CN114959573B - 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用 - Google Patents

一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN114959573B
CN114959573B CN202210567197.1A CN202210567197A CN114959573B CN 114959573 B CN114959573 B CN 114959573B CN 202210567197 A CN202210567197 A CN 202210567197A CN 114959573 B CN114959573 B CN 114959573B
Authority
CN
China
Prior art keywords
doped
substrate
nanocrystalline
amorphous carbon
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210567197.1A
Other languages
English (en)
Other versions
CN114959573A (zh
Inventor
张腾飞
叶谱生
王启民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202210567197.1A priority Critical patent/CN114959573B/zh
Publication of CN114959573A publication Critical patent/CN114959573A/zh
Application granted granted Critical
Publication of CN114959573B publication Critical patent/CN114959573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于薄膜材料技术领域,涉及碳基薄膜材料技术领域,具体涉及一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用。本发明的Al纳米晶掺杂ta‑C导电薄膜为Al纳米晶镶嵌的四面体非晶碳母相结构,由Al金属过渡层、Al梯度含量掺杂ta‑C中间层和Al掺杂的ta‑C层组成,薄膜中的Al掺杂含量为14.0at.%~39.6at.%;所述薄膜采用磁过滤电弧及磁控溅射复合沉积技术在金属基底上沉积得到。本发明的Al纳米晶掺杂ta‑C薄膜具有高sp3碳‑碳键含量、低残余内应力、高化学稳定性和高导电性,可应用于燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极等领域。

Description

一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和 应用
技术领域
本发明属于薄膜材料技术领域,涉及碳基薄膜材料技术领域,具体涉及一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用。
背景技术
燃料电池因具有高效、清洁、可靠等特点而备受关注,广泛运用于交通运输、家庭电源和溅射分散电站等领域,在商用车交通运输领域具有续航里程长、燃料加注时间短的优势,可与燃油车媲美。双极板(分离器)是质子交换燃料电池的核心组件之一,主要用于反应气体的分离和传输、电流收集和传导、电池支撑等。
目前,双极板按材料可分为三大类,即石墨双极板、金属双极板和复合双极板。其中,金属双极板具有体积小、电导率高、气密性好、机械强度高、加工性能优、成本低等优势,尤其是在体积功率密度方面具有显著优势,所以金属双极板被认为是燃料电池车用的最佳选择。然而,金属双极板在酸性运行环境中的耐蚀性和导电性并不理想。金属双极板在酸性环境中会发生腐蚀,腐蚀生成的钝化膜虽然可以提高金属双极板的耐腐蚀能力,但钝化膜的生成会导致电阻增大,双极板导电性下降。目前国内外通过大量的研究发现,表面改性是解决金属双极板耐蚀性和导电性的主要途径之一。
四面体非晶碳(ta-C)是类金刚石涂层材料的一种,具有高C-C sp3键含量(80%),结构和性能非常接近金刚石,具有易掺杂,无基体材料限制,可低温沉积(<150℃)等优势,且相比于金属,具有优异的耐腐蚀性。然而,ta-C存在高电阻率(105-1010Ω·cm)、高内应力、与金属基体结合弱等问题。因此,需要掺杂改性才能使其达到电极材料的实际应用要求。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种Al纳米晶掺杂四面体非晶碳导电薄膜,采用金属Al掺杂ta-C碳膜,由不同含量的Al掺杂的ta-C层沉积在基体上形成同时具有导电性、结合强度高的碳膜结构,提高非晶碳膜ta-C的实用性。同时,本发明的薄膜沉积技术操作方便,制备周期短,成本低,绿色环保,便于工业化生产应用。
为实现上述目的,本发明是通过以下技术方案来实现的:
一种Al纳米晶掺杂四面体非晶碳导电薄膜,所述薄膜为Al纳米晶镶嵌的四面体非晶碳母相结构,薄膜中的Al掺杂含量为14.0at.%~39.6at.%;所述薄膜由Al金属过渡层、Al梯度含量掺杂ta-C中间层和Al掺杂的ta-C层组成,所述Al梯度含量掺杂ta-C中间层包括高Al掺杂含量ta-C过渡层和中Al掺杂含量ta-C过渡层。
本发明利用Al金属元素掺杂和梯度复合结构过渡层的涂层设计,增强ta-C碳膜的导电性,降低碳膜的残余应力,获得具有优异导电性、高结合强度的ta-C碳膜。对制备高性能燃料电池金属ta-C碳膜双极板及推动新能源技术在储能行业的大规模应用方面具有重要意义。
本发明还提供了上述Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,即以金属Al靶和石墨靶为原料,利用磁过滤电弧磁控溅射复合沉积系统,采用磁过滤电弧及磁控溅射复合沉积技术在金属基体上沉积得到。
优选地,上述Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法包括以下步骤:
S1、沉积Al过渡层:将金属基体置于真空室的工件支架上,抽至真空度为3.0~5.0×10-3Pa,设置沉积温度为室温,调节基体的负偏压为-50~-100V,占空比为45~70%;设置Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa;开启Al靶磁控溅射的电源,保持磁控靶电流为4~6A,沉积时间为5~7min;
S2、沉积高Al含量掺杂的ta-C层:维持基体的负偏压为-50~-100V,占空比为45~70%,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa;开启磁过滤电弧石墨靶,弧源电流为70~80A,沉积时间为10~15min;
S3、沉积中Al含量掺杂的ta-C层:修改磁控Al靶的电流为2~3A;保持电弧石墨靶的电流为70~80A,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa,基体负偏压为-50~-100V,占空比为45~70%,沉积时间为10~15min;
S4、沉积Al掺杂的ta-C层:修改磁控Al靶的电流为0~2A;保持电弧石墨靶的电流为70~80A,Ar气体的流量为60~120sccm,沉积腔室内的环境压力为0.7~0.9Pa,基体负偏压为-50~-100V,占空比为45~70%,沉积时间为40~80min,在基体上沉积Al纳米晶掺杂ta-C薄膜,即可制备得到Al纳米晶掺杂四面体非晶碳导电薄膜。
金属掺杂是非晶碳涂层改性的重要手段,Al掺杂到ta-C纳米复合导电碳膜中,作为弱碳化物形成相金属,不易与ta-C中的C原子结合,少量掺杂固溶于非晶C网格内,多量掺杂则易形成Al纳米晶单质相,这可以增加非晶碳膜内的载流子浓度,增强碳膜的导电性。此外,Al掺杂还可以有效降低ta-C薄膜的内应力,同时梯度复合结构过渡层可减小层间物性差异,有效提高ta-C薄膜与金属基体的结合强度。为解决四面体非晶碳膜ta-C导电性差、膜基结合力差的问题,本发明通过调控磁控Al靶的电流形成不同Al含量掺杂的ta-C薄膜,磁控Al靶溅射出的Al以及过滤电弧石墨靶蒸发出的C原子和原子团浓度与靶材电流大小呈正相关,因此Al掺杂含量可通过固定C电弧靶电流,并调节Al磁控靶电流来实现。Al含量梯度过渡层主要是为了减小膜-基物理性能差异,增强膜基结合强度。利用Al作为弱碳化物形成相金属的特性,在ta-C薄膜中掺杂Al能有效提高ta-C膜的导电性,同时减小残余应力,提高薄膜的结合强度。
同时,本发明的制备方法具有制备产品性能稳定,操作方便,工艺简单,制备周期短,成本低,绿色环保,便于大规模工业化生产等优点,可以应用于燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极等领域。
进一步地,所述金属基体包括不锈钢片和钛金属基板。
进一步地,所述金属基体在沉积Al过渡层前,先进行超声清洗和等离子体刻蚀清洗。
更进一步地,所述等离子体刻蚀清洗为从阳极层离子源通入气体流量为100~150sccm的Ar气,调节沉积腔室内的环境压力为0.8~1.2Pa,基体施加负偏压-600~-800V,占空比为45~70%,开启阳极层离子源的电源,离子源电压设置为1000~1200V,对基体进行等离子体刻蚀清洗,时间为10~20min。
更进一步地,所述超声清洗为分别用金属离子清洗液和乙醇对金属基体进行超声清洗,最后用压缩氮气吹干。
更进一步地,所述金属基体在超声清洗前还进行抛光处理。
具体地,所述抛光处理为先用不同目数的砂纸对金属基体进行抛光,再用抛光布添加抛光膏抛光至镜面。
本发明还提供了上述Al纳米晶掺杂四面体非晶碳导电薄膜在制备电极材料中的应用,所述电极材料包括燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极。
本发明的Al纳米晶掺杂ta-C薄膜具有高sp3碳-碳键含量、低残余内应力、高化学稳定性和高导电性,可应用于燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极等领域。
与现有技术相比,本发明的有益效果是:
本发明公开了一种Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,以金属Al靶和石墨靶为原料,采用磁过滤电弧及磁控溅射复合沉积技术在金属基体上沉积得到。一方面利用磁过滤电弧技术蒸发石墨靶可有效减少弧靶喷射出的石墨颗粒,降低ta-C碳膜表面的大颗粒缺陷;另一方面利用磁控溅射Al靶可以精确控制Al元素的掺杂含量。利用ta-C碳膜优秀的耐蚀性,通过控制磁控Al靶电源的电流大小制备不同含量的金属Al掺杂ta-C薄膜,Al纳米晶可有效改善ta-C薄膜的导电性,降低ta-C薄膜的内应力,与Al梯度含量掺杂ta-C过渡层一起,同时增强ta-C与基体的结合强度,解决ta-C薄膜导电性差、与金属基体结合力差的问题,从而改善ta-C薄膜在燃料电池金属双极板等领域应用时的使用性能和使用寿命。此外,本发明制备Al纳米晶掺杂ta-C导电薄膜的方法,工艺性能稳定,重复率高,操作方便,制备周期短,成本低,绿色环保,便于工业化生产应用。
附图说明
图1为Al纳米晶掺杂ta-C导电碳膜的结构示意图;
图2为实施例1、2和对比例1薄膜截面的扫描电镜微观形貌图;
图3为实施例1、2和对比例1薄膜截面的透射电镜微观形貌图;
图4为实施例1、2和对比例1薄膜的残余内应力;
图5为实施例1、2和对比例1薄膜的划痕膜-基结合力结果;
图6为实施例1、2和对比例1薄膜的电阻率检测结果。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。
实施例1 ta-C:Al 14.0at.%薄膜的制备
本实施例的Al纳米晶掺杂ta-C导电碳膜,Al的掺杂含量为14.0at.%,简称ta-C:Al 14.0at.%薄膜。所述薄膜由Al金属过渡层、Al梯度含量掺杂ta-C中间层(包括高Al掺杂含量ta-C过渡层和中Al掺杂含量ta-C过渡层)和Al掺杂的ta-C层组成;所述薄膜利用磁过滤电弧磁控溅射复合沉积系统(DG-3BY),以金属Al靶和石墨靶为原料,采用磁过滤电弧及磁控溅射复合沉积技术在金属基底上沉积得到,本实施例使用的基体为316L不锈钢。具体制备方法包括以下步骤:
(1)将经抛光处理后的不锈钢片基体(先用不同目数砂纸抛光,再用抛光布添加抛光膏抛光至镜面)送入超声波清洗机,依次用丙酮、无水乙醇以30kHz的频率分别进行超声清洗15min,然后用去离子水清洗,再用纯度≥99.5%的氮气吹干。
(2)将超声清洗后的基体置于真空室的工件支架上,抽取沉积腔室内的气体,抽至真空度为5.0×10-3Pa以下。设置沉积温度为室温,基体支架公转转速为30rpm/min,通入气体流量为120sccm的Ar气,调节节流阀使沉积腔室内的环境压力为1Pa,基体加负偏压-800V,占空比为70%,打开阳极层离子源电源,离子源电压设置为1000V,对基体进行等离子体刻蚀清洗,持续时间为10min。
(3)沉积Al金属过渡层:关闭离子源,调节通入Ar气气体的流量为90sccm,调节节流阀使沉积腔室内的环境压力为0.8Pa,靶材与基体的距离为6~20cm,开启磁控Al靶的电源,磁控电流为5A,基体加负偏压-100V、占空比为70%,沉积时间为5min,得到Al金属过渡层。
(4)沉积高Al掺杂含量ta-C过渡层(也称多Al ta-C层):开启电弧石墨C靶,弧源电流为80A,同时保持Al靶磁控电流为5A、气体流量为90sccm、沉积腔室内的环境压力为0.8Pa,基体加负偏压-100V、占空比为70%;沉积时间为10min,获得高Al掺杂含量ta-C过渡层;
(5)沉积中Al掺杂含量ta-C过渡层(也称多Al ta-C层):修改磁控Al靶的电流为3A,其他条件不变,沉积时间为10min,获得中Al掺杂含量ta-C过渡层。
(6)沉积Al掺杂ta-C薄膜:继续维持其他参数条件不变,降低磁控Al靶的电流至0.5A,沉积60min,获得Al掺杂ta-C薄膜。
(7)完成镀膜后,打开真空室取出基体,在不锈钢基体表面制备出ta-C:Al14.0at.%薄膜。
实施例2 ta-C:Al 39.5at.%薄膜的制备
制备方法同实施例1,与实施例1的区别在于:步骤(6)沉积最后一层Al掺杂ta-C层的磁控Al靶电源电流不同,磁控Al靶电源的电流为2A,制备的薄膜为ta-C:Al 39.5at.%。
对比例1 ta-C薄膜的制备
制备方法同实施例1,与实施例1的区别在于:步骤(6)沉积最后一层Al掺杂ta-C层时,关闭磁控Al靶的电源,制得表面层为无Al掺杂的纯ta-C薄膜。
实验例1特性表征和性能测试
(1)元素扫描分析
对本发明实施例1、实施例2和对比例1的薄膜使用扫描电子显微镜(FEI NovaNano SEM430)中的EDS能谱仪进行元素扫描分析,获得薄膜Al元素掺杂含量;同时对薄膜截面形貌进行观察。
如图2所示,薄膜结构均较为致密,与基体结合良好,对比例1(ta-C薄膜)为玻璃态非晶结构,随着Al含量的增加,薄膜的结构由玻璃态非晶结构向柱状晶结构转变,说明Al掺杂导致薄膜中出现结晶相。
(2)微观形貌检测
对本发明实施例1、实施例2和对比例1的薄膜截面采用荷兰FEI公司的FEI TalosF200S型场发射透射电子显微镜进行微观形貌检测。
结果如图3所示,对比例1(ta-C薄膜)为原子长程无序的非晶结构;掺杂14.0at.%Al元素后,实施例1出现Al纳米晶金属相,晶粒尺寸约为3~7nm,并均匀分布在非晶C母相内;实施例2中当Al元素掺杂含量达到39.5at.%后,Al纳米晶金属相尺寸长大,约为15~20nm。
(3)残余应力表征
对本发明实施例1、实施例2和对比例1的薄膜采用Supro Instruments公司的FST-1000型薄膜应力仪来表征薄膜的残余应力。通过分别测量沉积涂层前和沉积涂层后的基体曲率,后结合Stoney公式,由设备配套软件计算并获得涂层的残余应力。
结果如图4所示,对比例1的ta-C薄膜的残余压应力较大,达到-4.4GPa;掺杂Al元素后残余应力显著降低,实施例1为-1.98GPa,实施例2则降至-0.12GPa,说明通过Al金属原子团簇的枢纽作用,使键角在不引起弹性较大变化的情况下更易转动,从而释放了薄膜中的残余应力。
(4)膜-基结合力测试
对本发明实施例1、实施例2和对比例1的薄膜采用Anton Paar公司研发的RST3型大载荷划痕仪测试薄膜的膜-基结合力,定义Lc2为薄膜失效完全剥落时的临界载荷,以Lc2作为膜-基结合力。测试过程中,设置载荷范围为0~50N,划痕长度为3mm。
划痕结果如图5所示,对比例1的ta-C薄膜与金属基体的结合力较差,仅为2.5N,主要是由于薄膜残余内应力较大,划动过程中出现剥落失效;掺杂Al元素后膜基结合力显著提高,实施例1为5.6N,实施例2则降至8.6N,主要原因是Al元素掺杂显著降低了薄膜的残余内应力,同时梯度过渡层也起到弥补碳膜和金属基体物性差异,提高结合力的作用。
(5)电阻率测试
对本发明实施例1、实施例2和对比例1的薄膜采用JouleYacht HET-RT霍尔效应仪测试薄膜的导电性,获得薄膜的电阻率。
如图6所示,对比例1的ta-C薄膜由于sp3含量高,性能接近金刚石,因此电阻率较高,达到105Ω·cm以上;Al元素掺杂后显著降低了薄膜的电阻率,实施例1的电阻率降低了8个数量级,实施例2的电阻率则降低了10个数量级,达到10-5Ω·cm,主要原因是Al金属纳米晶提供了更多的载流子,改善了薄膜的导电性能。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (9)

1.一种Al纳米晶掺杂四面体非晶碳导电薄膜,其特征在于,所述薄膜为Al纳米晶镶嵌的四面体非晶碳母相结构,薄膜中的Al掺杂含量为39.5at.%;所述薄膜由Al金属过渡层、Al梯度含量掺杂ta-C中间层和Al掺杂的ta-C层组成,所述Al梯度含量掺杂ta-C中间层包括高Al掺杂含量ta-C过渡层和中Al掺杂含量ta-C过渡层;
所述Al纳米晶掺杂四面体非晶碳导电薄膜由包括以下的步骤的制备方法制得:
S1、沉积Al过渡层:将金属基体置于真空室的工件支架上,抽至真空度为5.0×10-3Pa,设置沉积温度为室温,调节基体的负偏压为-100V,占空比为70%;设置Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa;开启Al靶磁控溅射的电源,保持磁控靶电流为5A,沉积时间为5min;
S2、沉积高Al含量掺杂的ta-C层:维持基体的负偏压为-100V,占空比为70%,Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa;开启磁过滤电弧石墨靶,弧源电流为80A,同时保持Al靶电流为5A,沉积时间为10min;
S3、沉积中Al含量掺杂的ta-C层:修改磁控Al靶的电流为3A;保持电弧石墨靶的电流为80A,Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa,基体负偏压为-100V,占空比为70%,沉积时间为10min;
S4、沉积Al掺杂的ta-C层:修改磁控Al靶的电流为2A;保持电弧石墨靶的电流为80A,Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa,基体负偏压为-100V,占空比为70%,沉积时间为60min,在基体上沉积Al纳米晶掺杂ta-C薄膜,即可制备得到Al纳米晶掺杂四面体非晶碳导电薄膜。
2.权利要求1所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,包括以下步骤:
S1、沉积Al过渡层:将金属基体置于真空室的工件支架上,抽至真空度为5.0×10-3Pa,设置沉积温度为室温,调节基体的负偏压为-100V,占空比为70%;设置Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa;开启Al靶磁控溅射的电源,保持磁控靶电流为5A,沉积时间为5min;
S2、沉积高Al含量掺杂的ta-C层:维持基体的负偏压为-100V,占空比为70%,Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa;开启磁过滤电弧石墨靶,弧源电流为80A,同时保持Al靶电流为5A,沉积时间为10min;
S3、沉积中Al含量掺杂的ta-C层:修改磁控Al靶的电流为3A;保持电弧石墨靶的电流为80A,Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa,基体负偏压为-100V,占空比为70%,沉积时间为10min;
S4、沉积Al掺杂的ta-C层:修改磁控Al靶的电流为2A;保持电弧石墨靶的电流为80A,Ar气体的流量为90sccm,沉积腔室内的环境压力为0.8Pa,基体负偏压为-100V,占空比为70%,沉积时间为60min,在基体上沉积Al纳米晶掺杂ta-C薄膜,即可制备得到Al纳米晶掺杂四面体非晶碳导电薄膜。
3.根据权利要求2所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,所述金属基体包括不锈钢片和钛金属基板。
4.根据权利要求2所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,所述金属基体在沉积Al过渡层前,先进行超声清洗和等离子体刻蚀清洗。
5.根据权利要求4所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,所述等离子体刻蚀清洗为从阳极层离子源通入气体流量为100~150sccm的Ar气,调节沉积腔室内的环境压力为0.8~1.2Pa,基体施加负偏压-800~-600V,占空比为45~70%,开启阳极层离子源的电源,离子源电压设置为1000~1200V,对基体进行等离子体刻蚀清洗,时间为10~20min。
6.根据权利要求4所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,所述超声清洗为分别用金属离子清洗液和乙醇对金属基体进行超声清洗,最后用压缩氮气吹干。
7.根据权利要求4所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,所述金属基体在超声清洗前还进行抛光处理。
8.根据权利要求7所述的Al纳米晶掺杂四面体非晶碳导电薄膜的制备方法,其特征在于,所述抛光处理为先用不同目数的砂纸对金属基体进行抛光,再用抛光布添加抛光膏抛光至镜面。
9.权利要求1所述的Al纳米晶掺杂四面体非晶碳导电薄膜在制备电极材料中的应用,其特征在于,所述电极材料包括燃料电池金属双极板、电化学有机污水处理薄膜电极和电化学重金属离子检测薄膜电极。
CN202210567197.1A 2022-05-23 2022-05-23 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用 Active CN114959573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210567197.1A CN114959573B (zh) 2022-05-23 2022-05-23 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210567197.1A CN114959573B (zh) 2022-05-23 2022-05-23 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114959573A CN114959573A (zh) 2022-08-30
CN114959573B true CN114959573B (zh) 2024-02-13

Family

ID=82984471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210567197.1A Active CN114959573B (zh) 2022-05-23 2022-05-23 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114959573B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174551A (zh) * 2019-08-14 2022-03-11 Ihi豪泽尔涂层技术有限公司 涂覆燃料电池堆的一个或多个金属部件的方法、燃料电池堆的部件及用于涂覆其部件的设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132923A1 (ja) * 2013-02-28 2014-09-04 株式会社ニコン 摺動膜、摺動膜が形成された部材、及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174551A (zh) * 2019-08-14 2022-03-11 Ihi豪泽尔涂层技术有限公司 涂覆燃料电池堆的一个或多个金属部件的方法、燃料电池堆的部件及用于涂覆其部件的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周升国 ; 王立平 ; 薛群基 ; .磁控溅射Al靶功率对类金刚石薄膜结构和摩擦学性能的影响.摩擦学学报.2011,第31卷(第03期),第304-310页. *

Also Published As

Publication number Publication date
CN114959573A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN106374116B (zh) 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
WO2020019693A1 (zh) 一种用于燃料电池金属双极板的石墨微晶碳涂层及应用
CN110284102B (zh) 一种金属碳化物晶体复合涂层及其制备方法
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN110684946A (zh) 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用
CN102388494A (zh) 基于钛的材料、制造基于钛的材料的方法以及燃料电池分隔器
KR101446411B1 (ko) 스테인레스스틸을 모재로 한 내식성 및 전도성 나노 카본 코팅 방법 및 그에 따른 연료전지분리판
CN104766980B (zh) 一种酸性介质燃料电池双极板防护涂层及其制备方法
CN112803033B (zh) 一种用于燃料电池金属双极板的薄膜及其制备方法
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
CN114481048B (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN113937301B (zh) 金属双极板表面过渡金属氮化物与碳复合改性薄膜及其制备方法
CN108408848B (zh) 掺硼金刚石/石墨复合电极及制备方法、双电池反应器
CN115058696B (zh) 一种Ti/Si共掺杂ta-C导电碳基薄膜及其制备方法和应用
CN115044869A (zh) 一种Cr掺杂ta-C导电耐蚀碳基薄膜及其制备方法和应用
CN114959573B (zh) 一种Al纳米晶掺杂四面体非晶碳导电薄膜及其制备方法和应用
CN108598497A (zh) 一种用于燃料电池金属极板的纳米金属层及制备方法
CN110783594A (zh) 一种金属双极板及其制备方法以及燃料电池
CN112993293A (zh) 一种燃料电池金属双极板及其制备方法
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
CN110783595B (zh) 一种金属双极板及其制备方法以及燃料电池
CN112993299A (zh) 一种燃料电池金属双极板硅掺杂的碳化铌涂层及其制备方法
CN109735869A (zh) 一种耐蚀导电合金膜层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant