CN115417659A - 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法 - Google Patents

一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115417659A
CN115417659A CN202211112355.0A CN202211112355A CN115417659A CN 115417659 A CN115417659 A CN 115417659A CN 202211112355 A CN202211112355 A CN 202211112355A CN 115417659 A CN115417659 A CN 115417659A
Authority
CN
China
Prior art keywords
beta
solid electrolyte
transition metal
source
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211112355.0A
Other languages
English (en)
Other versions
CN115417659B (zh
Inventor
李蔓华
王竹梅
黄胜
赵兰涛
陆琳
汤永智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN202211112355.0A priority Critical patent/CN115417659B/zh
Publication of CN115417659A publication Critical patent/CN115417659A/zh
Application granted granted Critical
Publication of CN115417659B publication Critical patent/CN115417659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种过渡金属离子与Dy3+共掺杂型Na‑β(β″)‑Al2O3固体电解质陶瓷材料,在化学式ⅠNa1.67Li0.33Al10.67O17的基础上,引入过渡金属离子M和Dy3+;M为Mn2+、Co2+、Ni2+、Zn2+、Cu2+离子中的一种,其引入量按照摩尔比为Al3+∶M=50~150∶1;Dy3+的引入量按照摩尔比为Al3+∶Dy3+=200~400∶1;M离子和Dy3+掺杂进入陶瓷晶格代替Al3+,Dy3+还以DyAlO3晶相的形式存在。此外,还公开了上述固体电解质陶瓷材料的制备方法。本发明在引入Li+稳定β″‑Al2O3相结构的基础上,掺杂过渡金属离子M以利于降低烧结温度而减少Na+挥发,同时抑制β"‑Al2O3晶相向β‑Al2O3晶相的转变;通过Dy3+的掺杂使材料缺陷少、致密度高,从而增强固体电解质的电学性能,进而促进钠硫电池生产技术的进步和发展。

Description

一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其 制备方法
技术领域
本发明涉及固体电解质陶瓷材料技术领域,尤其涉及一种在1550℃以上高温烧结、具有高Na+电导率的固体电解质陶瓷材料及其制备方法。
背景技术
钠硫电池具有储能密度大、效率高、运行费用低、维护较容易、不污染环境、使用寿命长等优点,特别适合做削峰填谷的储能电池,1992年开始商用至今已30年。
Na-β"(β)-Al2O3不仅是钠硫电池的电解质材料,同时还是钠硫电池的选择性透过膜,是钠硫电池的重要组成部分,电池的性能很大程度上依赖其固体电解质Na-β"(β)-Al2O3的性能,因此,Na-β"(β)-Al2O3电解质的制备和性能研究也逐渐成为备受重视的研究领域。
传统合成Na-β"(β)-Al2O3的主要方法是将高纯α-Al2O3、Na2CO3以及少量掺杂剂如MgO或Li2O等混合,在1600℃以上的高温下烧结而成。在高温烧结过程中,往往存在以下问题:一是Na+容易挥发,使得Na-β"(β)-Al2O3固体电解质偏离目标成分,导致性能降低;二是在Na2O-Al2O3体系中往往同时存在β-Al2O3与β"-Al2O3两种晶相,β"-Al2O3相的电导率是β-Al2O3相的10倍左右,但在高温烧结过程中,β"-Al2O3相极易向β-Al2O3相转变,导致性能降低;三是在高温烧结过程中,电解质中晶粒容易长大,由此产生的“双重结构”不但会降低电解质离子电导率,而且会影响钠硫电池使用寿命。
发明内容
本发明的目的在于克服现有技术的不足,提供一种过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料,在引入Li+稳定β″-Al2O3相结构的基础上,把过渡金属离子掺杂到固体电解质中,在利于降低烧结温度以减少Na+挥发的同时,抑制β"-Al2O3晶相向β-Al2O3晶相的转变,提高β″-Al2O3相含量;通过Dy3+的掺杂使材料缺陷少、致密度高,从而增强Na-β"(β)-Al2O3固体电解质的电学性能,进而促进钠硫电池生产技术的进步和发展。本发明的另一个目的在于提供上述过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷的制备方法及其制得的产品。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料,在化学式ⅠNa1.67Li0.33Al10.67O17的基础上,引入过渡金属离子M和Dy3+;M为Mn2+、Co2+、Ni2+、Zn2+、Cu2+离子中的一种,其引入量按照摩尔比为Al3+∶M=50~150∶1;Dy3+的引入量按照摩尔比为Al3+∶Dy3+=200~400∶1;M离子和Dy3+掺杂进入陶瓷晶格代替Al3+,Dy3+还以DyAlO3晶相的形式存在。
上述方案中,本发明所述固体电解质陶瓷材料的体积密度大于3.18g/cm3、300℃下的电导率>0.075S·cm-1、电导活化能≤0.105eV。
本发明的另一目的通过以下技术方案予以实现:
本发明提供的上述过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,包括以下步骤:
(1)埋烧料的制备
将α-Al2O3和Na2CO3按照化学式Na2Al10.67O17进行配料,以无水乙醇为球磨介质进行球磨处理;球磨后得到的物料经烘干、过筛、压制成型后进行煅烧处理;煅烧处理后的物料经研磨、过筛,即制得埋烧料;
(2)预合成前驱体粉料的制备
以铝源、钠源、锂源、镝源、过渡金属离子M源为原料,其中铝源、锂源按照化学式ⅠNa1.67Li0.33Al10.67O17进行配料,钠源的用量比化学式Ⅰ中的计量数多加7~10%,过渡金属离子M源的用量按照摩尔比为Al3+∶M=50~150∶1,镝源的用量按照摩尔比为Al3+∶Dy3+=200~400∶1;然后以无水乙醇为球磨介质进行一次球磨处理;球磨后得到的物料经烘干、过筛、压制成型后进行煅烧处理;煅烧处理后的物料经研磨、过筛,即制得预合成前驱体粉料;
(3)固体电解质陶瓷的制备
将所述预合成前驱体粉料进行二次球磨处理,球磨后得到的物料经烘干、研磨、过筛、造粒、陈腐,得到处理料;将所述处理料放入模具中压制成型后,再用冷等静压压制,之后进行排胶热处理,得到预烧件;然后,将所述预烧件置于埋烧料内进行埋烧,即制得固体电解质陶瓷材料。
进一步地,本发明制备方法所述步骤(1)中α-Al2O3和Na2CO3的纯度不低于99.2%;所述步骤(2)中原料的纯度不低于99.9%,所述铝源为α-Al2O3或Al(OH)3、钠源为无水Na2CO3或Na2C2O4、锂源为Li2CO3或Li2C2O4、镝源为Dy2O3;过渡金属离子M源中,锰源为MnCO3、钴源为CoO或2CoCO3·3Co(OH)2·H2O、镍源为NiO或NiCO3·2Ni(OH)2·4H2O、锌源为ZnO或Zn2(OH)2CO3、铜源为CuO或CuCO3·Cu(OH)2
进一步地,本发明制备方法所述步骤(1)中的球磨处理为按照球∶料∶无水乙醇=4∶1∶1~1.5,球磨12h以上;所述步骤(2)中的一次球磨处理和二次球磨处理相同,为按照球∶料∶无水乙醇=4∶1∶1~3,球磨12h以上。
进一步地,本发明制备方法所述步骤(1)和步骤(2)的压制成型压力均为4~6Mpa,煅烧处理均为以5℃/min升温至1100~1150℃。
进一步地,本发明制备方法所述步骤(3)中造粒所用粘结剂采用聚乙烯醇缩丁醛或聚乙烯醇,聚乙烯醇缩丁醛或聚乙烯醇的用量为物料的3~7wt%。
进一步地,本发明制备方法所述步骤(3)中在6~8Mpa下压制成型;冷等静压的压力为200~300MPa,保压时间至少为90s;排胶热处理的温度为以1℃/min升温至630~650℃。
进一步地,本发明制备方法所述步骤(3)中埋烧处理的温度为以5℃/min升温至1550~1610℃。
利用上述过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法制得的产品。
本发明具有以下有益效果:
(1)本发明在制备固体电解质陶瓷材料的过程中,采取了以下三项措施:(a)在配料时引入过量的钠源,以补偿高温烧结过程中Na+的损失;(b)采用含钠的埋烧料进行埋烧,一定程度上减少了高温烧结过程中Na+的挥发损失;(c)在引入了Li+作为β″-Al2O3相晶型稳定剂的同时,掺杂的过渡金属离子M和部分Dy3+进入陶瓷晶格代替Al3+,部分Dy3+以DyAlO3晶相的形式存在,均具有稳定β″-Al2O3相的作用,减少了β″-Al2O3相向β-Al2O3相的转化。以上三项措施使得所制备的固体电解质陶瓷材料几乎不含β-Al2O3相,β″-Al2O3相含量高。
(2)本发明在引入Li+稳定β″-Al2O3相结构的基础上,把稀土氧化物Dy2O3和过渡金属(如锰、钴、镍、锌、铜)的氧化物或盐添加到固体电解质中。掺杂的部分Dy3+以DyAlO3晶相的形式存在,一方面能够抑制晶界的生长,阻碍晶粒的异常长大,使陶瓷晶粒更加细小均匀;另一方面能减少断裂缺陷,并加速致密化,使得材料缺陷少、致密度高(其平均体积密度大于3.18g/cm3)。过渡金属离子的掺杂能降低烧结温度,减少Na+挥发,提高高温下β″-Al2O3相的稳定性。在两者的协同作用下,最终增强了Na-β"(β)-Al2O3固体电解质的性能。
(3)本发明制得的固体电解质陶瓷材料,由于β″-Al2O3相含量高、晶粒细小均匀、致密性好,因而陶瓷材料的电学性能好,300℃下陶瓷材料电导率>0.075S·cm-1、电导活化能≤0.105eV。
(4)本发明制备方法无需昂贵的设备,工艺简单易操作,影响因素易控制,所使用的埋烧料可重复使用,生产成本低,有助于推广和应用。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例制得的固体电解质陶瓷材料的XRD图谱;
图2是本发明实施例制得的固体电解质陶瓷材料的扫描电镜SEM图片(a:1000倍;b:5000倍);
图3是本发明实施例制得的固体电解质陶瓷材料的交流阻抗图谱。
具体实施方式
实施例一:
本实施例一种过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其步骤如下:
(1)埋烧料的制备
将纯度为99.31%、细度为325目的α-Al2O3和纯度为99.28%的Na2CO3按照化学式Na2Al10.67O17进行配料,以无水乙醇为球磨介质,按照球∶料∶无水乙醇=4∶1∶1.2,进行球磨处理12h;球磨后得到的物料经烘干、过60目筛、在4Mpa下压制成型后,以5℃/min升温至1100℃进行煅烧处理,保温2h;煅烧处理后的物料经研磨、过60目筛,即制得埋烧料;
(2)预合成前驱体粉料的制备
以纯度为99.9%的α-Al2O3(细度为325目)、无水Na2CO3、Li2CO3、Dy2O3和CoO为原料进行配料,其中α-Al2O3、Na2CO3、Li2CO3、Dy2O3、CoO的用量分别为:100g、17.57g、2.2410g、1.0960g、0.7675g;然后以无水乙醇为球磨介质,按照球∶料∶无水乙醇=4∶1∶2,进行一次球磨处理12h;球磨后得到的物料经烘干、过60目筛、在4Mpa下压制成型后,以5℃/min升温至1100℃进行煅烧处理,保温2h;煅烧处理后的物料经研磨、过60目筛,即制得预合成前驱体粉料;
(3)固体电解质陶瓷的制备
将上述预合成前驱体粉料进行二次球磨处理(与上述一次球磨处理相同),球磨后得到的物料经烘干、研磨、过80目筛、造粒(加入浓度为2wt%的聚乙烯醇缩丁醛的无水乙醇溶液作为粘结剂,聚乙烯醇缩丁醛的用量为物料的5wt%)、陈腐24h,得到处理料;将该处理料4.5g放入模具中在6Mpa压力下压制成厚度为1.5mm、直径为13mm的圆片,再将圆片放入橡胶手套中,抽真空,置于冷等静压机内于200MPa下保压90s;之后以1℃/min升温至650℃进行排胶处理,保温4h,随炉冷却,得到预烧件;然后,将该预烧件置于埋烧料内,以5℃/min升温至1570℃进行埋烧处理,保温30min,随炉冷却,即制得固体电解质陶瓷材料。
实施例二:
本实施例一种过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,与实施例一不同之处在于:
本实施例步骤(2)中铝源和M源分别为纯度99.9%的Al(OH)3和ZnO;步骤(2)中Al(OH)3、Na2CO3、Li2CO3、Dy2O3、ZnO的用量分别为:76.5006g、17.74g、2.2410g、1.2g、0.8330g;步骤(3)中埋烧处理温度为1580℃。
实施例三:
本实施例一种过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,与实施例一不同之处在于:
本实施例步骤(2)中铝源为纯度99.9%的Al(OH)3;步骤(2)中Al(OH)3、Na2CO3、Li2CO3、Dy2O3、CoO的用量分别为:76.5006g、17.74g、2.2410g、0.95g、1.2200g;步骤(3)中埋烧处理温度为1580℃。
本发明实施例制得的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料,其XRD晶相图谱如图1所示,制得的陶瓷材料主晶相为β″-Al2O3,含有少量β-Al2O3相和DyAlO3相;由于M离子和Dy3+进入晶格代替Al3+,主晶相峰向左偏移。其扫描电镜图如图2所示,陶瓷材料具有致密的结构,孔隙率小。
性能测试:
交流阻抗图谱和电导率测试:采用交流阻抗法、利用中国东华公司的DH7000型电化学工作站(交流电振幅范围为10-1Hz-106Hz,交流电电压为20mV)测试陶瓷样品在300℃温度下的交流阻抗图谱。通过计算得到材料的Na+电导率:σ=h/(S·R),其中,σ是电导率,S·cm-1;h是样品厚度,cm;S是样品被银面积,cm2;R是样品交流阻抗值,Ω。测得的交流阻抗图谱如图3所示。
电导活化能计算:利用样品的电导率σ,将Arrnhenius公式σT=Ae-Ea/(R·T)方程两边取对数得到lnσT=lnA-Ea·R-1T-1,通过软件拟合得到图线的斜率,斜率的大小即为活化能数值,式中,A为特征常数;R为摩尔气体常数;Ea为电导活化能,单位为eV;T是热力学温度,单位为K。
通过交流阻抗图谱,经过相关计算,本发明实施例陶瓷材料的电导率和电导活化能如表1所示。
表1本发明实施例陶瓷材料的电导率和电导活化能
Figure BDA0003844065550000061

Claims (10)

1.一种过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料,其特征在于:在化学式ⅠNa1.67Li0.33Al10.67O17的基础上,引入过渡金属离子M和Dy3+;M为Mn2+、Co2+、Ni2+、Zn2+、Cu2+离子中的一种,其引入量按照摩尔比为Al3+∶M=50~150∶1;Dy3+的引入量按照摩尔比为Al3+∶Dy3+=200~400∶1;M离子和Dy3+掺杂进入陶瓷晶格代替Al3+,Dy3+还以DyAlO3晶相的形式存在。
2.根据权利要求1所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料,其特征在于:所述固体电解质陶瓷材料的体积密度大于3.18g/cm3、300℃下的电导率>0.075S·cm-1、电导活化能≤0.105eV。
3.权利要求1或2所述过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于包括以下步骤:
(1)埋烧料的制备
将α-Al2O3和Na2CO3按照化学式Na2Al10.67O17进行配料,以无水乙醇为球磨介质进行球磨处理;球磨后得到的物料经烘干、过筛、压制成型后进行煅烧处理;煅烧处理后的物料经研磨、过筛,即制得埋烧料;
(2)预合成前驱体粉料的制备
以铝源、钠源、锂源、镝源、过渡金属离子M源为原料,其中铝源、锂源按照化学式ⅠNa1.67Li0.33Al10.67O17进行配料,钠源的用量比化学式Ⅰ中的计量数多加7~10%,过渡金属离子M源的用量按照摩尔比为Al3+∶M=50~150∶1,镝源的用量按照摩尔比为Al3+∶Dy3+=200~400∶1;然后以无水乙醇为球磨介质进行一次球磨处理;球磨后得到的物料经烘干、过筛、压制成型后进行煅烧处理;煅烧处理后的物料经研磨、过筛,即制得预合成前驱体粉料;
(3)固体电解质陶瓷的制备
将所述预合成前驱体粉料进行二次球磨处理,球磨后得到的物料经烘干、研磨、过筛、造粒、陈腐,得到处理料;将所述处理料放入模具中压制成型后,再用冷等静压压制,之后进行排胶热处理,得到预烧件;然后,将所述预烧件置于埋烧料内进行埋烧,即制得固体电解质陶瓷材料。
4.根据权利要求3所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于:所述步骤(1)中α-Al2O3和Na2CO3的纯度不低于99.2%;所述步骤(2)中原料的纯度不低于99.9%,所述铝源为α-Al2O3或Al(OH)3、钠源为无水Na2CO3或Na2C2O4、锂源为Li2CO3或Li2C2O4、镝源为Dy2O3;过渡金属离子M源中,锰源为MnCO3、钴源为CoO或2CoCO3·3Co(OH)2·H2O、镍源为NiO或NiCO3·2Ni(OH)2·4H2O、锌源为ZnO或Zn2(OH)2CO3、铜源为CuO或CuCO3·Cu(OH)2
5.根据权利要求3所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于:所述步骤(1)中的球磨处理为按照球∶料∶无水乙醇=4∶1∶1~1.5,球磨12h以上;所述步骤(2)中的一次球磨处理和二次球磨处理相同,为按照球∶料∶无水乙醇=4∶1∶1~3,球磨12h以上。
6.根据权利要求3所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于:所述步骤(1)和步骤(2)的压制成型压力均为4~6Mpa,煅烧处理均为以5℃/min升温至1100~1150℃。
7.根据权利要求3所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于所述步骤(3)中造粒所用粘结剂采用聚乙烯醇缩丁醛或聚乙烯醇,聚乙烯醇缩丁醛或聚乙烯醇的用量为物料的3~7wt%。
8.根据权利要求3所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于:所述步骤(3)中在6~8Mpa下压制成型;冷等静压的压力为200~300MPa,保压时间至少为90s;排胶热处理的温度为以1℃/min升温至630~650℃。
9.根据权利要求3所述的过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法,其特征在于:所述步骤(3)中埋烧处理的温度为以5℃/min升温至1550~1610℃。
10.利用权利要求3-9之一所述过渡金属离子与Dy3+共掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料的制备方法制得的产品。
CN202211112355.0A 2022-09-13 2022-09-13 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法 Active CN115417659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211112355.0A CN115417659B (zh) 2022-09-13 2022-09-13 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211112355.0A CN115417659B (zh) 2022-09-13 2022-09-13 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115417659A true CN115417659A (zh) 2022-12-02
CN115417659B CN115417659B (zh) 2023-07-18

Family

ID=84202484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211112355.0A Active CN115417659B (zh) 2022-09-13 2022-09-13 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115417659B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367210A (zh) * 2010-10-29 2012-03-07 大连路明发光科技股份有限公司 一种Na-β-Al2O3粉体的制备方法
US20150249262A1 (en) * 2012-09-25 2015-09-03 University of Marylnd, College Park High Conductivity NASICON Electrolyte for Room Temperature Solid-State Sodium Ion Batteries
CN108091929A (zh) * 2017-12-13 2018-05-29 武汉佰起科技有限公司 一种固态电解质及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367210A (zh) * 2010-10-29 2012-03-07 大连路明发光科技股份有限公司 一种Na-β-Al2O3粉体的制备方法
US20150249262A1 (en) * 2012-09-25 2015-09-03 University of Marylnd, College Park High Conductivity NASICON Electrolyte for Room Temperature Solid-State Sodium Ion Batteries
CN108091929A (zh) * 2017-12-13 2018-05-29 武汉佰起科技有限公司 一种固态电解质及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
江彬轩等: "Ti4+掺杂对Na-β″-Al2O3固体电解质电性能的影响", 《稀有金属》 *
王涛等: "La2O3掺杂对Na-β″(β)-Al2O3固体电解质电导率的影响", 《中国陶瓷》 *

Also Published As

Publication number Publication date
CN115417659B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
JP2012031025A (ja) ガーネット型リチウムイオン伝導性酸化物及びその製法
CN112467198B (zh) 一种锂离子电池用氧化物固态电解质及其制备方法
KR20200135517A (ko) 세라믹 분말, 소결체 및 전지
CN115275329A (zh) 一种石榴石型固态电解质的制备方法及应用
US11858854B2 (en) Garnet-lithium titanate composite electrolyte
US20210363065A1 (en) Lithium-garnet composite ceramic electrolyte
US11594756B2 (en) Sintered body and method for manufacturing thereof
CN113823830A (zh) Al3+掺杂改性的LGPS型锂离子固态电解质及其制备方法
KR101537067B1 (ko) 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN115417659B (zh) 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
CN115504770B (zh) 一种过渡金属离子与Nd3+共掺杂型固体电解质陶瓷材料及其制备方法
CN115403358B (zh) 一种过渡金属离子与Eu3+共掺杂型固体电解质陶瓷材料及其制备方法
US11637316B2 (en) Ceramic powder material, sintered body, and battery
CN113666415B (zh) 晶粒尺寸可控的高电导率钙钛矿型BaZrO3基质子导体材料的制备方法
CN115417667B (zh) 一种Nd2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN115417660B (zh) 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN103693954A (zh) 高电导率氧化锌陶瓷及其制备方法
CN114243095A (zh) 一种K-β"-Al2O3固态电解质、其制备方法及钾电池
CN115572162A (zh) 一种堆用中子控制用稀土中高熵铪酸盐陶瓷材料
JP7365947B2 (ja) 全固体リチウムイオン電池用ガーネット型固体電解質焼結体の製造方法及び全固体リチウムイオン電池の製造方法
KR102016916B1 (ko) Llzo 산화물 고체 전해질 분말의 제조방법
CN114478002A (zh) 一种锂镧锆氧基固体电解质陶瓷体及其制备方法
JP4873291B2 (ja) 高強度酸化物イオン伝導体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant