CN115440806A - Igbt结构及制造方法 - Google Patents

Igbt结构及制造方法 Download PDF

Info

Publication number
CN115440806A
CN115440806A CN202110612619.8A CN202110612619A CN115440806A CN 115440806 A CN115440806 A CN 115440806A CN 202110612619 A CN202110612619 A CN 202110612619A CN 115440806 A CN115440806 A CN 115440806A
Authority
CN
China
Prior art keywords
substrate
region
front surface
igbt
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110612619.8A
Other languages
English (en)
Inventor
楼颖颖
李铁生
马林宝
薛志民
王荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xusi Semiconductor Shanghai Co ltd
Xi'an Longwei Semiconductor Co ltd
Original Assignee
Xusi Semiconductor Shanghai Co ltd
Xi'an Longwei Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xusi Semiconductor Shanghai Co ltd, Xi'an Longwei Semiconductor Co ltd filed Critical Xusi Semiconductor Shanghai Co ltd
Priority to CN202110612619.8A priority Critical patent/CN115440806A/zh
Publication of CN115440806A publication Critical patent/CN115440806A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

本发明提供一种IGBT结构及制造方法,集电区及所述缓冲区分别自CZ衬底的正面延伸入所述CZ衬底内,且所述集电区的背面邻近所述CZ衬底的背面,正面覆盖有所述缓冲区的背面,所述缓冲区的正面平齐于所述CZ衬底的正面,漂移区的背面覆盖所述缓冲区及所述CZ衬底的正面。上述各区均采用正面工艺,完全兼容现有主流制程,无需昂贵的背面设备的采购,且设备性能成熟,备件损耗少。

Description

IGBT结构及制造方法
技术领域
本发明涉及集成电路制造领域,更具体地,涉及一种IGBT结构及制造方法。
背景技术
绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)是具有MOSGate的BJT晶体管,是MOSFET和BJT的组合体,由于是两种载流子导电,既有MOSFET易于驱动及控制简单的优点,又有功率晶体管导通压降低,通态电流大,损耗小的优点,广泛应用于600V以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
图1示出了现有主流IGBT结构示意图,图2示出图1中现有主流IGBT结构的等效电路示意图,如图1所示,两个等效的BJT背靠背相连以提高电流驱动能力,但存在如下问题点:
1.易出现栓锁(Latch-up);
2.器件关断时,沟道关断迅速而没有多子电流,可是集电区(图中Collector,即Drain)端还存续少子空穴注入,导致器件出现拖尾电流(tailing current),直接影响器件的关断时间及工作频率。
为解决上述问题,现有技术的解决方法为:
1.为了防止栓锁(Latch-up),需要控制Rs,满足α1+α2<1。
2.为了缩短关断时间,提高工作效率,现有技术中引入了新的结构:在P+与N-漂移区之间加入N+缓冲区,以此在关断器件时,Collector端注入的空穴迅速在N+缓冲区被复合,从而提高关断频率。
目前主流的IGBT没有采用普通硅衬底上生长外延的技术,而是采用FZ(区熔法)衬底,并采用离子注入的技术来生成P+集电区(透明集电极技术)。工艺步骤包括,先FZ衬底背面减薄至6mil~8mil,然后在FZ衬底背面注入,之后激光退火激活。其作用是为了尽量精准的控制结深而控制发射效率尽可能低,增快载流子抽取速度来降低关断损耗,可以保持基区原有的载流子寿命而不会影响稳态功耗,同时具有正温度系数特点,所以在稳态损耗和关断损耗之间折衷。其中为了实现足够的注入深度,背面注入只能采用是硼离子注入技术。
但是采用上述FZ衬底和工艺存在下列问题:
1.迄今使用由通过FZ法育成的硅单晶切出的直径为150mm或以下的晶片。虽然与外延片相比,FZ晶片较便宜,但是为了进一步降低IGBT的制造成本,有必要使晶片大口径化,但是,通过FZ法育成直径大于150mm的单晶极其困难,即使能够制造,其成本较高。而且,FZ衬底的代表公司是西门子公司,其衬底材料制备的关键技术也被其及国外公司所垄断和掌握,所以采用FZ衬底制备的IGBT,在来料上受制于人。
2.背面工艺所需的设备需要极大的资金投入,所购入设备并不能与其他工艺合用,且目前设备尤其减薄设备仍较易发成碎片,损耗较高。
因此,需要开发一种完全自主的使用常规切克劳斯基法(CZ直拉法)生长的硅衬底,与主流工艺和设备完全兼容的全正面IGBT结构及其制造方法,并且本发明的IGBT结构特别针对12寸以及以上的大硅片,提高片内器件的性能一致性。
发明内容
本发明的目的在于克服现有技术存在的上述缺陷,提供一种IGBT结构及制造方法。
为实现上述目的,本发明第一方面提供一种IGBT结构,其特征在于,包括:CZ衬底,自下而上依次设置的集电区、缓冲区及漂移区;其中,所述集电区及所述缓冲区分别自所述CZ衬底的正面延伸入所述CZ衬底内,且所述集电区的背面邻近所述CZ衬底的背面,正面覆盖有所述缓冲区的背面,所述缓冲区的正面平齐于所述CZ衬底的正面,所述漂移区的背面覆盖所述缓冲区及所述CZ衬底的正面。
优选地,所述漂移区的正面设有IGBT正面结构,所述IGBT正面结构包括:栅极结构,覆盖部分所述漂移区的正面;基区,自所述栅极结构相对的两侧,沿所述漂移区的正面延伸入所述漂移区内,且部分所述基区的正面与所述栅极结构的底面相连;发射区,对应所述基区,自所述栅极结构相对的两侧,沿所述基区的正面延伸入所述基区内,且部分所述发射区的正面与所述栅极结构的底面相连;金属发射极,分设于所述栅极结构相对的两侧,且覆盖所述发射区及所述基区的正面。
优选地,所述栅极结构包括平面栅结构或槽栅结构。
本发明第二方面提供一种IGBT结构的制造方法,其特征在于,包括:步骤S01:提供CZ衬底;步骤S02:自所述CZ衬底的正面注入形成集电区,且所述集电区的背面邻近所述CZ衬底的背面;步骤S03:自所述CZ衬底的正面注入形成缓冲区,且所述缓冲区的背面覆盖所述集电区的正面;步骤S04:自所述CZ衬底的正面外延形成漂移区。
优选地,所述缓冲区的正面平齐于所述CZ衬底的正面。
优选地,所述漂移区还覆盖所述缓冲区的正面。
优选地,所述CZ衬底的尺寸大于或等于12英寸。
优选地,所述CZ衬底包括P型轻掺杂硅衬底。
优选地,步骤S02:采用硼离子或砷离子注入形成所述集电区。
优选地,步骤S03:采用磷离子注入形成所述缓冲区。
从上述技术方案可以看出,本发明的制程工艺均为正面工艺,完全兼容现有主流制程,无需昂贵的背面设备的采购,且设备性能成熟,备件损耗少。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了现有主流IGBT结构示意图;
图2示出图1中现有主流IGBT结构的等效电路示意图;
图3示出了一种根据本发明实施例的一种IGBT结构的制造方法的步骤流程图。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容做进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。
为使本发明的目的、技术方案和优点更加清楚,下面进一步结合实施例进行说明。图1示出了一种根据本发明实施例的一种IGBT结构的制造方法的步骤流程图,如图1所示,本发明的制造方法共包括4个步骤。
步骤S01:提供CZ衬底。
本实施例中所述CZ衬底可以直接购买得到,也可以自行加工得到,所述CZ衬底的采购完全不受限制,所述CZ衬底的尺寸大于或等于12英寸,使用非常便利且利用成本管控。所述CZ衬底包括P型轻掺杂硅衬底,本实施例中,所述CZ衬底使用普通的CZ直拉法生长的P-硅衬底。
步骤S02:自所述CZ衬底的正面注入形成集电区,且所述集电区的背面邻近所述CZ衬底的背面。
采用离子注入工艺对所述CZ衬底的正面进行全片式注入,采用硼离子或砷离子注入形成所述集电区,所述集电区自所述CZ衬底的正面延伸入所述CZ衬底内,且所述背面邻近所述CZ衬底的背面,本实施例中,对应所述P-硅衬底,形成P+集电区。所述P+集电区的P型杂质的注入剂量为1E12~1E16个/cm2,注入能量为20keV~200keV,退火的温度为350℃~500℃,退火的时间为20min~600min。在一实施例中,形成所述P+集电区的离子注入能量为60keV,注入剂量为1E14个/cm2
步骤S03:自所述CZ衬底的正面注入形成缓冲区,且所述缓冲区的背面覆盖所述集电区的正面。
接着,采用离子注入工艺对形成集电区的所述CZ衬底的正面再次进行全片式注入,所述缓冲区自所述CZ衬底的正面延伸入所述CZ衬底内。本实施例中,所述缓冲区的正面平齐于所述CZ衬底的正面,背面覆盖所述集电区的正面,即形成上下叠设的集电区及缓冲区。对应所述P+集电区,采用磷离子注入在所述P+集电区的正面表面形成N+缓冲区。
在另一实施例中,在所述CZ衬底的正面通过离子注入N型杂质并退火形成所述缓冲区,形成的所述缓冲区的厚度为2微米,典型的注入能量为15keV,注入剂量为2E14个/cm2,退火温度为450℃,退火时间为30~60分钟。通过调控上述两次离子注入工艺的能量和剂量,可精准控制结深,实现降低P+的发射效率,增快载流子抽取速度来降低关断损耗。而且,通过离子注入工艺形成的集电区及缓冲区,注入设备保证可轻易地保证片间浓度均匀性,所述CZ衬底的中心至边缘的浓度差异小于1.5%,从而提高片内器件的性能一致性。
步骤S04:自所述缓冲区及所述CZ衬底的正面外延形成漂移区。
本实施例中,对应所述N+缓冲区,通过外延工艺形成覆盖所述缓冲区及所述CZ衬底的正面表面的N-漂移区。所述漂移区结构为NPT结构或FS结构。在经历两次离子注入工艺后的CZ衬底,结合外延工艺形成漂移区,使得本实施例中P+集电区及N+缓冲区之间浓度和电荷的最佳比例,实现减小Vceon,从而降低导通电阻。
接着,在所述漂移区的正面再形成IGBT正面结构,所述IGBT正面结构可采用现有技术形成,在此不做赘述。基于本发明的IGBT结构,栅极结构覆盖部分所述漂移区的正面;基区自所述栅极结构相对的两侧,沿所述漂移区的正面延伸入所述漂移区内,且部分所述基区的正面与所述栅极结构的底面相连;发射区,对应所述基区,自所述栅极结构相对的两侧,沿所述基区的正面延伸入所述基区内,且部分所述发射区的正面与所述栅极结构的底面相连;金属发射极,分设于所述栅极结构相对的两侧,且覆盖所述发射区及所述基区的正面。
上述制程工艺均为正面工艺,完全兼容现有主流制程,无需昂贵的背面设备的采购,且设备性能成熟,备件损耗少。
以上所述的仅为本发明的优选实施例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所做的等同结构变化,同理均应包含在本发明的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种IGBT结构,其特征在于,包括:CZ衬底,自下而上依次设置的集电区、缓冲区及漂移区;其中,
所述集电区及所述缓冲区分别自所述CZ衬底的正面延伸入所述CZ衬底内,且所述集电区的背面邻近所述CZ衬底的背面,正面覆盖有所述缓冲区的背面,所述缓冲区的正面平齐于所述CZ衬底的正面,所述漂移区的背面覆盖所述缓冲区及所述CZ衬底的正面。
2.如权利要求1所述的IGBT结构,其特征在于,所述漂移区的正面设有IGBT正面结构,所述IGBT正面结构包括:
栅极结构,覆盖部分所述漂移区的正面;
基区,自所述栅极结构相对的两侧,沿所述漂移区的正面延伸入所述漂移区内,且部分所述基区的正面与所述栅极结构的底面相连;
发射区,对应所述基区,自所述栅极结构相对的两侧,沿所述基区的正面延伸入所述基区内,且部分所述发射区的正面与所述栅极结构的底面相连;
金属发射极,分设于所述栅极结构相对的两侧,且覆盖所述发射区及所述基区的正面。
3.如权利要求2所述的IGBT结构,其特征在于,所述栅极结构包括平面栅结构或槽栅结构。
4.一种IGBT结构的制造方法,其特征在于,包括:
步骤S01:提供CZ衬底;
步骤S02:自所述CZ衬底的正面注入形成集电区,且所述集电区的背面邻近所述CZ衬底的背面;
步骤S03:自所述CZ衬底的正面注入形成缓冲区,且所述缓冲区的背面覆盖所述集电区的正面;
步骤S04:自所述CZ衬底的正面外延形成漂移区。
5.如权利要求4所述的IGBT结构的制造方法,其特征在于,所述缓冲区的正面平齐于所述CZ衬底的正面。
6.如权利要求5所述的IGBT结构的制造方法,其特征在于,所述漂移区还覆盖所述缓冲区的正面。
7.如权利要求4所述的IGBT结构的制造方法,其特征在于,所述CZ衬底的尺寸大于或等于12英寸。
8.如权利要求4所述的IGBT结构的制造方法,其特征在于,所述CZ衬底包括P型轻掺杂硅衬底。
9.如权利要求4所述的IGBT结构的制造方法,其特征在于,步骤S02:采用硼离子或砷离子注入形成所述集电区。
10.如权利要求4所述的IGBT结构的制造方法,其特征在于,步骤S03:采用磷离子注入形成所述缓冲区。
CN202110612619.8A 2021-06-02 2021-06-02 Igbt结构及制造方法 Pending CN115440806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110612619.8A CN115440806A (zh) 2021-06-02 2021-06-02 Igbt结构及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110612619.8A CN115440806A (zh) 2021-06-02 2021-06-02 Igbt结构及制造方法

Publications (1)

Publication Number Publication Date
CN115440806A true CN115440806A (zh) 2022-12-06

Family

ID=84240129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110612619.8A Pending CN115440806A (zh) 2021-06-02 2021-06-02 Igbt结构及制造方法

Country Status (1)

Country Link
CN (1) CN115440806A (zh)

Similar Documents

Publication Publication Date Title
KR101237345B1 (ko) 실리콘 기판을 필드 스톱층으로 이용하는 전력 반도체 소자및 그 제조 방법
US7687825B2 (en) Insulated gate bipolar conduction transistors (IBCTS) and related methods of fabrication
US9960250B2 (en) Power device and method of manufacturing the same
CN105793991A (zh) 半导体装置
US6162665A (en) High voltage transistors and thyristors
JPWO2015087507A1 (ja) 絶縁ゲートバイポーラトランジスタおよびその製造方法
US7192872B2 (en) Method of manufacturing semiconductor device having composite buffer layer
CN100463122C (zh) 具有低导通电阻的高电压功率mosfet
US20230155014A1 (en) Ultra-Thin Super Junction IGBT Device and Manufacturing Method Thereof
WO2017219968A1 (zh) 横向绝缘栅双极型晶体管及其制造方法
KR101315699B1 (ko) 초접합 트렌치 구조를 갖는 파워 모스펫 및 그 제조방법
CN113517332A (zh) 基于圆柱型超结区的复杂超结半导体器件及其制备方法
JP2007123469A (ja) 半導体装置とその製造方法
CN115440806A (zh) Igbt结构及制造方法
CN104637813A (zh) Igbt的制作方法
CN111627982B (zh) 一种高性能超结结构igbt的结构及其方法
CN113782586A (zh) 一种多通道超结igbt器件
JPH0350771A (ja) 半導体装置
CN216871974U (zh) 一种多通道超结igbt器件
JP2002222951A (ja) 絶縁ゲート型バイポーラトランジスタ(igbt)素子のスイッチング速度の制御方法、その構造及び製造方法
CN207883697U (zh) 绝缘栅双极晶体管、ipm模块及空调器
JP5446158B2 (ja) 半導体装置及びその製造方法
CN114334867B (zh) 一种自动温度控制功率芯片结构及制备方法
CN116387348B (zh) 一种精确控制短沟道的平面型SiC MOSFET及其制造方法
CN109087945B (zh) 一种igbt的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination