CN115505877B - 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法 - Google Patents

一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法 Download PDF

Info

Publication number
CN115505877B
CN115505877B CN202211262732.9A CN202211262732A CN115505877B CN 115505877 B CN115505877 B CN 115505877B CN 202211262732 A CN202211262732 A CN 202211262732A CN 115505877 B CN115505877 B CN 115505877B
Authority
CN
China
Prior art keywords
amorphous carbon
carbon film
doped amorphous
depositing
introducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211262732.9A
Other languages
English (en)
Other versions
CN115505877A (zh
Inventor
曹旭丹
宓娅娜
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Rongshi Medical Technology Co ltd
Original Assignee
Zhejiang Rongshi Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Rongshi Medical Technology Co ltd filed Critical Zhejiang Rongshi Medical Technology Co ltd
Priority to CN202211262732.9A priority Critical patent/CN115505877B/zh
Publication of CN115505877A publication Critical patent/CN115505877A/zh
Application granted granted Critical
Publication of CN115505877B publication Critical patent/CN115505877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法,包括子电极,子电极表面沉积过渡层,过渡层表面沉积非晶碳膜,非晶碳膜包括多层交替层叠的掺杂非晶碳膜,本发明在消融针的子电极沉积过渡层和非晶碳膜,非晶碳膜设置为掺Cr非晶碳膜一、掺Ti非晶碳膜和掺Cr非晶碳膜二交错层叠的结构对多极射频消融针子电极进行表面改性,保证了非晶碳膜的导电性,提高了非晶碳膜的附着力,降低了非晶碳膜的内应力,通过掺Cr非晶碳膜二控制非晶碳膜硬度,使具备该硬度的非晶碳膜在子电极针伸展和收拢过程中不会发生涂层开裂、脱落的现象,同时提高了消融过程中子电极的抗粘连性能。

Description

一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法
技术领域
本发明属于医疗设备技术领域,涉及一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法。
背景技术
射频消融(radiofrequency ablation(RFA))技术具有损伤小、周期短、恢复快等优点,因而越来越成为肿瘤治疗的首选方案。在肿瘤消融治疗过程中,需要将消融针插入肿瘤组织中发射射频波形成热效应使肿瘤组织发生凝固性坏死。然而在消融过程中容易发生消融针与组织的粘连现象,尤其是四爪、八爪等多极消融针,这大大降低了消融治疗的效果,容易引起出血,甚至癌细胞转移的问题。
专利CN201410226662.0公开了一种采用Ag掺杂非晶碳膜表面改性单针消融针来改善消融针与组织粘连的问题,但对于多级射频消融针来说,多级针子电极在不使用时收于主针针管中,使用时则展开成伞状,现有硬度高的非晶碳膜在多级针子电极由弯曲到收拢直的过程中容易产生开裂,硬度低的的非晶碳膜在弯曲到收拢直的过程中容易被主针外管刮破;附着力低的非晶碳膜在肿瘤消融过程中则可能发生涂层脱落现象,非晶碳膜材料进入身体组织,带来极大的安全风险。
发明内容
本发明为了克服现有技术的不足,提供一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法。
为了实现上述目的,本发明采用以下技术方案:一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法,包括子电极,子电极表面沉积过渡层,过渡层表面沉积非晶碳膜,非晶碳膜包括多层交替层叠的掺杂非晶碳膜。
进一步的,所述非晶碳膜包括掺Cr非晶碳膜和掺Ti非晶碳膜,掺Cr非晶碳膜和掺Ti非晶碳膜交替层叠形成多层的掺杂非晶碳膜。
进一步的,所述掺Cr非晶碳膜设有两层,包括掺Cr非晶碳膜一和掺Cr非晶碳膜二,掺Ti非晶碳膜设置在掺Cr非晶碳膜一和掺Cr非晶碳膜二之间,掺Cr非晶碳膜一设置在过渡层。
进一步的,所述掺Cr非晶碳膜一的厚度范围设置在20-40nm。
进一步的,所述掺Cr非晶碳膜二的厚度范围设置在80-100nm。
进一步的,所述掺Ti非晶碳膜的厚度范围设置在20-40nm。
进一步的,所述过渡层设置为Cr金属层。
一种表面改性非晶碳膜的制备方法,包括以下步骤:
S1:将清洗后的多极射频消融针的子电极针放入磁控与离子束复合溅射沉积系统的真空室中,真空室抽真空和加热;
S2:刻蚀,通入Ar清洁表面残余氧化层和油污;
S3:沉积过渡层,通入Ar,开启Cr溅射靶,在子电极的表面沉积过渡层;
S4:沉积掺Cr非晶碳膜一,通入碳源气体,开启Cr溅射靶,通入Ar,在过渡层沉积掺Cr非晶碳膜一;
S5:真空室抽真空;
S6:沉积掺Ti非晶碳膜,通入碳源气体,开启Ti溅射靶,通入Ar,在掺Cr非晶碳膜一沉积掺Ti非晶碳膜;
S7:真空室抽真空;
S8:沉积掺Cr非晶碳膜二,通入碳源气体,开启Cr溅射靶,通入Ar,在掺Ti非晶碳膜沉积掺Cr非晶碳膜二。
进一步的,所述S1中真空室的真空度设为1-5x10-2Pa,将真空室的温度加热至50-100℃,S5中真空室的真空度设为1-5x10-2Pa,S7中真空室的真空度设为1-5x10-2Pa。
进一步的,所述S2中离子源的功率设为550-650W,Ar的流量设为40-60sccm,转速设为1-3rpm,时间为100-120min,S3中金属溅射靶的电流设为2.0-3.0A,Ar的流量设为40-50sccm,转速设为1-3rpm,沉积时间设为10-12min。
综上所述,本发明有益之处在于:
1)本发明在消融针的子电极沉积过渡层和非晶碳膜,掺Cr非晶碳膜一、掺Ti非晶碳膜和掺Cr非晶碳膜二交错层叠的结构对多极射频消融针子电极进行表面改性,保证了非晶碳膜的导电性,提高了非晶碳膜的附着力,以及降低了非晶碳膜的内应力,高附着力降低非晶碳膜在消融过程中的脱落风险,低内应力大幅减小了非晶碳膜开裂的风险,同时通过掺Cr非晶碳膜二控制非晶碳膜硬度,使具备该硬度的非晶碳膜在子电极针伸展和收拢过程中不会发生涂层开裂、脱落的现象,同时提高了消融过程中子电极的抗粘连性能。
2)本发明所制备的通过掺Cr非晶碳膜和掺Ti非晶碳膜交错层叠的非晶碳膜改性多极射频消融针子电极表面,降低了非晶碳膜的内应力,提高了非晶碳膜的附着力,从而较好地避免了在使用过程中的开裂、脱落现象,可更好地满足多极消融针的消融需求。
附图说明
图1为本发明表面改性非晶碳膜结构示意图。
图2为本发明实施例1消融针的子电极经50次展开收拢的刮擦试验后的示意图。
图3为本发明对比例1消融针的子电极经50次展开收拢的刮擦试验后的示意图。
图4为本发明对比例2消融针的子电极经50次展开收拢的刮擦试验后的示意图。
图中标识:子电极1、过渡层2、掺Ti非晶碳膜32、掺Cr非晶碳膜一31和掺Cr非晶碳膜二33。
具体实施方式
以下通过特定的具体实例说明本发明实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明实施例中所有方向性指示(诸如上、下、左、右、前、后、横向、纵向……)仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
因安装误差等原因,本发明实施例中所指的平行关系可能实际为近似平行关系,垂直关系可能实际为近似垂直关系。
实施例1:
如图1所示,一种表面改性非晶碳膜的多极射频消融针,包括子电极1,子电极1表面沉积过渡层2,过渡层2表面沉积非晶碳膜,非晶碳膜包括多层交替层叠的掺杂非晶碳膜。
过渡层2设置为Cr金属层。
非晶碳膜包括掺Cr非晶碳膜和掺Ti非晶碳膜32,掺Cr非晶碳膜和掺Ti非晶碳膜32交替层叠形成多层的掺杂非晶碳膜,本实施例中,掺Cr非晶碳膜设有两层,包括掺Cr非晶碳膜一31和掺Cr非晶碳膜二33,掺Ti非晶碳膜32设置在掺Cr非晶碳膜一31和掺Cr非晶碳膜二33之间,掺Cr非晶碳膜一31设置在过渡层2表面,形成如图1所示的多层的掺杂非晶碳膜。
本实施例中,掺Cr非晶碳膜一31的厚度设置在20-40nm,掺Cr非晶碳膜二33的厚度设置在80-100nm,掺Ti非晶碳膜32的厚度设置在20-40nm。
非晶碳膜的表面粗糙度范围设为5nm-20nm。
本实施例通过掺Cr非晶碳膜一31、掺Ti非晶碳膜32和掺Cr非晶碳膜二33交错层叠的结构对多极射频消融针子电极进行表面改性,保证了非晶碳膜的导电性,提高了非晶碳膜的附着力,以及降低了非晶碳膜的内应力,高附着力降低非晶碳膜在消融过程中的脱落风险,低内应力大幅减小了非晶碳膜开裂的风险,同时通过掺Cr非晶碳膜二33控制非晶碳膜硬度,使具备该硬度的非晶碳膜在子电极针伸展和收拢过程中不会发生涂层开裂、脱落的现象,同时提高了消融过程中子电极的抗粘连性能。
本申请还提供了一种表面改性非晶碳膜的制备方法,表面改性非晶碳膜的结构如上所述,在此不作赘述,表面改性非晶碳膜的制备方法包括以下步骤:
S1:将清洗后的多极射频消融针的子电极针放入磁控与离子束复合溅射沉积系统的真空室中,真空室抽真空和加热;
S2:刻蚀,通入Ar清洁表面残余氧化层和油污;
S3:沉积过渡层,通入Ar,开启Cr溅射靶,在子电极1的表面沉积过渡层;
S4:沉积掺Cr非晶碳膜一31,通入碳源气体,开启Cr溅射靶,通入Ar,在过渡层沉积掺Cr非晶碳膜一31;
S5:真空室抽真空;
S6:沉积掺Ti非晶碳膜32,通入碳源气体,开启Ti溅射靶,通入Ar,在掺Cr非晶碳膜一31沉积掺Ti非晶碳膜32;
S7:真空室抽真空;
S8:沉积掺Cr非晶碳膜二33,通入碳源气体,开启Cr溅射靶,通入Ar,在掺Ti非晶碳膜32沉积掺Cr非晶碳膜二33。
S1中多极射频消融针的子电极针可采用超声清洗,真空室的真空度设为1-5x10- 2Pa,将真空室的温度加热至50-100℃,优选为80℃;
S2中离子源的功率为550-650W,优选为600W,Ar的流量设为40-60sccm,优选为50sccm,转速设为1-3rpm,优选为2rpm,时间为100-120min,优选为100min;
S3中金属溅射靶的电流设为2.0-3.0A,优选为3.0A,Ar的流量设为40-50sccm,优选为40sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为10-12min,优选为10min;
S4中碳源气体的流量设为10-15sccm,优选为10sccm,转速设为1-3rpm,优选为2rpm,时间设为10-12min,优选为12min,Cr溅射靶的电流设为1.0-2.0A,优选为1.0A,Ar流量设为6-8sccm,优选为6sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为10-12min,优选为10min,掺Cr非晶碳膜一31的厚度设为20-40nm。
S5中真空室的真空度设为1-5x10-2Pa,优选为1x10-2Pa;
S6中碳源气体的流量设为10-15sccm,优选为10sccm,转速设为1-3rpm,优选为2rpm,时间设为10-12min,优选为12min,Ti溅射靶的电流设为1.0-2.0A,优选为1.6A,Ar流量设为6-8sccm,优选为6sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为10-12min,优选为10min,掺Ti非晶碳膜32的厚度设为80-100nm;
S7中真空室的真空度设为1-5x10-2Pa,优选为1x10-2Pa;
S8中碳源气体的流量设为10-15sccm,转速设为1-3rpm,优选为2rpm,时间设为20-25min,Cr溅射靶电流设为1.0-2.0A,Ar流量设为6-8sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为20-25min。
对比例1:
一种多层非晶碳膜的制备方法,包括以下步骤:
S1:抽真空,将清洗后的多极射频消融针的子电极针放入磁控与离子束复合溅射沉积系统的真空室中,真空室抽真空,真空室的真空度设为5x10-2Pa,真空室加热至80℃;
S2:刻蚀,离子源功率设为600W,通入Ar,流量设为50sccm,转速设为1-3rpm,优选为2rpm,时间设为100min,以清洁表面残余氧化层和油污;
S3:沉积过渡层,Cr溅射靶的电流设为3.0A,通入Ar,Ar流量设为40sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为30min;
S4:沉积掺Cr非晶碳膜一31,通入碳源气体,碳源气体的流量设为10sccm,转速设为1-3rpm,优选为2rpm,时间设为32min,同时开启Cr溅射靶,Cr溅射靶的电流1.0A,通入Ar,Ar流量设为6sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为32min;
S5:抽真空,真空室抽真空,真空度为1x10-2Pa;
S6:沉积掺Ti非晶碳膜32,通入碳源气体,碳源气体的流量设为10sccm,转速设为1-3rpm,优选为2rpm,时间设为20min,同时开启Ti溅射靶,Ti溅射靶电流设为1.6A,通入Ar,Ar的流量设为6sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为20min;
S7:抽真空,真空度为1x10-2Pa;
S8:沉积掺Cr非晶碳膜二33,通入碳源气体,碳源气体的流量设为10-15sccm,转速设为1-3rpm,优选为2rpm,时间设为20-25min,同时开启Cr溅射靶,Cr溅射靶的电流设为1.0-2.0A,通入Ar,Ar流量设为6-8sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为20-25min。
对比例1的镀膜工艺与实施例1一致,沉积掺Cr非晶碳膜一31和沉积掺Ti非晶碳膜32的时间增加将近一倍,非晶碳膜的厚度提高了大约1倍。
对比例2:
一种掺铬非晶碳膜的制备方法,包括以下步骤:
S1:抽真空,将清洗后的多极射频消融针的子电极针放入磁控与离子束复合溅射沉积系统的真空室中,真空室抽真空,真空室的真空度设为5x10-2Pa,真空室加热至100℃;
S2:刻蚀,离子源功率设为600W,通入Ar,Ar流量设为50sccm,转速设为1-3rpm,优选为2rpm,时间设为100min,以清洁表面残余氧化层和油污;
S3:沉积过渡层,Cr溅射靶电流设为3.0A,通入Ar,Ar流量设为40sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为30min;
S4:沉积Cr掺杂非晶碳膜,通入碳源气体,碳源气体流量设为10sccm,转速设为1-3rpm,优选为2rpm,时间设为50min,同时开启Cr溅射靶,Cr溅射靶电流设为1.0A,通入Ar,Ar流量设为6sccm,转速设为1-3rpm,优选为2rpm,沉积时间设为50min。
对比例2为单层掺Cr非晶碳膜,非晶碳膜的厚度与实施例1相同。
检测:
对上述实施例1、对比例1和对比例2所得到的经非晶碳膜表面改性的子电极进行消融针50次展开收拢的刮擦试验后,得到如图2-4所示的子电极表面结果,可以看出,实施例1的掺Cr非晶碳膜和掺Ti非晶碳膜32交替层叠的掺杂非晶碳膜改性的消融针子电极(图2)经过刮擦实验后表面均匀,未发现脱落和开裂现象,对比例1增加一倍厚度的非晶碳膜改性的消融针子电极(图3),子电极针经过刮擦试验后出现了非晶碳膜脱落的现象,对比例2与实施例1厚度相同的单层掺Cr非晶碳膜改性的消融针子电极(图4),经过刮擦试验后也出现了涂层脱落现象,综上所述实施例1制备的掺Cr非晶碳膜和掺Ti非晶碳膜32交替层叠的掺杂非晶碳膜,有效改善了在使用过程中出现的开裂、脱落现象,可更好地满足多极消融针的消融需求。
对上述实施例1、对比例1和对比例2所得到的非晶碳膜通过纳米压痕仪测试非晶碳膜的硬度、通过台阶仪测试得到非晶碳膜的内应力、通过拉拔试验机测试非晶碳膜的附着力以及通过四探针电阻仪测试表面电阻,得到表1,
表1不同非晶碳膜的性能数据
非晶碳膜 硬度 内应力 附着力 表面电阻
实例1 20GPa 0.6GPa 4.1MPa <10-3Ω/□
对比例1 33GPa 2.0GPa 2.1MPa <10-3Ω/□
对比例2 38GPa 4.4GPa 1.6MPa <10-3Ω/□
由表1可知,实施例1、对比例1和对比例2的表面电阻均小于10-3Ω/□;根据非晶碳膜的硬度测试数据,实施例1的非晶碳膜的硬度最小为20GPa,对比例2的非晶碳膜的硬度最大为38GPa;根据非晶碳膜的内应力测试数据,实施例1的非晶碳膜的内应力为最小0.6GPa,对比例2的非晶碳膜的内应力最大为38GPa;根据非晶碳膜的附着力测试数据,实施例1的非晶碳膜的附着力最大为4.1MPa,对比例2的非晶碳膜的附着力最小为1.6MPa。
综上所述,实施例1、对比例1和对比例2所得到的非晶碳膜的电性能相当,但实施例1制备的非晶碳膜通过掺Cr非晶碳膜和掺Ti非晶碳膜32交错层叠的结构,非晶碳膜的内应力最小,附着力最大,可较好的缓解非晶碳膜开裂、脱落的问题。
本发明所制备的通过掺Cr非晶碳膜和掺Ti非晶碳膜32交错层叠的非晶碳膜改性多极射频消融针子电极表面,降低了非晶碳膜的内应力,提高了非晶碳膜的附着力,从而较好地避免了在使用过程中的开裂、脱落现象,可更好地满足多极消融针的消融需求。
碳源气体设为甲烷、乙烷、乙烯、乙炔和苯中的任意一种或其任何组合,本申请中碳源气体设为乙炔。
显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (4)

1.表面改性非晶碳膜的制备方法,其特征在于:包括以下步骤:
S1:将清洗后的多极射频消融针的子电极针放入磁控与离子束复合溅射沉积系统的真空室中,真空室抽真空和加热;
S2:刻蚀,通入Ar清洁表面残余氧化层和油污;
S3 :沉积过渡层,通入Ar,开启Cr溅射靶,在子电极的表面沉积过渡层,金属溅射靶的电流设为2.0-3.0A,Ar的流量设为40-50sccm,转速设为1-3rpm,沉积时间设为10-12min;
S4 :沉积掺Cr非晶碳膜一,通入碳源气体,开启Cr溅射靶,通入Ar,在过渡层沉积掺Cr非晶碳膜一,碳源气体的流量设为10-15sccm,转速设为1-3rpm,时间设为10-12min,Cr溅射靶的电流设为1.0-2.0A,Ar流量设为6-8sccm,掺Cr非晶碳膜一的厚度设为20-40nm;
S5:真空室抽真空;
S6:沉积掺Ti非晶碳膜,通入碳源气体,开启Ti溅射靶,通入Ar,在掺Cr非晶碳膜一沉积掺Ti非晶碳膜,碳源气体的流量设为10-15sccm,转速设为1-3rpm,时间设为10-12min,Ti溅射靶的电流设为1.0-2.0A,Ar流量设为6-8sccm,掺Ti非晶碳膜的厚度设为20-40nm;
S7:真空室抽真空;
S8:沉积掺Cr非晶碳膜二,通入碳源气体,开启Cr溅射靶,通入Ar,在掺Ti非晶碳膜沉积掺Cr非晶碳膜二,碳源气体的流量设为10-15sccm,转速设为1-3rpm,时间设为20-25min,Cr溅射靶电流设为1.0-2.0A,Ar流量设为6-8sccm,掺Cr非晶碳膜二的厚度设为80-100nm。
2.根据权利要求1所述的一种表面改性非晶碳膜的制备方法,其特征在于:所述S1中真空室的真空度设为1-5x10-2Pa,将真空室的温度加热至50-100℃,S5中真空室的真空度设为1-5x10-2Pa,S7中真空室的真空度设为1-5x10-2Pa。
3.根据权利要求1所述的一种表面改性非晶碳膜的制备方法,其特征在于:所述S2中离子源的功率设为550-650W,Ar的流量设为40-60sccm,转速设为1-3rpm,时间为100-120min。
4.一种表面改性非晶碳膜的消融针,其特征在于:包括子电极,子电极表面由上述权利要求1-3任一项所述的一种表面改性非晶碳膜的制备方法沉积过渡层和非晶碳膜,非晶碳膜包括多层交替层叠的掺杂非晶碳膜。
CN202211262732.9A 2022-10-14 2022-10-14 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法 Active CN115505877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211262732.9A CN115505877B (zh) 2022-10-14 2022-10-14 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211262732.9A CN115505877B (zh) 2022-10-14 2022-10-14 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法

Publications (2)

Publication Number Publication Date
CN115505877A CN115505877A (zh) 2022-12-23
CN115505877B true CN115505877B (zh) 2023-09-08

Family

ID=84510123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211262732.9A Active CN115505877B (zh) 2022-10-14 2022-10-14 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法

Country Status (1)

Country Link
CN (1) CN115505877B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851451A1 (en) * 2013-09-24 2015-03-25 Union Tool Co. Amorphous-carbon-containing film
CN107083551A (zh) * 2017-03-10 2017-08-22 广东工业大学 一种三元掺杂纳米复合多层类金刚石涂层及其制备方法和应用
CN109338322A (zh) * 2018-11-19 2019-02-15 宁波甬微集团有限公司 一种压缩机滑片表面涂层及其制备方法
CN114231926A (zh) * 2021-12-17 2022-03-25 深圳市鼎高光电产品有限公司 一种可延长切削刀具寿命的涂层及其制备方法
CN115044869A (zh) * 2022-05-23 2022-09-13 广东工业大学 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962262A (zh) * 2005-11-11 2007-05-16 鸿富锦精密工业(深圳)有限公司 模具及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851451A1 (en) * 2013-09-24 2015-03-25 Union Tool Co. Amorphous-carbon-containing film
CN107083551A (zh) * 2017-03-10 2017-08-22 广东工业大学 一种三元掺杂纳米复合多层类金刚石涂层及其制备方法和应用
CN109338322A (zh) * 2018-11-19 2019-02-15 宁波甬微集团有限公司 一种压缩机滑片表面涂层及其制备方法
CN114231926A (zh) * 2021-12-17 2022-03-25 深圳市鼎高光电产品有限公司 一种可延长切削刀具寿命的涂层及其制备方法
CN115044869A (zh) * 2022-05-23 2022-09-13 广东工业大学 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
厚类金刚石碳基薄膜的制备及摩擦与腐蚀性能的表征;李安;李霞;王云锋;张广安;万善宏;;表面技术(第04期) *

Also Published As

Publication number Publication date
CN115505877A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
JP6261988B2 (ja) 透明導電フィルムおよびその製造方法
CN115505877B (zh) 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法
JP2000238178A (ja) 透明導電積層体
US20180291497A1 (en) Transparent conducting indium doped tin oxide
WO2014112536A1 (ja) 透明導電フィルムの製造方法
CN105492653A (zh) 透明导电性膜及其制造方法
DE102013007809A1 (de) Verfahren zum beschichten eines graphitmaterials mit pyrolytischem bornitrid und nach diesem verfahren erhaltener beschichteter artikel
CN112053806A (zh) 纳米片-纳米线复合结构透明加热薄膜的制备方法
JPWO2015151687A1 (ja) 透明導電フィルムの製造方法
CN106436289A (zh) 一种镍基吸波碳纤维的制备方法
EP3107108B1 (en) Method of manufacturing thin-film polymer multi-layer capacitor
CN112323031B (zh) 一种高硬耐腐蚀涂层及其制备方法和应用
CN106542620A (zh) 一种石墨烯基电容式吸附电极材料的制备方法
JP2009164412A (ja) 多孔質金属薄膜およびその製造方法、ならびにコンデンサ
TWI619785B (zh) 透明導電性薄片及其之製造方法
CN116120608B (zh) 一种高储能聚丙烯电容薄膜生产工艺
CN106460153A (zh) 透明导电性膜及其制造方法
CN104766894A (zh) 一种提高介质/金属/介质电极光电性能的方法
CN114822919B (zh) 一种石墨烯-金属复合膜的制造方法
JP2002343150A (ja) 透明導電性フィルム及びその製造方法
JP2007311040A (ja) 結晶性ito薄膜の成膜方法、結晶性ito薄膜及びフィルム、並びに抵抗膜式タッチパネル
JPH11335815A (ja) 透明導電膜付き基板および成膜装置
JP4842416B2 (ja) 透明導電薄膜付きフィルムおよびその製造方法
CN114635120A (zh) 用于生长石墨烯薄膜的基底、石墨烯薄膜以及它们的制备方法
KR20130077963A (ko) 내굴곡성박막과 투명전도성박막이 구비된 투명유연기판 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230428

Address after: 312030 room 901, ninth floor, building 7, Dongsheng Huigu, No. 1299, Kehai Avenue, Anchang street, Keqiao District, Shaoxing City, Zhejiang Province

Applicant after: Zhejiang Rongshi Medical Technology Co.,Ltd.

Address before: Room 6-302, Building 4, No. 188, Zijinhua North Road, Xihu District, Hangzhou, Zhejiang, 310000

Applicant before: Hangzhou Borong New Material Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant