方法已被用于氨基酸侧链在相邻α-螺旋之间的堆积,其中α-螺旋中残基的侧链被表示为在圆柱体的表面上与臼交替设置的被隔开的杵,所述臼中可能容纳有相邻的α-螺旋的杵(O'Shea et al.,(1991)Science,254,539-544)。
免疫效应细胞表面抗原应当对一种或一类免疫效应细胞具有特异性。许多免疫效应细胞的表面抗原是已知的。自然杀伤细胞具有表面抗原,包括CD56、CD8、CD16、KIR家族受体、NKp46、NKp30、CD244(2B4)、CD161、CD2、CD7、CD3和杀伤细胞免疫球蛋白样受体(Angeliset al.,“Expansion of CD56-negative,CD16-positive,KIR-expressing naturalkiller cells after T cell-depleted haploidentical hematopoietic stem celltransplantation,”Acta Haematol.2011;126(1):13-20;Dalle et al.,“Characterization of Cord Blood Natural Killer Cells:Implications forTransplantation and Neonatal Infections,”Pediatric Research(2005)57,649–655;Agarwal et al.,“Roles and Mechanism of Natural Killer Cells in Clinical andExperimental Transplantation,”Expert Rev Clin Immunol.2008;4(1):79-91)。
巨噬细胞具有表面抗原,所述表面抗原包括CD11b、F4/80、CD68、CSF1R、MAC2、CD11c、LY6G、LY6C、IL-4Rα、CD163、CD14、CD11b、F4/80(小鼠)/EMR1(人)、CD68和MAC-1/MAC-3、PECAM-1(CD31)、CD62、CD64、CD45、Yml、CD206、CD45RO、25F9、S100A8/A9和PM-2K(Murrayet al.,“Protective and pathogenic functions of macrophage subsets,”NatureReviews Immunology,11,723-737;Taylor et al.,“Macrophage receptors and immunerecognition,”Annu Rev Immunol 2005;23:901-44;Pilling,et al.,“Identificationof Markers that Distinguish Monocyte-Derived Fibrocytes from Monocytes,Macrophages,and Fibroblasts,”PLoS ONE 4(10):e7475.doi:10.1371/journal.pone.0007475,2009)。
淋巴因子激活的杀伤(LAK)细胞具有表面抗原,所述表面抗原包括T3、T4、T11、T8、TII、Leu7、Leul1(Ferrini et al.,“Surface markers of human lymphokine-activatedkiller cells and their precursors,”Int J Cancer.1987 Jan 15;39(1):18-24;Bagnasco et al.,“Glycoproteic nature of surface molecules of effector cellswith lymphokine-activated killer(LAK)activity,”Int J Cancer.1987Jun 15;39(6):703-7;Kaufmann et al.,“Interleukin 2induces human acute lymphocytic leukemiacells to manifest lymphokine-activated-killer(LAK)cytotoxicity,”The Journalof Immunology,August 1,1987,vol.139no.3 977-982)。
T细胞,特别是细胞毒性T细胞具有表面抗原,所述表面抗原包括CD2、CD3、CD4、CD5、CD6、CD8、CD28、T58、CD27、CD45、CD84、CD25、CD127和CD196(CCR6)、CD197(CCR7)、CD62L、CD69、TCR、T10、T11和CD45RO(Ledbetter et al.,“Enhanced transmembranesignaling activity of monoclonal antibody heteroconjugates suggests molecularinteractions between receptors on the T cell surface,”Mol Immunol.1989 Feb;26(2):137-45;Jondal et al.,“SURFACE MARKERS ON HUMAN T AND B LYMPHOCYTES,”JOURNAL OF EXPERIMENTAL MEDICINE,VOLUME 136,1972,207-215;Mingari et al.,“Surface markers of human T lymphocytes,”Ric Clin Lab.1982Jul-Sep;12(3):439-448)。
双特异性条件活性抗体在与免疫效应细胞结合后可以将免疫效应细胞带到存在靶抗原的细胞或组织,优选靶抗原存在于表面上。一旦双特异性条件活性抗体(以及免疫效应细胞)与靶抗原结合,免疫效应细胞就可以攻击患病细胞或患病组织。诸如自然杀伤细胞、巨噬细胞、LAK细胞、T细胞(细胞毒性)的免疫效应细胞都能够杀死和/或破坏患病的细胞或组织,例如破坏肿瘤组织。
患病细胞或患病组织可以选自癌症、炎性疾病、神经元疾病、糖尿病、心血管疾病或感染性疾病。靶抗原的实例包括由各种免疫细胞、癌、肉瘤、淋巴瘤、白血病、生殖细胞肿瘤、胚细胞瘤和与各种血液病、自身免疫性疾病和/或炎性疾病相关的细胞表达的抗原。
可被双特异性条件活性抗体靶向的、癌症所特有的靶抗原包括4-IBB、5T4、腺癌抗原、α-胎蛋白、BAFF、B淋巴瘤细胞、C242抗原、CA-125、碳酸酐酶9(CA-IX)、C-MET、CCR4、CD152、CD19、CD20、CD200、CD22、CD221、CD23(IgE受体)、CD28、CD30(TNFRSF8)、CD33、CD4、CD40、CD44 v6、CD51、CD52、CD56、CD74、CD80、CEA、CNT0888、CTLA-4、DR5、EGFR、EpCAM、CD3、FAP、纤连蛋白超结构域B、叶酸受体1、GD2、GD3神经节苷脂、糖蛋白75、GPNMB、HER2/neu、HGF、人散点因子受体激酶、IGF-1受体、IGF-1、IgG1、LI-CAM、IL-13、IL-6、胰岛素样生长因子I受体、整合素α5β1、整合素ανβ3、MORAb-009、MS4A1、MUC1、粘蛋白CanAg、N-羟乙酰神经氨酸、NPC-IC、PDGF-Rα、PDL192、磷脂酰丝氨酸、前列腺癌细胞、RANKL、RON、ROR1、SCH 900105、SDC1、SLAMF7、TAG-72、腱生蛋白C、TGFβ2、TGF-β、TRAIL-R1、TRAIL-R2、肿瘤抗原CTAA16.88、VEGF-A、VEGFR-1、VEGFR2或波形蛋白。
用本发明的基因工程化的细胞毒性细胞或药物组合物治疗的癌症的类型包括癌、胚细胞瘤和肉瘤,以及某些白血病或淋巴恶性肿瘤、良性和恶性肿瘤以及恶性肿瘤,例如肉瘤、癌和黑素瘤。癌症可能是非实体肿瘤(如血液肿瘤)或实体瘤。还包括成人肿瘤/癌症和小儿肿瘤/癌症。
血液癌症是血液或骨髓的癌症。血液学(或血液性)癌症的实例包括白血病,白血病包括急性白血病(例如急性淋巴细胞性白血病、急性髓细胞性白血病、急性骨髓性白血病和成髓细胞性白血病、早幼粒细胞白血病、骨髓单核细胞白血病、单核细胞白血病和红白血病)、慢性白血病(例如慢性髓细胞性(粒细胞性)白血病、慢性骨髓性白血病和慢性淋巴细胞白血病)、真性红细胞增多症、淋巴瘤、霍奇金病、非霍奇金淋巴瘤(无痛形式和高级形式)、多发性骨髓瘤、瓦尔登斯特伦巨球蛋白血症、重链病、骨髓增生异常综合征、毛细胞白血病和骨髓增生异常。
实体瘤是通常不包含囊肿或液体区域的异常组织块。实体瘤可以是良性的或恶性的。按照形成实体瘤的细胞类型命名了不同类型的实体瘤(例如肉瘤、癌和淋巴瘤)。可被治疗的实体瘤的实例包括肉瘤和癌,包括纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、骨肉瘤和其它肉瘤、滑膜瘤、间皮瘤、尤文氏瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、淋巴恶性肿瘤、胰腺癌、乳腺癌、肺癌、卵巢癌、前列腺癌、肝细胞癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、甲状腺髓样癌、甲状腺乳头状癌、嗜铬细胞瘤、皮脂腺癌、乳头状癌、乳头状腺癌、髓样癌、支气管癌、肾细胞癌、肝细胞癌、胆管癌、绒毛膜癌、维尔姆斯瘤、宫颈癌、睾丸肿瘤、精原细胞瘤、膀胱癌、黑素瘤和CNS肿瘤(例如神经胶质瘤(如脑干胶质瘤和混合型胶质瘤)、成胶质细胞瘤(glioblastoma,也称为多形性胶质母细胞瘤(glioblastoma multiforme))、星形细胞瘤、CNS淋巴瘤、生殖细胞瘤、成神经管细胞瘤、神经鞘瘤、室管膜瘤、松果体瘤、成血管细胞瘤、听神经瘤、少突胶质细胞瘤、脑膜瘤、成神经细胞瘤、视网膜母细胞瘤和脑转移)。
双特异性条件活性抗体可靶向的、炎性疾病特有的靶抗原包括AOC3(VAP-1)、CAM-3001、CCL11(嗜酸性粒细胞趋化因子-1)、CD125、CD147(基础免疫球蛋白)、CD154(CD40L)、CD2、CD20、CD23(IgE受体)、CD25(IL-2受体链)、CD3、CD4、CD5、IFN-α、IFN-γ、IgE、IgE Fc区、IL-1、IL-12、IL-23、IL-13、IL-17、IL-17A、IL-22、IL-4、IL-5、IL-5、IL-6、IL-6受体、整合素α4、整合素α4β7、Lama glama、LFA-1(CD1 la)、MEDI-528、肌生成抑制素、OX-40、rhuMAbβ7、硬化蛋白、SOST、TGFβ1、TNF-α或VEGF-A。
本发明的双特异性条件活性抗体可靶向的、神经元病症所特有的靶抗原包括β淀粉样蛋白或MABT5102A中的一种或多种。本发明的双特异性条件活性抗体可靶向的、糖尿病特有的抗原包括L-Iβ或CD3中的一种或多种。本发明的双特异性条件活性抗体可靶向的、心血管疾病特有的抗原包括C5、心肌肌球蛋白、CD41(整联蛋白α-lib)、纤维蛋白II、β链、ITGB2(CD18)和鞘氨醇-1-磷酸中的一种或多种。
本发明的双特异性条件活性抗体可靶向的、感染性疾病所特有的靶抗原包括炭疽毒素、CCR5、CD4、凝聚因子A、巨细胞病毒、巨细胞病毒糖蛋白B、内毒素、大肠杆菌、乙型肝炎表面抗原、乙型肝炎病毒、HIV-1、Hsp90、甲型流感血凝素、脂磷壁酸、铜绿假单胞菌、狂犬病病毒糖蛋白、呼吸道合胞病毒和TNF-α中的一种或多种。
靶抗原的其它实例包括以特有或扩增的方式存在于癌细胞上的表面蛋白,例如B细胞淋巴瘤的IL-14受体、CD19、CD20和CD40,各种癌的Lewis Y和CEA抗原,乳腺和结肠直肠癌的Tag72抗原,肺癌的EGF-R,通常在人乳腺癌和卵巢癌中扩增的叶酸结合蛋白和HER-2蛋白,或病毒蛋白,例如人类免疫缺陷病毒(HIV)的gp120和gp41包膜蛋白,乙型肝炎和C型病毒的包膜蛋白,人巨细胞病毒的糖蛋白B和其它包膜糖蛋白,以及来自诸如卡波西肉瘤相关疱疹病毒的甲基病毒的包膜蛋白。其它可能的靶抗原包括CD4,其中配体是HIV gp120包膜糖蛋白,以及其它病毒受体,例如ICAM,其是人类鼻病毒的受体,以及脊髓灰质炎病毒的相关受体分子。
人类免疫缺陷病毒(HIV)不能进入人细胞,除非它首先结合细胞表面上的两个关键分子,即CD4和共受体。最初被认识到的共受体是CCR5,后来在病毒的生命周期中,另一种趋化因子受体CXCR4成为HIV-1的共受体(D'Souza,Nature Med.2,1293(1996);Premack,Nature Med.2,1174;Fauci,Nature 384,529(1996))。通过性接触进行大部分病毒传播的HIV-1病毒株被称为M-热带病毒。这些HIV-1病毒株(也称为非合胞体诱导(NSI)原代病毒))可以在原代CD4+T细胞和巨噬细胞中复制,并使用趋化因子受体CCR5(和较不常见的CCR3)作为其共受体。T-热带病毒(有时称为合胞体诱导(SI)原代病毒)也可以在原代CD4+T细胞中复制,但也可以体外感染建立的CD4+T细胞系,它们通过趋化因子受体CXCR4(融合病毒蛋白)实现上述功能。至少在某些体外条件下,这些T-热带病毒株中的许多病毒株除了可以使用CXCR4以外还可以使用CCR5,有些可通过CCR5进入巨噬细胞(D'Souza,Nature Med.2,1293(1996);Premack,Nature Med.2,1174;Fauci,Nature 384,529(1996))。由于M-热带HIV-1病毒株涉及约90%的HIV性传播,因此CCR5是患者病毒的主要共受体。
靶细胞上的共受体分子的数目和身份以及HIV-1病毒株经由不同的共受体进入细胞的能力似乎是疾病进展的关键决定因素。在衍生自霍奇金病患者的淋巴结T细胞和B细胞中也观察到CCR3和CCR5的高表达。I型糖尿病被认为是T细胞介导的自身免疫性疾病。在相关动物模型中,胰腺中CCR5受体的表达与I型糖尿病的进展相关(Cameron(2000)J.Immunol.165,1102-1110)。在一个实施方案中,双特异性条件活性抗体结合作为靶抗原的CCR5,可用于抑制宿主细胞的HIV感染以及减缓其它疾病的进展。
特异性结合(人)CCR5的几种抗体是本领域已知的,包括MC-1(Mack(1998)J.Exp.Med.187,1215-1224或MC-5(Blanpain(2002)Mol Biol Cell.13:723-37,Segerer(1999)Kidney Int.56:52-64,Kraft(2001)Biol.Chem.14;276:34408-18)。因此,双特异性条件活性抗体优选包含例如对CCR5(特别是人CCR5)具有特异性的抗体的VL结构域和VH结构域(即来自Ig的第二结构域)和对T细胞上的CD3抗原具有特异性的抗体的VH结构域和VL结构域。
在另一个实施方案中,本发明提供以T细胞上的CD3,和CD19作为靶抗原的双特异性条件活性抗体。已证明CD19是非常有用的医疗靶标。CD19在从前体B细胞到成熟B细胞的整个B细胞谱系中表达,以及在所有淋巴瘤细胞上均匀表达,但在干细胞中不存在(Haagen,Clin Exp Immunol 90(1992),368-75;Uckun,Proc.Natl.Acad.Sci.USA 85(1988),8603-7)。已经公开了使用针对CD19的抗体和其它免疫调节抗体的组合疗法,用于治疗B细胞恶性肿瘤(WO02/04021、US2002006404、US2002028178)和自身免疫疾病(WO02/22212,US2002058029)。WO00/67795公开了使用针对CD19的抗体用于治疗惰性和侵袭性B细胞淋巴瘤、以及急性和慢性淋巴性白血病的形成。WO02/80987公开了基于针对抗原CD19的抗体的免疫毒素的治疗用途,其用于治疗诸如B细胞非霍奇金淋巴瘤、霍奇金淋巴瘤或B细胞白血病(例如B细胞急性淋巴细胞白血病(B-ALL))、(例如毛细胞淋巴瘤)B细胞前体急性淋巴细胞白血病(pre-B-ALL)、B细胞慢性淋巴细胞白血病(B-CLL))的疾病。
在另一个实施方案中,本发明提供针对T细胞上的CD3,以及作为靶抗原的CD20的双特异性条件活性抗体。CD20是B淋巴细胞上存在的细胞表面蛋白之一。CD20抗原存在于正常和恶性的前体B淋巴细胞和成熟B淋巴细胞中,包括在超过90%的B细胞非霍奇金淋巴瘤(NHL)中的那些。造血干细胞、激活的B淋巴细胞(浆细胞)和正常组织中不存在该抗原。已经描述了几种主要鼠源的抗体:1F5(Press et al.,1987,Blood 69/2,584-591)、2B8/C2B8、2H7、1H4(Liu et al.,1987,J Immunol 139,3521-3526;Anderson et al.,1998,美国专利第5,736,137号;Haisma et al.,1998,Blood 92,184-190;Shan et al.,1999,J.Immunol.162,6589-6595)。
已在使用编码与载体蛋白连接的scFv的DNA进行疫苗接种以治疗浆细胞恶性肿瘤的免疫治疗策略中对CD20进行了描述(Treon et al.,2000,Semin Oncol 27(5),598),已证明使用CD20抗体(IDEC-C2B8)的免疫治疗在治疗非霍奇金B细胞淋巴瘤方面是有效的。
在一些实施方案中,双特异性条件活性抗体是由多核苷酸分子编码的单条多肽链。多核苷酸可以是例如DNA、cDNA、RNA、或合成产生的DNA或RNA、或重组产生的以单独或组合的形式包含那些多核苷酸中的任何多核苷酸的嵌合核酸分子。多核苷酸可以是载体的一部分,例如表达载体,包括质粒、粘粒、病毒和噬菌体、或基因工程中常规使用的任何表达系统。载体可以包含其它基因,例如标记基因,其允许在合适的宿主细胞中在合适的条件下选择载体。
在一个方面,多核苷酸可操作地连接到允许在原核或真核细胞中进行表达的表达调控序列。衍生自病毒(如逆转录病毒、痘苗病毒、腺相关病毒、疱疹病毒或牛乳头瘤病毒)的表达载体可用于将多核苷酸或载体递送到哺乳动物细胞中。包含本发明的多核苷酸的载体可以通过众所周知的方法转化到宿主细胞中,这些方法根据细胞宿主的类型而变化。例如,氯化钙转染通常用于原核细胞,而磷酸钙处理或电穿孔可用于其它细胞宿主。
在另一个方面,条件活性多肽可被工程化以产生双特异性条件活性多肽。用于工程化条件活性多肽的方法与如WO2015/175375中描述的用于工程化双特异性条件活性抗体的方法相似。例如,双特异性条件活性多肽可具有两个活性位点,每个活性位点具有条件活性,即在正常生理条件下比亲本位点活性低且在异常条件下比亲本位点活性高。这两个条件活性位点可以独立地演变并筛选,然后通过用接头将两个活性位点连接成同一双特异性条件活性多肽。在一个方面,可用于双特异性条件活性抗体中的接头是已知的接头,其适于通过在条件活性多肽中连接两个条件活性位点来产生双特异性条件活性多肽。
WO2015/175375中已经描述了用于工程化条件活性抗体的Fc区的合适方法。
WO2015/175375中已经描述了用于工程化条件活性病毒颗粒的合适方法。
在一些方面,使用WO2015/175375中描述的方法,可将条件活性多肽插入到作为溶瘤病毒的病毒颗粒中。溶瘤病毒是当与肿瘤细胞接触时能够杀死那些肿瘤细胞的病毒。插入到溶瘤病毒中的条件活性多肽可在肿瘤微环境中更有活性,但在个体的其它部位中活性较低。例如,条件活性多肽在存在于肿瘤微环境中的pH(例如,pH 6.2-6.8)或其它条件下可更具活性,但在存在于个体另一位置处的pH或其它条件下活性较低(例如,pH 7.2-7.6),例如正常的生理条件。插入到溶瘤病毒中的条件活性多肽可用于促进向肿瘤递送溶瘤病毒,其中溶瘤病毒可靶向并杀死肿瘤细胞。
感兴趣的溶瘤病毒包括腺病毒,单纯疱疹病毒-1,牛痘病毒,细小病毒,呼肠孤病毒,新城疫病毒等。痘苗病毒是特别感兴趣的。
在一个方面,溶瘤病毒选自副粘病毒、呼肠孤病毒、疱疹病毒、腺病毒和塞姆利基森林病毒。在另一个方面,副粘病毒选自新城疫病毒(NDV)、麻疹病毒和腮腺炎病毒。在另一个方面,NDV来自选自MTH68/H、PV-701和73-T的菌株。
另一方面,溶瘤病毒选自疱疹病毒、呼肠孤病毒、E1B缺失的腺病毒、水泡性口炎病毒和痘病毒。这些溶瘤病毒有可能不仅破坏肿瘤细胞,而且还从被破坏的肿瘤细胞释放抗原,从而引发免疫反应。
溶瘤病毒的具体实例包括但不限于,腺病毒(例如δ-24,δ-24-RGD,ICOVIR-5、ICOVIR-7、Onyx-015、ColoAdl、H101、AD5/3-D24-GMCSF)、呼肠孤病毒、单纯疱疹病毒(HSV、OncoVEX GM-CSF)、新城疫病毒、麻疹病毒、逆转录病毒(如流感病毒)、痘病毒(如牛痘病毒,包括Copenhagen、Western Reserve、Wyeth毒株)、粘液瘤病毒、弹状病毒(水泡性口炎病毒(VSV))、小核糖核酸病毒(如Seneca Valley病毒)、SW-001)、柯萨奇病毒和细小病毒。
在一个方面,溶瘤病毒是包含其57种人血清型(HAdV-1至57)中任一种的成员的腺病毒。在一个实施方案中,腺病毒是Ad5血清型。或者,腺病毒可以是可以包含或不包含Ad5成分的杂合血清型。合适的腺病毒的非限制性实例包括δ-24、δ-24-RGD、ICOVIR-5、ICOVIR-7、ONYX-015、ColoAd1、H101和AD5/3-D24-GMCSF。ONYX-015是病毒血清型Ad2和Ad5的杂合物,在E1B-55K和E3B区缺失以增强癌症选择性。HI 01是Onyx-015的修改版。ICOVIR-5和ICOVIR-7包含E1A的Rb结合位点缺失和E2F启动子对E1A启动子的替代。Colo Ad 1是嵌合的Addl lp/Ad3血清型。AD5/3-D24-GMCSF(CGTG-102)是一种编码GM-CSF的血清型5/3衣壳修饰的腺病毒(Ad5衣壳蛋白knob被血清型3的knob结构域取代)。
在一个特别优选的实施方案中,溶瘤病毒是δ-24或δ-24-RGD腺病毒。在US 2003/0138405 A1和US 2006/0147420 A1中描述了δ-24。δ-24腺病毒源自腺病毒5型(Ad-5),并且在E1A基因的CR2部分内含有24个碱基对的缺失。δ-24-RGD进一步包含插入纤维knob蛋白的H1环的RGD-4C序列(其强力结合αvβ3和αvβ5整联蛋白)(Pasqualini R.et al.,NatBiotechnol.,15:542-546,1997)。
还可以进一步修饰溶瘤腺病毒以改善溶瘤腺病毒治疗癌症的能力。Jiang等人(Curr.Gene Ther.2009Oct 9(5):422-427)已经描述了这样的溶瘤腺病毒修饰,还可参见US 2006/0147420 A1。
包括条件活性多肽的溶瘤病毒可以局部或全身施用。例如但不限于,溶瘤病毒可以血管内(动脉内或静脉内)、瘤内、肌内、皮内、腹膜内、皮下、经口、胃肠外、鼻内、气管内、经皮、脊柱内、眼内或颅内施用。
溶瘤病毒可以以单次施用或多次施用来施用。该病毒可以以至少1×105蚀斑形成单位(PFU)、至少5×105PFU、至少1×106PFU、至少5×106或至少5×106PFU、1×107、至少1×107PFU、至少1×108或至少1×108PFU、至少1×108PFU、至少5×108PFU、至少1×109或至少1×109PFU、至少5×109或至少5×109PFU、至少1×1010PFU或至少1×1010PFU、至少5×1010或至少5×1010PFU、至少1×1011PFU或至少1×l011PFU、至少1×1012PFU或至少1×1013PFU的剂量施用。例如,溶瘤病毒可以以约107-1013PFU、约108-1013PFU、约109-1012PFU或约108-1012PFU的剂量施用。
在某些方面,要用溶瘤细胞治疗的癌症包括任何实体瘤,例如肺癌、卵巢癌、乳腺癌、子宫颈癌、胰腺癌、胃癌、结肠癌、皮肤癌、喉癌、膀胱癌和前列腺癌。在一个方面,癌症是中枢神经系统的癌症。癌症可以是神经上皮肿瘤,例如星形细胞肿瘤(例如星形细胞瘤、间变性星形细胞瘤、成胶质细胞瘤、胶质肉瘤、毛细胞型星形细胞瘤、巨细胞星形细胞瘤、多形性黄色星形细胞瘤)、少突胶质细胞瘤、室管膜瘤、少突星形细胞瘤、成胶质细胞瘤、星形细胞瘤、脉络丛乳头状瘤、脉络丛癌、神经节细胞瘤、神经节神经胶质瘤、神经细胞瘤、神经上皮瘤、成神经细胞瘤、松果体区肿瘤(例如成松果体细胞瘤、松果体母细胞瘤或混合成松果体细胞瘤/松果体母细胞瘤)、髓上皮瘤、成神经管细胞瘤、成神经细胞瘤或成神经节细胞瘤、成视网膜细胞瘤或成室管膜细胞瘤。癌症可以是中枢神经系统肿瘤,例如鞍区肿瘤(如垂体腺瘤、垂体癌或颅咽管瘤)、造血肿瘤(如原发性恶性淋巴瘤、浆细胞瘤或粒细胞瘤肉瘤)、生殖细胞肿瘤(如生殖细胞瘤、胚胎癌、卵黄囊肿瘤、绒毛膜癌、畸胎瘤或混合生殖细胞瘤)、脑膜瘤、间叶性肿瘤、黑色素细胞瘤或者颅骨或脊神经(如神经鞘瘤或神经纤维瘤)。癌症可以是低级胶质瘤(例如室管膜瘤、星形细胞瘤、少突胶质细胞瘤或混合神经胶质瘤)或高级(恶性)神经胶质瘤(例如多形性成胶质细胞瘤)。癌症可以是原发性或转移性脑肿瘤。条件活性多肽或从条件活性多肽工程化获得的产物可以用于药物组合物中。美国专利第8,709,755 B2号中描述了一些合适的药物组合物。
药物组合物可用于治疗各种类型的癌症,包括癌、胚细胞瘤和肉瘤、以及某些白血病或淋巴恶性肿瘤、良性和恶性肿瘤(malignant tumors)以及恶性瘤(malignancies),例如肉瘤、癌和黑素瘤。癌症可能是非实体瘤(如血液肿瘤)或实体瘤。成人肿瘤/癌症和小儿肿瘤/癌症也包括在内。
血液癌症是血液或骨髓的癌症。血液学(或血液性)癌症的实例包括白血病,白血病包括急性白血病(例如急性淋巴细胞性白血病、急性髓细胞性白血病、急性骨髓性白血病和成髓细胞性白血病、早幼粒细胞白血病、骨髓单核细胞白血病、单核细胞白血病和红白血病)、慢性白血病(例如慢性髓细胞性(粒细胞性)白血病、慢性骨髓性白血病和慢性淋巴细胞白血病)、真性红细胞增多症、淋巴瘤、霍奇金病、非霍奇金淋巴瘤(无痛形式和高级形式)、多发性骨髓瘤、瓦尔登斯特伦巨球蛋白血症、重链病、骨髓增生异常综合征、毛细胞白血病和骨髓增生异常。
实体瘤是通常不包含囊肿或液体区域的异常组织块。实体瘤可以是良性的或恶性的。按照形成实体瘤的细胞类型命名了不同类型的实体瘤(例如肉瘤、癌和淋巴瘤)。可被治疗的实体瘤的实例包括肉瘤和癌,包括纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、骨肉瘤和其它肉瘤、滑膜瘤、间皮瘤、尤文氏瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、淋巴恶性肿瘤、胰腺癌、乳腺癌、肺癌、卵巢癌、前列腺癌、肝细胞癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、甲状腺髓样癌、甲状腺乳头状癌、嗜铬细胞瘤、皮脂腺癌、乳头状癌、乳头状腺癌、髓样癌、支气管癌、肾细胞癌、肝细胞癌、胆管癌、绒毛膜癌、维尔姆斯瘤、宫颈癌、睾丸肿瘤、精原细胞瘤、膀胱癌、黑素瘤和CNS肿瘤(例如神经胶质瘤(如脑干胶质瘤和混合型胶质瘤)、成胶质细胞瘤(也称为多形性胶质母细胞瘤)、星形细胞瘤、CNS淋巴瘤、生殖细胞瘤、成神经管细胞瘤、神经鞘瘤、室管膜瘤、松果体瘤、成血管细胞瘤、听神经瘤、少突胶质细胞瘤、脑膜瘤、成神经细胞瘤、视网膜母细胞瘤和脑转移)。
包含条件活性多肽或从条件活性多肽工程化获得的产物的药物组合物可以根据用于制备药物组合物的已知方法配制。在这些方法中,通常将条件活性多肽与含有药学上可接受的载体的混合物、溶液或组合物组合。
药学上可接受的载体是接受的患者可以耐受的物质。无菌磷酸盐缓冲盐水是药学上可接受的载体的一个实例。其它合适的药学上可接受的载体是本领域技术人员所熟知的(参见,例如Gennaro(ed.),Remington's Pharmaceutical Sciences(Mack PublishingCompany,19th ed.1995))。制剂还可包含一种或多种赋形剂、防腐剂、增溶剂、缓冲剂、白蛋白以防止药瓶表面上的蛋白损失等。
药物组合物的形式、施用途径、剂量和方案自然地取决于待治疗的病症、疾病的严重程度、患者的年龄、体重和性别等。技术人员可以考虑这些考量因素以配制合适的药物组合物。本发明的药物组合物可以被配制用于局部、经口、肠胃外、鼻内、静脉内、肌肉内、皮下或眼内施用等。
优选地,药物组合物含有对于能够注射的制剂而言药学上可接受的载体。这些载体可以特别是等渗的无菌盐水溶液(磷酸一钠或磷酸二钠、氯化钠、氯化钾、氯化钙或氯化镁等或这些盐的混合物),或干燥的,特别是冷冻干燥的组合物,在加入例如无菌水或生理盐水后,这些载体允许构成可注射溶液。
在一些实施方案中,存在张度剂(有时称为“稳定剂”)以调节或维持组合物中液体的张度。当与大的带电荷生物分子如蛋白和抗体一起使用时,它们通常被称为“稳定剂”,这是因为它们可以与氨基酸侧链的带电荷基团相互作用,从而减少分子间和分子内相互作用的可能性。张度剂可以以药物组合物的0.1重量%至25重量%,优选1重量%至5重量%的任何量存在。优选的张度剂包括多元糖醇,优选三元或更高级的糖醇,例如甘油、赤藓糖醇、阿拉伯糖醇、木糖醇、山梨糖醇和甘露糖醇。
其他赋形剂包括可用作以下试剂的一种或多种试剂:(1)填充剂,(2)增溶剂,(3)稳定剂,以及(4)防止变性或粘附到容器壁的试剂。这种赋形剂可以包括:多元糖醇(上面列举的);氨基酸如丙氨酸、甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸、赖氨酸、鸟氨酸、亮氨酸、2-苯丙氨酸、谷氨酸、苏氨酸等;有机糖或糖醇,例如蔗糖、乳糖、乳糖醇、海藻糖、水苏糖、甘露糖、山梨糖、木糖、核糖、核糖醇、肌醇半乳糖、肌醇、半乳糖、半乳糖醇、甘油、环多醇(例如肌醇)、聚乙二醇;含硫还原剂如尿素、谷胱甘肽、硫辛酸、巯基乙酸钠、硫代甘油、α-硫代甘油和硫代硫酸钠;低分子量蛋白如人血清白蛋白、牛血清白蛋白、明胶或其它免疫球蛋白;亲水聚合物如聚乙烯吡咯烷酮;单糖(例如木糖、甘露糖、果糖、葡萄糖);二糖(例如乳糖、麦芽糖、蔗糖);三糖如棉子糖;以及多糖如糊精或葡聚糖。
非离子表面活性剂或洗涤剂(也称为“润湿剂”)可以用于帮助增溶治疗剂以及保护治疗性蛋白免受由搅动诱导的聚集,这也允许制剂暴露于剪切表面应力而不引起活性治疗性蛋白或抗体的变性。非离子表面活性剂可以以约0.05mg/ml至约1.0mg/ml,优选约0.07mg/ml至约0.2mg/ml的浓度范围存在。
合适的非离子表面活性剂包括聚山梨酯(20、40、60、65、80等),泊洛沙姆(184、188等),
Figure BDA0003896412110000991
多元醇,
Figure BDA0003896412110000992
聚氧乙烯脱水山梨糖醇单醚(
Figure BDA0003896412110001001
等),聚桂醇400,聚氧乙烯40硬脂酸酯,聚氧乙烯氢化蓖麻油10、50和60,甘油单硬脂酸酯,蔗糖脂肪酸酯,甲基纤维素和羧甲基纤维素。可以使用的阴离子洗涤剂包括十二烷基硫酸钠、二辛基磺基琥珀酸钠和二辛基磺酸钠。阳离子洗涤剂包括苯扎氯铵或苄索氯铵。
用于施用的剂量可以作为相关病理学或者所需的治疗持续时间的各种参数的函数进行调整,特别是作为所用的施用方式的函数进行调整。为了制备药物组合物,可将有效量的条件活性多肽或由条件活性多肽进一步工程化获得的产物溶解或分散于药学上可接受的载体或水性介质中。
适用于可注射使用的药物制剂包括无菌水性溶液或分散体;诸如芝麻油、花生油或丙二醇水溶液的载体;和用于临时制备无菌可注射溶液或分散体的无菌粉末。在所有情况下,制剂必须是无菌的,并且在一定程度上必须是流动性的,以便容易注射。它必须在制造和储存条件下稳定,并且必须防止微生物如细菌和真菌的污染作用。
作为游离碱或药学上可接受的盐的条件活性多肽的溶液可以在与表面活性剂适当混合的水中制备。分散体也可以在甘油、液体聚乙二醇及其混合物和油中制备。在通常的储存和使用条件下,这些制剂含有防腐剂以防止微生物的生长。
条件活性多肽和从条件活性多肽的工程化获得的产物可以以盐形式配制成组合物。药学上可接受的盐包括酸加成盐(与蛋白的游离氨基形成)其与无机酸(如盐酸或磷酸)或有机酸(如乙酸、草酸、酒石酸、扁桃酸等)一起形成。与游离羧基形成的盐也可以衍生自无机碱(如氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙或氢氧化铁),以及有机碱(如异丙胺、三甲胺、组氨酸、普鲁卡因等)。
载体还可以是含有例如水、乙醇、多元醇(例如甘油、丙二醇和液体聚乙二醇等)、其合适的混合物和蔬菜油的溶剂或分散介质。例如,通过使用诸如卵磷脂的包衣,通过在分散的情况下维持所需的粒度和通过使用表面活性剂来维持适当的流动性。可以通过各种抗菌剂和抗真菌剂,例如对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸、硫柳汞等来防止微生物的作用。在许多情况下,优选包含等渗剂,例如糖或氯化钠。可以通过在可注射组合物中使用延迟吸收的试剂例如单硬脂酸铝和明胶来延长该组合物的吸收。
通过将需要量的条件活性多肽与上面列举的一种或多种其它成分(如果可能需要)一起掺入合适的溶剂中,然后过滤灭菌来制备无菌可注射溶液。通常,通过将各种无菌的活性成分掺入含有基础分散介质和来自上面列举的那些的所需其它成分的无菌载体中来制备分散体。在用于制备无菌可注射溶液的无菌粉末的情况下,优选的制备方法是真空干燥和冷冻干燥技术,其从先前的无菌过滤溶液中产生活性成分加任何其他所需成分的粉末。
还设想了用于直接注射的更加浓缩或高度浓缩的溶液的制备,其中使用二甲基亚砜(DMSO)作为溶剂预计会导致极快的渗透,将高浓度的活性剂递送至小肿瘤区。
在配制后,溶液将以与剂量配方相容的方式并以治疗有效量施用。该制剂易于以多种剂型施用,例如上述可注射溶液的类型,但也可以使用药物释放胶囊等。
对于例如水性溶液形式的肠胃外施用,该溶液应该被适当地缓冲(如果需要)并且液体稀释剂首先与足够的盐水或葡萄糖等渗。这些特定的水性溶液特别适用于静脉内、肌肉内、皮下和腹膜内施用。就此而言,根据本公开内容,可以使用的无菌水性介质为本领域技术人员所知。例如,一个剂量可以溶解在1ml等渗NaCl溶液中,或将其加入到1000ml皮下灌注液中或在建议的输注位点注射(参见例如,“Remington's Pharmaceutical Sciences”15th Edition,pp.1035-1038和1570-1580)。取决于所治疗的个体的病症,必然会发生一些剂量变化。无论如何,负责施用的人员将确定针对单个个体的适当剂量。
可以将条件活性多肽和从条件活性多肽的工程化获得的产物配制在治疗混合物中,以递送每剂量约0.0001-10.0毫克,或约0.001-5毫克,或约0.001-1毫克,或约0.001-0.1毫克,或约0.1-1.0毫克或甚至约10毫克。也可以在选定的时间间隔施用多个剂量。
除了配制为用于肠胃外施用例如静脉内或肌内注射的化合物外,其它药学上可接受的形式包括例如,用于口服施用的片剂或其它固体;延时释放胶囊;及目前使用的任何其它形式。
在某些实施方案中,设想使用脂质体和/或纳米颗粒将条件活性多肽或从条件活性多肽的进一步工程化获得的产物引入宿主细胞。脂质体和/或纳米颗粒的形成和使用是本领域技术人员已知的。
纳米胶囊通常可以以稳定且可重现的方式包封化合物。为了避免由于细胞内聚合物超载引起的副作用,通常使用能够在体内降解的聚合物来设计这种超细颗粒(大小约0.1μm)。设想可将满足这些要求的可生物降解的聚氰基丙烯酸烷酯纳米颗粒用于本发明。
脂质体由分散于水性介质中并自发形成多层同心双层囊泡(也称为多层囊泡(MLV))的磷脂形成。MLV通常具有25nm至4μm的直径。对MLV进行超声处理导致形成直径在200至
Figure BDA0003896412110001021
范围内的小单层囊泡(SUV),其核心中含有水性溶液。脂质体的物理特性依赖于pH值、离子强度和二价阳离子的存在。
如本发明所述的含有条件活性多肽或从条件活性多肽的进一步工程化获得的产物的药物制剂通过与一种或多种任选的药学上可接受的载体(Remington'sPharmaceutical Sciences 16th edition,Osol,A.Ed.(1980))混合制备成冻干制剂或水性溶液的形式。药学上可接受的载体包括但不限于:缓冲剂,例如磷酸盐、柠檬酸盐和其它有机酸;抗氧化剂包括抗坏血酸和蛋氨酸;防腐剂(例如十八烷基二甲基苄基氯化铵;氯化六甲双铵物;苯扎氯铵;苄索氯铵;酚醇、丁醇或苯甲醇;对羟基苯甲酸烷基酯如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;邻苯二酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(少于约10个残基)多肽;蛋白,如血清白蛋白、明胶或免疫球蛋白;亲水聚合物如聚乙烯吡咯烷酮;氨基酸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其它碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;糖如蔗糖、甘露糖醇、海藻糖或山梨糖醇、成盐反离子如钠;金属络合物(例如Zn-蛋白复合物);和/或非离子表面活性剂如聚乙二醇(PEG)。
本文的示例性的药学上可接受的载体还包括间质药物分散剂,例如可溶性中性活性透明质酸酶糖蛋白(sHASEGP),例如人可溶性PH-20透明质酸酶糖蛋白,例如rHuPH20(
Figure BDA0003896412110001031
Baxter International,Inc.)。美国专利公开第2005/0260186号和第2006/0104968号中描述了某些示例性的sHASEGP和使用方法,包括rHuPH20。在一个方面,sHASEGP与一种或多种另外的糖胺聚糖酶例如软骨素酶组合。
示例性的冻干抗体制剂描述于美国专利第6,267,958号中。水性抗体制剂包括在美国专利第6,171,586号和WO2006/044908中描述的那些,后者的制剂包含组氨酸乙酸盐缓冲剂。
本文的制剂还可以视需要含有多于一种的活性成分用于正在治疗的特定适应症。优选地,具有彼此不会不利地影响的互补活性的成分可以组合成单一制剂。例如,除了本发明的条件活性抗体、抗体片段或免疫偶联物之外,可能需要提供EGFR拮抗剂(例如厄洛替尼)、抗血管生成剂(例如可以是抗VEGF抗体的VEGF拮抗剂)或化学治疗剂(例如紫杉烷或铂剂)。这些活性成分适合以对预期目的有效的量组合存在。
活性成分可以封装在例如通过凝聚技术或通过界面聚合制备的微胶囊中。例如,可以使用分别在胶体药物递送系统(例如,脂质体、白蛋白微球、微乳液、纳米颗粒和纳米胶囊)中或粗乳液(macroemulsion)中的羟甲基纤维素或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊。这些技术公开于Remington's Pharmaceutical Sciences 16th edition,Osol,A.Ed.(1980)中。
还可以制备持续释放制剂。持续释放制剂的合适实例包括含有该抗体或抗体片段的固体疏水性聚合物的半渗透性基质,所述基质可以是成形制品的形式,例如,薄膜或微胶囊。
在一些实施方案中,条件活性多肽或从条件活性多肽的工程化获得的产物可用于生产含有用于治疗、预防和/或诊断所述疾病的物质的制品。该制品包括容器以及在容器上或与容器相关联的标签或包装说明书。合适的容器包括例如瓶子、小瓶、注射器、IV溶液袋等。容器可以由多种材料形成,例如玻璃或塑料。该容器容纳组合物本身或该组合物与有效治疗、预防和/或诊断病症的另一种组合物的组合,并且可以具有无菌入口(例如该容器可以是静脉内溶液袋或具有通过皮下注射针可刺穿的塞子的小瓶)。该组合物中的至少一种活性剂是本发明的条件活性多肽或由条件活性多肽的进一步工程化获得的产物。标签或包装说明书表明该组合物用于治疗所选择的病症。此外,所述制品可包含(a)其中含有组合物的第一容器,其中该组合物包含条件活性多肽或由该条件活性多肽工程化的产物;和(b)其中含有组合物的第二容器,其中该组合物包含另外的细胞毒素或其它治疗剂。本发明该实施方案中的制品还可以包含指示该组合物可用于治疗特定病症的包装说明书。或者或另外地,所述制品还可以包含包括药学上可接受的缓冲液的第二(或第三)容器,所述缓冲液例如抑菌注射用水(BWFI)、磷酸盐缓冲盐水、林格氏溶液和葡萄糖溶液。它还可以包括从商业和用户观点来看所需的其它物质,包括其它缓冲液、稀释剂、过滤器、针头和注射器。
所述制品可以任选地包含容器作为肠胃外、皮下、肌内、静脉内、关节内、支气管内、腹腔内、囊内、软骨内、腔内、体腔内、小脑内、脑室内、结肠内、子宫颈管内、胃内、肝内、心肌内、骨内、骨盆内、心包内、腹膜内、胸膜内、前列腺内、肺内、直肠内、肾内、视网膜内、椎管内、滑膜内、胸腔内、胎儿宫内、膀胱内、药丸、阴道、直肠、口腔内、舌下、鼻内或透皮递送装置或系统的组成部分。
条件活性多肽或从条件活性多肽的工程化获得的产物可包含在医疗装置中,其中该装置适于通过选自以下中的至少一种模式接触或施用条件活性多肽或由条件活性多肽的进一步工程化获得的产物:肠胃外、皮下、肌内、静脉内、关节内、支气管内、腹腔内、囊内、软骨内、腔内、体腔内、小脑内、脑室内、结肠内、子宫颈管内、胃内、肝内、心肌内、骨内、骨盆内、心包内、腹膜内、胸膜内、前列腺内、肺内、直肠内、肾内、视网膜内、椎管内、滑膜内、胸腔内、胎儿宫内、膀胱内、药丸、阴道、直肠、口腔内、舌下、鼻内或透皮吸收。
在另一些实施方案中,条件活性多肽或从条件活性多肽的工程化获得的产物可以在第一容器中以冻干形式包含在试剂盒中,和任选的包含无菌水、无菌缓冲水、或至少一种选自以下化合物中的防腐剂的第二容器:苯酚、间甲酚、对甲酚、邻甲酚、氯甲酚、苯甲醇、亚硝酸苯汞、苯氧乙醇、甲醛、氯丁醇、氯化镁、对羟基苯甲酸烷基酯、苯扎氯铵、苄索氯铵、脱氢乙酸钠和硫柳汞或它们在稀释剂水性溶液中的混合物。在一个方面,在试剂盒中,第一容器中的条件活性多肽或从条件活性多肽的工程化获得的产物的浓度用第二容器的内容物复原为约0.1mg/ml至约500mg/ml的浓度。在另一个方面,第二容器还包括等渗剂。在另一个方面,第二容器还包含生理上可接受的缓冲液。在一个方面,本发明提供治疗至少一种亲本蛋白介导的病症的方法,其包括向有需要的患者施用试剂盒中提供的制剂,并在施用前进行复原。
以下实施例是说明性的,但并不是本发明的限制。本领域通常遇到的以及对于本领域技术人员而言显而易见的各种条件和参数的其它合适的修改和适应性在本公开的范围内。
实施例
实施例1-5:用于制备条件活性多肽的实施例1-5已经描述于第8,709,755 B2号美国专利中,其通过引用并入本文。
实施例6:演变抗体的轻链或重链
使用CPE分别演变抗体F1-10F10的重链和轻链。筛选轻链突变体以发现具有条件活性的26个轻链突变体,在这种情况下,突变体在pH 6.0下比野生型更具有活性,并且突变体在pH 7.4下比野生型活性低。26个轻链突变体在轻链中的8个不同位置具有突变。26个轻链突变体中的多于5个在所述8个位置中的3个位置处出现突变。这3个位置被认为是轻链中的热点。筛选重链突变体以发现具有条件活性的28个重链突变体。28个重链突变体在重链的8个不同位置具有突变。28个重链突变体中的多于5个在所述8个位置中的3个位置处具有突变。这3个位置被认为是重链中的热点。通过ELISA测试来证实轻链突变体和重链突变体的条件活性。
由该实施例产生的最佳条件活性抗体在pH 6.0下的活性与在pH 7.4下的活性具有17倍的差异。此外,许多条件活性抗体在正常生理pH 7.4和异常pH 6.0之间的pH下具有可逆的活性。有趣的是,当在5.0-7.4的pH范围内通过ELISA测试测试条件活性抗体的活性时,由该实施例产生的大多数条件活性抗体在约5.5-6.5的pH下表现出最佳的结合活性。
使用全细胞的FACS(荧光激活细胞分选)测试也证实了由本实施例产生的条件活性抗体的活性,其中CHO细胞用于在pH 6.0和pH 7.4下表达抗体的抗原。将条件活性抗体加入CHO细胞中以测量结合活性。FACS测试证实了在用于测量条件活性抗体在pH 6.0下相对于在pH 7.4下的选择性的ELISA测试的结果中的总趋势。
实施例7:在特定缓冲液中选择条件活性抗体
对根据本发明通过演变步骤产生的突变抗体在正常生理pH 7.4下进行测试,并在异常pH 6.0下进行测试。使用包括在人血清中发现的包含碳酸氢盐的磷酸盐缓冲盐水(PBS)溶液进行两个测试。溶液中碳酸氢盐的浓度是人血清中碳酸氢盐的典型浓度,即生理浓度。使用不含碳酸氢盐的相同PBS溶液进行比较试验。
在本实施例中测量突变抗体或条件活性抗体的结合活性的测试为ELISA测试,该测试按如下步骤进行:
1.ELISA的前一天:使用100μl在PBS中的浓度为1μg/ml的抗体Ab-A ECD his tag(组氨酸标签)(2.08mg/ml)抗原对孔进行包被,
3.从用抗体Ab-A-His抗原包被的96孔板中弹去缓冲溶液,并在纸巾上吸干,
4.将板用缓冲液N或PBS洗涤3次,
5.将板用200μl指定缓冲液在室温下封闭1小时,
6.根据布局将选择的CPE/CPS突变体和野生型蛋白在指定的缓冲溶液中稀释至75ng/ml。缓冲溶液的pH设定为6.0或7.4(以下称为“指定缓冲溶液”),
6.将缓冲液弹去,根据板的布局向每个孔中加入100μl的75ng/ml样品,
7.将板在室温下温育1小时,
8.将缓冲液从96孔板中弹去,并在纸巾上吸干,
9.根据布局将板用200μl的指定缓冲液总共洗涤3次,
10.在指定的缓冲溶液中以1:5000的稀释度制备抗Flag HRP,根据布局向每个孔中加入100μl Anti-Flag辣根过氧化物(HRP),
11.将板在室温下温育1小时,
13.将板用200μl的指定缓冲溶液洗涤3次,
14.将板用50μl 3,3',5,5'-四甲基联苯胺(TMB)显色1.5分钟。
发现在含有碳酸氢盐的PBS缓冲溶液中的测试使条件活性抗体的选择的成功率显著更高。此外,使用含有碳酸氢盐的PBS缓冲溶液选择的条件活性抗体在pH 6.0下的活性与pH 7.4下的活性的比值往往高得多,从而提供明显更高的选择性。
进一步观察到,当在没有碳酸氢盐的PBS缓冲溶液中测试使用具有碳酸氢盐的PBS缓冲溶液选择的条件活性抗体时,条件活性抗体在pH 6.0下的选择性相对于在pH 7.0下的选择性显著降低。然而,当将生理量的碳酸氢盐加入到该PBS缓冲溶液中时,相同的条件活性抗体的选择性得以恢复。
在另一个测试中,在添加了碳酸氢盐的Krebs缓冲液中测试所选择的条件活性抗体。在该添加有碳酸氢盐的Krebs缓冲液中也观察到pH 6.0下的活性与pH 7.4下的活性的比值较高。看起来这可能至少部分是由于在Krebs缓冲溶液中存在碳酸氢盐。
当碳酸氢盐的浓度在PBS缓冲溶液中降低至低于其生理浓度的浓度时,观察到条件活性抗体在7.4的正常生理pH下的活性增强。观察到条件活性抗体在pH 7.4的活性增强与PBS缓冲溶液中碳酸氢盐浓度的降低有关。
当在pH 7.4下进行测试时,野生型抗体不受PBS缓冲溶液中不同量的碳酸氢盐的影响,因为其活性在用于测试条件活性抗体的PBS缓冲溶液的所有碳酸氢盐浓度下保持相同。
实施例8:在不同缓冲液中选择条件活性抗体
使根据本发明通过演变步骤产生的突变抗体在正常生理pH(7.4)进行ELISA测试并在异常pH(6.0)下进行ELISA测试。使用不同的缓冲液进行两个ELISA测试,包括基于Krebs缓冲液的具有牛血清白蛋白(BSA)的缓冲液和基于PBS缓冲液的具有碳酸氢盐和BSA的缓冲液。
所述ELISA测试按如下步骤进行:
1.ELISA的前一天:使用100μl在包被缓冲液(碳酸盐-碳酸氢盐缓冲液)中浓度为1μg/ml的抗体Ab-A ECD his tag(2.08mg/ml)抗原对孔进行包被。
2.从用抗体Ab-A-His抗原包被的96孔板中弹去缓冲溶液,并在纸巾上吸干。
3.将板用200μl的20个缓冲液洗涤3次。
4.将板用200μl的20个缓冲液在室温下封闭1小时。
5.根据布局将突变体和嵌合体在20个缓冲溶液中稀释至75ng/ml。
6.将缓冲液弹去,根据板的布局向每个孔中加入100μl的稀释样品。
7.将板在室温下温育1小时。
8.将缓冲液从96孔板中弹去,使用纸巾将板吸干。
9.将板用200μl的20个缓冲液总共洗涤3次。
10.在20个缓冲溶液中以1:5000的稀释度制备抗flag IgG HRP。向每个孔中加入100μl抗flag IgG HRP溶液。
11.将板在室温下温育1小时。
12.将板用200μl的20个缓冲溶液总共洗涤3次。
13.将板用50μl 3,3',5,5'-四甲基联苯胺显色30秒。
与使用在不含碳酸氢盐的PBS缓冲溶液中的测试所选择的那些条件活性抗体相比,使用在具有碳酸氢盐的PBS缓冲溶液中的测试所选择的条件活性抗体显示在pH 6.0下的活性与pH 7.4下的活性的比值要高得多。此外,当与不含碳酸氢盐的PBS缓冲溶液中的测试相比时,添加有碳酸氢盐的Krebs缓冲溶液也提供更高的pH 6.0下的活性与pH 7.4下的活性的比值。看来碳酸氢盐对于选择所需的条件活性抗体是重要的。
实施例9:在不同缓冲液中选择条件活性抗体
在该实施例中筛选了在pH6.0下比野生型抗体活性更高、且在pH7.4下比野生型抗体活性低的针对抗原的条件活性抗体。使用下表2和表3中的缓冲液进行筛选步骤。表2中的缓冲液基于Krebs缓冲液,添加的其它成分示于表2的第1列。
Figure BDA0003896412110001101
基于PBS缓冲液的添加有其它成分的一些测试缓冲液示于下表3中。请注意,表2和表3的缓冲液中的组分以1升缓冲液中加入的量(克)表示。但人血清的浓度为缓冲液的10wt%。
表3.基于PBS缓冲液的测试缓冲液
Figure BDA0003896412110001111
通过使用这些测试缓冲液的ELISA测试进行筛选。如实施例7-8中所述进行ELISA测试。使用10种测试缓冲液中的每一种选择的条件活性抗体表示于下表4中。OD 450吸光度与ELISA测试中的结合活性呈负相关。
表4.使用不同的测试缓冲液所选的条件活性抗体(突变体)
Figure BDA0003896412110001121
使用缓冲液8和9证实了一些所选择的条件活性抗体的选择性,并且发现它们在pH6.0下(相对于pH7.4)确实具有所需的的选择性,如图1所示。注意到使用不同的缓冲液影响条件活性抗体的选择性。
实施例10:在不同缓冲液中条件活性抗体的活性
在两种不同的缓冲液中分别测量从两种单克隆抗体(mAb 048-01和mAb 048-02作为亲本抗体)产生的条件活性抗体的活性(图2)。两种缓冲液是磷酸盐缓冲液(条件IV)和Krebs缓冲液(条件I)。从mAb 048-01演变出六种条件活性抗体:CAB Hit 048-01、CAB Hit048-02、CAB Hit 048-03、CAB Hit 048-04、CAB Hit 048-05和CAB Hit 048-06。从mAb048-02演变出三种条件活性抗体:CAB Hit 048-07、CAB Hit 048-08和CAB Hit 048-09。
该研究显示条件活性抗体的选择性(在pH6.0的测试中的活性与在pH/7.4的测试中的活性的比值)受到测试中使用的缓冲液的影响。从野生型mAb 048-02演变出的条件活性抗体在Krebs缓冲液中比在磷酸盐缓冲液中显示出显著更高的选择性(图2)。
实施例11:条件活性抗体的选择性和碳酸氢盐
在实施例10中,在Krebs缓冲液(条件I)中比在磷酸盐缓冲液(条件IV)中观察到条件活性抗体更高的选择性。这涉及鉴定Krebs缓冲液中对实施例10中观察到的更高选择性做出最显著贡献的组分。在源自Krebs缓冲液的、一次从各种组分中减去一种组分的缓冲液中再次测试一种条件活性抗体的选择性(图3,左边的柱组)。当使用完整的Krebs缓冲液时,该条件活性抗体的选择性高,pH6.0/7.4的活性比为约8。当从Krebs缓冲液中每次减去组分A至F时,虽然条件活性抗体在减去组分C和D中的每一种时选择性变差,但条件活性抗体的选择性没有丧失。然而,当从Krebs缓冲液中减去组分G(碳酸氢盐)时,条件活性抗体的选择性完全丧失。参见图3。这表明在Krebs缓冲液中条件活性抗体的高选择性至少部分是由于碳酸氢盐。
然后在没有碳酸氢盐的磷酸盐缓冲液(条件IV)中测量相同条件活性抗体的选择性,并且观察到在磷酸盐缓冲液中条件活性抗体的选择性完全丧失。当碳酸氢盐加入到磷酸盐缓冲液中时,条件活性抗体的选择性恢复到在Krebs缓冲液中观察到的水平。这证实了碳酸氢盐对于该条件活性抗体的选择性是必需的。
实施例12:在pH 7.4下碳酸氢盐抑制结合
该实施例测量了三种条件活性抗体(CAB Hit A、CAB Hit B和CAB Hit C)在具有不同浓度的碳酸氢盐(从0至碳酸氢盐的生理浓度(约20mM))的缓冲液中在pH 7.4下的结合活性(图4)。观察到,随着碳酸氢盐浓度从0增加到生理浓度,所有三种条件活性抗体在pH7.4下的结合活性都以剂量依赖性方式降低(图4)。另一方面,野生型抗体的结合活性不受碳酸氢盐的影响。该研究显示在碳酸氢盐存在下条件活性抗体的选择性可能至少部分归因于由与碳酸氢盐的相互作用导致的条件活性抗体在pH7.4下的结合活性丧失。
实施例13:在不同缓冲液中条件活性抗体对ROR2的活性
在不同的缓冲液中测试使用含有碳酸氢钠的测试溶液(如实施例9中所述)选择的针对ROR2的条件活性抗体:CAB-P是在pH6.0或7.4使用的标准磷酸盐生理盐水缓冲液(PBS缓冲液);CAB-PSB是pH6.0或7.4的、补充有15mM碳酸氢钠的PBS缓冲液;以及CAB-PSS是pH6.0或7.4的、补充有10mM九水硫化钠的PBS缓冲液。
根据以下ELISA方案测量这些条件活性抗体的活性:
1.ELISA的前一天:在4℃下使用100μl在PBS中的浓度为1μg/ml的抗原对板进行包被。
2.根据板的布局用200μl的CAB-P、CAB-PSB或CAB-PSS缓冲液洗涤板两次。
3.根据板的布局将板用200μl的CAB-P、CAB-PSB或CAB-PSS缓冲液在室温下封闭1小时。
4.如板的布局所示,在CAB-P、CAB-PSB或CAB-PSS缓冲液中稀释抗体样品和阳性对照。
5.从96孔板中将封闭缓冲液弹去,并在纸巾上吸干。
6.根据板的布局向每个孔中加入100μl的稀释后的抗体样品、阳性对照或阴性对照。
6.将板在室温下温育1小时。
7.根据板的布局在CAB-P、CAB-PSB或CAB-PSS缓冲液中制备第二抗体。
8.将缓冲液从96孔板中弹去,并在纸巾上吸干。
9.根据板的布局将板用200μl的CAB-P、CAB-PSB或CAB-PSS缓冲液总共洗涤3次。
10.根据板的布局将在CAB-P、CAB-PSB或CAB-PSS缓冲液稀释后的第二抗体加入每个孔中。
11.将板在室温下温育1小时。
12.将缓冲液从96孔板中弹去,并在纸巾上吸干。
13.将板用CAB-P、CAB-PSB或CAB-PSS缓冲液总共洗涤3次。
14.将3,3',5,5'-四甲基联苯胺(TMB)底物置于室温。
15.将缓冲液从板中弹去,并在纸巾上吸干。
16.加入50μl的TMB底物。
17.用50μl 1N HCl停止显色。显色时间为3分钟。
18.使用读板仪在OD450nm下读数。
这些针对ROR2的条件活性抗体的活性呈现于图7中。在CAB-PSB缓冲液中,条件活性抗体在pH6.0下比在pH7.4下显示更高的活性,即在pH6.0下相对于pH7.4具有选择性。几种条件活性抗体的这种选择性在CAB-P缓冲液中丧失或显著降低。但是在CAB-PSS缓冲液中,也观察到了在pH6.0下相对于pH7.4的这种选择性。相反,野生型抗体在任何缓冲液中显示出相对最小的选择性或没有选择性。
该实施例证明了在介导所测试的针对ROR2的条件活性抗体的条件结合方面,二硫化物与碳酸氢盐具有相似的功能。
实施例14:在不同缓冲液中针对Axl的条件活性抗体的活性
在如实施例13中所述的不同的缓冲液:CAB-P、CAB-PSB和CAB-PSS中测试使用含有碳酸氢钠的测试溶液(如实施例9中所述)选择的针对Axl的条件活性抗体。使用与实施例13中所描述的相同的ELISA方案测量这些针对Axl的条件活性抗体的活性,并呈现于图8中。在CAB-PSB缓冲液中,条件活性抗体在pH6.0下比在pH7.4下显示更高的活性,即在pH6.0相对于pH7.4下的选择性。这些条件活性抗体的该选择性在CAB-P缓冲液中丧失或显著降低。也在CAB-PSS缓冲液中观察到了该在pH 6.0下相对于pH 7.4的选择性。相反,野生型抗体在任何缓冲液中基本上不显示选择性。
该实施例也证实了,在介导所测试的针对ROR2的条件活性抗体的条件结合方面,二硫化物与碳酸氢盐具有相似的功能。
实施例15:在具有二硫化物离子的测试溶液中产生针对Axl的条件活性抗体
本实施例中使用的测试溶液如下制备:
CAB-PSB缓冲液pH 6.0(具有1% BSA)
1.将1.26g/L碳酸氢钠(Sigma S5761)加入到PBS-Cellgro,碳酸氢钠的终浓度为15mM。
2.添加BSA(MP,CAT No0218054991)至终浓度为1%(在1升中)。
3.在搅拌下用1N HCl调节pH为6.0。
4.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
CAB-PSB缓冲液pH 7.4(具有1% BSA)
1.将1.26g/L碳酸氢钠(Sigma S5761)加入到PBS-Cellgro,碳酸氢钠的终浓度为15mM。
2.添加BSA(MP,CAT No0218054991)至终浓度为1%(在1升中)。
3.在搅拌下用1N HCl调节pH为7.4。
4.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
具有10mM二硫化物的CAB-PSS缓冲液pH 6.0(具有1% BSA)
1.将2.4g/L九水硫化钠(Na2S·9H2O)(ACROS,#424425000)加入到PBS-Cellgro,九水硫化钠的终浓度为10mM。
2.添加BSA(MP,CAT No0218054991)至终浓度为1%(在1升中)。
3.在搅拌下用1N HCl调节pH为6.0。
4.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
具有10mM二硫化物的CAB-PSS缓冲液pH 7.4(具有1% BSA)
1.将2.4g/L九水硫化钠(Na2S·9H2O)(ACROS,#424425000)加入到PBS-Cellgro,九水硫化钠的终浓度为10mM。
2.添加BSA(MP,CAT No0218054991)至终浓度为1%(在1升中)。
3.在搅拌下用1N HCl调节pH为7.4。
4.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
具体1mM二硫化物的CAB-PSS缓冲液pH 6.0(具有1% BSA)
1.将BioAtla CAB-PSS缓冲液pH 6.0(具有1% BSA)10M按1/10倍稀释,其终浓度为1mM。
2.在搅拌下用1N HCl调节pH为6.0。
3.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
具体1mM二硫化物的CAB-PSS缓冲液pH 7.4(具有1% BSA)
1.将BioAtla CAB-PSS缓冲液pH 7.4(具有1% BSA)10M按1/10倍稀释,其终浓度为1mM。
2.在搅拌下用1N HCl调节pH为7.4。
3.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
CAB-P缓冲液pH 6.0(具有1% BSA)
1.将BSA加入到PBS-Cellgro,BSA的终浓度为1%(在1升中)。
2.在搅拌下用1N HCl调节pH为6.0。
3.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
CAB-P缓冲液pH 7.4(具有1% BSA)
1.将BSA加入到PBS-Cellgro,BSA的终浓度为1%(在1升中)。
2.在搅拌下用1N HCl调节pH为7.4。
3.在4℃下储存。使用前重新检查pH。视需要用1N HCl调节pH。
本发明的方法用针对Axl的野生型抗体进行,以使用前述实施例中所述的相似方案产生突变抗体。使用pH6.0或pH7.4的、含有10mM二硫化物离子的测试溶液测试突变抗体以选择条件活性抗体。选择的条件活性抗体(BAP063.1-CAB1-8)显示在图9中。
当在具有10mM二硫化物浓度的测试中测试时,所选择的条件活性抗体在pH 6.0下比在pH 7.4下对Axl具有更高的结合活性。然而,在浓度仅为1mM的二硫化物的测试溶液中,除了一种条件活性抗体之外的所有选择的条件活性抗体在pH 6.0和pH 7.4之间的活性差异显著降低。参见图9。
必须注意,如本文和所附权利要求中所使用的,单数形式“一种(a、an)”和“该(the)”包括复数指代,除非上下文另有明确规定。此外,术语“一种(a、an)”、“一个或多个”和“至少一个”在本文中可以互换使用。术语“包含”、“包括”、“具有”和“由…构成”也可以互换使用。
除非另有说明,在说明书和权利要求书中使用的表示成分的量、性质如分子量、百分比、比值、反应条件等的所有数字应理解为在所有情况下由术语“约”修饰,无论术语“约”是否存在。因此,除非指出为相反,否则说明书和权利要求书中阐述的数值参数为近似值,其可以根据本发明寻求获得的期望性质而变化。至少,并且不试图将等同原理的应用限制在权利要求的范围内,每个数值参数应当至少根据所报告的有效数字的数目并通过应用普通的舍入技术来解释。尽管阐述本发明的宽范围的数值范围和参数是近似值,但是在具体实施例中我们尽可能精确地报告列出的数值。然而,任何数值必然固有地包含某些误差,该误差是由在这些数值的各自的测试测量中发现的标准偏差导致的。
应当理解,本文公开的每种组分、化合物、取代基或参数应被解释为公开为单独使用或与一种或多种本文公开的每种其它组分、化合物、取代基或参数组合使用。
还应理解,本文公开的每种组分、化合物、取代基或参数的每个量/值或量/值的范围被解释为也与本文公开的任何其它组分、化合物、取代基或参数的每个量/值或量/值的范围相组合公开,因此为了本说明书的目的,用于本文公开的两种或多种组分、化合物、取代基或参数的量/值或量/值范围的任何组合也彼此组合地公开。
还应当理解,本文公开的每个范围应被解释为对具有相同数量的有效数字的公开范围内的每个具体值的公开。因此,1-4的范围应被解释为对值1、2、3和4的明确公开。还应当理解,本文公开的每个范围的每个下限应解释为结合对于相同的组分、化合物、取代基或参数的每个范围的每个上限和本文公开的每个范围内的每个具体值。因此,本发明被解释为对通过将每个范围的每个下限与每个范围的每个上限或每个范围内的每个具体值组合或通过将每个范围的每个上限与每个范围的每个特定值结合而得到的所有范围的公开。
此外,在说明书或实施例中公开的组分、化合物、取代基或参数的具体量/值应解释为对一个范围的下限或上限的公开,因此可以与在本申请其它地方公开的针对相同组分、化合物、取代基或参数的一个范围的任何其它下限或上限或具体量/值组合以形成针对该组分、化合物、取代基或参数的范围。
本文提及的所有文献通过引用整体并入本文,或者提供它们特别依赖的公开内容。申请人不打算将任何披露的实施方案对公众开放,对于照字面意义可能不属于权利要求范围之内的任何公开的修改或改变,根据等同原则认为其为本发明的一部分。
然而,应当理解,尽管在前面的描述中已经阐述了本发明的众多特征和优点以及本发明的结构和功能的细节,但是该公开仅是说明性的,且可以在由用以表达所附权利要求的术语的宽范围的一般含义所指示的全部范围内,在本发明的原理下进行详细的改变,尤其是对部件的形状、尺寸和布置进行该改变。

Claims (17)

1.一种从亲本抗体、单链抗体或抗体片段产生条件活性的抗体、单链抗体或抗体片段的方法,所述产生条件活性的抗体、单链抗体或抗体片段的方法包括以下步骤:
(i)通过突变至少一个氨基酸来演变所述亲本抗体、单链抗体或抗体片段以产生一种或多种突变的抗体、单链抗体或抗体片段,其中所述抗体片段选自Fab、Fab'、(Fab')2、Fv和能够结合抗原的表位的SCA片段;
(ii)对所述一种或多种突变的抗体、单链抗体或抗体片段实施第一ELISA测试和第二ELISA测试,所述第一ELISA测试在小分子或离子的存在下在第一pH下进行以测量所述一种或多种突变的抗体、单链抗体或抗体片段的结合活性,所述第二ELISA测试也在所述小分子或离子的存在下第二pH下进行以测量所述一种或多种突变的抗体、单链抗体或抗体片段的结合活性,所述小分子或离子具有小于100a.m.u.的分子量以及与所述第一pH相差至多4个pH单位的pKa;
(iii)选择在所述第一测试中的结合活性与在所述第二测试中的结合活性的比值为至少3.0的突变的抗体、单链抗体或抗体片段;
(iv)通过在步骤(iii)所选的突变的抗体、单链抗体或抗体片段中选择一种在所述小分子或离子不存在的情况下结合活性不依赖于pH的突变的抗体、单链抗体或抗体片段来获得所述条件活性的抗体、单链抗体或抗体片段,
其中所述小分子或离子及其浓度选自25mM-100mM碳酸氢根离子和100μm-100mM硫化氢。
2.根据权利要求1所述的方法,其中所述亲本抗体、单链抗体或抗体片段是抗体的重链或轻链,并且所述至少一个氨基酸位于所述亲本抗体、单链抗体或抗体片段的互补决定区内。
3.根据权利要求2所述的方法,其中所述至少一个氨基酸位于所述亲本抗体、单链抗体或抗体片段的Fc区内。
4.根据权利要求3所述的方法,其中所述演变步骤包括用不同抗体的可变区取代所述Fc区以形成双特异性抗体。
5.根据权利要求3所述的方法,其中所述演变步骤包括用不同抗体的可变区取代所述Fc区以形成单链抗体。
6.根据权利要求2所述的方法,其中所述至少一个氨基酸位于所述亲本抗体、单链抗体或抗体片段的骨架区内。
7.根据权利要求1-6中任一项所述的方法,其中所述演变步骤包括替换、插入、缺失或它们的组合。
8.根据权利要求1所述的方法,其中步骤(ii)还包括对所述一种或多种突变的抗体、单链抗体或抗体片段实施以下测试:在不存在所述小分子或离子的情况下在所述第一pH下测量所述一种或多种突变的抗体、单链抗体或抗体片段的结合活性的测试,以及在不存在所述小分子或离子的情况下在所述第二pH下测量所述一种或多种突变的抗体、单链抗体或抗体片段的结合活性的测试;步骤(iii)还包括选择在不存在所述小分子或离子的情况下具有不依赖于pH的结合活性的突变的抗体、单链抗体或抗体片段。
9.根据权利要求1所述的方法,其中所述第一测试中的结合活性与所述第二测试中的结合活性的比值为至少4.0。
10.根据权利要求1所述的方法,其中所述小分子或离子为碳酸氢根。
11.根据权利要求1所述的方法,其中所述小分子或离子为硫化氢。
12.根据权利要求1所述的方法,其中所述小分子或离子的pKa与所述第一pH相差至多0.5、1、2、3或4个pH单位。
13.根据权利要求1所述的方法,其中所述小分子或离子的pKa在所述第一pH和所述第二pH之间。
14.根据权利要求1所述的方法,其中所述小分子或离子的pKa大于6.2且小于7.2。
15.根据权利要求1所述的方法,其中所述第一pH为5.5至最高7.2的范围,所述第二pH为7.2-7.6的范围。
16.根据权利要求1所述的方法,其中所述抗体、单链抗体或抗体片段为演变自亲本抗体、单链抗体或抗体片段的非天然存在的突变的抗体、单链抗体或抗体片段。
17.根据权利要求1所述的方法,其中所述突变的抗体、单链抗体或抗体片段与所述亲本抗体、单链抗体或抗体片段相比具有更高比例的带电荷的氨基酸残基。
CN202211275600.XA 2015-11-02 2016-08-31 条件活性多肽 Pending CN115521374A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562249907P 2015-11-02 2015-11-02
US62/249,907 2015-11-02
PCT/US2016/019242 WO2016138071A1 (en) 2015-02-24 2016-02-24 Conditionally active biological proteins
USPCT/US2016/019242 2016-02-24
CN201680077540.7A CN108473555B (zh) 2015-11-02 2016-08-31 条件活性多肽
PCT/US2016/049715 WO2017078839A1 (en) 2015-11-02 2016-08-31 Conditionally active polypeptides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680077540.7A Division CN108473555B (zh) 2015-11-02 2016-08-31 条件活性多肽

Publications (1)

Publication Number Publication Date
CN115521374A true CN115521374A (zh) 2022-12-27

Family

ID=58662272

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680077540.7A Active CN108473555B (zh) 2015-11-02 2016-08-31 条件活性多肽
CN202211275600.XA Pending CN115521374A (zh) 2015-11-02 2016-08-31 条件活性多肽

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680077540.7A Active CN108473555B (zh) 2015-11-02 2016-08-31 条件活性多肽

Country Status (11)

Country Link
US (2) US11472876B2 (zh)
EP (1) EP3371349A1 (zh)
JP (3) JP7064769B2 (zh)
KR (1) KR20180064534A (zh)
CN (2) CN108473555B (zh)
AU (2) AU2016350613B2 (zh)
CA (1) CA3003399A1 (zh)
HK (1) HK1253684A1 (zh)
MX (2) MX2018005063A (zh)
RU (1) RU2735023C9 (zh)
WO (1) WO2017078839A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018005063A (es) * 2015-11-02 2018-12-10 Bioatla Llc Polipéptidos condicionalmente activos.
WO2017123537A1 (en) * 2016-01-12 2017-07-20 Bioatla, Llc Diagnostics using conditionally active antibodies
US10697972B2 (en) 2016-01-12 2020-06-30 Bioatla, Llc Diagnostics using conditionally active antibodies
EP3443001A4 (en) 2016-04-11 2020-04-29 Obsidian Therapeutics, Inc. REGULATED BIOCIRCUIT SYSTEMS
JP2019528323A (ja) * 2016-08-31 2019-10-10 バイオアトラ、エルエルシー 条件的活性型ポリペプチド及びそれを生成する方法
KR20230132603A (ko) 2017-01-11 2023-09-15 브리스톨-마이어스 스큅 컴퍼니 Psgl-1 길항제 및 그의 용도
CN110740749A (zh) 2017-03-14 2020-01-31 戊瑞治疗有限公司 在酸性pH下与VISTA结合的抗体
WO2019241216A1 (en) * 2018-06-14 2019-12-19 Bioatla, Llc Multi-specific antibody constructs
CN112566929A (zh) * 2018-08-21 2021-03-26 生物蛋白有限公司 具pH选择性的条件活性蛋白质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040132603A1 (en) * 2001-04-27 2004-07-08 Timo Narhi Method for improvement of soft tissue attachment and implants making use of said method
WO2006031370A2 (en) * 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
US20090035836A1 (en) * 2004-03-30 2009-02-05 California Institute Of Technology Modulating ph-sensitive binding using non-natural amino acids
US20100260739A1 (en) * 2009-03-09 2010-10-14 Bioatla, Llc Mirac Proteins
US20120108455A1 (en) * 2010-09-08 2012-05-03 Lalitha Kodandapani Methods for assessing and identifying or evolving conditionally active therapeutic proteins

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
ATE120761T1 (de) 1987-05-21 1995-04-15 Creative Biomolecules Inc Multifunktionelle proteine mit vorbestimmter zielsetzung.
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US5336603A (en) 1987-10-02 1994-08-09 Genentech, Inc. CD4 adheson variants
KR900005995A (ko) 1988-10-31 1990-05-07 우메모또 요시마사 변형 인터류킨-2 및 그의 제조방법
EP0394827A1 (en) 1989-04-26 1990-10-31 F. Hoffmann-La Roche Ag Chimaeric CD4-immunoglobulin polypeptides
US5112946A (en) 1989-07-06 1992-05-12 Repligen Corporation Modified pf4 compositions and methods of use
WO1991006570A1 (en) 1989-10-25 1991-05-16 The University Of Melbourne HYBRID Fc RECEPTOR MOLECULES
US5349053A (en) 1990-06-01 1994-09-20 Protein Design Labs, Inc. Chimeric ligand/immunoglobulin molecules and their uses
EP0732402A3 (en) 1990-12-14 1997-05-21 Cell Genesys Inc Chimeric chains for transduction of receptor-linked signaling pathways
US5525491A (en) 1991-02-27 1996-06-11 Creative Biomolecules, Inc. Serine-rich peptide linkers
ES2194838T3 (es) 1991-02-27 2003-12-01 Micromet Ag Enlazadores peptidicos ricos en serina.
US5844095A (en) 1991-06-27 1998-12-01 Bristol-Myers Squibb Company CTLA4 Ig fusion proteins
US5622929A (en) 1992-01-23 1997-04-22 Bristol-Myers Squibb Company Thioether conjugates
US5447851B1 (en) 1992-04-02 1999-07-06 Univ Texas System Board Of Dna encoding a chimeric polypeptide comprising the extracellular domain of tnf receptor fused to igg vectors and host cells
US5736137A (en) 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
GB9320668D0 (en) 1993-10-07 1993-11-24 Secr Defence Liposomes containing particulare materials
MX9700764A (es) 1994-07-29 1997-05-31 Smithkline Beecham Plc Compuestos novedosos.
GB9415379D0 (en) 1994-07-29 1994-09-21 Smithkline Beecham Plc Novel compounds
US6030613A (en) 1995-01-17 2000-02-29 The Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of therapeutics
EP0805628B1 (en) 1995-01-17 2003-05-02 Brigham And Women's Hospital, Inc. Receptor specific transepithelial transport of immunogens
US6168804B1 (en) 1995-06-07 2001-01-02 University Of Alberta Method for eliciting Th1-specific immune response
US6764835B2 (en) 1995-12-07 2004-07-20 Diversa Corporation Saturation mutageneis in directed evolution
US5723125A (en) 1995-12-28 1998-03-03 Tanox Biosystems, Inc. Hybrid with interferon-alpha and an immunoglobulin Fc linked through a non-immunogenic peptide
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
ATE296113T1 (de) 1998-02-09 2005-06-15 Bracco Research Sa Zielgerichtete abgabe von biologische-aktive medien
TR200003087T2 (tr) 1998-04-21 2001-02-21 Micromet Ag Yeni CD19 X CD3 Spesifik polipeptidler ve kullanımları
US20020028178A1 (en) 2000-07-12 2002-03-07 Nabil Hanna Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
US20020006404A1 (en) 1999-11-08 2002-01-17 Idec Pharmaceuticals Corporation Treatment of cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
IL151853A0 (en) 2000-04-11 2003-04-10 Genentech Inc Multivalent antibodies and uses therefor
AU6461201A (en) 2000-07-12 2002-01-21 Idec Pharma Corp Treatment of b cell malignancies using combination of b cell depleting antibody and immune modulating antibody related applications
JP2004508420A (ja) 2000-09-18 2004-03-18 アイデック ファーマスーティカルズ コーポレイション B細胞枯渇抗体/免疫調節性抗体の組合せを用いて自己免疫疾患を治療するための併用療法
JP2004527528A (ja) 2001-04-09 2004-09-09 プロジェニクス・ファーマスーティカルズ・インコーポレイテッド 抗cd19免疫毒素
US20030138405A1 (en) 2001-04-17 2003-07-24 Juan Fueyo Conditionally replicative adenovirus to target the Rb and Rb-related pathways
DE50202507D1 (de) 2001-10-17 2005-04-21 Schneider Gmbh & Co Kg Vorrichtung und verfahren zur komplettbearbeitung von zweiseitig optisch aktiven linsen
US20060147420A1 (en) 2004-03-10 2006-07-06 Juan Fueyo Oncolytic adenovirus armed with therapeutic genes
CA2488836A1 (en) * 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
US20040064050A1 (en) 2002-09-20 2004-04-01 Jun Liu System and method for screening tissue
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US8961877B2 (en) 2007-08-09 2015-02-24 Massachusetts Institute Of Technology High-throughput, whole-animal screening system
WO2010081173A2 (en) 2009-01-12 2010-07-15 Cytomx Therapeutics, Llc Modified antibody compositions, methods of making and using thereof
DK3156485T3 (en) 2009-07-17 2019-01-07 Bioatla Llc At the same time, integrated selection and development of antibody / protein services and expression in production hosts
US20110143960A1 (en) 2009-12-10 2011-06-16 Labarbera Daniel V 3d-models for high-throughput screening drug discovery and development
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
WO2013040445A1 (en) 2011-09-15 2013-03-21 Whitehead Institute For Biomedical Research Arrays for cell-based screening and uses thereof
KR102276528B1 (ko) 2011-09-30 2021-07-12 추가이 세이야쿠 가부시키가이샤 이온 농도 의존성 결합 분자 라이브러리
KR101721678B1 (ko) 2012-03-08 2017-03-31 할로자임, 아이엔씨 조건부 활성 항-표피 성장 인자 수용체 항체 및 이의 사용 방법
US20140206596A1 (en) * 2013-01-18 2014-07-24 University Of Southern California Design of pH-Sensitive Oligopeptide Complexes For Drug Release Under Mildly Acidic Conditions
ES2913205T3 (es) 2014-05-13 2022-06-01 Bioatla Inc Proteínas biológicas activas condicionalmente
MX2018005063A (es) * 2015-11-02 2018-12-10 Bioatla Llc Polipéptidos condicionalmente activos.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040132603A1 (en) * 2001-04-27 2004-07-08 Timo Narhi Method for improvement of soft tissue attachment and implants making use of said method
US20090035836A1 (en) * 2004-03-30 2009-02-05 California Institute Of Technology Modulating ph-sensitive binding using non-natural amino acids
WO2006031370A2 (en) * 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
US20100260739A1 (en) * 2009-03-09 2010-10-14 Bioatla, Llc Mirac Proteins
US20120108455A1 (en) * 2010-09-08 2012-05-03 Lalitha Kodandapani Methods for assessing and identifying or evolving conditionally active therapeutic proteins
CN103201293A (zh) * 2010-09-08 2013-07-10 哈洛齐梅公司 评估和鉴定或发展条件活性治疗蛋白的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN SCHRÖTER等: "A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display", 《MABS》, 14 January 2015 (2015-01-14), pages 138 - 151, XP055428679, DOI: 10.4161/19420862.2014.985993 *
NISHA PALACKAL等: "Protein Science Protein Science ARTICLE Free Access An evolutionary route to xylanase process fitness", 《PROTEIN SCIENCE》, 1 January 2009 (2009-01-01), pages 494 - 503 *
SIKBAK等: "Discovery of Pectin-degrading Enzymes and Directed Evolution of a Novel Pectate Lyase for Processing Cotton Fabric", 《PROTEIN STRUCTURE AND FOLDING》, 31 March 2005 (2005-03-31), pages 9431 - 9438, XP055035713, DOI: 10.1074/jbc.M411838200 *

Also Published As

Publication number Publication date
JP2018534932A (ja) 2018-11-29
AU2016350613A1 (en) 2018-05-24
KR20180064534A (ko) 2018-06-14
CN108473555B (zh) 2022-10-25
EP3371349A4 (en) 2018-09-12
CN108473555A (zh) 2018-08-31
JP7064769B2 (ja) 2022-05-11
RU2735023C2 (ru) 2020-10-27
RU2018115781A3 (zh) 2019-12-04
MX2023001319A (es) 2023-02-22
RU2018115781A (ru) 2019-12-04
HK1253684A1 (zh) 2019-06-28
US11472876B2 (en) 2022-10-18
JP2022101618A (ja) 2022-07-06
US20200407439A1 (en) 2020-12-31
AU2016350613B2 (en) 2023-10-05
MX2018005063A (es) 2018-12-10
RU2735023C9 (ru) 2021-06-18
AU2023285915A1 (en) 2024-01-25
WO2017078839A1 (en) 2017-05-11
JP2024020382A (ja) 2024-02-14
CA3003399A1 (en) 2017-05-11
JP7390748B2 (ja) 2023-12-04
EP3371349A1 (en) 2018-09-12
US20220403024A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
CN108473555B (zh) 条件活性多肽
US11773509B2 (en) Conditionally active polypeptides and methods of generating them
JP7386161B2 (ja) 腫瘍ホーミング及び細胞透過性ペプチド免疫抗がん剤複合体、ならびにそれらの使用方法
KR102286801B1 (ko) 조건부 활성 생체 단백질
KR20170044115A (ko) 동일한 진핵생물 세포 생산 숙주 내 조건부 활성 생체 단백질의 발견 및 제조

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40081641

Country of ref document: HK