CN115421258A - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
CN115421258A
CN115421258A CN202211173728.5A CN202211173728A CN115421258A CN 115421258 A CN115421258 A CN 115421258A CN 202211173728 A CN202211173728 A CN 202211173728A CN 115421258 A CN115421258 A CN 115421258A
Authority
CN
China
Prior art keywords
optical
interface
laser
light
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211173728.5A
Other languages
Chinese (zh)
Other versions
CN115421258B (en
Inventor
孙雨舟
陈龙
于登群
李伟龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolight Technology Suzhou Ltd
Original Assignee
Innolight Technology Suzhou Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolight Technology Suzhou Ltd filed Critical Innolight Technology Suzhou Ltd
Priority to CN202211173728.5A priority Critical patent/CN115421258B/en
Publication of CN115421258A publication Critical patent/CN115421258A/en
Application granted granted Critical
Publication of CN115421258B publication Critical patent/CN115421258B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The invention relates to an optical module which comprises a shell, a laser, a cushion block and a PCB, wherein the laser, the cushion block and the PCB are arranged in the shell, one end of the optical module is provided with an optical interface, the other end of the optical module is provided with an electrical interface, the laser is packaged on the cushion block and arranged close to the edge of the PCB, the laser is electrically connected with the PCB, the laser is in heat conduction connection with the shell through the cushion block, and a light emitting end is in heat conduction connection with the shell, so that the optical module is reliable in performance and good in heat dissipation effect, and better high-speed signal transmission is favorably realized.

Description

Optical module
The application is a divisional application of a Chinese patent application with the application number of 2017105907964, namely an invention name of "optical module" applied by the applicant on 7/19/7 in 2017.
Technical Field
The invention relates to the technical field of optical communication, in particular to an optical module.
Background
With the development of society, the data volume is larger and larger. The requirements of faster transmission rate and lower cost are provided for the optical communication module. The existing 3G can not meet the numerous and complicated requirements of users and markets, and TD-LTE (Time Division-long term Evolution, long term Evolution of TD-SCDMA) is produced as a technology of 3G moving toward 4G. Because of the shortage of optical fiber resources, high new laying cost and long base station distribution distance at present, the demand of small pluggable (SFP +) packaged optical modules is gradually increased.
Generally, in an optical module structure, an electrical signal enters the PCBA from a gold finger and then is output to an opto-chip, which converts the electrical signal into an optical signal, which is output to an optical port via an optical system. Both the optical port and the electrical port (gold finger) are fixed relative to the module housing. The PCBA is generally rigid, the optical system is also rigid, and there are dimensional tolerances for all devices.
At present, most of optical module packaging technologies use a Flexible Printed Circuit (FPC) to absorb assembly tolerance, but the FPC and the PCBA welding point introduce large electrical signal attenuation, and the FPC and the PCBA welding point can only be applied to a transmission rate of less than 10G.
Higher transmission rate, optical module product design for long distance transmission requires less high speed electrical signal attenuation. Meanwhile, the assembly requirements of the module need to be met, the gold finger, PCBA, photoelectric chip, free space optical path component and optical port need to be assembled together, and the scheme of how to integrally design to obtain the optimal photoelectric signal conversion transmission becomes a problem to be solved by the current letter.
Disclosure of Invention
Accordingly, an object of the present invention is to provide an optical module capable of realizing high-speed signal transmission.
The utility model provides an optical module, its characterized in that, the optical module includes the casing, locates laser instrument, cushion and PCB board in the casing, the one end of optical module has optical interface, and the other end has the electrical interface, the laser instrument encapsulation is in on the cushion and close to the edge setting of PCB board, the laser instrument with PCB board electric connection, the laser instrument passes through the cushion with casing heat conduction is connected.
As a further improvement of the embodiment of the present invention, the laser and the PCB are connected by gold wires.
As a further improvement of the embodiment of the present invention, the PCB board is configured as a hard board, and an end of the PCB board opposite to the optical interface is configured as the electrical interface.
As a further improvement of the embodiment of the present invention, a gold finger inserted to the outside is disposed at an end of the PCB opposite to the optical interface.
As a further improvement of the embodiment of the present invention, the optical module further includes a heat sink disposed in the housing, and the PCB and the pad are both fixed to the heat sink.
As a further improvement of the embodiment of the present invention, the heat sink and the housing are of an integrally molded structure.
As a further improvement of the embodiment of the present invention, the optical module further includes an optical system for guiding the light emitted by the laser to the optical interface, the optical system is at least partially disposed on the heat sink, and there is no overlap in the projections of the laser and the PCB board on the surface of the heat sink.
As a further improvement of the embodiment of the present invention, the optical module further includes an optical system for guiding light emitted from the laser to the optical interface, and the optical interface includes an emitting end optical interface and a receiving end optical interface; the optical system comprises a wavelength division multiplexer, the wavelength division multiplexer can combine a plurality of separated light beams into one light beam, and therefore the light signal emitted by the laser is transmitted to the transmitting end optical interface after the combined beam action of the wavelength division multiplexer.
As a further improvement of the embodiment of the present invention, the optical system is disposed between the laser and the optical interface.
As a further improvement of the embodiment of the present invention, the optical module further includes a light receiving end, and the light receiving end receives the optical signal conducted by the optical system and converts the optical signal into an electrical signal.
As a further improvement of the embodiment of the present invention, the optical module further includes a heat sink, the heat sink is fixed with respect to the housing, and the light receiving end is fixed to the heat sink.
As a further improvement of the embodiment of the present invention, the laser, the PCB board, and the optical system are all fixed to the heat sink.
As a further improvement of the embodiment of the present invention, the optical module further includes an optical system for guiding the light emitted by the laser to the optical interface, and an assembly tolerance absorption assembly, where the assembly tolerance absorption assembly guides the light emitted by the laser to a central position of the optical interface or to an external connector connected to the optical module after passing through the optical system, or the assembly tolerance absorption assembly guides the light emitted by the laser to the optical system.
As a further improvement of the embodiments of the present invention, the optical interface includes a transmitting-end optical interface and a receiving-end optical interface; the optical system comprises a transmitting light path and a receiving light path, wherein the transmitting light path comprises a wavelength division multiplexer, and the receiving light path comprises the wavelength division multiplexer and a reflector; the assembly tolerance absorbing assembly is disposed between the optical interface and an optical system.
As a further improvement of an embodiment of the invention, the assembly tolerance absorbing assembly comprises a transition interface between the optical system and the optical interface and at least one optical fiber optically connecting the transition interface and the optical interface, the optical fiber guiding light emitted by the optical system to the optical interface.
As a further improvement of the embodiment of the present invention, the adapter interface includes a transmitting adapter interface corresponding to the light transmitting end and a receiving adapter interface corresponding to the light receiving end; the optical fiber comprises a first optical fiber connected between the transmitting end optical interface and the transmitting adapter interface and a second optical fiber connected between the receiving end optical interface and the receiving adapter interface.
As a further improvement of the embodiment of the present invention, the number of the lasers is plural.
As a further improvement of the embodiment of the invention, no soft board is welded between the laser and the PCB.
The utility model provides an optical module, optical module includes the casing, sets up heat sink, light emission end, the PCB board in the casing, the one end of optical module has optical interface, and the other end has the electrical interface, the PCB board is fixed in on the casing, the light emission end with the PCB electricity is connected, the heat conduction of light emission end is connected heat sink, just heat sink with casing integrated into one piece.
As a further improvement of the embodiment of the present invention, the light emitting end is disposed near the edge of the PCB and electrically connected to the PCB by gold wires.
As a further improvement of the embodiment of the present invention, the PCB board is configured as a hard board, and an end of the PCB board opposite to the optical interface is configured as the electrical interface.
As a further improvement of the embodiment of the present invention, the light emitting end is a laser, the laser is connected to the heat sink in a heat conducting manner, and the laser is electrically connected to the PCB by a gold wire.
As a further improvement of the embodiment of the present invention, the optical module further includes a spacer block disposed between the laser and the heat sink, and the laser is encapsulated on the spacer block.
As a further improvement of the embodiment of the invention, a raised part is arranged at the position of the heat sink adjacent to the edge of the PCB, and the cushion block is positioned on the raised part.
As a further improvement of the embodiment of the present invention, the optical module further includes an optical system disposed in the housing, the optical system being disposed between the laser and the optical interface and guiding light emitted from the laser to the optical interface.
As a further improvement of the embodiments of the present invention, the optical interface includes a transmitting end optical interface, an optical receiver, and a receiving end optical interface; the optical system comprises a wavelength division multiplexer, and the wavelength division multiplexer can combine a plurality of separated light beams into one light beam, so that an optical signal emitted by the laser can be transmitted to the transmitting end optical interface through the guiding effect of the wavelength division multiplexer.
As a further improvement of the embodiment of the present invention, there is no overlapping area between the vertical projection of the optical system on the housing and the vertical projection of the PCB on the housing.
As a further improvement of the embodiment of the present invention, the optical system further includes a wavelength division multiplexer and a mirror that guide light of the light-receiving-end optical interface to the optical receiver.
As a further improvement of the embodiment of the present invention, the optical system further includes a lens disposed between the laser and the wavelength division multiplexer, and the lens processes the light emitted from the laser and transmits the processed light to the wavelength division multiplexer.
As a further improvement of the embodiment of the present invention, the optical module further includes an assembly tolerance absorption assembly for ensuring that light emitted from the laser can be received by an external element connected to the optical module.
As a further improvement of the embodiment of the present invention, the assembly tolerance absorption assembly is disposed at the optical interface, the optical module includes an optical system, and the assembly tolerance absorption assembly includes an optical element disposed between the optical system and the optical interface for realizing optical path interfacing between the optical system and the optical interface.
As a further improvement of the embodiment of the present invention, the optical module includes an optical system and a light receiving end for receiving the optical signal, the light receiving end includes a PD chip, the optical interface includes a transmitting end optical interface and a receiving end optical interface, light emitted by the laser is guided to the transmitting end optical interface through the optical system, and the optical signal received by the receiving end optical interface is conducted to the light receiving end through the optical system; the laser and the PD chip of the optical receiving end are packaged on the heat sink, and the driver of the laser is packaged on the PCB; the optical interface is fixedly arranged relative to the shell; the assembly tolerance absorbing assembly is arranged between the optical system and the PD chip of the laser/light receiving end.
As a further improvement of the embodiment of the present invention, the assembly tolerance absorption assembly includes at least one emission end optical fiber and at least one receiving end optical fiber, and the optical fibers are used for optical path connection to guide the light emitted by the laser to the optical system or guide the light received by the optical system to the light receiving end.
As a further improvement of the embodiment of the present invention, an end of the PCB board opposite to the electrical interface is fixed on the heat sink.
As a further improvement of the embodiment of the present invention, there is no overlapping area between the light emitting end and the projection of the PCB on the housing perpendicular to the surface of the PCB.
As a further improvement of the embodiment of the invention, no soft board is welded between the light emitting end and the PCB.
Compared with the prior art, the invention has the beneficial effects that: according to the technical scheme provided by the invention, the light emitting end is in heat conduction connection with the shell, so that the optical module has reliable performance and good heat dissipation effect, and better high-speed signal transmission is realized.
Drawings
FIG. 1 is a perspective view of a light module in a preferred first embodiment of the present invention;
FIG. 2 is a top view of the light module of FIG. 1;
FIG. 3 isbase:Sub>A cross-sectional view of the light module of FIG. 2 taken along line A-A;
FIG. 4 is an exploded perspective view of the light module of FIG. 1;
FIG. 5 is a perspective view of a light module in a second preferred embodiment of the present invention;
FIG. 6 is a top view of the light module of FIG. 5;
FIG. 7 is a perspective view of a light module in a preferred third embodiment of the present invention;
FIG. 8 is an exploded perspective view of the light module of FIG. 7;
FIG. 9 is a front view of a light module in a preferred fourth embodiment of the present invention;
FIG. 10 is a top view of the light module of FIG. 9;
fig. 11 is an enlarged view of a portion a of the light module in fig. 10;
FIG. 12 is a schematic perspective view of a light module in a fifth preferred embodiment of the present invention;
FIG. 13 is an exploded perspective view of the light module of FIG. 12;
FIG. 14 is a front view of the light module of FIG. 12;
fig. 15 is a sectional view taken along line B-B in fig. 14.
Detailed Description
The present invention will be described in detail below with reference to specific embodiments shown in the accompanying drawings. These embodiments are not intended to limit the present invention, and structural, methodological, or functional changes made by those skilled in the art according to these embodiments are included in the scope of the present invention.
As shown in fig. 1 to 4, in an embodiment of the present invention, an optical module 100 includes a housing 10 (only a lower housing is illustrated here), a heat sink 20 disposed in the housing 10, a laser 31 disposed on the heat sink 20, and a PCB 40 partially disposed on the heat sink 20, where one end of the optical module 100 has an optical interface and the other end has an electrical interface, and the optical interface includes an emitting-end optical interface 51 and a receiving-end optical interface 52. The PCB 40 is a hard board, one end of the PCB 40 is fixed on the heat sink 20 and electrically connected to the laser 31, and the other end of the PCB 40 is an electrical interface 43 of the optical module. Here, the other end of the PCB 40 is provided with a gold finger, and the gold finger serves as an electrical interface of the optical module.
The optical module 100 further includes an optical system 60 disposed in the housing and located between the laser 31 and the optical interface, and preferably, the optical system 60 is at least partially disposed on the heat sink 20, that is, the optical system 60 may be partially disposed on the heat sink 20 or may be entirely disposed on the heat sink 20, and the heat sink 20 and the housing may be configured as an integrally molded structure. The driver 35 of the laser 31 is packaged on the PCB 40, the laser 31 can be directly packaged on the heat sink 20, or packaged on a pad of the heat sink 20, a high-speed electrical signal is output from the driver 35 to the PCB 40, and then is output to the laser 31 through a gold wire connection through a very short distance, and the optical system 60 guides light emitted by the laser 31 to an optical interface. That is, the laser 31 is optically coupled with the emission-side optical interface 51 as an emission side. The optical signal received by the receiving-end optical interface 52 is transmitted to the optical receiving end via the optical system 60, and the optical receiving end converts the received optical signal into an electrical signal. That is, the optical receiving end is optically coupled to the receiving end optical interface 52 while being electrically connected to the PCB board. In the whole high-speed link, a soft board is not welded, so that the signal loss caused by a welding point is reduced, and the laser 31 is close enough to the PCB 40 to ensure the optimal electrical performance. Moreover, all the elements are fixed with the heat sink 20 by taking the heat sink 20 as a reference, the assembly tolerance is small, the heat can be dissipated through the heat sink 20, and the heat dissipation performance is reliable and good.
Specifically, the optical system 60 is disposed at one side of the laser 31, and the optical system 60 includes a lens assembly and a wavelength division multiplexer, where the lens assembly includes at least one lens, and the lens assembly can process, such as focus or collimate, the light emitted from the laser 31, so as to adjust the propagation direction of the emergent light of the laser 31; the wavelength division multiplexer can combine a plurality of split beams into a single beam, so that the optical signal emitted from the laser 31 can be conducted to the transmitting-end optical interface 51 through the guiding action of the lens assembly and the wavelength division multiplexer. The PCB 40 is horizontally disposed inside the housing 10 of the optical module 100, and the light receiving end may be directly packaged on the heat sink 20 or packaged on a pad of the heat sink. Wherein the laser 31 includes a VCSEL (vertical cavity surface emitting laser) chip, the light receiving end includes a PD (photo diode) chip, and light transmitted from the receiving end optical interface 52 reaches the PD chip 32 after passing through the wavelength division multiplexer and the reflection prism 32. The VCSEL chip is directly soldered to the heat sink 20, electrically connected to the PCB 40 by gold wires, and electrically connected to the driver 35 packaged on the PCB 40. The PD chip 32 is also soldered directly to the heat sink 20. Of course, the laser 31 may also be another type of laser chip, and similarly, the light receiving end may also be a PIN chip, an ADP chip, or another detector chip. In addition, the optical interface may be configured as one interface, and the transmitting end optical interface and the receiving end optical interface may also be configured as only one or two-in-one arrangement, that is, the optical module includes a transmitting and receiving end optical interface, and the transmitting and receiving end optical interface may be a transmitting end optical interface and/or a receiving end optical interface, or an optical transceiving integrated optical interface.
Further, in the present embodiment, the optical interface is fixed with respect to the housing 10, the heat sink 20 is also fixed with respect to the housing 10, and in order to absorb an assembly tolerance between the optical interface and a corresponding laser and/or optical receiver (here, a photodetector), the optical module 100 further includes an assembly tolerance absorption component for ensuring that light emitted by the laser can be received by an external element connected to the optical module 100, and light emitted by the external element connected to the optical module 100 can be well transmitted to the optical receiver. That is, the assembly tolerance absorption assembly can guide light emitted from the laser 31 to the center position of the optical interface or to an external connector connected to the optical module after passing through the optical system 60, or the assembly tolerance absorption assembly can guide light emitted from the laser 31 to the optical system 60. The center position of the optical interface is near the approximate center position, which is the position where the external connector receives the optical signal after the external connector is mated with the optical module 100, and is also the position where the external connector transmits the optical signal. External connectors include fiber optic plugs, switch interfaces, and the like.
Specifically, an assembly tolerance absorbing assembly is disposed at the optical interface, the assembly tolerance absorbing assembly including an optical element disposed between the optical system 60 and the optical interface for interfacing the optical path between the optical system 60 and the optical interface. The optical elements include an emitting end optical element 71 and a receiving end optical element 72, the optical elements 71 and 72 may be elements such as lenses, flat glass, or mirrors that can transmit light and change the propagation direction of the light, and the optical paths are adjusted by these optical elements 71 and 72 so that the light entering the emitting end optical interface 51 is located at the center of the emitting end optical interface, and the light entering the optical module 100 from the receiving end optical interface 52 can reach the optical receiver well. Of course, an optical element may be disposed between the optical system 60 and the laser 31 for interfacing the optical path between the optical system 60 and the laser 31.
The present embodiment also discloses an assembling method of the optical module 100, which includes the following steps: packaging the optical system 60, the laser 31 and the PD chip of the light receiving end on the heat sink 20; fixing one end of the PCB board 40 on the heat sink 20; fixing the heat sink 20 in the housing 10; an optical element 71 is provided between the optical system 60 and the optical interface, and the optical element 71 is adjusted so that the optical path center of the optical interface corresponds to the optical path of the laser 31 and the PD chip 32 of the light receiving end.
Referring to fig. 5 to 6, a second embodiment of the present invention is shown, in which the optical module 200 also includes a housing 210, heat sinks 221/222 disposed in the housing, a laser 231 disposed on the heat sink, and a PCB 240 partially disposed on the heat sink. The optical module 200 has an optical interface at one end and an electrical interface at the other end, the optical interface including a transmitting end optical interface 251 and a receiving end optical interface 252. The PCB 240 is constructed as a hard board, one end of the PCB 240 is fixed on the heat sink and electrically connected to the laser 231, and the other end of the PCB 240 is constructed as an electrical interface 243 of the optical module, on which a gold finger is provided for external plug connection.
In this embodiment, the heat sink includes a first heat sink 221 and a second heat sink 222, the optical system 260 of the optical module is disposed on the first heat sink 221, the laser 231 and the PD chip 232 of the light receiving end are packaged on the second heat sink 222, and the driver 235 of the laser 231 is packaged on the PCB 240. The optical interface in this embodiment is fixedly disposed relative to the housing 210, and the first and second heat sinks 221 and 222 are also fixed relative to the housing 210. In order to be able to absorb assembly tolerances between the optical interface and its corresponding laser and/or optical receiver, an assembly tolerance absorbing component of the optical module 200 is arranged between the optical system 260 and the laser 231/PD chip 232 of the optical receiving end. Specifically, the assembly tolerance absorbing assembly includes at least one transmitting end optical fiber 271 and at least one receiving end optical fiber 272, and the first heat sink 221 and the second heat sink 222 are both provided with optical fiber fixing elements, and both ends of the optical fiber are fixed by the optical fiber fixing elements. The light emitted from the laser 231 is guided to the optical system 260 or the light received by the optical system 260 is guided to the light receiving end by optical fiber. Because the optical fiber is flexible, tolerances can be absorbed by the optical fiber. In this embodiment, the number of optical fibers is related to the structure and transmission rate of the optical module, and if the optical interface of the optical module is set as a single optical interface, only one corresponding optical fiber may be set; when the transmission rate of the optical module is required to be high, the optical module can be configured with a plurality of lasers, and the number of the optical fibers is consistent with the number of the lasers. Tolerance is absorbed by arranging a flexible and deformable optical fiber so that the optical path center of the optical interface corresponds to the optical paths of the laser 231 at the light emitting end and the PD chip 232 at the light receiving end.
The present embodiment also discloses an assembling method of the optical module 200, which includes the following steps: encapsulating the optical system 260 on the first heat sink 221; the laser 231 and the PD chip 232 of the light receiving end are packaged on the second heat sink 222; fixing one end of the PCB board 240 on the second heat sink 222; securing both the first 221 and second 222 heat sinks within the housing 210; an optical fiber is connected between the optical system 260 and the laser 231 and/or the PD chip 232 at the light receiving end.
Referring to fig. 7 to 8, a third embodiment of the present invention is shown, in this embodiment, an optical module 300 also includes a housing 310, a heat sink 320 disposed in the housing 310, a laser 331 disposed on the heat sink 320, and a PCB 340 partially disposed on the heat sink, one end of the optical module 330 has an optical interface, and the other end has an electrical interface, where the optical interface includes a transmitting-end optical interface 351 and a receiving-end optical interface 352. The PCB 340 is a hard board, one end of the PCB 340 is fixed on the heat sink 320 and electrically connected to the laser 331, and the other end of the PCB 340 is an electrical interface 343 of the optical module.
The optical system of the optical module is arranged 360 on the heat sink 320, the driver 335 of the laser 331 is packaged on the PCB 340, the laser 331 is packaged on the heat sink 320, and the PD chip of the optical receiving end is also packaged on the heat sink 320. The optical system 360 includes a transmitting optical path including a wavelength division multiplexer and a receiving optical path including a wavelength division multiplexer and a mirror. In this embodiment, the optical interface is fixed relative to the housing 310, and the heat sink 320 is also fixed relative to the housing 310, and in order to absorb the assembly tolerance between the optical interface and its corresponding transmitting end and receiving end, the assembly tolerance absorbing assembly of the optical module is disposed between the optical system 360 and the optical interface. Specifically, the assembly tolerance absorption assembly includes an adapter 370 and at least one optical fiber connecting the adapter 370 and the optical interface. The adapter 370 is secured to the heat sink 320, wherein the adapter 370 includes a transmit adapter corresponding to a light transmitting end and a receive adapter corresponding to a light receiving end. Thus, there are also two optical fibers, a first optical fiber 371 connected between the transmitting side optical interface 351 and the transmitting adapter, and a second optical fiber 372 connected between the receiving side optical interface 352 and the receiving adapter. Carry out the optical connection through optic fibre, simple structure, if set up an optical interface moreover, then only need set up an optic fibre and can satisfy the demand, it is with low costs.
The embodiment also discloses an assembling method of the optical module, which comprises the following steps: encapsulating the optical system 360, the laser 331 and the PD chip of the optical receiving end on the heat sink 320; securing the interface 370 to the heat sink 320; fixing one end of PCB board 340 on heat sink 320; securing heat sink 320 within housing 310; an optical fiber is connected between the adapter 370 and the optical interface, and the optical path center of the optical interface corresponds to the optical paths of the transmitting end and the receiving end through the optical fiber.
Referring to fig. 9 to 11, a fourth embodiment of the present invention is shown, in which an optical module 400 also includes a housing 410, a heat sink 420 disposed in the housing 410, a laser 431 disposed on the heat sink 420, and a PCB 440 partially disposed on the heat sink. One end of the optical module is provided with an optical interface, and the other end of the optical module is provided with an electrical interface. The optical interfaces include a transmitting side optical interface 451 and a receiving side optical interface 452. Wherein the PCB 440 is constructed as a hard board, one end of the PCB 440 is fixed on the heat sink 420 and electrically connected to the laser 431, and the other end of the PCB 440 is constructed as an electrical interface 443 of the optical module. The optical system 460 of the optical module is disposed on the heat sink 420, the laser 431 and the driver 435 of the laser 431 are both packaged on the heat sink 420, and the PD chip of the optical receiving end is also packaged on the heat sink 420. The present embodiment is different from the first embodiment in that the driver 435 of the laser 431 is also disposed on the heat sink 420 and connected to the laser 431 by gold wires, and the driver 435 is also located at the edge of the PCB 440 and connected to the PCB 440 by the gold wires as well. The arrangement of other components is substantially the same as that of the first embodiment, and will not be described again.
Referring to fig. 12 to 15, a fifth embodiment of the present invention is shown, in which an optical module 500 includes a housing 510 and a PCB 540 disposed in the housing, a receiving space is disposed in the housing 510, and the PCB 540 is disposed in the receiving space. The PCB 540 may be clamped to the housing 510, and of course, the PCB 540 may be fixed to the housing 510 by screws, or may be fixed to the heat sink at one end and then fixed to the housing by the heat sink as in the previous embodiments, or may be connected by other methods. The PCB 540 may be entirely accommodated in the accommodating space, or may be partially accommodated in the accommodating space. One end of the optical module is provided with an optical interface, the other end of the optical module is provided with an electrical interface, and one end of the PCB 540 far away from the optical interface is constructed into the electrical interface 543 of the optical module.
In addition, the optical module 500 further includes an assembly tolerance absorbing assembly attached to the housing, which in this embodiment is configured as an adapter 570. The adapter 570 is provided separately from the housing 510, and at least a part of the adapter 570 is accommodated in the accommodating space. The optical module further comprises an optical assembly 560 disposed on the PCB, the optical assembly 560 having optical interfaces 551 and 552 coupled with an adapter 570, and a gap S between the adapter 570 and the housing 10 is adjustable. Optical assembly 560 may be integrally formed on a PCB, or may be detachably formed on the PCB, or may be integrally formed on a heat sink, i.e., the optical system, the optical interface and the circuit board are fixed to the heat sink. Wherein the optical assembly 560 is electrically connected to the PCB board.
In this embodiment, the adapter 570 is provided separately from the housing 510, and the gap 22 between the adapter 570 and the housing 510 is adjustable, so as to avoid the problem that the optical path centers of the adapter 570 and the optical assembly 560 do not correspond to each other due to the manufacturing tolerance of the adapter 570 and/or the housing 510, and convert the manufacturing tolerance of the adapter 570 and/or the housing 510 into the position tolerance of the adapter 570, so that the adapter 570 can move relative to the housing 510 according to the position of the optical assembly 560, thereby making the optical assembly 560 and the adapter 570 of the optical module 500 very easy to insert and remove and convenient to assemble.
When the optical assembly 560 is plugged into the adapter 570, the plugging between the optical assembly 560 and the adapter 570 may be artificially controlled. Of course, a positioning fixture may be additionally used to position the optical assembly 560 to fit with the adapter 570.
Further, the light assembly 560 is configured to include a light receiving end, a light emitting end, and an optical system. Of course, the optical assembly 560 may also be configured to include a transceiver chip that integrates light reception and light emission.
In this embodiment, the optical interfaces of the optical component 560 are two, one of which is the light emitting interface 551, and the other of which is the light receiving interface 552. Of course, both interfaces may also be provided as light emitting interfaces or light receiving interfaces.
The end face of the adapter 570 parallel to the plugging direction of the optical interfaces 551, 552 has an adjustment gap S with the housing 510. Thus, when the adapter 570 is assembled, the adapter 570 can be moved in a plurality of directions up, down, left, and right, respectively, according to the position of the optical assembly 560.
In this embodiment, the adapter 570 is fixed to the housing 510 by dispensing. Of course, other means of securing may be used, such as a threaded connection between the adapter 570 and the housing 510.
The embodiment also discloses an assembling method of the optical module, which comprises the following steps: mounting the optical assembly 560 and the PCB board to the housing 510; mating the adapter 570 with the optical interfaces 551, 552 of the optical assembly 560; the adapter 570 is secured to the housing 510. When the adapter 570 is secured to the housing 510, the adapter 570 is preferably secured to the housing 510 using glue. Of course, other means of attachment are possible, such as a threaded attachment between the adapter 570 and the housing 510. When a threaded fastening is employed, a spacer (not shown) of a corresponding thickness may be placed in the gap S between the adapter 570 and the shell 510 as desired.
In other embodiments, the interfaces of the optical assembly are provided as one, and correspondingly, the adapter and the mating interface of the optical assembly are also provided as one, that is, the interfaces are provided as an optical transceiver interface. Of course, the interface may be provided as only the light emitting interface, or as only the light receiving interface.
It should be understood that although the present description refers to embodiments, not every embodiment contains only a single technical solution, and such description is for clarity only, and those skilled in the art should make the description as a whole, and the technical solutions in the embodiments can also be combined appropriately to form other embodiments understood by those skilled in the art.
The above-listed detailed description is merely a detailed description of possible embodiments of the present invention, and it is not intended to limit the scope of the invention, and equivalent embodiments or modifications made without departing from the technical spirit of the present invention are intended to be included within the scope of the present invention.

Claims (36)

1. The utility model provides an optical module, its characterized in that, the optical module includes the casing, locates laser instrument, cushion and PCB board in the casing, the one end of optical module has optical interface, and the other end has the electrical interface, the laser instrument encapsulation is in on the cushion and close to the edge setting of PCB board, the laser instrument with PCB board electric connection, the laser instrument passes through the cushion with casing heat conduction is connected.
2. The optical module of claim 1, wherein the laser and the PCB are connected by gold wire.
3. The optical module of claim 2, wherein the PCB board is configured as a rigid board, and an end of the PCB board opposite to the optical interface is configured as the electrical interface.
4. The optical module according to claim 3, wherein a gold finger is provided at an end of the PCB opposite to the optical interface for external connection.
5. The optical module of claim 3, further comprising a heat sink disposed within the housing, wherein the PCB and the spacer are secured to the heat sink.
6. The optical module of claim 5, wherein the heat sink is an integral structure with the housing.
7. The optical module of claim 6, further comprising an optical system that guides light emitted by the laser to the optical interface, the optical system being disposed at least partially on the heat sink, there being no overlap in the projections of the laser and the PCB board on the surface of the heat sink.
8. The optical module of claim 6, further comprising an optical system that guides light emitted by the laser to the optical interface, the optical interface comprising a transmitting end optical interface and a receiving end optical interface; the optical system comprises a wavelength division multiplexer, the wavelength division multiplexer can combine a plurality of separated light beams into one light beam, and therefore the light signal emitted by the laser is transmitted to the light interface at the transmitting end after the combined beam action of the wavelength division multiplexer.
9. The light module of claim 8, wherein the optical system is disposed between the laser and the optical interface.
10. The optical module of claim 9, further comprising a light receiving end, wherein the light receiving end receives the optical signal conducted by the optical system and converts the optical signal into an electrical signal.
11. The optical module of claim 10, further comprising a heat sink, the heat sink being fixed relative to the housing, the light receiving end being fixed to the heat sink.
12. The optical module of claim 11, wherein the laser, PCB board, and optical system are all affixed to the heat sink.
13. The optical module of claim 6, further comprising an optical system for guiding the light emitted from the laser to the optical interface, and an assembly tolerance absorption assembly for guiding the light emitted from the laser to a central position of the optical interface or to an external connector connected to the optical module after passing through the optical system, or guiding the light emitted from the laser to the optical system.
14. The optical module of claim 13, wherein the optical interface comprises a transmit end optical interface and a receive end optical interface; the optical system comprises a transmitting light path and a receiving light path, wherein the transmitting light path comprises a wavelength division multiplexer, and the receiving light path comprises the wavelength division multiplexer and a reflector; the assembly tolerance absorbing assembly is disposed between the optical interface and an optical system.
15. The optical module of claim 14, wherein the assembly tolerance absorbing assembly includes a transition interface between the optical system and the optical interface and at least one optical fiber optically connecting the transition interface and the optical interface, the optical fiber directing light emitted by the optical system to the optical interface.
16. The optical module of claim 15, wherein the adapter interfaces include a transmit adapter interface corresponding to a light transmitting end and a receive adapter interface corresponding to a light receiving end; the optical fiber comprises a first optical fiber connected between the transmitting end optical interface and the transmitting adapter interface and a second optical fiber connected between the receiving end optical interface and the receiving adapter interface.
17. The optical module of claim 1, wherein the number of lasers is plural.
18. The optical module of claim 1, wherein no solder-reflow board is present between the laser and the PCB.
19. The utility model provides an optical module, its characterized in that, optical module includes the casing, sets up heat sink, light emission end, the PCB board in the casing, optical module's one end has optical interface, and the other end has the electrical interface, the PCB board is fixed in on the casing, light emission end with the PCB electricity is connected, light emission end heat conduction is connected heat sink, just heat sink with casing integrated into one piece.
20. The optical module as claimed in claim 19, wherein the light emitting end is disposed adjacent to an edge of the PCB and electrically connected to the PCB by gold wire.
21. The optical module of claim 20, wherein the PCB board is configured as a rigid board, and an end of the PCB board opposite the optical interface is configured as the electrical interface.
22. The optical module of claim 21, wherein the light emitting end is a laser, the laser is thermally connected to the heat sink, and the laser is electrically connected to the PCB by gold wire.
23. The light module of claim 22, further comprising a spacer disposed between the laser and the heat sink, the laser being encapsulated on the spacer.
24. The optical module of claim 23, wherein the heat sink is provided with a protrusion adjacent to an edge of the PCB, and the pad is located on the protrusion.
25. The optical module of claim 22, further comprising an optical system disposed within the housing, the optical system disposed between the laser and the optical interface and directing light emitted by the laser to the optical interface.
26. The optical module of claim 25, wherein the optical interface comprises a transmit end optical interface, an optical receiver, and a receive end optical interface; the optical system comprises a wavelength division multiplexer, the wavelength division multiplexer can combine a plurality of separated light beams into a light beam, and therefore an optical signal emitted by the laser can be transmitted to the transmitting end optical interface through the guiding effect of the wavelength division multiplexer.
27. The optical module of claim 26, wherein a vertical projection of the optical system on the housing does not have an overlapping area with a vertical projection of the PCB board on the housing.
28. The optical module of claim 27, wherein the optical system further comprises a wavelength division multiplexer and a mirror that direct light of the light receiving end optical interface to the optical receiver.
29. The optical module of claim 25, wherein the optical system further comprises a lens disposed between the laser and the wavelength division multiplexer, the lens processing the light emitted from the laser and transmitting the processed light to the wavelength division multiplexer.
30. The light module of claim 22, further comprising an assembly tolerance absorbing assembly for ensuring that light emitted by the laser is received by an external element coupled to the light module.
31. The optical module of claim 30, wherein the assembly tolerance absorbing assembly is disposed at an optical interface, the optical module comprising an optical system, the assembly tolerance absorbing assembly comprising an optical element disposed between the optical system and the optical interface for enabling optical path interfacing between the optical system and the optical interface.
32. The optical module according to claim 30, wherein the optical module comprises an optical system and a light receiving end for receiving the optical signal, the light receiving end comprises a PD chip, the optical interface comprises a transmitting end optical interface and a receiving end optical interface, the light emitted by the laser is guided to the transmitting end optical interface through the optical system, and the optical signal received by the receiving end optical interface is guided to the light receiving end through the optical system; the laser and the PD chip of the light receiving end are both packaged on the heat sink, and the driver of the laser is packaged on the PCB; the optical interface is fixedly arranged relative to the shell; the assembly tolerance absorbing assembly is arranged between the optical system and the PD chip of the laser/light receiving end.
33. The optical module of claim 32, wherein the assembly tolerance absorbing assembly comprises at least one transmitting end optical fiber and at least one receiving end optical fiber optically connected by optical fibers to guide light emitted from the laser to the optical system or to guide light received by the optical system to the light receiving end.
34. The optical module of claim 19, wherein an end of the PCB board opposite the electrical interface is secured to the heat sink.
35. The light module of claim 19, wherein there is no overlapping area with a projection of the light emitting end and the PCB board on the housing perpendicular to a surface of the PCB board.
36. The optical module of claim 19, wherein no solder-on-flex is present between the light emitting end and the PCB.
CN202211173728.5A 2017-07-19 2017-07-19 Optical module Active CN115421258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211173728.5A CN115421258B (en) 2017-07-19 2017-07-19 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211173728.5A CN115421258B (en) 2017-07-19 2017-07-19 Optical module
CN201710590796.4A CN109283632B (en) 2017-07-19 2017-07-19 Optical module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710590796.4A Division CN109283632B (en) 2017-07-19 2017-07-19 Optical module

Publications (2)

Publication Number Publication Date
CN115421258A true CN115421258A (en) 2022-12-02
CN115421258B CN115421258B (en) 2024-02-23

Family

ID=65184022

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201710590796.4A Active CN109283632B (en) 2017-07-19 2017-07-19 Optical module
CN202211173753.3A Active CN115421259B (en) 2017-07-19 2017-07-19 Optical module
CN202310548007.6A Pending CN116449510A (en) 2017-07-19 2017-07-19 Optical module
CN202211173728.5A Active CN115421258B (en) 2017-07-19 2017-07-19 Optical module

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201710590796.4A Active CN109283632B (en) 2017-07-19 2017-07-19 Optical module
CN202211173753.3A Active CN115421259B (en) 2017-07-19 2017-07-19 Optical module
CN202310548007.6A Pending CN116449510A (en) 2017-07-19 2017-07-19 Optical module

Country Status (1)

Country Link
CN (4) CN109283632B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618505A (en) * 2019-09-24 2019-12-27 武汉光迅科技股份有限公司 Optical receiving end assembly and optical module
CN110764202B (en) * 2019-12-09 2024-02-09 亨通洛克利科技有限公司 400G optical module structure
WO2022057113A1 (en) * 2020-09-18 2022-03-24 青岛海信宽带多媒体技术有限公司 Optical module
CN114200597B (en) * 2020-09-18 2022-11-18 青岛海信宽带多媒体技术有限公司 Optical module
CN115016073B (en) * 2021-03-04 2023-09-12 青岛海信宽带多媒体技术有限公司 Optical module
CN113219601A (en) * 2021-04-23 2021-08-06 武汉英飞光创科技有限公司 Optical module and optical module shell of device shell and module shell integration
CN113253400A (en) * 2021-05-13 2021-08-13 青岛海信宽带多媒体技术有限公司 Optical module
CN216351373U (en) * 2021-11-05 2022-04-19 苏州旭创科技有限公司 Optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158052A1 (en) * 2004-01-20 2005-07-21 Infineon Technologies North America Corp. Heatsinking of optical subassembly and method of assembling
US20050180754A1 (en) * 2004-02-13 2005-08-18 Toshio Mizue Optical transceiver having an optical receptacle optionally fixed to a frame
CN1920606A (en) * 2005-07-07 2007-02-28 阿瓦戈科技通用Ip(新加坡)股份有限公司 Optoelectronic assembly with heat sink
CN203104456U (en) * 2013-03-04 2013-07-31 青岛海信宽带多媒体技术有限公司 XFP optical module and optical line terminal signal transmitting equipment
CN103257413A (en) * 2013-05-07 2013-08-21 苏州旭创科技有限公司 Parallel light transmit-receive component of mini serial SCSI broadband high-speed transmission
CN103364897A (en) * 2013-07-24 2013-10-23 苏州旭创科技有限公司 Lens system for coupling single mode lasers
US20170031117A1 (en) * 2015-07-01 2017-02-02 Inphi Corporation Photonic transceiving device package structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063438A1 (en) * 2007-12-21 2009-06-25 Eagleyard Photonics Gmbh Laser module, has cylindrical lens mounted on heat sink in front of laser such that radiation field of high-power laser diode does not cross heat sink, and laser chip fastened downwards on sub carrier with active zone
CN201966486U (en) * 2010-12-24 2011-09-07 山西飞虹激光科技有限公司 Semiconductor laser module
CN202513440U (en) * 2012-04-26 2012-10-31 无锡亮源激光技术有限公司 Tandem-type semiconductor laser with circuit board
CN104111503A (en) * 2013-04-17 2014-10-22 鸿富锦精密工业(深圳)有限公司 Optical communication module group
CN203838377U (en) * 2014-04-22 2014-09-17 武汉电信器件有限公司 Parallel transmission optical module coupling/light-splitting structure
US9553671B1 (en) * 2015-07-07 2017-01-24 Inphi Corporation Package structure for photonic transceiving device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158052A1 (en) * 2004-01-20 2005-07-21 Infineon Technologies North America Corp. Heatsinking of optical subassembly and method of assembling
US20050180754A1 (en) * 2004-02-13 2005-08-18 Toshio Mizue Optical transceiver having an optical receptacle optionally fixed to a frame
CN1920606A (en) * 2005-07-07 2007-02-28 阿瓦戈科技通用Ip(新加坡)股份有限公司 Optoelectronic assembly with heat sink
CN203104456U (en) * 2013-03-04 2013-07-31 青岛海信宽带多媒体技术有限公司 XFP optical module and optical line terminal signal transmitting equipment
CN103257413A (en) * 2013-05-07 2013-08-21 苏州旭创科技有限公司 Parallel light transmit-receive component of mini serial SCSI broadband high-speed transmission
CN103364897A (en) * 2013-07-24 2013-10-23 苏州旭创科技有限公司 Lens system for coupling single mode lasers
US20170031117A1 (en) * 2015-07-01 2017-02-02 Inphi Corporation Photonic transceiving device package structure

Also Published As

Publication number Publication date
CN109283632A (en) 2019-01-29
CN115421258B (en) 2024-02-23
CN115421259A (en) 2022-12-02
CN109283632B (en) 2023-06-20
CN116449510A (en) 2023-07-18
CN115421259B (en) 2024-01-26

Similar Documents

Publication Publication Date Title
CN109283634B (en) Optical module
CN115421258B (en) Optical module
JP6174338B2 (en) Pluggable optical transceiver
US9588307B2 (en) Parallel optical transceiver with top and bottom lenses
JP4964127B2 (en) Modular optical device package
CN110703393A (en) Optical module
US11378761B2 (en) Optical module
CN111830645A (en) Optical transceiver
CN111665599A (en) Optical module
CN216351375U (en) Optical module
CN115079356A (en) Optical module
CN114994839A (en) Optical module
CN114879324A (en) Optical module
CN219916016U (en) Optical module
CN216526414U (en) Optical module
CN214278493U (en) Optical module
CN114397734A (en) High-integration vertical wireless light emitting module
CN219496739U (en) Optical module
CN115016073B (en) Optical module
CN219936149U (en) Optical module
CN214375396U (en) Wavelength division demultiplexing device for optical device
CN217425758U (en) High-speed optical module
CN113267851A (en) Optical communication module
CN118033832A (en) Optical module
CN117289408A (en) Optical module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant