CN115420189A - 一种面向人体健康监测的柔性应变传感器及其制备方法 - Google Patents

一种面向人体健康监测的柔性应变传感器及其制备方法 Download PDF

Info

Publication number
CN115420189A
CN115420189A CN202211039782.0A CN202211039782A CN115420189A CN 115420189 A CN115420189 A CN 115420189A CN 202211039782 A CN202211039782 A CN 202211039782A CN 115420189 A CN115420189 A CN 115420189A
Authority
CN
China
Prior art keywords
film
palladium
strain sensor
human health
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211039782.0A
Other languages
English (en)
Other versions
CN115420189B (zh
Inventor
李春
张锐
兰长勇
刘力文
林杰
杨卓俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Publication of CN115420189A publication Critical patent/CN115420189A/zh
Application granted granted Critical
Publication of CN115420189B publication Critical patent/CN115420189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Vapour Deposition (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种面向人体健康监测的柔性应变传感器及其制备方法,所述面向人体健康监测的柔性应变传感器包括柔性衬底、位于衬底上的二硒化钯(PdSe2)薄膜、金属电极及聚合物封装钝化膜。所述制备方法具体步骤为:在柔性衬底上直接生长一层二硒化钯薄膜,二硒化钯通过等离子体增强化学气相沉积法(PECVD)硒化制备而成,在二硒化钯薄膜上镀金属电极,再使用聚合物膜封装。本发明的优点是二硒化钯材料低温合成兼容柔性基底,工艺简洁,易于集成,便于大规模生产高灵敏面向人体健康监测的柔性应变传感器。

Description

一种面向人体健康监测的柔性应变传感器及其制备方法
技术领域
本发明属于应变传感器件领域,具体涉及一种面向人体健康监测的柔性应变传感器及其制备方法。
背景技术
柔性可穿戴器件是电子器件发展的重要趋势之一。特别是,针对人体生命体征监测的巨大临床诊断和健康评估需求应用的可穿戴电子设备以其方便和无创的优势而备受关注。其中,应变传感器是一种将拉伸或压缩应变转换为电阻变化的器件,柔性应变传感器在柔性可穿戴电子器件中应用广泛。通常优异的柔性应变传感器具有高的应变系数(GF),环境稳定的材料以及良好的耐用性,同时具有体积小便于集成携带等优点。然而基于金属的传统应变传感器受限于其较差的灵敏度,难以实现对细微形变的监测(例如脉搏),因此具有优异的纳米级柔性材料经常被用于柔性应变传感器,例如碳纳米管(CNT)、石墨烯,金属纳米线等。尽管这些设备具有高性能,但材料制备工艺及其器件结构往往比较复杂,成本高且难以大规模生产和集成应用。
发明内容
本发明的目的是提供一种面向人体健康监测的柔性应变传感器及其制备方法,具有较大的GF、灵敏度高可监测细微形变、稳定性好、耐用性好、制备工艺简单便于大规模生产和集成等优势。
为了实现上述目的,本发明采用的技术方案为:
提供一种面向人体健康监测的柔性应变传感器,包括(从下到上):柔性衬底、二硒化钯薄膜、金属电极、聚合物封装钝化膜。
所述面向人体健康监测的柔性应变传感器的柔性衬底为PI,所述衬底厚度为5-500微米。
所述二硒化钯薄膜通过在所述衬底上磁控溅射或者热蒸发蒸镀一层金属钯膜后,再经过等离子体增强化学气相沉积硒化制得,所述二硒化钯薄膜的厚度为2-50纳米。
所述电极为金属电极或ITO电极,电极间沟道长度为1-500微米,电极厚度为30-500纳米。
所述封装材料为聚甲基丙烯酸甲酯(PMMA)、PI、派瑞林膜(Parylene-C)。
所述的面向人体健康监测的柔性应变传感器的制备方法,包括如下步骤:
步骤1:采用磁控溅射或热蒸发等真空镀膜技术在衬底上形成一层钯薄膜,钯薄膜再经等离子体增强化学气相沉积硒化后,制得二硒化钯薄膜层;
步骤2:采用光刻、金属掩膜形成两端电极结构,利用真空镀膜技术在二硒化钯薄膜层上镀金属电极或者ITO电极;
步骤3:旋涂一层PMMA、PI、Parylene-C膜在二硒化钯薄膜层上封装成面向人体健康监测的柔性应变传感器。
所述的面向人体健康监测的柔性应变传感器的制备方法,步骤1具体过程为:
步骤1-1磁控溅射法:将柔性衬底放置于磁控溅射腔体中,采用金属钯作为靶材,控制腔体的本底真空度低于8×10-4Pa下,通入氩气,其流量为30-150sccm,射频功率为10-150瓦,溅射压强为1-10Pa下,溅射0.5~6分钟,制得溅射于衬底上的钯薄膜,厚度为2-15纳米;
热蒸发法:将柔性衬底放置于热蒸发腔体中,采用金属钯颗粒(纯度99.99%)作为蒸镀材料,控制腔体的本底真空度低于1×10-4Pa下,控制热蒸发蒸镀速率0.3-2埃/秒,溅射1~10分钟,制得溅射于柔性衬底上的钯薄膜,厚度为2-15纳米。
步骤1-2等离子体增强化学气相沉积法:将步骤1-1制得的钯薄膜置于电感耦合产生等离子体装置的管式炉的石英管中,将石英管中的气压抽至真空度为1-5Pa,并在管式炉前端注入氩气,其流量控制为5~25sccm;在钯膜上游(距离钯膜10厘米)放入硒粉(纯度99.9%),管式炉中央区域在20分钟内从室温升高至250℃,打开等离子体,射频源功率为200-400瓦,保持温度30-120分钟,再自然降温,制得二硒化钯薄膜。
步骤2具体过程为:
步骤2热蒸发镀金属电极:将步骤1制备二硒化钯薄膜至于热蒸发腔体中,控制本底真空低于1×10-4Pa,先蒸镀铟/铋/铬厚度控制在5-20纳米,再蒸镀金/银厚度控制在30-500纳米,通过金属掩模或者光刻控制金属间沟道宽度为1-500微米,制得金属电极;
磁控溅射法镀ITO电极:将步骤1制备二硒化钯薄膜至于磁控溅射腔体中,采用ITO做为靶材,控制本底真空低于8×10-4Pa,通入氩气,流量为50-150sccm,控制腔体内压强为1-10Pa,设置射频功率为100-200瓦,溅射时间为0.5-4小时,溅射制备ITO厚度为200-500纳米。
步骤3具体过程为:
步骤3旋涂封装:将步骤2制备的器件放在旋涂机上,在二硒化钯薄膜上滴PMMA,打开旋转,转速为600-4000转/分钟;
旋涂PI:可参考上述步骤;
Parylene-c沉积:放置于parylene真空化学气相沉积系统,沉积5-50微米薄膜;完成后即封装制备得稳定的面向人体健康监测的柔性应变传感器。
本发明具有以下优势:
(1)本发明选择具有优异的机械性能、良好的环境稳定性的二维材料二硒化钯作为应变材料;其具有高的GF,因此作为面向人体健康监测的柔性应变传感器具有高灵敏度、稳定性好及良好的耐用性。
(2)本发明制备二硒化钯薄膜先采用磁控溅射或热蒸发真空镀膜的方法制备钯薄膜,再对钯薄膜进行硒化;该方法简单,对于薄膜厚度可控,且可以大面积制备均匀的薄膜,不会引入其它杂质离子和有机溶剂。再通过PECVD硒化而得,该工艺具有合成温度低,可以直接在柔性衬底(PI)生长,制备的薄膜均匀,表面干净,合成速度快等优点。
(3)本发明制备的面向人体健康监测的柔性应变传感器整体结构简单,工艺简洁,无需转移材料,易于集成,且器件功耗低,灵敏度高,性能稳定,耐久性好便于大规模工业生产,具有巨大的应用前景。
附图说明
图1为本发明提供的器件结构示意图。
图2本发明提供的所制备的二硒化钯薄膜的拉曼光谱图像。
图3为本发明提供的面向人体健康监测的柔性应变传感器的手腕活动监测图。
图4为本发明提供的面向人体健康监测的柔性应变传感器的脉搏监测图。
图5为本发明提供的面向人体健康监测的柔性应变传感器的7000次耐用性循环测试。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例对本发明技术方案进行清楚、完整地描述。
实施例1
一种面向人体健康监测的柔性应变传感器,包括PI衬底、位于PI衬底上的二硒化钯薄膜层和镀在二硒化钯薄膜层上的铟-金电极;二硒化钯薄膜层的厚度为8纳米;电极为铟-金电极,电极间距为20微米,电极厚度为60纳米。
上述面向人体健康监测的柔性应变传感器的制备方法为:
(1)将PI衬底(厚度为50微米)分别在丙酮、无水乙醇和去离子水中超声清洗5分钟,并用氮气吹干;
(2)将步骤(1)处理过的PI衬底放置在磁控溅射真空腔中,使PI面朝向靶材;将纯度为99.99%的金属钯靶材放置在相应靶位上,通过机械泵和分子泵将真空腔中气压抽至1×10-3Pa;通入100sccm的氩气,调节射频源射频功率为20瓦,通过控制阀门将真空腔中气压调节为4Pa,持续溅射1分钟后关闭射频源,制得溅射于PI衬底上的钯薄膜,厚度为4纳米。
(3)将步骤(2)中溅射了金属钯薄膜的PI衬底放置在PECVD管式炉中央区域,将1克纯度为99.9%的硒粉放置在石英舟中,并将石英舟放置在石英管上游(距离钯膜10厘米);通过机械泵将石英管中残存的空气抽出,之后通入250sccm氩气清洗石英管20分钟,20分钟后将氩气流量调节为10sccm;打开管式炉加热,使炉体中心20分钟中内升温至250℃,然后打开射频电源,调节功率为400瓦,产生等离子体并保温30分钟;之后通过自然降温使产品冷却至室温,获得覆盖在PI衬底上的二硒化钯薄膜;图2为本发明实施例制备的二硒化钯薄膜的拉曼光谱图像;
(4)将步骤(3)中制备的二硒化钯薄膜置于热蒸发托盘上,金属掩膜固定在二硒化钯薄膜上,然后置于热蒸发腔体中,通过机械泵和分子泵将真空气压抽至1×10-5Pa,然后蒸镀铟和金,其厚度分别为8纳米和50纳米,即制备沟道为20微米的二硒化钯器件。
(5)将步骤(4)制备的器件置于旋涂机上,在器件沟道处旋涂PMMA进行封装,转速为1500转/分钟,旋涂1分钟,然后将器件置于80摄氏度的加热台上烘干,时间为5分钟。即制备面向人体健康监测的柔性应变传感器。
将本发明所制备的面向人体健康监测的柔性应变传感器贴在手腕上测试,通过上下活动手腕测试得到如图3所示的手腕活动监测图,从图中看出面向人体健康监测的柔性应变传感器可以良好的反应出手腕上下活动使得材料弯曲及拉伸应变下所导致的电阻变化信号,因而该器件可以作为人体运动的传感器。除此以外将该器件贴在手臂脉搏处,测试得到如图4所示的脉搏监测图,从图中可以看出该应变传感器对于微弱震动监测具有优异的灵敏性,可以清晰的反应出人体脉搏信号,对于人体健康监测实现自动化,智能化具有推动意义。
实施案例2
一种面向人体健康监测的柔性应变传感器,包括PI衬底、位于PI衬底上的二硒化钯薄膜层和镀制在二硒化钯薄膜层上的ITO电极;二硒化钯薄膜层的厚度为20纳米;电极为ITO电极,电极间距为30微米,电极厚度为400纳米。
上述面向人体健康监测的柔性应变传感器的制备方法为:
(1)将PI(厚度为100微米)在丙酮、无水乙醇和去离子水中分别超声清洗5分钟,并用氮气吹干;
(2)将步骤(1)处理过的PI衬底放置在热蒸发真空腔中,通过机械泵和分子泵将真空腔中气压抽至5×10-5Pa;调节钯的热蒸镀速率为0.8埃/秒,蒸镀2分钟制得溅射于PI衬底上的钯薄膜,厚度为10纳米;
(3)将步骤(2)中溅射了金属钯薄膜的PI衬底放置在PECVD管式炉中央区域,将2克纯度为99.9%的硒粉放置在石英舟中,并将石英舟放置在石英管上游(距离钯膜10厘米);通过机械泵将石英管中残存的空气抽出,之后通入250sccm氩气清洗石英管20分钟,20分钟后将氩气流量调节为7sccm;打开管式炉加热,使炉体中心20分钟中内升温至250℃,然后打开射频电源,调节功率为400瓦,产生等离子体并保温60分钟;之后通过自然降温使产品冷却至室温,获得在PI衬底上的二硒化钯薄膜。
(4)将步骤(3)中制备的二硒化钯薄膜通过模具掩模电极图案,置于磁控溅射腔体中,通过机械泵和分子泵将真空气压抽至1×10-3Pa,然后采用ITO做为靶材,通入氩气,流量为80sccm,控制腔体内压强为5Pa,设置射频功率为150瓦,溅射时间为3小时,溅射制备ITO电极厚度为400纳米。
(5)将步骤(4)制备的器件置于旋涂机上,在器件沟道处旋涂PMMA进行封装,转速为2000转/分钟,旋转时间为1min,然后将器件放置在80摄氏度加热台上烘干,时间为5分钟,即制备面向人体健康监测的柔性应变传感器。
将本发明所制备的面向人体健康监测的柔性应变传感器置于步进电机推动的压缩和拉伸测试装置上,设置7000次拉伸循环,测得如图5所示的7000次耐用性循环测试,插图为测试过程中3500s至3520s的拉伸循环信号,从图5可以反应出该应变传感器具有优异的耐用性。

Claims (9)

1.一种面向人体健康监测的柔性应变传感器,其特征包括(从下到上):(1)柔性衬底、(2)二硒化钯薄膜、(3)金属电极、(4)聚合物膜封装层。
2.根据权利要求1所述的面向人体健康监测的柔性应变传感器,其特征是,所述柔性衬底包括聚酰亚胺(PI);所述柔性衬底厚度为5-500微米。
3.根据权利要求1所述的面向人体健康监测的柔性应变传感器,其特征是,所述二硒化钯薄膜层通过在所述柔性衬底上磁控溅射或者热蒸发蒸镀一层金属钯膜后,再经过等离子体增强化学气相沉积(PECVD)硒化制得,所述二硒化钯薄膜的厚度为2-50纳米。
4.根据权利要求1所述的面向人体健康监测的柔性应变传感器,其特征是,所述电极为金属电极、氧化铟锡(ITO),电极间沟道长度为1-500微米,电极厚度为30-500纳米。
5.根据权利要求1所述的面向人体健康监测的柔性应变传感器,其特征是,所述封装材料为聚甲基丙烯酸甲酯(PMMA)、PI、派瑞林膜(Parylene-C)。
6.权利要求1-5任一项所述的面向人体健康监测的柔性应变传感器的制备方法,其特征是,包括如下步骤:
步骤1:采用磁控溅射或热蒸发等真空镀膜技术在衬底上形成一层钯薄膜,钯薄膜再经等PECVD硒化后,制得二硒化钯薄膜层;
步骤2:采用光刻、金属掩膜形成两端电极结构,利用真空镀膜技术在二硒化钯薄膜层上镀金属电极或者ITO电极;
步骤3:旋涂一层PMMA、PI、Parylene-C膜在二硒化钯薄膜层上封装成面向人体健康监测的柔性应变传感器。
7.根据权利要求6所述的面向人体健康监测的柔性应变传感器的制备方法,其特征是,步骤1具体过程为:
步骤1-1磁控溅射法:将柔性衬底放置于磁控溅射腔体中,采用金属钯作为靶材,控制腔体的本底真空度低于8×10-4Pa下,通入氩气,其流量为30-150sccm,射频功率为10-150瓦,溅射压强为1-10Pa下,溅射0.5~6分钟,制得溅射于衬底上的钯薄膜,厚度为2-15纳米;
热蒸发法:将柔性衬底放置于热蒸发腔体中,采用金属钯颗粒(纯度99.99%)作为蒸镀材料,控制腔体的本底真空度低于1×10-4Pa下,控制热蒸发蒸镀速率0.3-2埃/秒,溅射1~10分钟,制得溅射于柔性衬底上的钯薄膜,厚度为2-15纳米。
步骤1-2等离子体增强化学气相沉积法:将步骤1-1制得的钯薄膜置于电感耦合产生等离子体装置的管式炉的石英管中,将石英管中的气压抽至真空度为1-5Pa,并在管式炉前端注入氩气,其流量控制为5~25sccm;在钯膜上游(距离钯膜10厘米)放入硒粉(纯度99.9%),管式炉中央区域在20分钟内从室温升高至250℃,打开等离子体,射频源功率为200-400瓦,保持温度30-120分钟,再自然降温,制得二硒化钯薄膜。
8.根据权利要求6所述的面向人体健康监测的柔性应变传感器的制备方法,其特征是,步骤2具体过程为:
步骤2热蒸发镀金属电极:将步骤1制备二硒化钯薄膜至于热蒸发腔体中,控制本底真空低于1×10-4Pa,先蒸镀铟/铋/铬厚度控制在5-20纳米,再蒸镀金/银厚度控制在30-500纳米,通过金属掩模或者光刻控制金属间沟道宽度为1-500微米,制得金属电极;
磁控溅射法镀ITO电极:将步骤1制备二硒化钯薄膜至于磁控溅射腔体中,采用ITO做为靶材,控制本底真空低于8×10-4Pa,通入氩气,流量为50-150sccm,控制腔体内压强为1-10Pa,设置射频功率为100-200瓦,溅射时间为0.5-4小时,溅射制备ITO厚度为200-500纳米。
9.根据权利要求6所述的面向人体健康监测的柔性应变传感器的制备方法,其特征是,步骤3具体过程为:
步骤3旋涂封装:将步骤2制备的器件放在旋涂机上,在二硒化钯薄膜上滴PMMA,打开旋转,转速为600-4000转/分钟,旋涂时间1分钟,旋涂完毕后放置在80摄氏度下的加热台烘干,时间1-10分钟;
旋涂PI:可参考上述步骤;
Parylene-C沉积:放置于parylene真空化学气相沉积系统,沉积5-50微米薄膜;
完成后即封装制备得稳定的面向人体健康监测的柔性应变传感器。
CN202211039782.0A 2022-06-08 2022-08-29 一种面向人体健康监测的柔性应变传感器及其制备方法 Active CN115420189B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022106427611 2022-06-08
CN202210642761 2022-06-08

Publications (2)

Publication Number Publication Date
CN115420189A true CN115420189A (zh) 2022-12-02
CN115420189B CN115420189B (zh) 2024-10-01

Family

ID=84199476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039782.0A Active CN115420189B (zh) 2022-06-08 2022-08-29 一种面向人体健康监测的柔性应变传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN115420189B (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130340533A1 (en) * 2011-11-28 2013-12-26 Massachusetts Institute Of Technology Strain gauge using two-dimensional materials
CN104851968A (zh) * 2015-05-21 2015-08-19 中国特种设备检测研究院 一种用于面内应变传感的各向异性薄膜及其制备方法
WO2017022577A1 (ja) * 2015-08-06 2017-02-09 株式会社村田製作所 歪抵抗素子、圧力センサ、歪ゲージ、加速度センサおよび角速度センサ
CN106595469A (zh) * 2017-01-10 2017-04-26 昆山工研院新型平板显示技术中心有限公司 一种弯曲传感器
CN108917582A (zh) * 2018-03-30 2018-11-30 华东理工大学 应变传感器及其制造方法
CN109099832A (zh) * 2018-08-21 2018-12-28 华东理工大学 应变传感器及其制造方法
CN109285891A (zh) * 2018-08-08 2019-01-29 福建翔丰华新能源材料有限公司 一种石墨烯二维异质结柔性器件结构及其制备方法
CN109825809A (zh) * 2019-03-29 2019-05-31 华南理工大学 一种聚酰亚胺基电阻式薄膜应变传感器及其制备方法与应用
CN109839232A (zh) * 2019-01-25 2019-06-04 上海交通大学 应变传感器及其形成方法、应变传感器阵列及其形成方法
US20190323905A1 (en) * 2018-04-20 2019-10-24 Electronics And Telecommunications Research Institute Pressure-strain sensor and manufacturing method thereof
KR20190122525A (ko) * 2018-04-20 2019-10-30 한국전자통신연구원 압력-변형 센서 및 이의 제조방법
US20190390950A1 (en) * 2018-06-23 2019-12-26 Massachusetts Institute Of Technology Ultrasensitive Thermo-Mechanical Bolometer
CN111361302A (zh) * 2020-04-04 2020-07-03 南开大学 一种耐应力拉伸的柔性膜的制备方法
US20200256748A1 (en) * 2019-02-07 2020-08-13 Korea University Research And Business Foundation Strain sensor and method of fabricating the same
US20200393440A1 (en) * 2019-04-05 2020-12-17 Roswell Biotechnologies, Inc. Method, apparatus and system for single-molecule polymerase biosensor with transition metal nanobridge
CN112648917A (zh) * 2020-11-19 2021-04-13 南京医科大学 一种基于咖啡环效应的可以探测人体生理信号的新型柔性传感器及其制备方法
CN113624121A (zh) * 2021-06-24 2021-11-09 天津大学 一种纤维式摩擦电应变传感器及其制备方法
CN113720254A (zh) * 2021-08-27 2021-11-30 中国科学院上海硅酸盐研究所 一种强度线型双响应的柔性应变传感器及其制备方法
CN114322740A (zh) * 2021-12-03 2022-04-12 电子科技大学长三角研究院(湖州) 一种基于磁控溅射的复合薄膜应变计及其制备方法
US20220144662A1 (en) * 2020-11-10 2022-05-12 Northeastern University Method for Direct Synthesis of Nanomaterials by Heating of Bulk Sources
CN114544024A (zh) * 2022-02-21 2022-05-27 电子科技大学 一种柔性热敏传感器及其制备方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130340533A1 (en) * 2011-11-28 2013-12-26 Massachusetts Institute Of Technology Strain gauge using two-dimensional materials
CN104851968A (zh) * 2015-05-21 2015-08-19 中国特种设备检测研究院 一种用于面内应变传感的各向异性薄膜及其制备方法
WO2017022577A1 (ja) * 2015-08-06 2017-02-09 株式会社村田製作所 歪抵抗素子、圧力センサ、歪ゲージ、加速度センサおよび角速度センサ
CN106595469A (zh) * 2017-01-10 2017-04-26 昆山工研院新型平板显示技术中心有限公司 一种弯曲传感器
CN108917582A (zh) * 2018-03-30 2018-11-30 华东理工大学 应变传感器及其制造方法
US20190323905A1 (en) * 2018-04-20 2019-10-24 Electronics And Telecommunications Research Institute Pressure-strain sensor and manufacturing method thereof
KR20190122525A (ko) * 2018-04-20 2019-10-30 한국전자통신연구원 압력-변형 센서 및 이의 제조방법
US20190390950A1 (en) * 2018-06-23 2019-12-26 Massachusetts Institute Of Technology Ultrasensitive Thermo-Mechanical Bolometer
CN109285891A (zh) * 2018-08-08 2019-01-29 福建翔丰华新能源材料有限公司 一种石墨烯二维异质结柔性器件结构及其制备方法
CN109099832A (zh) * 2018-08-21 2018-12-28 华东理工大学 应变传感器及其制造方法
CN109839232A (zh) * 2019-01-25 2019-06-04 上海交通大学 应变传感器及其形成方法、应变传感器阵列及其形成方法
US20200256748A1 (en) * 2019-02-07 2020-08-13 Korea University Research And Business Foundation Strain sensor and method of fabricating the same
CN109825809A (zh) * 2019-03-29 2019-05-31 华南理工大学 一种聚酰亚胺基电阻式薄膜应变传感器及其制备方法与应用
US20200393440A1 (en) * 2019-04-05 2020-12-17 Roswell Biotechnologies, Inc. Method, apparatus and system for single-molecule polymerase biosensor with transition metal nanobridge
CN111361302A (zh) * 2020-04-04 2020-07-03 南开大学 一种耐应力拉伸的柔性膜的制备方法
US20220144662A1 (en) * 2020-11-10 2022-05-12 Northeastern University Method for Direct Synthesis of Nanomaterials by Heating of Bulk Sources
CN112648917A (zh) * 2020-11-19 2021-04-13 南京医科大学 一种基于咖啡环效应的可以探测人体生理信号的新型柔性传感器及其制备方法
CN113624121A (zh) * 2021-06-24 2021-11-09 天津大学 一种纤维式摩擦电应变传感器及其制备方法
CN113720254A (zh) * 2021-08-27 2021-11-30 中国科学院上海硅酸盐研究所 一种强度线型双响应的柔性应变传感器及其制备方法
CN114322740A (zh) * 2021-12-03 2022-04-12 电子科技大学长三角研究院(湖州) 一种基于磁控溅射的复合薄膜应变计及其制备方法
CN114544024A (zh) * 2022-02-21 2022-05-27 电子科技大学 一种柔性热敏传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUI ZHANG ET AL.: "High-performance piezoresistive sensors based on transfer-free large-area PdSe2 films for human motion and health care monitoring", INFOMAT, vol. 6, no. 1, 20 September 2023 (2023-09-20), pages 1 - 4 *
王慧 等: "二维材料/铁电异质结构的研究进展", 物理学报, vol. 69, no. 01, 8 January 2020 (2020-01-08), pages 181 - 204 *

Also Published As

Publication number Publication date
CN115420189B (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
Yang et al. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales
WO2018113520A1 (zh) 一种柔性压力传感器及其制备方法
CN106767374B (zh) 石墨烯/碳纳米管网络柔性多功能应变传感器的制备方法
Breedon et al. Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers
CN110108375B (zh) 一种基于MXene材料的电子皮肤及其制备方法
CN114544024A (zh) 一种柔性热敏传感器及其制备方法
Li et al. Large‐scale ultra‐robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics
CN101859731B (zh) 一种纳米线压电器件的制作方法
CN102285634A (zh) 一种ZnO微/纳米材料柔性应变传感器的构建方法
Zhou et al. Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications
CN105789425A (zh) 一种纤维素纸/Bi2Te3热电薄膜复合材料及其制备方法
CN109445248B (zh) 利用毛细作用压印金属纳米线的方法及应用
CN110846630B (zh) 一种具有AgO纳米颗粒-纳米棒复合结构的抗菌钛板的制备方法
CN115420189B (zh) 一种面向人体健康监测的柔性应变传感器及其制备方法
CN104818463A (zh) 一种纳米铂包覆金颗粒膜复合材料的制备方法
CN109029801A (zh) 一种金属纳米线复合膜压力传感器及其制备方法
CN114777944A (zh) 一种柔性热敏传感器及其制备方法
Wang et al. 3D printing and freeze casting hierarchical mxene pressure sensor
CN106927448B (zh) 一种单壁碳纳米管/金属薄膜传感器及其制备方法与应用
CN217035666U (zh) 一种基于碲纳米线垂直结构的热电-压电器件
Liu et al. Highly sensitive wearable strain sensors using copper nanowires and elastomers
CN109817383A (zh) 利用印章转移制备碳纳米管导电薄膜的方法及高灵敏度应变传感器
CN106093461B (zh) 一种基于石墨烯材料的风速测试器及其制备方法
Zhang et al. A Bandi flexible pressure sensor based on the composite of laser-induced graphene and AgNWs
KR101234181B1 (ko) 그라핀 소자를 이용한 압력 센싱 방법 및 이에 사용되는 그라핀 소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant