CN115044869A - 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用 - Google Patents

一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN115044869A
CN115044869A CN202210564834.XA CN202210564834A CN115044869A CN 115044869 A CN115044869 A CN 115044869A CN 202210564834 A CN202210564834 A CN 202210564834A CN 115044869 A CN115044869 A CN 115044869A
Authority
CN
China
Prior art keywords
doped
film
metal
based film
resistant carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210564834.XA
Other languages
English (en)
Inventor
张腾飞
叶谱生
王启民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202210564834.XA priority Critical patent/CN115044869A/zh
Publication of CN115044869A publication Critical patent/CN115044869A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Vapour Deposition (AREA)
  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于薄膜材料技术领域,涉及碳基薄膜材料技术领域,具体涉及一种Cr掺杂ta‑C导电耐蚀碳基薄膜及其制备方法和应用。本发明的Cr掺杂ta‑C导电耐蚀碳基薄膜为CrC纳米晶镶嵌的四面体非晶碳母相结构,由Cr过渡层、Cr梯度含量掺杂ta‑C过渡层和Cr掺杂的ta‑C层组成,薄膜中Cr的掺杂含量为9.6~23.2at.%;所述薄膜采用磁过滤电弧离子镀和磁控溅射复合沉积技术在金属基底上沉积制得。本发明的Cr掺杂ta‑C薄膜具有高sp3碳‑碳键含量、低残余内应力、高导电性和高耐电化学腐蚀性,可应用于燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极等领域。

Description

一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用
技术领域
本发明属于薄膜材料技术领域,涉及碳基薄膜材料技术领域,具体涉及一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用。
背景技术
燃料电池因具有高效、清洁、可靠等特点而备受关注,广泛运用于交通运输、家庭电源和溅射分散电站等领域,在商用车交通运输领域具有续航里程长、燃料加注时间短的优势,可与燃油车媲美。双极板(分离器)是质子交换燃料电池的核心组件之一,主要用于反应气体的分离和传输、电流收集和传导、电池支撑等。
目前,双极板按材料可分为三大类,即石墨双极板、金属双极板和复合双极板。其中,金属双极板具有体积小、电导率高、气密性好、机械强度高、加工性能优、成本低等优势,尤其是在体积功率密度方面具有显著优势,所以金属双极板被认为是燃料电池车用的最佳选择。然而,金属双极板在酸性运行环境中的导电性和耐蚀性并不理想。金属双极板在酸性环境中会发生腐蚀,腐蚀生成的钝化膜虽然可以提高金属双极板的耐腐蚀能力,但钝化膜的生成会导致电阻增大,导致双极板的导电性下降。有研究发现,表面改性是解决金属双极板耐蚀性和导电性的主要途径之一。
四面体非晶碳(ta-C)是类金刚石碳膜材料的一种,具有高C-C sp3键含量(80%),结构和性能非常接近金刚石,具有易掺杂,无基体材料限制,可低温沉积(<150℃)等优势,且相比于金属双极板,具有优异的耐腐蚀性,在燃料电池双极板导电耐蚀表面防护薄膜领域具有重要的应用前景。然而,ta-C存在高电阻率(105-1010Ω·cm)、高内应力、与金属基体结合弱等问题。因此,需要掺杂改性才能使其达到电极材料的实际应用要求。
发明内容
为了克服上述现有技术的不足,本发明提供了一种金属Cr掺杂ta-C导电耐蚀薄膜,采用中强碳化物形成相金属Cr元素掺杂ta-C薄膜,从而增强涂层的导电性,降低涂层的残余应力,同时采用Cr梯度含量掺杂ta-C过渡层设计来弥补非晶碳膜与金属基体的物理性能差异,改善膜基结合力,获得具有高结合强度、良好导电性和耐蚀性的ta-C薄膜,提高四面体非晶碳膜ta-C的实用性。同时,本发明的薄膜沉积技术操作方便,无需后处理等工艺,制备周期短,成本低,可重复性好,可实现工业化生产。
为实现上述目的,本发明是通过以下技术方案来实现的:
本发明提供了一种Cr掺杂ta-C导电耐蚀碳基薄膜,所述薄膜为CrC纳米晶镶嵌的四面体非晶碳母相结构,薄膜中Cr的掺杂含量为9.6at.%~23.2at.%;所述薄膜由Cr金属过渡层、Cr梯度含量掺杂ta-C中间层和Cr掺杂的ta-C层组成,所述Cr梯度含量掺杂ta-C中间层包括高Cr掺杂含量的ta-C过渡层和中Cr掺杂含量ta-C过渡层。
本发明利用中强碳化物形成相金属Cr元素掺杂ta-C薄膜,从而增强涂层的导电性,降低涂层的残余应力,获得具有高结合强度、良好导电性和耐蚀性的ta-C薄膜。
本发明还提供了上述Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,即以金属Cr靶和石墨靶为原料,利用磁过滤电弧磁控溅射复合沉积系统,采用磁过滤电弧及磁控溅射复合沉积技术在金属基体上沉积得到。
优选地,上述Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法包括以下步骤:
S1、沉积Cr过渡层:将金属基体置于真空室的工件支架上,抽至真空度为3.0~5.0×10-3Pa,设置沉积温度为室温,调节基体的负偏压为-50~-100V,占空比为45~70%;设置Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa;开启Cr靶磁控溅射电源,保持磁控靶的电流为4~6A,沉积时间为5~7min;
S2、沉积高Cr含量掺杂的ta-C层:维持基体负偏压为-50~-100V,占空比为45~70%,Ar气体流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa;开启磁过滤电弧石墨靶,弧源电流为70~80A,沉积时间为10~15min;
S3、中Cr含量掺杂的ta-C层:修改磁控Cr靶的电流为2~3A;保持电弧石墨靶的电流为70~80A,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa,基体负偏压为-50~-100V,占空比为45~70%,沉积时间为10~15min;
S4、Cr掺杂的ta-C层:修改磁控Cr靶的电流为0~1A,且Cr靶的电流不为0;保持电弧石墨靶的电流为70~80A,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa,基体负偏压为-50~-100V,占空比为45~70%,沉积时间为40~80min,在基体上沉积Cr掺杂ta-C薄膜,即可制备得到Cr掺杂ta-C导电耐蚀碳基薄膜。
金属掺杂是非晶碳涂层改性的重要手段。Cr作为中强碳化物形成相金属,Cr掺杂到ta-C薄膜中有两种存在形式,少量掺杂时为Cr固溶于C非晶网格内;超过固溶度时Cr与C结合,形成CrC相纳米晶粒,两种存在形式能为ta-C薄膜提供载流子,有效降低ta-C薄膜的电阻,提高导电率。同时Cr和CrC相都具有较好的耐蚀性,可以在降低ta-C薄膜电阻率的同时维持薄膜的高耐蚀性。此外,Cr的掺杂也可以降低ta-C薄膜的残余内应力,改善膜基结合力。为解决四面体非晶碳膜ta-C导电性差、膜基结合力差的问题,本发明通过调控磁控Cr靶的电流形成不同Cr含量掺杂的ta-C薄膜。磁控Cr靶溅射出的Cr以及过滤电弧石墨靶蒸发出的C原子和原子团浓度均与靶材电流大小呈正相关,因此Cr的掺杂含量可通过固定C电弧靶电流,并调节Cr磁控靶电流来实现。Cr含量梯度过渡层主要是为了减小膜-基物理性能差异,增强膜基结合强度。利用Cr作为中强碳化物形成相金属的特性,在ta-C薄膜中掺杂Cr能有效提高ta-C膜的导电性,同时减小残余应力,提高薄膜的结合强度。
同时,本发明的制备方法具有制备产品性能稳定,操作方便,工艺简单,制备周期短,成本低,绿色环保,便于工业化生产等优点,可以应用于燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极等领域。
进一步地,所述金属基体包括不锈钢片和钛金属基板。
进一步地,所述金属基体在沉积Cr过渡层前,先进行超声清洗和等离子体刻蚀清洗。
更进一步地,所述等离子体刻蚀清洗为从阳极层离子源通入气体流量为100~150sccm的Ar气,调节沉积腔室内的环境压力为0.8~1.2Pa,基体施加负偏压-600~-800V,占空比为45~70%,开启阳极层离子源电源,离子源电压设置为1000~1200V,对基体进行等离子体刻蚀清洗,时间为10~20min。
更进一步地,所述超声清洗为分别用金属离子清洗液和乙醇对金属基体进行超声清洗,最后用压缩氮气吹干。
更进一步地,所述金属基体在超声清洗前还进行抛光处理。
具体地,所述抛光处理为先用不同目数的砂纸对金属基体进行抛光,再用抛光布添加抛光膏抛光至镜面。
本发明还提供了上述Cr掺杂ta-C导电耐蚀碳基薄膜在制备电极材料中的应用,其特征在于,所述电极材料包括燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极。
本发明的Cr掺杂ta-C薄膜具有高sp3碳-碳键含量、低残余内应力、高导电性和高耐电化学腐蚀性,可应用于燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极等领域。
与现有技术相比,本发明的有益效果是:
本发明公开了一种Cr掺杂ta-C导电耐蚀碳基薄膜,该薄膜以金属Cr靶和石墨靶为原料,采用磁过滤电弧及磁控溅射复合沉积技术在金属基体上沉积得到。一方面利用磁过滤电弧技术蒸发石墨靶可有效减少弧靶喷射出的石墨颗粒,降低ta-C碳膜表面的大颗粒缺陷,另一方面利用磁控溅射Cr靶可以精确控制Cr元素的掺杂含量。同时,利用ta-C碳膜优秀的耐蚀性,通过控制磁控Cr靶电源的电流大小制备不同含量的金属Cr掺杂ta-C薄膜,Cr固溶相和CrC纳米晶均能改善ta-C薄膜的导电性,降低ta-C薄膜的内应力,与Cr梯度含量掺杂ta-C过渡层一起,同时增强ta-C与基体的结合强度,解决ta-C薄膜导电性差、与金属基体结合力差的问题,从而改善ta-C薄膜在燃料电池金属双极板等领域应用时的使用性能和使用寿命。此外,本发明制备Cr掺杂ta-C导电薄膜的方法,工艺性能稳定,重复率高,操作方便,制备周期短,成本低,绿色环保,便于工业化生产应用。
附图说明
图1为Cr掺杂ta-C导电耐蚀碳基薄膜的结构示意图;
图2为实施例1、2和对比例1薄膜截面的扫描电镜微观形貌图;
图3为实施例1、2和对比例1薄膜截面的透射电镜微观形貌图;
图4为实施例1、2和对比例1薄膜的残余内应力;
图5为实施例1、2和对比例1薄膜的划痕膜-基结合力结果;
图6为实施例1、2和对比例1薄膜的电阻率检测结果;
图7为实施例1、2和对比例1薄膜的耐电化学腐蚀能力检测结果。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。
实施例1 ta-C:Cr 9.6at.%薄膜的制备
本实施例的Cr掺杂ta-C导电耐蚀薄膜,Cr掺杂含量为9.6at.%,简称ta-C:Cr9.6at.%薄膜。如图1所示,所述薄膜从下到上依次由Cr金属过渡层、Cr梯度含量掺杂ta-C中间层(高Cr掺杂含量的ta-C过渡层和中Cr掺杂含量ta-C过渡层)和Cr掺杂的ta-C层组成;所述薄膜利用磁过滤电弧磁控溅射复合沉积系统(DG-3BY),以金属Cr靶和石墨靶为原料,采用磁过滤电弧及磁控溅射复合沉积技术在金属基体上沉积得到,本实施例所使用的金属基体为316L不锈钢。具体制备方法包括以下步骤:
(1)将经抛光处理后的不锈钢片基体(先用不同目数砂纸抛光,再用抛光布添加抛光膏抛光至镜面)送入超声波清洗机,依次用丙酮、无水乙醇以30kHz的频率分别进行超声清洗15min,然后用去离子水清洗,再用纯度≥99.5%的氮气吹干。
(2)将超声清洗后的基体置于真空室的工件支架上,抽取沉积腔室内的气体,抽至真空度为5.0×10-3Pa以下,设置沉积温度为室温,基体支架公转转速为30rpm/min,通入气体流量为120sccm的Ar气,调节节流阀使沉积腔室内的环境压力为1Pa,基体加负偏压-800V,占空比为70%,打开阳极层离子源电源,离子源电压设置为1000V,对基体进行等离子体刻蚀清洗,持续时间为10min。
(3)沉积Cr金属过渡层:关闭离子源,调节通入Ar气气体的流量为90sccm,调节节流阀使沉积腔室内的环境压力为0.8Pa,开启磁控Cr靶电源,磁控电流为5A,基体加负偏压-100V、占空比为70%,沉积时间为5min,得到Cr金属过渡层。
(4)沉积高Cr掺杂含量的ta-C过渡层(也称多Cr ta-C层):开启电弧石墨C靶,弧源电流为80A,同时保持Cr靶磁控电流为5A、气体流量为90sccm、沉积腔室内的环境压力为0.8Pa,基体加负偏压-100V、占空比为70%;沉积时间为10min,获得高Cr掺杂含量的ta-C过渡层;
(5)沉积中Cr掺杂含量ta-C过渡层(也称少Cr ta-C层):修改磁控Cr靶的电流为3A,其他条件不变,沉积时间为10min,获得中Cr掺杂含量ta-C过渡层;
(6)沉积Cr掺杂ta-C薄膜:继续维持其他参数条件不变,降低磁控Cr靶的电流至0.2A,沉积60min,获得Cr掺杂ta-C薄膜。
(7)完成镀膜后,打开真空室取出基体,在不锈钢基体表面制备出ta-C:Cr9.6at.%薄膜。
实施例2 ta-C:Cr 23.2at.%薄膜的制备
制备方法同实施例1,与实施例1的区别在于:步骤(6)沉积最后一层Cr掺杂ta-C层的磁控Cr靶电源电流不同,磁控Cr靶电源电流为1A,制备的薄膜为ta-C:Cr 23.2at.%。
对比例1 ta-C薄膜的制备
制备方法同实施例1,与实施例1的区别在于:沉积最后一层Cr掺杂ta-C层时,关闭磁控Cr靶电源电流,制备得表面层为无Cr掺杂的纯ta-C薄膜。
实验例1特性表征和性能测试
(1)元素扫描分析
对本发明实施例1、实施例2和对比例1的薄膜使用扫描电子显微镜(FEI NovaNano SEM 430)中的EDS能谱仪进行元素扫描分析,获得薄膜Cr元素的掺杂含量;同时对薄膜截面形貌进行观察。
如图2所示,薄膜结构均较为致密,与基体结合良好,对比例1(ta-C薄膜)为玻璃态非晶结构,随着Cr含量的增加,薄膜的结构由玻璃态非晶结构向柱状晶结构转变,说明Cr掺杂导致薄膜中出现结晶相。
(2)微观形貌检测
对本发明实施例1、实施例2和对比例1的薄膜截面采用荷兰FEI公司的FEI TCrosF200S型场发射透射电子显微镜对薄膜的微观形貌进行检测。
结果如图3所示,对比例1(ta-C薄膜)为原子长程无序的非晶结构;掺杂9.6at.%Cr元素后,实施例1出现少量CrC结晶相,说明少量Cr掺杂,Cr主要固溶在非晶C网格内,少部分析出CrC相;实施例2中当Cr元素掺杂含量达到23.2at.%后,生成CrC纳米晶相,尺寸约为10~20nm。
(3)残余应力表征
对本发明实施例1、实施例2和对比例1的薄膜采用Supro Instruments公司的FST-1000型薄膜应力仪来表征薄膜的残余应力。通过分别测量沉积涂层前和沉积涂层后的基体曲率,后结合Stoney公式,由设备配套软件计算并获得涂层的残余应力。
结果如图4所示,对比例1的ta-C薄膜的残余压应力较大,达到-4.4GPa;掺杂Cr元素后残余应力显著降低,实施例1为-1.8GPa,实施例2则降至-0.4GPa,说明通过Cr金属掺杂释放了薄膜中的残余应力。
(4)膜-基结合力测试
对本发明实施例1、实施例2和对比例1的薄膜采用Anton Paar公司研发的RST3型大载荷划痕仪测试薄膜的膜-基结合力,定义Lc2为薄膜失效完全剥落时的临界载荷,以Lc2作为膜-基结合力。测试过程中,设置载荷范围为0~50N,划痕长度为3mm。
划痕结果如图5所示,对比例1的ta-C薄膜与金属基体的结合力较差,仅为2.5N,主要是由于薄膜残余内应力较大,划动过程中出现剥落失效;掺杂Cr元素后膜基结合力显著提高,实施例1为9.7N,实施例2则升至13.9N,主要原因是Cr元素掺杂显著降低了薄膜的残余内应力,同时梯度过渡层也起到弥补碳膜和金属基体物性差异,提高结合力的作用。
(5)电阻率测试
对本发明实施例1、实施例2和对比例1的薄膜采用JouleYacht HET-RT霍尔效应仪测试薄膜的导电性,获得薄膜的电阻率。
如图6所示,对比例1的ta-C薄膜由于sp3含量高,性能接近金刚石,因此电阻率较高,达到105Ω·cm以上;Cr元素掺杂后显著降低了薄膜的电阻率,实施例1电阻率降低了7个数量级,实施例2电阻率则降低了8个数量级,达到10-3Ω·cm,主要原因是Cr固溶相及CrC纳米晶为薄膜提供了更多的载流子,改善了薄膜的导电性能。
(6)耐电化学腐蚀性能测试
对本发明的实施例1和316L不锈钢基板采用Autolab Pgstat302N电化学工作站进行耐电化学腐蚀性能测试,测试溶液为0.5mol/L硫酸溶液,氟离子浓度为2ppm,测试温度为80℃,得到薄膜极化腐蚀曲线。
如图7所示,相较于316L不锈钢基板,实施例1薄膜的腐蚀电位显著升高,且腐蚀电流显著下降,说明施加薄膜后耐蚀性显著提升,本发明的Cr掺杂ta-C薄膜可以有效对不锈钢基板起到腐蚀防护作用。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (10)

1.一种Cr掺杂ta-C导电耐蚀碳基薄膜,其特征在于,所述薄膜为CrC纳米晶镶嵌的四面体非晶碳母相结构,薄膜中Cr的掺杂含量为9.6at.%~23.2at.%;所述薄膜由Cr金属过渡层、Cr梯度含量掺杂ta-C中间层和Cr掺杂的ta-C层组成,所述Cr梯度含量掺杂ta-C中间层包括高Cr掺杂含量的ta-C过渡层和中Cr掺杂含量ta-C过渡层。
2.权利要求1所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,以金属Cr靶和石墨靶为原料,利用磁过滤电弧磁控溅射复合沉积系统,采用磁过滤电弧及磁控溅射复合沉积技术在金属基体上沉积得到。
3.根据权利要求2所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,包括以下步骤:
S1、沉积Cr过渡层:将金属基体置于真空室的工件支架上,抽至真空度为3.0~5.0×10-3Pa,设置沉积温度为室温,调节基体的负偏压为-50~-100V,占空比为45~70%;设置Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa;开启Cr靶磁控溅射电源,保持磁控靶的电流为4~6A,沉积时间为5~7min;
S2、沉积高Cr含量掺杂的ta-C层:维持基体负偏压为-50~-100V,占空比为45~70%,Ar气体流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa;开启磁过滤电弧石墨靶,弧源电流为70~80A,沉积时间为10~15min;
S3、中Cr含量掺杂的ta-C层:修改磁控Cr靶的电流为2~3A;保持电弧石墨靶的电流为70~80A,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa,基体负偏压为-50~-100V,占空比为45~70%,沉积时间为10~15min;
S4、Cr掺杂的ta-C层:修改磁控Cr靶的电流为0~1A,且Cr靶的电流不为0;保持电弧石墨靶的电流为70~80A,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa,基体负偏压为-50~-100V,占空比为45~70%,沉积时间为40~80min,在基体上沉积Cr掺杂ta-C薄膜,即可制备得到Cr掺杂ta-C导电耐蚀碳基薄膜。
4.根据权利要求3所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,所述金属基体包括不锈钢片和钛金属基板。
5.根据权利要求3所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,所述金属基体在沉积Cr过渡层前,先进行超声清洗和等离子体刻蚀清洗。
6.根据权利要求5所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,所述等离子体刻蚀清洗为从阳极层离子源通入气体流量为100~150sccm的Ar气,调节沉积腔室内的环境压力为0.8~1.2Pa,基体施加负偏压-600~-800V,占空比为45~70%,开启阳极层离子源电源,离子源电压设置为1000~1200V,对基体进行等离子体刻蚀清洗,时间为10~20min。
7.根据权利要求5所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,所述超声清洗为分别用金属离子清洗液和乙醇对金属基体进行超声清洗,最后用压缩氮气吹干。
8.根据权利要求5所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,所述金属基体在超声清洗前还进行抛光处理。
9.根据权利要求8所述的Cr掺杂ta-C导电耐蚀碳基薄膜的制备方法,其特征在于,所述抛光处理为先用不同目数的砂纸对金属基体进行抛光,再用抛光布添加抛光膏抛光至镜面。
10.权利要求1所述的Cr掺杂ta-C导电耐蚀碳基薄膜在制备电极材料中的应用,其特征在于,所述电极材料包括燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极。
CN202210564834.XA 2022-05-23 2022-05-23 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用 Pending CN115044869A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210564834.XA CN115044869A (zh) 2022-05-23 2022-05-23 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210564834.XA CN115044869A (zh) 2022-05-23 2022-05-23 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115044869A true CN115044869A (zh) 2022-09-13

Family

ID=83159503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210564834.XA Pending CN115044869A (zh) 2022-05-23 2022-05-23 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115044869A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505877A (zh) * 2022-10-14 2022-12-23 杭州博容新材料科技有限公司 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030127A (zh) * 2020-07-28 2020-12-04 温州职业技术学院 一种采用增强辉光放电复合调制强流脉冲电弧制备的ta-C涂层及制备方法
CN114174551A (zh) * 2019-08-14 2022-03-11 Ihi豪泽尔涂层技术有限公司 涂覆燃料电池堆的一个或多个金属部件的方法、燃料电池堆的部件及用于涂覆其部件的设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174551A (zh) * 2019-08-14 2022-03-11 Ihi豪泽尔涂层技术有限公司 涂覆燃料电池堆的一个或多个金属部件的方法、燃料电池堆的部件及用于涂覆其部件的设备
CN112030127A (zh) * 2020-07-28 2020-12-04 温州职业技术学院 一种采用增强辉光放电复合调制强流脉冲电弧制备的ta-C涂层及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505877A (zh) * 2022-10-14 2022-12-23 杭州博容新材料科技有限公司 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法
CN115505877B (zh) * 2022-10-14 2023-09-08 浙江融仕医疗科技有限公司 一种表面改性非晶碳膜的消融针和非晶碳膜的制备方法

Similar Documents

Publication Publication Date Title
Yi et al. Microstructure and properties of aC films deposited under different argon flow rate on stainless steel bipolar plates for proton exchange membrane fuel cells
WO2020019693A1 (zh) 一种用于燃料电池金属双极板的石墨微晶碳涂层及应用
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN110684946A (zh) 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用
Yan et al. Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (aC: H/TiC) films prepared on titanium bipolar plates in PEMFCs
CN112803033B (zh) 一种用于燃料电池金属双极板的薄膜及其制备方法
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
CN115044869A (zh) 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用
CN114481048B (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
Jin et al. Investigation of corrosion protection with conductive chromium-aluminum carbonitride coating on metallic bipolar plates
CN113937301B (zh) 金属双极板表面过渡金属氮化物与碳复合改性薄膜及其制备方法
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN115058696B (zh) 一种Ti/Si共掺杂ta-C导电碳基薄膜及其制备方法和应用
CN108408848B (zh) 掺硼金刚石/石墨复合电极及制备方法、双电池反应器
EP3876307A1 (en) Film and preparation process
CN113675419A (zh) 一种表面改性的钛双极板及其制备方法和在质子交换膜燃料电池中的应用
KR101078231B1 (ko) 전도성 금속산화막이 코팅된 고분자전해질 연료전지용 금속 분리판의 제조방법
CN108598497A (zh) 一种用于燃料电池金属极板的纳米金属层及制备方法
CN111304596A (zh) 一种钕铁硼磁体表面防腐涂层的制备方法
CN114959573B (zh) 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用
CN109023282B (zh) 一种在双极板表面制备CrMoTiN氮化膜纳米涂层的制备方法
CN115911436A (zh) 一种pem燃料电池金属双极板碳基复合涂层的制备工艺
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
CN110783595B (zh) 一种金属双极板及其制备方法以及燃料电池
CN108831754B (zh) 一种高比表面积的MeN涂层及其制备方法和超级电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220913

RJ01 Rejection of invention patent application after publication