CN101238353B - 对用于介入设备定位的传感器进行磁跟踪的系统和方法 - Google Patents

对用于介入设备定位的传感器进行磁跟踪的系统和方法 Download PDF

Info

Publication number
CN101238353B
CN101238353B CN200680028875.6A CN200680028875A CN101238353B CN 101238353 B CN101238353 B CN 101238353B CN 200680028875 A CN200680028875 A CN 200680028875A CN 101238353 B CN101238353 B CN 101238353B
Authority
CN
China
Prior art keywords
inductive coil
magnetic
described inductive
coil
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200680028875.6A
Other languages
English (en)
Other versions
CN101238353A (zh
Inventor
S·克鲁格
B·格莱克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101238353A publication Critical patent/CN101238353A/zh
Application granted granted Critical
Publication of CN101238353B publication Critical patent/CN101238353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • G01D5/208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils using polyphase currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils

Abstract

一种利用磁跟踪系统来确定远程对象的位置的系统和方法。该系统和方法包括定位在感应线圈(130)之内不对称地布置的磁芯(132),并且将单个DC电路(136)可操作地连接到用于定义感应线圈(130)的末端。该DC电路(136)向感应线圈(130)提供DC电流,同时在外部AC磁场(108)中布置该感应线圈(130)。DC电流调节磁芯(132)的饱和级别,并且因此改变布置在外部AC磁场(108)中的感应线圈(130)的响应信号以提供6个自由度的对感应线圈(108)的磁跟踪。

Description

对用于介入设备定位的传感器进行磁跟踪的系统和方法
本公开涉及一种下述类型的磁跟踪系统,在该类型的磁跟踪系统中,在相关工作区中建立磁场,并且一个或多个磁场传感器进行操作以对局部磁场的值进行感测并且这一个或多个磁场传感器进行处理以确定工具、器械、或其它识别对象的位置。通常,这种系统经常与诸如导管之类的介入外科手术工具一起、使用场生成元件或组件以及场感测元件或组件进行操作以对物理环境或相关图像中的一个或多个固定点或结构和该工作区中的一个或多个移动或非可见的点或结构之间的位置的相对变化进行跟踪。
利用形成电流回路或通路的传统模拟线盘,或者利用形成电流通路的半导体或微影(microlithographically)地形成的导线或电路板迹线(它们排列成适当几何形状以生成或感测期望的场分量),可以各种方式来实现用于跟踪的磁场生成或感测组件。生成或感测元件之间是对称或对偶的。由此,例如在许多情况下,可具有用于生成空间分布磁场的小的多线圈阵列以及用于感测如此生成的场的相似或乃至相同阵列。虽然小线圈的小尺寸会限制可获得的场强或者检测信号振幅的可达到级别,但是小线圈提供了生成(非常近似)偶极场这样的期望。该生成和感测结构或者可采用不同尺度,例如采用相对大和/或高电流线圈以沿着不同的轴建立磁场分量,并且可采用较小或更局部的线圈组件用于感测场值。例如可以将无论是用于感测还是用于生成的较小线圈固定于身体上或使其附着于工作面或外科手术器械上或者附着于导管或其他插入身体的设备上,以对磁场进行感测并且对附着结构的位置进行跟踪。
通常,这种磁跟踪组件的目的在于定义在给定瞬时可移动磁组件所位于的地方的空间坐标(例如绝对的或相对的位置和方向坐标)。因此必需利用一些精度来表征磁场分布或信号值,并且还需对场进行准确检测。可通过场建模和经验得到的场映射来确定场分布。后者例如是作为校准或初始化步骤来执行,并且后者可被执行来为干扰结构的存在校正理论场分布。在任何情况下,通常计算一个磁组件(发射器或传感器)相对于另一磁组件(传感器或发射器)的空间坐标。典型地,这些组件之一本身是固定的。
提供五个或六个自由度测量(区别通常是是否确定传感器滚动)的大多数磁跟踪利用用于磁场生成器的一个形式或另一个的模型。尤其在Jones(U.S.Pat.Nos.4,737,794和5,307,072)、Blood(U.S.Pat.No.4,945,305)、Dumoulin(U.S.Pat.Nos.5,211,165和5,377,678)、Bladen(W094/04938)、以及Ben-Haim(W096/05768)中可找到偶极和增强的偶极模型。在Blood(U.S.Pat.No.5,600,330)和Acker(U.S.Pat.No.5,600,330)中可找到其他模型,其中使用了其场与范围成反向变比的线段电流源。这些模型在场生成器的顶点附近发生分离。在Acker(U.S.Pat.No.5,558,091)和Martinelli(U.S.Pat.No.5,592,939)中还可找到其他模型,其中使用了准线性/均匀场生成。
磁跟踪有用的一个区域是图像引导的外科手术区域。典型的图像引导的外科手术系统获取病人身体的操作区域的一组图像,并且相对于例如外科手术工作台的空间坐标、图像本身的坐标、或者病人解剖构造的目标特征这样的一组或多组坐标来跟踪外科手术工具或器械。目前,已为多种外科手术过程开发了或提议了这种系统,并且这种系统对视线受限制环境中的位置测量是有用的。特别地,对生命体内部的医疗设备的定位是很重要的应用。例如,在许多介入中可以对导管和导线进行跟踪。与介入设备相结合来利用磁跟踪的最重要的挑战难题之一是使传感器小型化和平行化。
在Seiler等的题目为″A novel tracking technique for thecontinuous precise measurement of[tumor]positions in conformalradiotherapy″(Phys.Med.Biol.、2000年、N103-N110)的文章中描述了被分类成交流电(AC)磁跟踪系统的流行系统,该文章的内容通过参考在此全部并入。其中所描述的跟踪系统使用线圈感应器作为传感器。医疗设备(例如导线、导管)配备有这些传感器并且由此是可跟踪的。这些传感器必须是非常小的,否则该设备特性将显著地改变,这在临床上是不可接受的。当必须对6个自由度(6DOF)进行跟踪时,因此较小导线(例如0.011英寸)尤其是挑战难题。传统的6DOF传感器至少包含两个非共线的线圈感应器,并且因此需要比单个线圈感应器更大的空间。通常平行地添加用于对介入设备的多个部分进行跟踪的辅助传感器,并且每个传感器需要它自己的电路。
由此,需要这样一种传感器、系统和方法,该系统和方法可使6DOF磁跟踪需要很小的空间、仅需要一个电路并且可串联操作。
该公开提供了一种用于确定远程对象的位置的磁跟踪传感器,包括:感应线圈;不对称地布置在所述感应线圈之内的磁芯;以及可操作地连接到所述感应线圈的相对端的DC电路,以便向所述感应线圈提供DC电流的该DC电路能够调节所述磁芯的饱和级别,因此使能可变地聚焦外部磁场,其中通过施加所述DC电流,可以调节所述磁芯对当所述感应线圈布置在外部AC磁场中时的所述感应线圈的响应信号的影响,,以提供对所述感应线圈的六自由度磁跟踪。
该公开还提供了用于确定远程对象的位置的系统。该系统包括:如上所述的磁跟踪传感器;场发生器,包括形成四面体形状组件的边缘的六个差动线圈,其中每个差动线圈包含在同一轴上在彼此之后定位的两个反向极化的线圈;适用于接收来自所述磁跟踪传感器的至少一个感应线圈的响应信号的数据获取系统;以及可操作地耦接到所述数据获取系统的监控器,其中利用DC电流,所述磁芯对当所述至少一个感应线圈布置在外部AC磁场中时的所述至少一个感应线圈的响应信号的影响能够被调节,以便能够提供在监控器上可现察的所述至少一个感应线圈的六自由度磁跟踪。
该公开还提供了用于确定远程对象的位置的方法。该方法包括:将磁芯不对称地布置在所述感应线圈之内;将DC电路连接到所述至少一个感应线圈的相对端,以便向所述感应线圈提供DC电流的所述DC电路能够调节所述磁芯的饱和级别,因此使能可变地聚焦外部磁场;在外部AC磁场中布置所述感应线圈;以及施加DC电流以调节所述磁芯具有的、对布置在外部AC磁场中的所述感应线圈的响应信号的影响,以提供对所述感应线圈的六自由度磁跟踪。
尤其是当结合附图进行回顾时,根据下述详细说明可显而易见得知与该公开的传感器、系统、以及方法相关的其他特征、功能、以及优点。
为了有助于本领域普通技术人员制造并使用所公开的系统和方法,参考附图,其中:
图1是可操作地连接到布置在病人身体中的导管的磁跟踪系统的传感器的示意图;
图2说明了本公开的示意性实施例中的6DOF传感器的示意图,该6DOF传感器包括有具有三个对角软磁线布置其中的线圈绕组;
图3说明了本公开的替代示意性实施例中的6DOF传感器的示意图,该6DOF传感器包括一系列微型传感器,所述微型传感器包括串联共线连接线圈,每个线圈具有对角地布置在其中的软磁线;以及
图4说明了配备有线圈感应器和导线的导管,该导线具有u金属部分用于相对于导管来对导线尖头进行相对跟踪。
如这里所阐述的,本公开可有利地允许并便于利用仅需单个电路的小直径设备(例如导线或导管)上的一个或若干个传感器来进行6DOF磁跟踪。可有利地采用本公开以支持对器械在别扭脉管几何形状中的导引或在通过狭窄器官时对器械的导引。当传感器串联地定向时,本公开可有利地允许估计导线的整个部分的形状和位置。多个6DOF传感器还可允许估计导线的机械状态(例如应变映射)。
参考图1,其对示例性AC磁跟踪系统100进行示意性描述。磁跟踪系统100由诸如导管之类的介入设备102采用,来用于对导管102相对于病人106身体之内的目标区域的位置和方向进行感测。与本技术领域中所熟知的其他磁跟踪应用相似,系统100使用磁场104作为场发生器器110与场传感器112之间的信息载体。在示意性实施例中,场传感器112包括布置在导管102的远尖端上用于以高重复频率来提供精确测量的非常小的植入式传感器112。场发生器110可操作地连接到信号发生器114以生成大约12kHz的交变场,以例如事实上未受干扰穿透人体。
场发生器110包括形成四面体形状组件的边缘的六个差动线圈116。每个差动线圈116包含在同一轴上在彼此之后定位的两个反向极化的线圈。因此,在交变场的半周期期间,磁极阵列从S-N-N-S变为N-S-S-N,S是指南极并且N是指北极。这种线圈布置创建了具有主要四极分量的多极场。每个线圈116包括绕在由合成材料组成的芯体(未示出)上的铜线的83个绕组。借助于塑料块的互连来装配差动线圈以形成边缘长度大约为16cm的四面体;然而,同样可考虑其他形状和尺寸。
传感器112实质上是下述微型化感应线圈,所述微型化感应线圈由绝缘铜线的大约一千个绕组组成,该绝缘铜线相对于与此相关的介入设备102而言直径大小是合适的。传感器112可以涂有非常薄的合成材料薄膜。场发生器110所创建的交变磁场108在传感器112中感应出交流电压,该交流电压由用于在监控器120上提供传感器112的位置和方向的已连接数据获取电子设备118来测量。
现在参考图2,本公开的目的在于可串联操作的小6DOF传感器112。传感器112包括感应线圈130,该感应线圈130具有对角地安装在感应线圈130之内的一个或若干个软磁线132以作为磁芯(示出了三个)。该软磁线132包括具有足够低矫顽磁性和适当形状(例如下述足够低的直径/长度比)的所有适当材料。在一个实施例中,软磁线132可以是u金属(其定义为:5Cu,2Cr、77Ni,剩余部分是铁)。应该注意的是软磁线的退磁因子非常小;因此聚焦磁通量的效率非常高。线圈130的相对端134与包括有DC电源138和被示意性地描述成计量器140的数据获取电子设备在内的直流(DC)电路136电连接。
在示意性实施例中,软磁线是由矫顽力小于800A/m并且优选是小于80A/m的材料组成。可从文献中得知具有这些特性的材料并且这对于相关技术中的技术人员来说是众所周知的。按照提供小于10-2的退磁因子并且优选是提供小于10-3的退磁因子这样的方式来设计形状。对于杆状线而言,它将对应于在大约1/20和大约1/70之间的直径长度比。应该注意的是最简单的工作示例可是具有相应几何形状的拉制丝。或者,可使用编织(braid)或者甚至是以按照建立期望退磁因子这样的方式而排列的磁子元件(具有任意退磁因子)的矩阵(例如,对其的磁微球体),或者甚至是涂有薄磁层以获得所需的各向异性(退磁因子)的、具有较高直径长度比的圆柱形杆。
软磁线132的任务是使外部磁场108可变地聚焦。该变化性是由于在读出期间通过施加附加的DC磁场而使软磁线132的磁化饱和这样的可能性所引起的。该DC磁场是通过使用DC电源138使DC电流经由DC电路136穿过线圈130而创建的。DC电流的强度和每个传感器线圈130的特性确定了传感器/软磁线是否饱和。然而,磁饱和的软磁线132未对由于外部AC磁场108而导致的AC响应有所贡献。因此通过所施加的DC电流可调节软磁线132对传感器112的信号贡献的影响。
如图2所述,对角布置的软磁线132另外可消除线圈130的对称性。由于线的对角定位而消除了螺线管的轴对称性。由此传感器信号目前是滚动角相关的,这产生了6DOF传感器。相反,由于线圈的对称性,不具有芯体或具有同轴地布置有线圈绕组的芯体的传统传感器与滚动角是无关的。
分别通过让软磁线132为无源或有源(例如是否饱和)来对感生电压进行连续测量来执行6DOF测量。这类似于对两个非共线线圈中的感生电压进行测量,这是因为软磁线132主要沿着用于定义其长度的纵轴被磁化并且因此可得到线性独立的测量。如上面所公开的Seiler等的参考文献中,假定可以一个跟踪序列来激活若干梯度场以提供足够独立的测量以解决6DOF。
图3说明了与一个电路136串联的四个传感器112。当由单条电缆119(参见图1)或者单个电路136寻址时,提供给数据获取118的信号响应将是来自每个单传感器112的信号的叠加。然而,通过使用不同的软磁线132并且向电路136施加不同的DC电流,信号是可分离的。对于电路136中所提供的每个DC电流值而言,可使传感器/软磁线的某个部分饱和。例如,在其它保持在磁化的线性范围中的同时,一些已在非线性范围中。可对这些不同的响应(尤其是非线性)进行检测并且使其用于测量序列。按照这种方式,DC电路136中所提供的DC电压的幅值是附加的自由参数以创建可分离的整个信号。为了对阵列内的不同传感器进行寻址,在测量序列期间可选地逐步改变DC电压。
如下所述,还可相反地执行实际位置测量。此后在AC电流穿过要跟踪的微线圈的同时,场发生器创建DC场。对该线圈的阻抗进行连续测量,这得到了局部DC场并因此得到位置。这个基于DC的技术也是众所周知的(例如参见Ascension Technologies:″Flock of BirdsTracking System″)并且提供了下述优点,即对传导材料较不敏感,同时AC技术受到磁性材料的更少干扰。除了上述方法之外还可使用这样的技术,即例如通过使这两种类型测量交插以提高测量精度或者检测由于传导材料或磁性材料所引起的问题。应该注意的是,该相反技术不供6D测量之用,而是仅供5D之用,这是因为饱和再也不可用于产生独立的测量。
其他自由参数包括AC磁场108的振幅或实时形状。可与DC电流强度相类似地采用这些参数,这是因为AC磁场108也影响每个传感器112的非线性行为。此外,在测量序列期间可以改变空间AC磁场的振幅分布。这些附加的自由参数可用于支持信号(例如可分离的响应信号)的展开。因此,信号的展开通常不是主要问题。或者,可采用例如包括有二极管的其他非线性元件来分离信号。
相关技术的技术人员应该明白的是,本公开所关注的是可利用与普通磁跟踪设备所使用的方法相似的方法来实现对配备有所提议磁跟踪传感器的医学介入设备的制造。上述磁跟踪传感器的一个这样的应用例如包括如冠状动脉介入中所使用的多条6DOF可跟踪的小直径导线。这种设备极大地支持对器械在别扭脉管几何形状中的导引或者在通过狭窄器官时对器械的导引。
此外,可串行性运行对导线的完整部分(例如远端的10-20cm)的形状和位置进行估计。这可有助于在复杂脉管树中的导航。形状信息也可用于提高对预过程图像(例如路标)的配准。此外,多个6DOF传感器可用于估计导线(例如应变映射)的机械状态。
现在参考图4,短程相对跟踪布置可以包括在导管的远端配备有线圈130的导管140以及在要跟踪(例如顶端)的部分中包含有μ金属144的导线142。位于导线142尖端的μ金属144对信号有贡献并且可确定相对位置。图4的布置还可自动地提供用于在如果导管140相对于周围组织是固定的情况下进行运动补偿相对跟踪的方法,并且可提供其中强制高相对精度的、用于导航的装置。典型示例是利用导线穿过慢性完全闭塞或者极其狭窄器官处。
总之,本公开可以由例如在介入过程中所使用的、尤其是在对复杂脉管树进行导航时所使用的诸如导线和/或导管之类的医学介入设备来实现。该6DOF传感器可以仅基于使用一个或若干个磁μ金属线作为磁芯的一个线圈,其中该线圈属于介入设备的一部分。本公开的功能性应用可利用单个线圈来进行6DOF测量,这会产生与滚动角相关的传感器信号。
所公开的系统、设备以及方法为医学介入设备系统的用户提供了显著的益处,尤其是为在介入过程中对导线和/或导管进行导航的医生提供了显著的益处。实际上,所公开的系统、设备、以及方法提供了结合下述小直径设备一起使用的对应大小的传感器,所述小直径设备支持器械在别扭脉管几何形状中的导引或者在通过狭窄器官时支持对器械的引导。尤其是,所公开的系统、设备、以及方法仅利用一个DC电路就可提供6DOF磁跟踪,而不管所采用的传感器数目,所有传感器都利用单个电缆寻址。按照这种方式,多个传感器的串行方向可对导线的完整部分的形状、位置、以及机械状态进行估计。
虽然已参考其示意性实施例对本公开的系统、设备和方法进行了描述,但是本公开并不局限于这种示意性实施例。相反,这里所公开的系统、设备、以及方法易经受各种修改、增加、和/或变化而不脱离其精神和范围。因此,本公开具体体现并包含了在随后权利要求范围之内的这种修改、增加、和/或变化。

Claims (12)

1.一种用于确定远程对象的位置的磁跟踪传感器,包括:
感应线圈(130);
不对称地布置在所述感应线圈(130)之内的磁芯(132);以及
可操作地连接到所述感应线圈(130)的相对端的DC电路(136),以便向所述感应线圈(130)提供DC电流的该DC电路(136)能够调节所述磁芯(132)的饱和级别,因此使能可变地聚焦外部磁场,
其中通过施加所述DC电流,可以调节所述磁芯(132)对当所述感应线圈(130)布置在外部AC磁场(108)中时的所述感应线圈(130)的响应信号的影响,以提供对所述感应线圈(130)的六自由度磁跟踪。
2.根据权利要求1的传感器,其中所述磁芯(132)是非共轴地布置在所述感应线圈(130)内部的软磁线。
3.根据权利要求2的传感器,其中通过相对于用于定义所述感应线圈(130)内部的相对侧而布置的相对端来定义所述软磁线。
4.根据权利要求2的传感器,其中所述磁芯(132)包括基本上彼此平行、且非共轴地布置在所述感应线圈(130)之内的多个软磁线。
5.根据权利要求1的传感器,其中所述DC电路(136)通过单个电路(136)向与之可操作相连的所述感应线圈(130)提供DC电流。
6.根据权利要求1的传感器,其中所述传感器使用单个感应线圈(130)来提供在六个自由度的磁跟踪。
7.根据权利要求1的传感器,其中所述感应线圈(130)包括每一个都具有非共轴排列的软磁线作为磁芯(132)的一系列同线感应线圈(130),这一系列同线感应线圈(130)可操作地连接到DC电路(136)。
8.根据权利要求1的传感器,其中所述磁芯(132)包括基本上彼此平行的且非共轴地布置在所述感应线圈(130)之内的三个软磁线。
9.根据权利要求1的传感器,其中所述DC电路(136)包括DC电源(138)和信号响应获取设备(140)。
10.根据权利要求1的传感器,其中所述磁跟踪提供了布置在导管(102,140)和导线(142)的至少一个上的感应线圈(130)的位置和方向。
11.一种用于确定远程对象的位置的系统,包括:
如权利要求1-10中的任一个所述的磁跟踪传感器;
场发生器,包括形成四面体形状组件的边缘的六个差动线圈(116),其中每个差动线圈(116)包含在同一轴上定位的两个反向极化的线圈;
适用于接收来自所述磁跟踪传感器的感应线圈(130)的响应信号的数据获取系统(118);以及
可操作地耦接到所述数据获取系统(118)的监控器(120),
其中利用DC电流,所述磁芯对当所述感应线圈(130)布置在外部AC磁场(108)中时的所述感应线圈(130)的响应信号的影响能够被调节,以便能够提供在监控器(120)上可观察的所述感应线圈(130)的六自由度磁跟踪。
12.一种用于确定远程对象的位置的方法,包括:
将磁芯(132)不对称地布置在所述感应线圈(130)之内;
将DC电路(136)连接到所述感应线圈(130)的相对端,以便向所述感应线圈(130)提供DC电流的所述DC电路(136)能够调节所述磁芯(132)的饱和级别,因此使能可变地聚焦外部磁场;
在外部AC磁场(108)中布置所述感应线圈(130);以及
施加DC电流以调节所述磁芯(132)具有的、对布置在外部AC磁场(108)中的所述感应线圈(130)的响应信号的影响,以提供对所述感应线圈(130)的六自由度磁跟踪。
CN200680028875.6A 2005-08-04 2006-07-12 对用于介入设备定位的传感器进行磁跟踪的系统和方法 Active CN101238353B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US70561705P 2005-08-04 2005-08-04
US60/705,617 2005-08-04
PCT/IB2006/052373 WO2007015180A1 (en) 2005-08-04 2006-07-12 System and method for magnetic tracking of a sensor for interventional device localization

Publications (2)

Publication Number Publication Date
CN101238353A CN101238353A (zh) 2008-08-06
CN101238353B true CN101238353B (zh) 2015-07-22

Family

ID=37478881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680028875.6A Active CN101238353B (zh) 2005-08-04 2006-07-12 对用于介入设备定位的传感器进行磁跟踪的系统和方法

Country Status (7)

Country Link
US (1) US7969142B2 (zh)
EP (1) EP1913338B1 (zh)
JP (1) JP5270341B2 (zh)
KR (1) KR20080031929A (zh)
CN (1) CN101238353B (zh)
CA (1) CA2617380A1 (zh)
WO (1) WO2007015180A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8326402B2 (en) * 2006-08-21 2012-12-04 Biosense Webster, Inc. Distortion-immune position tracking using frequency extrapolation
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
JP5452500B2 (ja) 2007-11-26 2014-03-26 シー・アール・バード・インコーポレーテッド カテーテルの血管内留置のための統合システム
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
US20120041297A1 (en) * 2009-02-06 2012-02-16 Baylor College Of Medicine Real-time magnetic dipole detection and tracking
US9439735B2 (en) 2009-06-08 2016-09-13 MRI Interventions, Inc. MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
EP2442717B1 (en) 2009-06-16 2020-11-25 ClearPoint Neuro, Inc. Mri-guided devices and mri-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
DE102009035948A1 (de) 2009-08-03 2010-09-16 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Positionsbestimmung in der Medizin
BR112012019354B1 (pt) 2010-02-02 2021-09-08 C.R.Bard, Inc Método para localização de um dispositivo médico implantável
ES2740003T3 (es) * 2010-04-30 2020-02-05 Medtronic Xomed Inc Instrumento quirúrgico maleable con navegación
EP2575611B1 (en) 2010-05-28 2021-03-03 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5868961B2 (ja) 2010-05-28 2016-02-24 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 針挿入誘導システムとともに使用するための装置
US20120046562A1 (en) 2010-08-20 2012-02-23 C. R. Bard, Inc. Reconfirmation of ecg-assisted catheter tip placement
US8232801B2 (en) * 2011-06-30 2012-07-31 General Electric Company Nuclear quadrupole resonance system and method for structural health monitoring
WO2013028937A1 (en) * 2011-08-23 2013-02-28 Parmar Jaywant Philip Em guidance device for a device enabled for endovascular navigation placement including a remote operator capability and em endoluminal imaging technique
JP5834194B2 (ja) * 2012-06-07 2015-12-16 パナソニックIpマネジメント株式会社 トルク測定装置、及び、プログラム
CN105979868B (zh) 2014-02-06 2020-03-10 C·R·巴德股份有限公司 用于血管内装置的导向和放置的系统和方法
US9603668B2 (en) 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
US10772532B2 (en) 2014-07-02 2020-09-15 Covidien Lp Real-time automatic registration feedback
US20160000414A1 (en) 2014-07-02 2016-01-07 Covidien Lp Methods for marking biopsy location
US9754367B2 (en) 2014-07-02 2017-09-05 Covidien Lp Trachea marking
US9770216B2 (en) 2014-07-02 2017-09-26 Covidien Lp System and method for navigating within the lung
CA2953146A1 (en) 2014-07-02 2016-01-07 Covidien Lp System and method for segmentation of lung
EP3164073B1 (en) 2014-07-02 2020-07-01 Covidien LP System and method for detecting trachea
WO2016081321A2 (en) 2014-11-18 2016-05-26 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
WO2016081023A1 (en) 2014-11-18 2016-05-26 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10986990B2 (en) 2015-09-24 2021-04-27 Covidien Lp Marker placement
US10709352B2 (en) 2015-10-27 2020-07-14 Covidien Lp Method of using lung airway carina locations to improve ENB registration
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10151606B1 (en) 2016-02-24 2018-12-11 Ommo Technologies, Inc. Tracking position and movement using a magnetic field
DE102016211639A1 (de) * 2016-06-28 2017-12-28 Siemens Aktiengesellschaft Verfahren und System zur Lokalisierung
US11911144B2 (en) 2017-08-22 2024-02-27 C. R. Bard, Inc. Ultrasound imaging system and interventional medical device for use therewith
WO2019139898A1 (en) * 2018-01-09 2019-07-18 Univeristy Of Pittsburgh - Of The Commonwealth System Of Higher Education Electromagetic system for rapid cannulation of fenestrated endovascular grafts
US11224392B2 (en) 2018-02-01 2022-01-18 Covidien Lp Mapping disease spread
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US10460523B1 (en) * 2019-01-28 2019-10-29 Alan Haddy Augmented reality system for electromagnetic buried asset location
US20200246588A1 (en) * 2019-02-05 2020-08-06 Bard Access Systems, Inc. Apparatus And Methods To Modulate Stylet Stiffness Profile
WO2020174343A2 (en) * 2019-02-26 2020-09-03 Epidutech Ltd System and methods for decompression of spinal epidural space
EP3922169A1 (en) 2020-06-12 2021-12-15 Koninklijke Philips N.V. Guiding balloon therapy in an anatomical cavity
US20230338091A1 (en) 2020-06-12 2023-10-26 Koninklijke Philips N.V. Guiding balloon therapy in an anatomicla cavity
EP3925559A1 (en) 2020-06-19 2021-12-22 Koninklijke Philips N.V. Guiding balloon therapy in an anatomical cavity

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406999A (en) * 1980-04-07 1983-09-27 Clarostat Mfg. Co., Inc. Inductive sensor
US4737794A (en) * 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
JPH0721536B2 (ja) * 1986-10-06 1995-03-08 株式会社マコメ研究所 磁気センサ−
US4945305A (en) * 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
JP2735747B2 (ja) 1991-09-03 1998-04-02 ゼネラル・エレクトリック・カンパニイ 追跡及びイメージング・システム
US5211165A (en) * 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5307072A (en) * 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
DE69318304T2 (de) 1992-08-14 1998-08-20 British Telecomm Ortungssystem
US5337678A (en) * 1993-01-07 1994-08-16 Ergonomic Equipment Pty. Ltd. Adjustable desk frame
JP3362906B2 (ja) * 1993-04-07 2003-01-07 オリンパス光学工業株式会社 体腔内位置検知装置
US5558091A (en) * 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5600330A (en) * 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
ES2144123T3 (es) 1994-08-19 2000-06-01 Biosense Inc Sistemas medicos de diagnosis, de tratamiento y de imagen.
US5752513A (en) * 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5592939A (en) * 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
AU4962997A (en) * 1996-12-04 1998-06-29 Martin Sundin Position measuring device for detecting displacements with at least three degrees of freedom
US6462536B1 (en) * 1997-06-21 2002-10-08 Micro-Epsilon Messtechnik Gmbh & Co. Kg Eddy current sensor
DE69925573T2 (de) * 1999-05-12 2006-04-27 Asulab S.A. Magnetischer F?hler hergestellt auf einem halbleitenden Substrat
US6546271B1 (en) * 1999-10-01 2003-04-08 Bioscience, Inc. Vascular reconstruction
JP2002181908A (ja) * 2000-12-11 2002-06-26 Alps Electric Co Ltd 磁界センサ

Also Published As

Publication number Publication date
US7969142B2 (en) 2011-06-28
KR20080031929A (ko) 2008-04-11
CN101238353A (zh) 2008-08-06
JP5270341B2 (ja) 2013-08-21
CA2617380A1 (en) 2007-02-08
EP1913338A1 (en) 2008-04-23
EP1913338B1 (en) 2019-04-17
WO2007015180A1 (en) 2007-02-08
US20080231264A1 (en) 2008-09-25
JP2009502396A (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
CN101238353B (zh) 对用于介入设备定位的传感器进行磁跟踪的系统和方法
JP6766333B2 (ja) 微小磁性体検知センサおよび異物検知装置
CN102188246B (zh) 磁跟踪系统、设备及方法
CN103930024B (zh) 使用柔性印刷电路制造小型电磁线圈的方法
JP5581042B2 (ja) 物体を追跡するシステム
US5429132A (en) Probe system
US8044660B2 (en) Arrangement and method for influencing and/or detecting magnetic particles in a region of action
EP1926426B1 (en) Magnetic tracking system for an imaging system
CN102245097B (zh) 具有可变选择场取向的用于磁性粒子成像的设备
US20090079426A1 (en) Electromagnetic tracking employing scalar-magnetometer
CN101897585A (zh) 具有磁阻传感器的手术导航系统
US20110313277A1 (en) Method and device for magnetic induction tomography
US8179131B2 (en) Method and arrangement for influencing and/or detecting magnetic particles in a region of action by rotating magnetic drive vector
US8183861B2 (en) Arrangement including compensation for influencing and/or detecting magnetic particles in a region of action
Hashi et al. Numerical study on the improvement of detection accuracy for a wireless motion capture system
CN101563027B (zh) 用于在作用区域中定位磁性标记的方法和布置
US20180140360A1 (en) Accuracy testing of electromagnetic device tracking
JP2006177684A (ja) 磁気マーカを用いた位置・方向計測方法および位置・方向計測方法システム
Muench et al. Combining magnetic and optical tracking for computer aided therapy
Meng et al. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments
CN111770726A (zh) Mri跟踪装置的设计、制造以及用于mri引导机器人系统的使用方法
JP2007170976A (ja) 高精度lc共振型磁気マーカの位置、方向および等価的磁気モーメントの検出システム
JPH0237172B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant