CN1154854C - 测定有机体空腔中标记物位置的装置和方法 - Google Patents

测定有机体空腔中标记物位置的装置和方法 Download PDF

Info

Publication number
CN1154854C
CN1154854C CNB961967579A CN96196757A CN1154854C CN 1154854 C CN1154854 C CN 1154854C CN B961967579 A CNB961967579 A CN B961967579A CN 96196757 A CN96196757 A CN 96196757A CN 1154854 C CN1154854 C CN 1154854C
Authority
CN
China
Prior art keywords
coil
magnetic field
label
magnetic
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB961967579A
Other languages
English (en)
Other versions
CN1195404A (zh
Inventor
维尔弗里德・安德烈
维尔弗里德·安德烈
・埃特纳
克劳斯·埃特纳
・赫格特
鲁道夫·赫格特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Esculap Medical Technology Co ltd
Institut fuer Physikalische Hochtechnologie eV
Original Assignee
Esculap Medical Technology Co ltd
Institut fuer Physikalische Hochtechnologie eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esculap Medical Technology Co ltd, Institut fuer Physikalische Hochtechnologie eV filed Critical Esculap Medical Technology Co ltd
Publication of CN1195404A publication Critical patent/CN1195404A/zh
Application granted granted Critical
Publication of CN1154854C publication Critical patent/CN1154854C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Abstract

本发明涉及测定有机体空腔中标记物位置,特别是计算出胃肠道医疗诊断中的局部通过速度的装置和方法。本发明的目的是保证定位的精确度在所有三个坐标方向均高于1cm,而且每一次定位测定时间可少于等于10秒。根据本发明,该目的是如下实现的:至少一个线圈流过正负交替的以一定时间为间隔的脉冲电流,线圈通过脉冲电流而产生的原级磁场如在两脉冲之间衰退到足够小的值,那么标记物产生的次级磁场至少可用各向异性磁场传感器对其平行和垂直于线圈轴的分量分别作出至少一次的测量,线圈装置相对标记物进行移动,直到测量标记物之径向次级磁场分量的磁场传感器显示零信号为止,此时线圈轴的位置、以及测量平行于线圈轴向的次级磁场分量的磁场传感器的测量值,都被记录起来并传送到一显示器。

Description

测定有机体空腔中标记物位置的装置和方法
本发明涉及测定有机体空腔中标记物位置,特别是计算出标记物通过胃肠道,特别是小肠位置时的局部通过速度的装置和方法。本发明应用在胃肠组织的医疗诊断上,但并不涉及诊断方法本身。
在医学检查中,有必要重复测量一个标记物通过胃肠组织的局部通过速度。例如:检查如节段性回肠炎的慢性肠胃炎症,检查功能性的肠胃病,或胃肠组织的生理检查等。
通常的诊断方法,如使用对比液的X-射线法,由于辐射对人体的危害,不能使用。闪烁成像(Szintigaphische)法也同样不能使用。
为避免射线对人体的危害,在医学检查中常用如下的已知技术:核磁共振成像[M.Reiser,W.Semmler(Hrsg)核磁共振成像(Magnet-resonanztomographie),Springer-Verlag,柏林/海德堡,1992],超声波成像[M.Amend,C.Jakobeit,L.Gminer,消化疾病(Verdaulings-krankheiten)13(1995),1册,21页],金属探测器[K.Ewe,治疗学周刊(Therapiewoche)41(1991),77页],磁感应法检测软磁示踪物[Y.Benmair,B.Fischel,E.H.Frei,T.Gilat,美国胃肠学刊(The AmericanJoumal of Gastroenterology)68(1977),170页]以及追踪永磁体标记物的位置[L.Trahms,R.Stehr,J.Wedemeyer,W.Weiteschies,生物医学技术(Bio-mediznische Technik)35(1990)158页]。
核磁共振成像使用起来麻烦,而且价钱昂贵,不适用于做重复性的检查。另外,对测量局部通过速度来说,要求以10秒钟左右的时间间隔来重复测量标记物的位置。对此,核磁共振成象的速度太慢[K.Fitzgerald,IEEESpectrum 27(1990)52页]。
到目前为止,超声波成像检查不是用于测量局部通过速度,而是用于测量通过一段胃肠道的总通过时间[M.Amend,C.JaKobeit,L.Greiner,消化疾病(Verdauungskrankheiten)13(1995),1册21页]。其原因在于超声波不能穿过腹腔的空气团,由此会对标记物所在位置作出错误的判断。如果在肠中灌满液体,虽可减少这个错误,但是如此又会改变肠蠕动,不适用于作出医学诊断。
使用金属探测器法可以确定小金属颗粒的位置,但所确定的横向位置精确度会随着物体表面的距离增大而减少,在距离物体表面大于10cm时横向精确度差于1cm[K.Ewe,治疗周刊(Therapiewoche)41(1991),77页]。在这篇文章中并没有说明深度测量时的精确度,但深度测量的精确度一般比横向精确度还要差,所以这种方法不适用于测量标记物局部通过速度。
使用软磁示踪物磁感应方法来定位,其精确度只能满足测量软磁浆在胃中含量随时间的减少,软磁浆的起始体积至少为100cm3[Y.Benmair,B.Fischel,E.H.Frei,T.Gilat,美国胃肠学刊(The Amencan Journal ofGastroenterology)68(1977),70页]。用于测量在肠中的局部通过速度则不行,因为大体积的测试样品在流过肠道时会不规划地分布开来。此外,测试样品的体积不能太小,否则软磁示踪物的次级磁场会太小,这样即使在抵消很好的情况下,次级磁场与原磁场的残余信号也难以区分。
此外,众所周知,永磁性标记物在进入病人体内以前需要进行磁化[W.Weitschies,J.Wedemeyer,R.Stehr,L.Trahms,IEEE Trans.Biomed.Eng.41(1994)192页]。但是通过次级磁场对标记物的定位会受到干扰磁场的影响(比如地磁场),因此整个测量就需要在一个磁场屏蔽得非常好的特殊小空间里进行。即使如此,这种方法也不适用于测量胃肠道的局部通过速度,因为由于标记物的横向和旋转运动,定位只能在胃部或在大肠部位进行,而且即使在这些部位的测量也会由于标记物相对较长的停留时间而不够精确。
本发明的目的是提供一个测定有机体空腔,特别是胃肠道中标记物位置的装置和方法,使用这个方法可以保证定位的精确度在所有三个坐标方向均高于1cm,而且每一次定位测定时间可少于等于10秒。此外使用本发明所获得的每一个标记物位置的测量数据都应该可以作为三维空间描述的基础。
本发明中使用一个可磁化标记物,此标记物或单独地存在,或在粘稠性载体溶液中,或在一固体载体材料(盒)中,其是由一种球对称分布、各向同性的半硬磁性材料组成。这种磁性材料具有中等大小的矫顽磁场强度,优选为104/105A/M范围,并具有相对较大的剩磁,优选大于0.8。标记物优选主要由γ-Fe2O3/或Fe3O4组成,它们除了具有磁性特性之外,还是无毒性的。这种标记物被放入有机体空腔内,并处于一个由脉冲电流产生的原级线圈磁场中。线圈的直径应至少是标记物直径的五倍,在此情形中,线圈可以在10×10×30cm3的范围内产生旋转对称的几乎均匀的初级磁场。通过线圈中的脉冲电流,标记物在经过有机体空腔时在短时间内被重复磁化,使其磁矩每一次磁化都会重新排列以平行于原级线圈磁场,如此可避免作为产生误差原因的标记物旋转运动的影响。如线圈的初级磁场值在每两个相邻脉冲之间少于最大值的10%时,那么通过各向异性的磁场传感器就可以测量到标记物的次级磁场。初级磁场最大值的时间间隔和被检查的胃肠组织部位相对应,测量时间无论如何要很短,这样可避免产生干扰性的标记物平移和旋转运动,或者通过取多次测量的平均值以抵消干扰。此时间间隔最好在10秒之内。
本发明中的初级磁场最好由一对同轴线圈产生,两个线中间安置病人接受检查的部位。线圈间距离要和病人的身体相适应,一般在30cm-40cm之间。初级磁场方向平行于两个线圈的共同轴线,并优选在两相邻的磁化过程中使其改变方向。初级磁场最大值Hp的确定是以能使标记物产生足够大的剩磁为标准。对所选择的标记物材料,最好能产生大于103A/m的Hp。其上限只限制于技术条件,如可在脉冲场下达到105A/m。
标记物的剩磁产生一次级磁场Hs,在离标记物中心至少三倍于标记物直径的距离时,此磁场可足够精确地用以下方程描述:
Hs=m((1+3cos2θ)1/2)/R3              (1)
tanφ=0.5tanθ                           (2)
其中m为标记物的磁矩,R为标记物中心到次级磁场的距离,φ和θ为在图2所定义的角度。
次级磁场的两个分量,Hs 平行和Hs |垂直于剩磁方向,可通过以下公式表达:
H s | | = Hxcox ( φ + θ ) - - - ( 3 )
H s | = Hs sin ( φ + θ ) - - - ( 4 )
这两个分量通过磁场传感器,最好是现有的各向异性磁阻性薄膜传感器,来分别测量。在由标记物磁矩m方向所确定的次级磁场磁轴上,φ=θ=0在R和m事先给定的情况下,Hs 数值为最大而Hs |数值为零。一旦标记物处于线圈的轴上,安装在此轴上用于测量Hs |值的磁场传感器就只会测到本底的干扰磁场。标记物如偏离线圈轴时,此磁场传感器就会显示一额外的信号,此信号的正负号随标记物剩磁的极化方向,也就是初级磁场的极化方向而变化。此磁场传感器的选频信号可进行放大,并显示出标记物是否处在线圈轴上。当φ和θ很小时,Hs |是距离r的单调函数,r为标记物中心到线圈轴(以及固定在轴上的至少一个磁场传感器)的距离,而且当r=0时Hs |为零。也就是说,通过相对标记物移动线圈轴(以及固定在轴上的磁场传感器),总可使信号为零,这就是按本发明需要把线圈轴调到与标记物中心重合的原因。为了提高测量的精确度,可在线圈轴上对称地再固定第二个用来确定Hs |的磁场传感器,其信号的正负号和第一个磁场传感器的正负号相反,两个信号可以叠加。同样道理,可以在线圈周围以轴对称分布方式径向安置多个磁场传感器,它们之间可以电路相连。
一旦标记物处于线圈轴上(φ=θ=0),在磁矩m事先给定的情况下,Hs数值按照公式(1)成为R的单值函数。在特殊情况下,使用两个共轴安装的线圈,标记物位置正好在这两个线圈中间,Hs 磁场传感器分别位于对于每一个线圈和它们所共有的轴都一样的位置,它们所测出的两个Hs值大小一样。如果这两个磁场传感器的灵敏度一样,那么这两个信号的差值为零。标记物在线圈轴上偏离上述中间位置,偏离距离为z,此时差值信号则为z的单调函数。此函数在m已知的情况下,成为标记物在Z方向偏离的尺寸。m值可以在一个特定的测量步骤中确定,不管是在标记物进入病人体内之前或是离开病人身体以后。z方向测量精度可以类似于径向方向通过在线圈轴上安装并相互电连接的另一个测量Hs磁场传感器来提高。
标记物在有机体空腔内的某一实际位置,其一可通过测量线圈轴在Hs信号抵消为零时的位置,其二通过测量Hs信号的大小,可以完全确定。
为测量标记物相对于病人身体的位置,如起始或中间时病人的位向,使用一些定位用的标记物如小线圈或磁体,把它们固定在病人身体的特定位置上,其位置也可同时被测定。
标记物的局部通过速度可由线圈通过脉冲电流的两点距离,除以此相邻两点的时间间隔而简单得到。
下面以一实施例及四张示意图对本发明作进一步的说明。
图1表示病人定位于可能的根据本发明装置中,
图2说明标记物偏离线圈轴时情形的示意图,
图3是图1之总装置的放大示意图,
图4是根据本发明的线圈在通过脉冲电流时的图形。
在图1中,一位接受胃肠组织检查的病人1躺在非金属性的床2上。两个相同的线圈3和4处在共同的轴线X-X上,内边宽度A约为30cm。由图3所示的发电机14给线圈3和4通过脉冲式的电流,就可在几何中435产生最大为20000A/m的、时间间隔为1秒的初级磁场。病人1口服下由γ-Fe2O3为成份的标记物6,其直径为约8mm。每次被初级磁场磁化后标记物6具有剩磁磁矩m约为7×10-5Am2
图2示意地描述如何把线圈3和4分别与具有各向异性的阻磁性磁场传感器10、11、12、13固定在一起。磁场传感器10、11设计成测量平行于X-X轴方向的标记物次级磁场分量,而磁场传感器12、13设计成测量标记物次级磁场垂直径向分量。标记物6在线圈轴X-X中心时,按上述尺寸,在磁场传感器10、11处的磁场分量Hs 为约4×10-2A/m,而该磁场的垂直分量Hs |为零。图2显示了标记物从中心位置5径向移开轴线如r=1cm时的情况,此时在径向磁场传感器12、13处的径向次级磁场分量为约4×10-3A/m。如图所示,标记物再轴向移动距离z=1cm后,传感器10处的次级磁场轴向分量为约5.2×10-2A/m,而磁场传感器11处为约3.5×10-2A/m。各向异性磁场传感器在磁场强度为1A/m时的信号电压为10-4伏特。在时间间隔为t2的脉冲初级磁场中间的暂停时间t1(见图4),如传感器触发打开的话,串联的径向传感器12、13将在标记物径向移动r=1cm时给出脉冲形式的交流电,其振幅为0.4μV,用频率选择放大器7很容易放大成40μV。本发明的线圈轴X-X可以一定的方式进行相对移位,最简单的方式就是与线圈3和4连在一起的十字桌子80所构成(见图1),相对移位至信号消失时。在此情况下,线圈轴又与标记物中心重合,其位置由图3所示的位置传感器8记录,并传递到记录和分析单元9。
标记物6沿轴向从中心5往上移动z=1cm后,从轴向传感器10、11可得到脉冲的振幅为约5.2μV(传感器10)和3.5μV(传感器11)的交流电压,两振幅之差为1.7μV,通过频率选择放大为170μV。这些相应子标记物纵向位置的信号也同样传递到记录和分析单元9。如此,对某一标记物位置,就有一组对应的测量值,可唯一地描述出标记物在胃肠组织部位的空间位置。用上述方法所测得的标记物位置点按先后顺序连成一线,即代表了标记物所经过的路线。两相邻点的距离和相应时间间隔之商,则给出所求标记物6的局部通过速度。所有测得的数据都可在对病人检查的同时或在检查后在屏幕上三维显示出来。
在此实施例中所使用的两线圈3、4是一种很有优势的方式,但本发明并不限制于此,使用一个或者多于2个并适当设置的线圈也都是可以想象的。
本发明方法中,病人不受到射线辐照的危害,因而检查可任意重复进行。特别有优点的是,本发明中地磁场或局域的干扰磁场对测量值没有任何影响,因而不需要任何磁屏蔽措施。
数符表:
1       -病人
2       -床
3、4    -线圈
5       -几何中心
6       -标记物
7       -频率选择放大器
8       -位置传感器
80      -移动装置
9       -记录分析单元
10,11  -轴向传感器
12,13  -径向传感器
14      -发电机
15      -屏幕
A       -内边宽度
t1     -测量间隔
t2     -电脉冲的间隔
X-X     -轴
φ、θ      -角度

Claims (9)

1、测定有机体空腔中可磁化标记物位置的装置,该装置使用到所述标记物及确定该标记物位置的装置,其特征在于,
a)在机体空腔内可运动的标记物(6)由一种球对称分布的各向同性的磁性材料构成,并具有在104-105A/m范围内的矫顽磁场强度以及大于0.8的相对剩磁,
b)带有至少一个电感线圈(3或4),该线圈的直径至少是所述标记物直径的5倍,
c)设有在所述线圈中产生脉冲电流的装置(14),
d)设有各向异性的磁场传感器(10、11,12、13),它们固定在线圈(3或4)上,并轴对称于所述线圈(3或4)的线圈轴(X-X),而且它们的安装位置距离标记物(6)至少是该标记物直径的3倍,
e)设有相对标记物的实际位置而移动线圈轴的装置(80),以及用以测量线圈轴(X-X)位置的装置(8),
f)设有用于各向异性的磁场传感器(10、11,12、13)信号的接收、存储和处理的装置(7,9),以及用于定位的装置(8)。
2、根据权利要求1所述的装置,其特征在于,所述至少一个线圈(3或4)在10×10×30cm3的范围内产生一个旋转对称的近似均匀的初级磁场。
3、根据权利要求1或2所述的装置,其特征在于,所使用的两线圈(3、4)有共同轴线,且两线圈的内边宽度(A)应足以放置所测的有机体。
4、根据权利要求1所述的装置,其特征在于,所述标记物主要由γ-Fe2O3和/或Fe3O4组成。
5、根据权利要求1所述的装置,其特征在于,各向异性磁场传感器(10、11、12、13)为阻磁性薄膜传感器。
6、根据权利要求1或5所述的装置,其特征在于,所述各向异性磁场传感器设计成:
-至少一个传感器(10或11)处于线圈轴上,用于确定标记物(6)次级磁场之平行于线圈轴(X-X)的磁场分量,以及
-至少一个传感器(12或13)用于确定标记物(6)次级磁场之垂直于线圈轴(X-X)的径向磁场分量。
7、根据权利要求1所述的装置,其特征在于,多个各向异性磁场传感器轴对称于线圈轴(X-X)安装且处在垂直于线圈轴的平面上,这些传感器用于测量标记物(6)次级磁场之垂直于线圈轴(X-X)的径向磁场分量。
8、使用如前述权利要求之一所述的装置确定标记物在有机体空腔中位置的方法,其特征在于,
a)至少一个线圈流过正负交替的以一定时间为间隔的脉冲电流,两次电脉冲之间的时间间隔为少于10秒,
b)线圈通过脉冲电流而产生的初级磁场如在两脉冲之间衰退到少于最大值的10%时,那么标记物产生的次级磁场至少可用各向异性磁场传感器对其平行和垂直于线圈轴的分量分别作出至少一次的测量,
c)线圈装置相对标记物进行移动,直到测量标记物之径向次级磁场分量的磁场传感器显示零信号为止,以及
d)此时线圈轴的位置、以及测量平行于线圈轴向的次级磁场分量的磁场传感器的测量值,都被记录起来并传送到一显示器。
9、根据权利要求8所述的方法,其特征在于,在两次线圈脉冲电流之间对次级磁场进行多次测量,并取其平均值。
CNB961967579A 1995-09-05 1996-09-03 测定有机体空腔中标记物位置的装置和方法 Expired - Fee Related CN1154854C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19532676A DE19532676C1 (de) 1995-09-05 1995-09-05 Anordnung zur Bestimmung der Position eines Markers in einem Hohlraum innerhalb des Organismus eines Lebewesens
DE19532676.8 1995-09-05

Publications (2)

Publication Number Publication Date
CN1195404A CN1195404A (zh) 1998-10-07
CN1154854C true CN1154854C (zh) 2004-06-23

Family

ID=7771268

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB961967579A Expired - Fee Related CN1154854C (zh) 1995-09-05 1996-09-03 测定有机体空腔中标记物位置的装置和方法

Country Status (7)

Country Link
US (1) US6082366A (zh)
EP (1) EP0848832B1 (zh)
JP (1) JPH11512007A (zh)
CN (1) CN1154854C (zh)
DE (1) DE19532676C1 (zh)
ES (1) ES2175126T3 (zh)
WO (1) WO1997009640A1 (zh)

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707556C1 (de) * 1995-09-05 1998-07-09 Inst Physikalische Hochtech Ev Marker zur Bestimmung seiner Position in einem Hohlraum innerhalb des Organismus eines Lebewesens
US6168780B1 (en) 1997-02-26 2001-01-02 Institut Fuer Physikalische Hochtechnologie E.V. Marker for determining its position in a cavity inside the organism of a living being
DE19745890C1 (de) * 1997-10-17 1999-03-25 Inst Physikalische Hochtech Ev Marker für eine Darm-Diagnostik und Darm-Therapie
AU2001217746A1 (en) 1998-05-14 2002-05-27 Calypso Medical, Inc. Systems and methods for locating and defining a target location within a human body
US6363940B1 (en) 1998-05-14 2002-04-02 Calypso Medical Technologies, Inc. System and method for bracketing and removing tissue
US8489176B1 (en) 2000-08-21 2013-07-16 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8036731B2 (en) 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
US7826889B2 (en) * 2000-08-21 2010-11-02 Spectrum Dynamics Llc Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
CA2435205A1 (en) 2001-01-22 2002-08-01 V-Target Technologies Ltd. Ingestible device
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
DE10151778A1 (de) 2001-10-19 2003-05-08 Philips Corp Intellectual Pty Verfahren zur Ermittlung der räumlichen Verteilung magnetischer Partikel
JP2004004563A (ja) * 2002-03-27 2004-01-08 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置並びにその製造方法及び製造装置
DE10233835A1 (de) * 2002-07-25 2004-02-12 Robert Bosch Gmbh Verfahren zur Störbefreiung von Messsignalen
US20040019265A1 (en) * 2002-07-29 2004-01-29 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
US7720522B2 (en) * 2003-02-25 2010-05-18 Medtronic, Inc. Fiducial marker devices, tools, and methods
US7787934B2 (en) * 2002-07-29 2010-08-31 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20040116807A1 (en) * 2002-10-17 2004-06-17 Roni Amrami Blood vessels wall imaging catheter
AU2003276658A1 (en) 2002-11-04 2004-06-07 V-Target Technologies Ltd. Apparatus and methods for imaging and attenuation correction
US7289839B2 (en) * 2002-12-30 2007-10-30 Calypso Medical Technologies, Inc. Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US9248003B2 (en) * 2002-12-30 2016-02-02 Varian Medical Systems, Inc. Receiver used in marker localization sensing system and tunable to marker frequency
US6889833B2 (en) * 2002-12-30 2005-05-10 Calypso Medical Technologies, Inc. Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems
US7912529B2 (en) * 2002-12-30 2011-03-22 Calypso Medical Technologies, Inc. Panel-type sensor/source array assembly
US7247160B2 (en) * 2002-12-30 2007-07-24 Calypso Medical Technologies, Inc. Apparatuses and methods for percutaneously implanting objects in patients
US7926491B2 (en) * 2002-12-31 2011-04-19 Calypso Medical Technologies, Inc. Method and apparatus for sensing field strength signals to estimate location of a wireless implantable marker
EP1594477A4 (en) * 2003-01-29 2009-07-15 Pill Pharma Ltd E ACTIVE MEDICATION CONTRIBUTION IN THE DIGESTIVE TUBE
US20040267240A1 (en) * 2003-01-29 2004-12-30 Yossi Gross Active drug delivery in the gastrointestinal tract
DE10318849A1 (de) * 2003-02-28 2004-09-16 Mayfield Technologies Gmbh Vorrichtung zur Lokalisierung, Beeinflussung und Führung von Tracking-Körpern sowie Verfahren zum Betrieb einer Markierungseinrichtung
EP1615551B1 (en) * 2003-04-15 2016-06-08 Philips Intellectual Property & Standards GmbH Device and method for examination and use of an electrical field in an object under examination containing magnetic particles
WO2004091397A2 (en) * 2003-04-15 2004-10-28 Philips Intellectual Property & Standards Gmbh Method of determining state variables and changes in state variables
EP1615554B1 (en) 2003-04-15 2017-12-20 Philips Intellectual Property & Standards GmbH Method and arrangement for influencing magnetic particles and detecting interfering material
EP1615555B1 (en) * 2003-04-15 2012-06-13 Philips Intellectual Property & Standards GmbH Method for spatially resolved determination of magnetic particle distribution in an area of examination
US9808173B2 (en) * 2003-04-15 2017-11-07 Koninklijke Philips N.V. Method for the spatially resolved determination of physcial, chemical and/or biological properties or state variables
US8196589B2 (en) 2003-12-24 2012-06-12 Calypso Medical Technologies, Inc. Implantable marker with wireless signal transmitter
US20050154280A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Receiver used in marker localization sensing system
US20050154284A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Method and system for calibration of a marker localization sensing array
US7684849B2 (en) * 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
US9623208B2 (en) * 2004-01-12 2017-04-18 Varian Medical Systems, Inc. Instruments with location markers and methods for tracking instruments through anatomical passageways
US7176466B2 (en) * 2004-01-13 2007-02-13 Spectrum Dynamics Llc Multi-dimensional image reconstruction
WO2006051531A2 (en) 2004-11-09 2006-05-18 Spectrum Dynamics Llc Radioimaging
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
WO2007010537A2 (en) 2005-07-19 2007-01-25 Spectrum Dynamics Llc Reconstruction stabilizer and active vision
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US8571881B2 (en) 2004-11-09 2013-10-29 Spectrum Dynamics, Llc Radiopharmaceutical dispensing, administration, and imaging
US8586932B2 (en) 2004-11-09 2013-11-19 Spectrum Dynamics Llc System and method for radioactive emission measurement
US7970455B2 (en) * 2004-05-20 2011-06-28 Spectrum Dynamics Llc Ingestible device platform for the colon
EP1778957A4 (en) 2004-06-01 2015-12-23 Biosensors Int Group Ltd OPTIMIZING THE MEASUREMENT OF RADIOACTIVE EMISSIONS IN SPECIFIC BODY STRUCTURES
EP1766550A2 (en) 2004-06-01 2007-03-28 Spectrum Dynamics LLC Methods of view selection for radioactive emission measurements
US10195464B2 (en) 2004-06-24 2019-02-05 Varian Medical Systems, Inc. Systems and methods for treating a lung of a patient using guided radiation therapy or surgery
US7596403B2 (en) 2004-06-30 2009-09-29 Given Imaging Ltd. System and method for determining path lengths through a body lumen
US7899513B2 (en) * 2004-07-23 2011-03-01 Calypso Medical Technologies, Inc. Modular software system for guided radiation therapy
WO2006012630A2 (en) * 2004-07-23 2006-02-02 Calypso Medical Technologies, Inc. Apparatuses and methods for percutaneously implanting objects in patients
US9586059B2 (en) * 2004-07-23 2017-03-07 Varian Medical Systems, Inc. User interface for guided radiation therapy
US8437449B2 (en) 2004-07-23 2013-05-07 Varian Medical Systems, Inc. Dynamic/adaptive treatment planning for radiation therapy
JP2008507329A (ja) * 2004-07-23 2008-03-13 カリプソー メディカル テクノロジーズ インコーポレイテッド 放射線治療及び他の医療用途におけるターゲットの実時間追跡のためのシステム及び方法
US8095203B2 (en) * 2004-07-23 2012-01-10 Varian Medical Systems, Inc. Data processing for real-time tracking of a target in radiation therapy
JP2008507367A (ja) 2004-07-23 2008-03-13 カリプソー メディカル テクノロジーズ インコーポレイテッド 患者内のターゲットを治療するための統合放射線治療システム及び方法
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US8615405B2 (en) 2004-11-09 2013-12-24 Biosensors International Group, Ltd. Imaging system customization using data from radiopharmaceutical-associated data carrier
US8423125B2 (en) 2004-11-09 2013-04-16 Spectrum Dynamics Llc Radioimaging
WO2008059489A2 (en) 2006-11-13 2008-05-22 Spectrum Dynamics Llc Radioimaging applications of and novel formulations of teboroxime
JP2008522778A (ja) * 2004-12-14 2008-07-03 イー−ピル ファーマ リミティド 電気透過性増加を用いた薬物又は物質の局所輸送
ATE545364T1 (de) * 2004-12-15 2012-03-15 Koninkl Philips Electronics Nv Verfahren zur bestimmung einer räumlichen verteilung von magnetischen teilchen
US7872235B2 (en) 2005-01-13 2011-01-18 Spectrum Dynamics Llc Multi-dimensional image reconstruction and analysis for expert-system diagnosis
US9295529B2 (en) * 2005-05-16 2016-03-29 Biosense Webster, Inc. Position tracking using quasi-DC magnetic fields
WO2006123346A2 (en) * 2005-05-19 2006-11-23 E-Pill Pharma, Ltd. Ingestible device for nitric oxide production in tissue
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8644910B2 (en) 2005-07-19 2014-02-04 Biosensors International Group, Ltd. Imaging protocols
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US9283053B2 (en) 2005-09-19 2016-03-15 Varian Medical Systems, Inc. Apparatus and methods for implanting objects, such as bronchoscopically implanting markers in the lung of patients
EP1952180B1 (en) * 2005-11-09 2017-01-04 Biosensors International Group, Ltd. Dynamic spect camera
US20090216113A1 (en) 2005-11-17 2009-08-27 Eric Meier Apparatus and Methods for Using an Electromagnetic Transponder in Orthopedic Procedures
CN100394888C (zh) * 2005-12-01 2008-06-18 上海交通大学 基于磁标记物的吞服式电子遥测胶囊连续跟踪定位系统
WO2007074466A2 (en) 2005-12-28 2007-07-05 Starhome Gmbh Late forwarding to local voicemail system of calls to roaming users
DE102006014626A1 (de) * 2006-03-29 2007-10-11 Siemens Ag Verfahren zur Positionierung einer magnetisch mittels eines Magnetspulensystems navigierbaren Endoskopie-Kapsel
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
DE102006023733A1 (de) * 2006-05-19 2007-12-06 Siemens Ag Instrument, bildgebendes Ortungssystem und Ortungsverfahren
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
WO2008075362A2 (en) 2006-12-20 2008-06-26 Spectrum Dynamics Llc A method, a system, and an apparatus for using and processing multidimensional data
US8521253B2 (en) 2007-10-29 2013-08-27 Spectrum Dynamics Llc Prostate imaging
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
WO2009149409A1 (en) 2008-06-05 2009-12-10 Calypso Medical Technologies, Inc. Motion compensation for medical imaging and associated systems and methods
ES2525525T3 (es) 2008-08-22 2014-12-26 C.R. Bard, Inc. Conjunto de catéter que incluye conjuntos de sensor de ECG y magnético
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9943704B1 (en) 2009-01-21 2018-04-17 Varian Medical Systems, Inc. Method and system for fiducials contained in removable device for radiation therapy
US8414559B2 (en) 2009-05-07 2013-04-09 Rainbow Medical Ltd. Gastroretentive duodenal pill
US20110066175A1 (en) * 2009-05-07 2011-03-17 Rainbow Medical Ltd. Gastric anchor
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
ES2745861T3 (es) 2009-06-12 2020-03-03 Bard Access Systems Inc Aparato, algoritmo de procesamiento de datos asistido por ordenador y medio de almacenamiento informático para posicionar un dispositivo endovascular en o cerca del corazón
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
WO2011044421A1 (en) 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US9427186B2 (en) * 2009-12-04 2016-08-30 Endomagnetics Ltd. Magnetic probe apparatus
US10634741B2 (en) 2009-12-04 2020-04-28 Endomagnetics Ltd. Magnetic probe apparatus
CN102821679B (zh) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 用于导管导航和末端定位的装置和方法
ES2778041T3 (es) 2010-05-28 2020-08-07 Bard Inc C R Aparato para su uso con sistema de guiado de inserción de aguja
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
WO2012024577A2 (en) 2010-08-20 2012-02-23 C.R. Bard, Inc. Reconfirmation of ecg-assisted catheter tip placement
US9545506B2 (en) 2010-10-01 2017-01-17 Varian Medical Systems, Inc. Delivery catheter for and method of delivering an implant, for example, bronchoscopically implanting a marker in a lung
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
AU2012278809B2 (en) 2011-07-06 2016-09-29 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
CN102262167A (zh) * 2011-07-08 2011-11-30 张峰 一种多维位移加速度传感器
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
JP5924641B2 (ja) * 2011-10-17 2016-05-25 学校法人東京電機大学 医療用チューブの先端位置検出システムおよび当該システムに適用する医療用チューブ
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
DE102011089334A1 (de) * 2011-12-21 2013-06-27 Evonik Röhm Gmbh Detektionssystem zur Erfassung magnetischer Objekte im menschlichen Organismus
EP2861153A4 (en) 2012-06-15 2016-10-19 Bard Inc C R APPARATUS AND METHODS FOR DETECTION OF A REMOVABLE CAP ON AN ULTRASONIC PROBE
US9585600B2 (en) * 2012-10-02 2017-03-07 Covidien Lp Magnetic field viewing film for tracking in-situ surgical applications
CN105283202B (zh) 2013-03-11 2019-04-23 安都磁学有限公司 用于淋巴结检测的低渗溶液
US9239314B2 (en) 2013-03-13 2016-01-19 Endomagnetics Ltd. Magnetic detector
US9234877B2 (en) 2013-03-13 2016-01-12 Endomagnetics Ltd. Magnetic detector
DE102013211703A1 (de) * 2013-06-20 2014-12-24 Evonik Röhm Gmbh Personalisiertes Detektionssystem zur Erfassung magnetischer Objekte im menschlichen Organismus
CN105979868B (zh) 2014-02-06 2020-03-10 C·R·巴德股份有限公司 用于血管内装置的导向和放置的系统和方法
US9919165B2 (en) 2014-05-07 2018-03-20 Varian Medical Systems, Inc. Systems and methods for fiducial to plan association
US10043284B2 (en) 2014-05-07 2018-08-07 Varian Medical Systems, Inc. Systems and methods for real-time tumor tracking
EA201790706A1 (ru) 2014-09-25 2017-09-29 Продженити, Инк. Электромеханическое пилюлеобразное устройство с возможностями локализации
KR101636876B1 (ko) * 2014-11-03 2016-07-06 삼성전자주식회사 의료 영상 처리 장치 및 방법
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
EP4085866A3 (en) 2015-06-04 2023-01-18 Endomagnetics Ltd. Marker materials and forms for magnetic marker localization
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
JP6242421B2 (ja) * 2016-03-24 2017-12-06 エゾノ アクチェンゲゼルシャフト 撮像プローブ及び磁気測定検出器を備えるシステム
US11291384B2 (en) * 2016-09-09 2022-04-05 Sunnybrook Research Institute System and method for magnetic occult lesion localization and imaging
EP3509485A4 (en) * 2016-09-09 2020-05-20 Sunnybrook Research Institute MAGNETIC OCCULT LESION LOCATION AND IMAGING SYSTEM AND METHOD
US20180164221A1 (en) 2016-12-07 2018-06-14 Progenity Inc. Gastrointestinal tract detection methods, devices and systems
AU2018243312B2 (en) 2017-03-31 2023-02-02 Biora Therapeutics, Inc. Localization systems and methods for an ingestible device
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
NL2022093B1 (en) * 2018-11-29 2020-06-26 Sirius Medical Systems B V The present disclosure relates to a magnetic field probe for determining a disposition of an implantable magnetic marker, a detection unit comprising the probe and a method of detecting the disposition of an implantable magnetic marker.
US11819285B2 (en) * 2019-04-05 2023-11-21 Covidien Lp Magnetic interference detection systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128385A (ja) * 1983-12-15 1985-07-09 Yokogawa Hokushin Electric Corp 磁性体検出装置
JPS60129681A (ja) * 1983-12-16 1985-07-10 Yokogawa Hokushin Electric Corp 磁性体検出装置
DE3940260A1 (de) * 1989-03-04 1990-09-13 Werner Weitschies Verfahren zur bestimmung des aufenthaltsortes und der bewegung von objekten durch ihre markierung als magnetisches moment

Also Published As

Publication number Publication date
ES2175126T3 (es) 2002-11-16
EP0848832B1 (de) 2002-03-13
CN1195404A (zh) 1998-10-07
JPH11512007A (ja) 1999-10-19
WO1997009640A1 (de) 1997-03-13
DE19532676C1 (de) 1997-05-07
US6082366A (en) 2000-07-04
EP0848832A1 (de) 1998-06-24

Similar Documents

Publication Publication Date Title
CN1154854C (zh) 测定有机体空腔中标记物位置的装置和方法
EP2267471B1 (en) Probe for detecting magnetic properties of materials
CN101238353B (zh) 对用于介入设备定位的传感器进行磁跟踪的系统和方法
US5842986A (en) Ferromagnetic foreign body screening method and apparatus
Wang et al. A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope
CA2178332A1 (en) Sensor system for detecting, locating and identifying metal objects
US6168780B1 (en) Marker for determining its position in a cavity inside the organism of a living being
CN105380645B (zh) 一种肺磁图的检测方法与装置
WO2005122060A2 (en) A magnetic resonance imaging method and device using a static and homogeneous magnetic field
US20220054036A1 (en) Surgical ferromagnetic object detection system and method
Peyton et al. Electromagnetic imaging using mutual inductance tomography: Potential for process applications
RU2129406C1 (ru) Способ получения томографического изображения методом магнитной индукционной томографии
Tomek et al. Application of fluxgate gradiometer in magnetopneumography
CN1726401A (zh) 确定mr设备中物体的位置的方法和装置
Freeston From four-point probe to impedance imaging
DE202019100330U1 (de) Vorrichtung zur bildgebenden magnetischen Detektion von Materialien
US20240005568A1 (en) System and method for displaying the location of a ferromagnetic object in a living organism
CN105547124A (zh) 基于磁性标记的顺磁箱内物体位移测量装置及其测量方法
WO2007125037A1 (de) Vorrichtung und verfahren zur darstellung der position einer medizinischen einrichtung im körper eines lebewesens
Islam Real Time Endoscope Capsule Localization Using the Electromagnetic Field Method
McFee et al. A magnetometer system to estimate location and size of long, horizontal ferrous rods
Reutov et al. Experience in Developing and Using Metal Detectors for Medical Purposes
Leyva et al. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array
Cheung et al. A New Technique for Magnetic Nanoparticle Imaging Using Magnetoencephalography Frequency Data
Merwa et al. Magnetic InductionTomography: The influence of the coil configuration on the spatial resolution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee