CN115406981A - 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法 - Google Patents

一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法 Download PDF

Info

Publication number
CN115406981A
CN115406981A CN202210930560.1A CN202210930560A CN115406981A CN 115406981 A CN115406981 A CN 115406981A CN 202210930560 A CN202210930560 A CN 202210930560A CN 115406981 A CN115406981 A CN 115406981A
Authority
CN
China
Prior art keywords
ppcps
solution
centrifuge tube
ultrapure water
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210930560.1A
Other languages
English (en)
Other versions
CN115406981B (zh
Inventor
兰杰
董晓婉
马英姿
王方舒
陈栋
毕学军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202210930560.1A priority Critical patent/CN115406981B/zh
Publication of CN115406981A publication Critical patent/CN115406981A/zh
Application granted granted Critical
Publication of CN115406981B publication Critical patent/CN115406981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/065Preparation using different phases to separate parts of sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • G01N2030/342Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient fluid composition fixed during analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Library & Information Science (AREA)
  • Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及PPCPs检测技术领域,针对现有检测方法的不足,本发明提供了一种能快速高效的检测污水、悬浮固体、附着于悬浮填料上生物膜中多种PPCPs的方法,以及提供了一种能够实现对MBBR污水处理系统中PPCPs进行质量平衡核算的检测方法。本方法基于HPLC‑MS/MS技术,结合超声溶剂萃取、固相萃取与旋转蒸发处理方法,利用内标法定量,在保证测试精度的基础上,进一步缩短了检测时长并降低了检测成本,实现了对多介质中PPCPs的高效精准分析以及为质量平衡核算方法在MBBR污水处理系统中对于PPCPs类污染物方面研究的应用奠定了坚实的基础。

Description

一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测 方法
技术领域
本发明属于PPCPs检测技术领域,具体涉及一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法。
背景技术
药品与个人护理产品(PPCPs)中使用的许多化学物质是全世界环境中最常检测到的化合物之一,并且其具有显著的生物学效应[1],随着PPCPs的广泛应用以及污水处理厂常规处理工艺的不足,针对其在污水处理过程中的去除逐渐成为环境领域内所研究的热点问题[2]。MBBR工艺作为实用可靠的生物处理方法被广泛应用于现有污水处理工艺的提标改造和各类废水的处理当中,并且已被证实对含PPCPs废水具有优良的处理效果[3]。然而,有限的研究多集中于污水中PPCPs的变化,而对赋存于悬浮固体及生物膜中的PPCPs研究较少,因此缺乏对PPCPs在整个生物处理系统中迁移变化的系统了解[4]
污染物质量平衡核算作为一种重要的分析方法,可以直观有效的了解污染物在污水处理系统各单元中的迁移变化及实际去除效率。目前,已有研究将质量平衡核算方法应用于污水处理厂内活性污泥工艺对PPCPs去除的研究当中[5–7]
附着于具有多孔结构悬浮填料上的生物膜受到氧分子及营养物质传质的影响,其内外层微生物具有一定的差异,致使其中PPCPs的赋存水平也具有差异,同时由于生物膜与悬浮填料间的附着较为紧密,从而使得对生物膜样品收集难度较大。当前脱膜方式主要分为物理法和化学法,使用物理方法刮膜后进行PPCPs提取分析会因样品收集不完全而错误估计PPCPs的赋存水平(很难刮净);在化学法中,通常会采用酸洗结合超声的方式,然而超声时间太长物质容易分解,时间太短生物膜又不能完全脱膜,此外在酸性环境中(pH<2)氘代物易发生转化,同时也会增加后期萃取物质的难度。因此,当前对于污泥及土壤中PPCPs的检测方法并不适用于附着在悬浮填料上生物膜中PPCPs的检测。
此外,目前针对土壤或污泥等固相介质中PPCPs的检测方法存在一定的局限性,例如中国专利公开号CN111707772A,在固相萃取中使用了HLB萃取小柱,而在中国专利公开号CN 106468691A中还在HLB小柱的基础上额外增加了SAX萃取柱,耗材成本高昂,提高了检测分析的门槛。多数的方法如中国专利公开号CN111707772A和CN 105784858A,超声溶剂萃取的循环数为3次,超声提取时间在60min~90min,相应提取液的体积在90~105mL,使得溶剂萃取及后期旋转蒸发的时间较长。为防止物质在固相萃取过程中“穿透”,通常会使用超纯水对旋蒸浓缩液进行稀释,以降低溶液中有机溶剂的比例,多数方法如中国专利公开号CN111707772A、CN 105784858A与doi号为10.1016/j.jhazmat.2018.04.064的文献,稀释后体积为200~500mL,致使在固相萃取过程上样的时间较长。此外,如中国专利公开号CN111707772A、CN 105784858A、CN 106468691A和doi号为10.1016/j.jhazmat.2018.04.064的文献,大多数方法的洗脱体积在8~18mL,不仅会增加溶剂成本,也会导致氮吹浓缩过程时间的延长。对于大批量样品的测试,样品预处理及仪器分析过程中每一个环节内成本及时间的增加均无疑会提升检测工作的难度。
在MBBR污水处理系统中,包含污水、悬浮固体(TSS)以及悬浮填料上附着的生物膜三相介质(PPCPs所赋存的介质),在应用质量平衡核算方法时,会采集大量的样品(不同介质),同时由于检测痕量物质所需的萃取时间较长以及为保证数据质量而设置的平行样品,致使测试分析工作量巨大,此外由于PPCPs检测的时效性(48小时内提取,40天内分析)[8],进一步增加了该工作的难度。正是上述的诸多因素,限制了质量平衡核算方法在MBBR污水处理系统中对于PPCPs类污染物方面研究的应用。
[1]Anouk F.Duque,
Figure BDA0003781181230000021
S.Bessa,Maria F.Carvalho,et al.2-Fluorophenoldegradation by aerobic granular sludge in a sequencing batch reactor[J].WaterResearch,2011,45(20):6745–6752.
[2]Alessandro di Biase,Maciej S.Kowalski,Tanner R.Devlin,et al.Movingbed biofilm reactor technology in municipal wastewater treatment:A review[J].Journal of Environmental Management,2019,247:849–866.
[3]Gordon T.H.Ooi,Kai Tang,Ravi K.Chhetri,et al.Biological removal ofpharmaceuticals from hospital wastewater in a pilot-scale staged moving bedbiofilm reactor(MBBR)utilising nitrifying and denitrifying processes[J].Bioresource Technology,2018,267:677–687.
[4]Krzeminski P,Tomei M C,Karaolia P,et al.Performance of secondarywastewater treatment methods for the removal of contaminants of emergingconcern implicated in crop uptake and antibiotic resistance spread:A review[J].Science of The Total Environment,2019,648:1052–1081.
[5]Muhammad Ashfaq,Yan Li,Yuwen Wang,et al.Occurrence,fate,and massbalance of different classes of pharmaceuticals and personal care products inan anaerobic-anoxic-oxic wastewater treatment plant in Xiamen,China[J].WaterResearch,2017,123:655–667.
[6]Wang Y,Li Y,Hu A,et al.Monitoring,mass balance and fate ofpharmaceuticals and personal care products in seven wastewater treatmentplants in Xiamen City,China[J].Journal of Hazardous Materials,2018,354:81–90.
[7]Benjamin Blair,Adam Nikolaus,Curtis Hedman,et al.Evaluating thedegradation,sorption,and negative mass balances of pharmaceuticals andpersonal care products during wastewater treatment[J].Chemosphere,2015,134:395–401.
[8]USEPA,Method 1694:Pharmaceuticals and Personal Care Products inWater,Soil,Sediment,and Biosolids by HPLC/MS/MS(December 2007).
发明内容
针对现有检测方法的不足,本发明提供一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法,同时对污水、悬浮固体以及附着于悬浮填料上生物膜中PPCPs进行检测,包括样品前处理和利用HPLC-MS/MS技术进行检测。具体步骤如下:
一、溶液配制及空白基质制作
(1)标准品溶液
标准品工作液均采用甲醇/水(1:1,v:v)逐级稀释获得,贮备液以-20℃避光密封储存。
(2)磷酸盐缓冲液
称取19.3g磷酸二氢钠于超纯水中溶解,加入10mL磷酸(质量分数为85%)后用超纯水定容至1L,以玻璃瓶4℃密封储存。
(3)EDTA溶液
取5g EDTA-4Na粉末用超纯水溶解定容至100mL,以HDPE材质储样瓶4℃密封储存。
(4)悬浮固体及生物膜参照基质
以超纯水模拟污水空白基质。
取泥炭土放入50mL离心管中,加入15mL磷酸盐缓冲液涡流混匀后加入20mL乙腈并超声20分钟,以4000r/min离心5min后弃去溶液,向沉淀物中再次加入20mL乙腈超声20分钟,4000r/min离心5min后弃去溶液得到经处理后的泥炭土。分别取0.1g和0.2g经处理后的泥炭土,以模拟悬浮固体与生物膜空白基质。
二、检测流程:
按照污水处理系统实际水力停留时间同时采取污水及已挂膜成熟的填料,对污水进行抽滤,滤液作为检测用水样,滤渣作为悬浮固体检测用样品。将过滤定量污水后的滤膜与已挂膜填料分别置于离心管中,超声溶剂萃取后进行旋转蒸发得到含目标物质的提取液。将水样与提取液共同进行固相萃取,最终用溶剂分别复溶经氮吹浓缩后的残渣,过膜上机检测。至此完成污水处理系统内全介质中PPCPs的检测,经内标法定量后即可进行质量平衡核算。
三、样品收集与保存:
用经甲醇与超纯水润洗控干水分的棕色玻璃瓶或HDPE瓶采集污水,同时用自封袋采集已挂生物膜的填料(≥3个)。为防止物质吸附引起的损失,采用预称重的0.45μm玻璃纤维滤膜(记为m1)对定量污水进行抽滤,将滤液合并作为检测用水样,滤膜(含滤渣)作为悬浮固体检测用样品(保证悬浮固体重量在0.1g以上)。将收集到的滤膜剪碎,装入50mL离心管A中,同时将采集到的填料经超纯水润洗以去除表面所吸附的悬浮物,沥干水分后装入50mL离心管B中,于离心管A、B中均加入15mL磷酸盐缓冲液(pH>2)并混匀。将水样于4℃避光保存,将离心管A、B于-20℃避光保存(冷藏、冷冻样品分别在48小时内、7天内进行提取,于40天内上机检测)。
四、样品处理:
A.超声溶剂萃取
将样品低温避光带回实验室,放置至常温。在离心管A、B中分别加入5ng和100ng提取内标(替代物),涡旋混匀后均加入20mL乙腈,超声20min后以4000rmp离心5min,收集提取液。于离心管A、B中重复一遍加入乙腈,超声并离心,收集提取液。合并离心管A两次离心后的提取液记为a1;合并离心管B两次离心后的提取液,过预称重的0.22μm玻璃纤维滤膜m2后收集滤膜和滤液,滤液记为b1。
B.旋转蒸发
将溶液a1、b1分别在负压条件下旋转蒸发(105rmp,50℃),溶剂蒸发后均立即加入40mL超纯水并超声1min。对应溶液a1的稀释液记为a2;对应溶液b1的稀释液过滤膜m2后再次收集滤膜和滤液,滤液记为b2。
C.固相萃取
取50mL水样到50mL离心管C中,加入5ng提取内标后涡旋混匀,溶液记为c1。分别用浓盐酸或氨水调节溶液a2、b2、c1至pH=7.0±0.2,向溶液a2、c1中均加入25mg EDTA,向溶液b2中加入50mg EDTA,均静置老化30min(期间偶尔摇晃)。
依次用3mL甲醇及3mL超纯水各2次过柱(自然重力作用)以活化固相萃取小柱,溶液a2、b2、c1经老化后,以5~10mL/min流速负压上样,之后抽干柱内水分。3mL超纯水(pH≈7)淋洗小柱2次后抽干柱内水分(约40min),用2mL甲醇/乙腈混合液(1:1,v:v)2次重复重力过柱,分别得到洗脱液a3、洗脱液b3、洗脱液c2,将洗脱液分别收集于10mL玻璃试管。
D.氮吹浓缩
试管置于氮吹仪中以50℃水浴吹至近干,向洗脱液a3、c2中加入450μL甲醇/超纯水混合液(2:8,v:v)以及50μL(100μg/L)进样内标标准工作液(阿拉特津-D5),向洗脱液b3中加入400μL甲醇/超纯水混合液(2:8,v:v)以及100μL(1mg/L)进样内标标准工作液。均经过涡旋混匀(约40s)复溶残渣后过0.22μm聚丙烯滤膜,转入棕色进样瓶中-20℃保存,待仪器进样分析(进样前放至室温)。
五、悬浮固体及生物膜质量:
将收集到的用于过滤悬浮固体及生物膜的滤膜m1和m2置于电热恒温鼓风干燥箱内烘干(105℃,2h),在干燥皿中放至室温,结合滤膜m1的预称重量,采用国标法,滤膜m1称重后计算得到悬浮固体重量,同时将滤膜m2称重记为重量α。将超声溶剂萃取后装有生物膜填料的离心管B于90℃烘干24h,在干燥皿中放至室温,称重记为重量β。清洗掉离心管B内壁及填料上附着的生物膜残渣后将清洗后的填料装回离心管B,以90℃烘干24h,在干燥皿中放至室温,称重记为重量γ。最后结合滤膜m2的预称重量,依据重量α、重量β、重量γ计算得到生物膜重量(生物膜重量=α+β-γ-滤膜m2预称重量)。
六、仪器分析:
物质色谱分离采用梯度洗脱,流动相A为超纯水(含0.1‰甲酸),流动相B为乙腈,具体梯度洗脱条件见表1。
表1 梯度洗脱条件
Figure BDA0003781181230000051
质谱分析采用三重四极杆ESI离子源,GS1和GS2气体压强分别为50psi和60psi,气帘气压强为30psi,气体均为氮气,辅助加热气为500℃,正、负离子电离电压分别为5500V和-4500V,质谱条件及离子信息见表2。
表2 PPCPs的质谱条件及离子信息
Figure BDA0003781181230000061
*为定量离子
PPCPs保留时间、提取内标及进样内标见表3。
表3 PPCPs保留时间及内标物质
Figure BDA0003781181230000062
七、物质定量:
以内标法工作曲线定量,曲线横坐标为物质浓度,纵坐标为目标物与替代物峰面积的比值。
八、检出限与定量限:
以3倍信噪比(S/N)对应的目标物质浓度为检出限(LOD),以10倍信噪比(S/N)对应的目标物质浓度为定量限(LOQ),结果见表4。
表4 PPCPs在不同介质中的检出限及定量限
Figure BDA0003781181230000071
九、加标回收率与相对标准偏差:
分别以7次定量结果计算加标回收率与相对标准偏差。以5ng加标水平考察物质在污水样品以及悬浮固体样品中的实际加标回收率,以100ng加标水平考察物质在生物膜样品中的实际加标回收率。实际加标回收率在80~130%,相对标准偏差均小于30%,符合EPA1694对准确度及精密度要求,结果见表5。
表5 PPCPs在不同介质中的实际加标回收率与相对标准偏差(n=7)
Figure BDA0003781181230000072
Figure BDA0003781181230000081
本发明的技术关键点在于:
对多介质中PPCPs测定采用相同的固相萃取流程及相同的仪器分析条件,实现了对PPCPs高效的检测分析。
采用内标法定量,有效的纠正了基质效应及预处理过程中物质损耗带来的测定误差,实现了对PPCPs的精准定量。
固相萃取不串联其他净化柱,只采用国产Cleanert PEP-2(200mg/6mL)小柱,降低了耗材成本。
超声溶剂萃取的循环次数为2次,超声提取时间为40min,提取液的体积为55mL,旋蒸浓缩液稀释后的体积为50~55mL,固相萃取的洗脱液体积仅为4mL,实现了低溶剂成本下对样品的快速预处理。
旋转蒸发及氮吹浓缩过程中的水浴温度为50℃,且在仪器分析过程中采用正负离子同时扫描模式,进一步缩短了样品浓缩及仪器分析所需时间。
本发明的有益效果为:
本发明中提供的检测流程以及多介质中PPCPs的同时高效检测方法,为在MBBR污水处理系统中对PPCPs进行质量平衡核算工作打好了坚实的基础。
相比其他方法,本方法进一步降低了耗材、溶剂、人工及仪器使用等成本,同时也缩减了超声溶剂萃取、旋转蒸发、固相萃取、氮吹浓缩及仪器分析等环节所需的检测时长。并结合内标法定量,实现了对PPCPs的高效精准分析。
附图说明
图1为常见水处理用HDPE填料类型;
图2为常见水处理用HDPE填料实物图;
图3为固相萃取上样实操图;
图4为收集到的滤膜烘干后待称重示意图;
图5为本方法样品检测流程图。
具体实施方式
下面结合附图和具体实施方式对本发明做详细的描述。
具体实施方式一:
下面结合具体实施例1对本发明作进一步详细地说明,所述实施案例仅为部分应用案例,不作为限定性说明,本领域内技术人员在不做创造性劳动基础上对本案例的改动均属于本发明保护范围。
实施例中所用常规药剂和常规仪器等未具体注明厂商,均可通过正规渠道购买获得。实施例中未注明具体样品数量,为保证数据可靠,每批测试中均应设置相应的全程序空白、空白加标、平行、实际加标样品,同样品处理。实施例1中,玻璃纤维滤膜使用前均经过450℃,4小时灼烧;取用填料为HDPE材质,直径25mm,耐受温度范围为-60℃~121℃;离心管为聚丙烯材质,耐受温度范围为-80℃~121℃。
实施例1:
样品采自位于青岛市团岛污水处理厂中MBBR中试系统内。
一、样品采集:
水样采集于棕色HDPE瓶中(提前用超纯水及甲醇润洗),一定量水样采用预称重的0.45μm玻璃纤维滤膜m1进行抽滤(保证悬浮固体重量在0.1g以上),将滤后水样进行合并。将上述含滤渣的滤膜平行收集多份,一半(大于3份)用作确定水中悬浮固体质量(TSS);另外一半(大于3份)分别剪碎置于各离心管中,加入15mL磷酸盐缓冲液(保证pH>2,以防氘代物转化)涡旋混匀30s,记为Sample A。填料与污水同批现场采集,用超纯水轻轻润洗填料表面以去掉吸附的悬浮物,取3个填料装入50mL离心管中,加入15mL磷酸盐缓冲液(保证pH>2,以防氘代物转化)混匀30s,记为Sample B。
二、样品处理:
将样品于低温条件下避光带回实验室后,水样于4℃避光保存(48h内提取),在Sample A及Sample B中分别加入50μL(100μg/L)和100μL(1mg/L)提取内标(替代物)混合液涡旋混匀30s,之后均加入20mL乙腈,混匀后超声20min后以4000r/min离心约5min并收集溶液后,再次均加入20mL乙腈,混匀后超声20min,后以4000r/min离心约5min并收集溶液,分别合并Sample A及Sample B两次经超声溶剂萃取后的提取液。将Sample B的提取液过预称重的0.22μm玻璃纤维滤膜m2后收集滤膜及滤液。将Sample A的提取液及Sample B经过滤后的提取液分别置于圆底茄形瓶中以105rmp及50℃负压条件下旋转蒸发,待溶剂蒸发后(约14min,剩约10~15mL溶液)立即加入40mL超纯水超声1min。将Sample B旋蒸后稀释液于负压下再次过滤膜m2后收集滤膜及滤液。
取50mL保存的水样置于离心管(50mL)中,记为Sample C。加入50μL(100μg/L)提取内标(替代物)混合液后涡旋混匀,分别用浓盐酸和氨水将Sample A、Sample B经旋蒸后的稀释液及Sample C调整到pH=7±0.2,之后向Sample A经旋蒸后的稀释液及Sample C中均加入0.5mL EDTA溶液(50g/L),向Sample B经旋蒸后的稀释液中加入1.0mL EDTA溶液(50g/L),均混匀后静置老化30min,期间偶尔摇晃。
三、样品富集:
依次用3mL甲醇及3mL超纯水各2次过柱(自然重力作用)以活化固相萃取小柱,将经老化后的Sample A、Sample B经旋蒸后的稀释液和Sample C分别以5~10mL/min流速上样(负压),上样结束抽干小柱内残余水分,采用3mL超纯水(pH≈7)淋洗小柱2次,真空作用下抽干小柱内水分(约40min),用2mL甲醇/乙腈混合液(1:1,v:v)洗脱(自然重力作用)小柱2次,将洗脱液收集于各自10mL玻璃试管中,置于氮吹仪中以50℃吹脱溶剂至近干(恰好吹干)。向Sample A、Sample C的洗脱液中均加入450μL甲醇/超纯水混合液(2:8,v:v)以及50μL(100μg/L)进样内标标准品工作液;向Sample B的洗脱液中加入400μL甲醇/超纯水混合液(2:8,v:v)以及100μL(1mg/L)进样内标标准品工作液,涡旋混匀(约40s)复溶残渣。将复溶后的溶液过0.22μm聚丙烯材质针滤器后收集于棕色液质进样样品瓶-20℃保存,待仪器进样分析(进样前放至室温)。
四、实测结果:
以本发明方法(SPE-HPLC-MS/MS)对中试系统内污水、生物膜、悬浮固体中PPCPs分别7次取样检测,并结合内标法定量,结果见下表。
中试系统内污水、生物膜、悬浮固体中PPCPs赋存浓度范围(n=7)
Figure BDA0003781181230000101
Figure BDA0003781181230000111
BDL:低于检测限(below detection limit)。

Claims (5)

1.一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法,其特征在于,包括以下步骤:
步骤一、分别采集污水处理系统中的污水和已挂生物膜的填料,使用0.45μm的玻璃纤维滤膜m1对污水进行抽滤分别得到滤液和含滤渣的滤膜,使用超纯水润洗填料并沥干水分,将剪碎后的含滤渣的滤膜m1和润洗后的填料分别移入离心管A和离心管B中,均加入15mL pH>2的磷酸缓冲液并混匀;
步骤二、向离心管A中加入5ng提取内标,向离心管B中加入100ng提取内标,涡旋混匀,向离心管A、离心管B中均加入20mL乙腈,超声后离心,收集提取液,均再次加入20mL乙腈,超声后离心,收集提取液,合并离心管A两次离心后的提取液记为a1;合并离心管B两次离心后的提取液,过预称重的0.22μm玻璃纤维滤膜m2后收集滤膜和滤液b1,将溶液a1、b1在50℃条件下旋蒸,待溶剂蒸发后均加入40mL超纯水并超声1min,得到稀释液,对应溶液a1的稀释液记为a2;对应溶液b1的稀释液过滤膜m2后再次收集滤膜和滤液,滤液记为b2;
步骤三、取50mL污水的滤液移入离心管C中,加入5ng提取内标后涡旋混匀,溶液记为c1,使用浓盐酸或氨水分别调节溶液a2、b2、c1的pH至7.0±0.2,向溶液a2、c1中均加入25mgEDTA,向溶液b2中加入50mg EDTA,均静置老化30min;
步骤四、依次用3mL甲醇及3mL超纯水各2次过柱以活化固相萃取小柱,将老化后的溶液a2、b2、c1均以5~10mL/min流速负压上样后抽干柱内水分,3mL超纯水淋洗小柱2次后抽干柱内水分,用2mL体积比为1:1的甲醇/乙腈混合液2次重复重力过柱,分别收集得到洗脱液a3、洗脱液b3、洗脱液c2;
步骤五、将洗脱液a3、洗脱液b3、洗脱液c2均置于氮吹仪中以50℃水浴吹干,向洗脱液a3和洗脱液c2中均加入450μL体积比为2:8的甲醇/超纯水混合液以及50μL浓度为100μg/L的进样内标标准工作液,向洗脱液b3中加入400μL体积比为2:8的甲醇/超纯水混合液以及100μL浓度为1mg/L的进样内标标准工作液,均经过涡旋混匀复溶残渣后过0.22μm聚丙烯滤膜,待上机检测;
步骤六、经过内标法定量后,进行PPCPs的质量平衡核算。
2.根据权利要求1所述的检测方法,其特征在于:上机检测中,物质色谱分离采用梯度洗脱,流动相A为超纯水,流动相B为乙腈,具体梯度洗脱条件见表1:
表1:梯度洗脱条件
Figure FDA0003781181220000011
Figure FDA0003781181220000021
3.根据权利要求1所述的检测方法,其特征在于:上机检测中,质谱分析采用三重四极杆ESI离子源,GS1和GS2气体压强分别为50psi和60psi,气帘气压强为30psi,气体均为氮气,辅助加热气为500℃,正、负离子电离电压分别为5500V和-4500V,质谱条件及离子信息见表2
表2 PPCPs的质谱条件及离子信息
Figure FDA0003781181220000022
*为定量离子;
PPCPs保留时间、提取内标及进样内标见表3
表3 PPCPs保留时间及内标物质
Figure FDA0003781181220000023
Figure FDA0003781181220000031
4.根据权利要求1所述的检测方法,其特征在于:步骤六中,以内标法工作曲线定量,曲线横坐标为物质浓度,纵坐标为目标物与替代物峰面积的比值。
5.根据权利要求1所述的检测方法,其特征在于:步骤一中,磷酸盐缓冲液的制备方法为称取19.3g磷酸二氢钠于超纯水中溶解,加入10mL质量分数为85%的磷酸后用超纯水定容至1L,得到磷酸缓冲液。
CN202210930560.1A 2022-08-04 2022-08-04 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法 Active CN115406981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210930560.1A CN115406981B (zh) 2022-08-04 2022-08-04 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210930560.1A CN115406981B (zh) 2022-08-04 2022-08-04 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法

Publications (2)

Publication Number Publication Date
CN115406981A true CN115406981A (zh) 2022-11-29
CN115406981B CN115406981B (zh) 2024-09-13

Family

ID=84159351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210930560.1A Active CN115406981B (zh) 2022-08-04 2022-08-04 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法

Country Status (1)

Country Link
CN (1) CN115406981B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118134071A (zh) * 2023-12-22 2024-06-04 生态环境部环境规划院 一种基于大数据智能分析的区域水环境综合管理系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696056A (zh) * 2009-10-16 2010-04-21 东华大学 一种生物氧化过滤预处理饮用水源中PPCPs的方法及装置
CN102557252A (zh) * 2010-12-28 2012-07-11 北京化工大学 一种典型PPCPs的处理方法
CN107884502A (zh) * 2017-12-29 2018-04-06 宁夏希望田野生物农业科技有限公司 一种土壤中阿维菌素残留量的检测方法
US20180265386A1 (en) * 2017-03-14 2018-09-20 Nanjing University Advanced oxidation process of degrading nonsteroidal anti-inflammatory drugs in sewage by uv persulfate
CN109142572A (zh) * 2018-08-23 2019-01-04 中南大学 一种环境多介质中多种药物同步提取及检测分析方法
CN111707772A (zh) * 2020-06-05 2020-09-25 哈尔滨工业大学 一种同步高效检测污泥中多类抗生素残留量的方法
CN111751482A (zh) * 2020-06-05 2020-10-09 哈尔滨工业大学 一种同步检测养猪废水中多类抗生素残留量的方法
CN113203815A (zh) * 2021-05-13 2021-08-03 黑龙江省农业科学院农产品质量安全研究所 基于uplc-msms检测糙米、稻壳和秸秆中氟酮磺草胺及其代谢物的方法
CN114236032A (zh) * 2021-12-07 2022-03-25 河北省地质环境监测院(河北省地质灾害应急技术中心、河北省地质环境监测总站) 双电离扫描模式-液相色谱串联质谱联用测定水体中草甘膦的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696056A (zh) * 2009-10-16 2010-04-21 东华大学 一种生物氧化过滤预处理饮用水源中PPCPs的方法及装置
CN102557252A (zh) * 2010-12-28 2012-07-11 北京化工大学 一种典型PPCPs的处理方法
US20180265386A1 (en) * 2017-03-14 2018-09-20 Nanjing University Advanced oxidation process of degrading nonsteroidal anti-inflammatory drugs in sewage by uv persulfate
CN107884502A (zh) * 2017-12-29 2018-04-06 宁夏希望田野生物农业科技有限公司 一种土壤中阿维菌素残留量的检测方法
CN109142572A (zh) * 2018-08-23 2019-01-04 中南大学 一种环境多介质中多种药物同步提取及检测分析方法
CN111707772A (zh) * 2020-06-05 2020-09-25 哈尔滨工业大学 一种同步高效检测污泥中多类抗生素残留量的方法
CN111751482A (zh) * 2020-06-05 2020-10-09 哈尔滨工业大学 一种同步检测养猪废水中多类抗生素残留量的方法
CN113203815A (zh) * 2021-05-13 2021-08-03 黑龙江省农业科学院农产品质量安全研究所 基于uplc-msms检测糙米、稻壳和秸秆中氟酮磺草胺及其代谢物的方法
CN114236032A (zh) * 2021-12-07 2022-03-25 河北省地质环境监测院(河北省地质灾害应急技术中心、河北省地质环境监测总站) 双电离扫描模式-液相色谱串联质谱联用测定水体中草甘膦的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
何璐茜;陈军;应光国;: "人工湿地系统对生活污水中类固醇激素的去除效果", 华南师范大学学报(自然科学版), no. 01, 25 February 2020 (2020-02-25) *
冉韵竹;齐维晓;李静;陈;赵双菊;: "超高效液相色谱-串联质谱法同时测定水中13种药品与个人护理品", 环境化学, no. 02, 9 March 2018 (2018-03-09) *
刘晓晖;卢少勇;: "大通湖表层水体中抗生素赋存特征与风险", 中国环境科学, no. 01, 20 January 2018 (2018-01-20) *
宋淑敏;张翔宇;周佳虹;李茹莹;: "超高效液相色谱串联质谱法同时测定城市污水处理厂污泥中12种抗生素", 环境化学, no. 09, 15 September 2017 (2017-09-15) *
殷哲云;闵露娟;金立涛;王菲;孙红文;: "HPLC-MS/MS测定3类污水处理厂污泥及污水中的8种药物", 环境化学, no. 08, 15 August 2018 (2018-08-15) *
陈伟伟;黄俊;隋倩;余刚;祝万鹏;: "PSE-UPLC-MS/MS法测定污泥中9种药物与个人护理品", 环境科学研究, no. 08, 15 August 2011 (2011-08-15) *
陈佳豪;赵文涛;柴晓利;: "膜生物反应器处理垃圾渗滤液研究进展", 有色冶金设计与研究, no. 01, 25 February 2016 (2016-02-25) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118134071A (zh) * 2023-12-22 2024-06-04 生态环境部环境规划院 一种基于大数据智能分析的区域水环境综合管理系统

Also Published As

Publication number Publication date
CN115406981B (zh) 2024-09-13

Similar Documents

Publication Publication Date Title
Lee et al. Determination of methylmercury in natural waters at the sub-nanograms per litre level by capillary gas chromatography after adsorbent preconcentration
CN100585400C (zh) 一种测定污泥中多环芳烃的方法
CN108663471B (zh) 一种测定河口沉积物中多种内分泌干扰物含量的方法
CN112684042B (zh) 土壤分析过程中多种半挥发性有机污染物的同时净化方法
CN115406981A (zh) 一种基于MBBR污水处理系统中PPCPs质量平衡核算的检测方法
CN107941928A (zh) 一种液相色谱质谱同步测定环境水体中抗生素的方法
CN111272909A (zh) 一种土壤和沉积物中蒽醌及蒽酮类物质的检测方法
CN110907558A (zh) 一种土壤中苯胺的检测方法
US20220291179A1 (en) Method for Simultaneous Determination of Nitrogen And Oxygen Isotope Compositions of Natural Nitrate and Nitrite
EP2990789A1 (en) Method for analysis for organic substance contained in solution to be examined
CN108414637B (zh) 一种利用固相微萃取-气相色谱-质谱联用技术检测水中挥发性消毒副产物的方法
CN112505190B (zh) 一种土壤中丙烯酸的检测方法
Michor et al. Analysis of 23 polynuclear aromatic hydrocarbons from natural water at the sub-ng/l level using solid-phase disk extraction and mass-selective detection
CN111220722B (zh) 一种同时测定土壤中8种对羟基苯甲酸酯类化合物的方法
CN116026960B (zh) 城市水体中胺基苯砜类污染物的筛选和鉴定方法及系统
CN111044647A (zh) 一种检测水体中直链烷基苯的样品前处理和定量分析方法
CN111085006A (zh) 一种环境中有机污染物提取工艺
CN113533570A (zh) 一种沉积物中有机磷阻燃剂主要代谢产物的分析方法
CN110161169B (zh) 一种水环境中多种药物活性物质的快速检测方法
CN117630244B (zh) 一种检测污泥中烷基汞含量的方法
CN114660190A (zh) 一种土壤中除草醚农药残留的检测方法
CN113820440A (zh) 一种基于tg-5silms快速分析色谱柱的分析土壤中多环芳烃的分析方法
Van Noort et al. The isolation of some polynuclear aromatic hydrocarbons from aqueous samples by means of reversed-phase concentrator columns
Bo-Xing et al. Determination of polynuclear aromatic hydrocarbons in water by flotation enrichment and HPLC
CN114577925B (zh) 一种水样中粪甾醇类物质快速检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant